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Figure 1: Monocular depth estimation under low-light conditions. An image-based monocular depth
estimator (DepthAnythingV?2) fails to recover meaningful structure from a nighttime APS frame
due to poor lighting. In contrast, our event-based Distil-E2D produces coherent depth predictions,
highlighting the advantages of event sensing and our proposed depth prior transfer framework.

Abstract

Event cameras are neuromorphic vision sensors that asynchronously capture pixel-
level intensity changes with high temporal resolution and dynamic range. These
make them well suited for monocular depth estimation under challenging lighting
conditions. However, progress in event-based monocular depth estimation remains
constrained by the quality of supervision: LiDAR-based depth labels are inherently
sparse, spatially incomplete, and prone to artifacts. Consequently, these signals are
suboptimal for learning dense depth from sparse events. To address this problem,
we propose Distil-E2D, a framework that distills depth priors from the image
domain into the event domain by generating dense synthetic pseudolabels from
co-recorded APS or RGB frames using foundational depth models. These pseudola-
bels complement sparse LIDAR depths with dense semantically rich supervision
informed by large-scale image-depth datasets. To reconcile discrepancies between
synthetic and real depths, we introduce a Confidence-Guided Calibrated Depth
Loss that learns nonlinear depth alignment and adaptively weights supervision by
alignment confidence. Additionally, our architecture integrates past predictions via
a Context Transformer and employs a Dual-Decoder Training scheme that enhances
encoder representations by jointly learning metric and relative depth abstractions.
Experiments on benchmark datasets show that Distil-E2D achieves state-of-the-art
performance in event-based monocular depth estimation across both event-only
and event+APS settings. Code available at the project websiteﬂ

1 Introduction

Event cameras are neuromorphic vision sensors that asynchronously detect per-pixel brightness
changes with microsecond precision and high dynamic range. Unlike conventional cameras, they are
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more resilient to motion blur and perform well in extreme lighting, enabling low-latency, high-speed
vision. These properties of event cameras make them ideal for 3D perception tasks such as monocular
depth estimation (MDE). Event-based monocular depth estimation (EMDE) provides an efficient
and resilient approach to perceiving scene geometry under conditions involving high-speed motion,
low illumination, and extreme dynamic range. EMDE applications span diverse domains, including
autonomous driving [1H4], aerial robotics [5]], robotic manipulation [6], and low-latency spatial
reasoning in AR/VR systems [7]. These applications highlight the versatility and growing relevance
of EMDE in real-time, real-world perception.

EMDE aims to recover dense depth from single-view event streams—an inherently ill-posed problem
due to the absence of multi-view geometric constraints. Event data lack standard image-based depth
cues such as absolute intensity, texture, shading, and color gradients. Additionally, the sparsity
of events driven by scene and camera motion leads to uneven spatial coverage especially in static
or low-motion regions. These factors cause EMDE to be significantly more challenging than its
image-based counterpart. Recent learning-based approaches [8H12]] have shown promising results
in predicting depth directly from event streams. However, the quality of supervision remains a
fundamental bottleneck. Most event-based depth datasets [3 2] rely on LiDAR scans as ground truth,
which poses several intrinsic challenges due to mismatched sensing modalities. LiDAR acquires
depth via discrete angular laser scans to produce point clouds that give spatially sparse supervision.
Furthermore, LiDAR utilizes mechanical scanning that integrates depth over a short but non-negligible
temporal window. This temporal ambiguity introduces a mismatch with the microsecond precision
of event data that complicates accurate event-depth association. Additionally, in dynamic scenes,
the sequential scanning process introduces scanline artifacts—parallel streaks of occlusive depth
measurements. Collectively, spatial sparsity, temporal misalignment, and scanline artifacts of LIDAR
limit its effectiveness for training dense and temporally precise EMDE models.

Efforts to overcome supervision limitations through simulated data generation [8} 9] offer an alterna-
tive by simulating both event streams and dense depth from virtual environments. These simulated
datasets provide a scalable means to generate diverse scenes with pixel-perfect labels, which circum-
vent the hardware constraints and annotation challenges of real-world data collection. However, they
come with significant drawbacks. The simulated scenes often lack the visual complexity, noise char-
acteristics, and motion dynamics of real-world environments. Moreover, simplified event generation
models are used in simulation, resulting in event distributions that deviate from real-world event
statistics. This introduces domain gaps in both appearance and signal distribution, which substantially
degrades the generalization of models trained on simulated data when deployed in real-world settings.

On the other hand, image-based MDE has progressed rapidly in recent years, giving rise to foun-
dational depth models [13H19] with strong zero-shot generalization to diverse scenes. These
foundational models are propelled by access to large-scale RGB-depth datasets [20423]] and robust
self-supervised learning frameworks. These models learn strong geometric and semantic priors,
enabling dense depth prediction with high spatial consistency and generalization across a wide range
of environments. Despite their success, these rich priors have yet to be exploited in event-based
settings to overcome supervision limitations.

In this work, we address the supervision gap in event-based monocular depth estimation by proposing
Distil-E2D, a novel distillation framework that transfers dense depth priors from foundational
models into the event domain. Our key idea is to leverage co-recorded intensity images to generate
high-quality synthetic depth pseudolabels using image-based foundational depth models. These
pseudolabels provide dense and semantically rich supervision that complements sparse and noisy
LiDAR ground truth for more effective learning of spatial structure from events. However, due
to modality differences, synthetic depths exhibit scale and alignment discrepancies with LiDAR.
To mitigate this, we introduce the Confidence-guided Calibrated Depth Loss (CCDL), comprising:
1) a Nonlinear Depth Calibration (NDC) module that learns a mapping to align synthetic and
LiDAR depths, and 2) an Alignment-aware Confidence Estimator (ACE) that generates a pixel-wise
confidence map by assessing local consistency to emphasize reliable supervision. Additionally, we
propose a novel architecture featuring a Context Transformer (CT) to integrate past prediction context
via cross-attention, and a Dual-Decoder Training scheme that encourages the encoder to learn richer
spatial representations by jointly modeling metric and relative depth abstractions. Fig. [I|shows the
results from our Distil-E2D under challenging low-light conditions.



To our knowledge, this is the first approach to explicitly distill depth knowledge from the image
domain into the event domain by leveraging naturally co-registered APS frames and co-calibrated
external RGB cameras within real-world event datasets. Unlike synthetic simulation pipelines that
suffer from event domain shift, our method operates entirely on real event data. This preserves the
inherent dynamics and statistics of event streams , which result in models that are more robust and
generalizable in practice. These innovations position our Distil-E2D as a principled framework for
bridging the supervision gap in event-based depth learning with real-world robustness and practical
scalability. Our contributions are summarized as follows:

* We propose Distil-E2D, the first framework to distill dense depth priors from image-based
foundational models into the event domain using co-registered APS or RGB frames.

* We introduce a Confidence-guided Calibrated Depth Loss (CCDL) to reconcile syn-
thetic and real depth signals through learned Nonlinear Depth Calibration (NDC) and
Alignment-aware Confidence Estimation (ACE).

* We design a novel architecture that incorporates a Context Transformer (CT) to im-
prove temporal modeling and a Dual-Decoder Training (DDT) strategy to improve spatial
representation learning.

* We demonstrate state-of-the-art results across real-world benchmarks for both event-only
and event+APS modalities, which validate the robustness and generalizability of our method.

2 Related Work

2.1 Event-based Monocular Depth Estimation

Early approaches to event-based monocular depth estimation relied on geometric methods [24-
277]], which estimated depth by optimizing constraints from structure-from-motion or visual-inertial
odometry. Despite being physically grounded, these methods require auxiliary data such as accurate
camera poses or IMU readings and are sensitive to noise. To overcome these limitations, later works
explored supervised learning approaches [28| 8] which convert asynchronous event streams into
dense spatiotemporal representations for convolutional networks to regress depth. To compensate
for the sparsity of event data, several methods incorporate additional input from APS or RGB
sensors [9, 12} 29, 130] and fuse features from multiple modalities to improve prediction. More
recently, Transformer-based [31] architectures [[L1} [12,|29]] have been introduced for modeling long-
range spatio-temporal dependencies via self- and cross-attention. However, the generalization ability
of these learning-based models are limited due to their reliance on small datasets with sparse LIDAR
supervision.

To mitigate data scarcity, some works leverage synthetic datasets by simulating event streams and
corresponding depth maps from virtual environments 8, O]. Although this enables large-scale
training, such datasets suffer from two key domain gaps: 1) the event generation models often lack
physical realism, and 2) the simulated scene structures fail to capture the complexity of real-world
environments. These consequently lead to degraded downstream performance. An alternative is
self-supervised learning [30], which uses estimated egomotion and photometric consistency to derive
pseudo-depth labels. However, inaccuracies in pose estimation and image warping often result in
noisy supervision that fails to capture fine-grained depth details. In contrast to synthetic or self-
supervised approaches, our method retains the use of real-world event data while distilling dense and
semantically rich supervision from powerful image-based depth priors to guide fine-grained depth
estimation in the event domain.

2.2 Foundational Depth Models

Recent progress in foundational models has led to the development of highly generalizable monocular
depth estimators 18, [19, [17, 15}, 32} [13) [14]] trained on diverse and large-scale datasets spanning
indoor, outdoor, and synthetic scenes. These models depart from task-specific architectures by
embracing scalable transformer or hybrid encoder-decoder designs capable of handling a broad range
of environments without needing fine-tuning. Notable examples include DPT [18]] and MiDaS [19],
which paved the way for using large pretraining datasets and cross-domain learning to enable zero-shot
generalization.
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Figure 2: (Left) Distil-E2D architecture supporting event-only (E) and event+image (E+]) inputs.
(Right) Overview of the Confidence-guided Calibrated Depth Loss (CCDL).

Depth Anything V2 [[14] builds on the foundation of Depth Anything [[13]], which leverages pretrained
vision models such as DINO [33]] and Segment Anything [34] within a modular encoder-decoder
architecture trained on a curated mix of high-resolution synthetic and real-world depth datasets.
Although the original model demonstrated strong generalization across diverse domains, Depth
Anything V2 significantly advances the state-of-the-art by addressing the limitations of real ground
truth depth that is often sparse, noisy, or coarse. It proposes a novel strategy of generating high-
quality pseudolabels from large-scale unlabeled real-world images to augment training. These
synthetic depths retain fine-grained geometry and realistic scene structure, offering more detailed
and semantically rich supervision than conventional real labels. With the use of pseudolabeled real
images, Depth Anything V2 enhances depth fidelity, semantic precision, and generalization to set a
new benchmark in monocular depth estimation.

This approach inspires our own strategy of using calibrated, confidence-weighted synthetic depths
derived from real-world event data to augment sparse supervision and bridge the domain gap in
event-based depth estimation. By aligning synthetic depths with real distributions and emphasizing
reliable labels, we create high-quality supervision signals that enable fine-grained semantically-aware
depth estimation from events.

3 Our Method

Formulation. Event cameras output asynchronous streams of events at the pixel level, capturing
changes in log intensity with high temporal precision. Each pixel independently monitors log-intensity
signal L(u, t), at pixel location u and time ¢. An event e; = (u;, t;, p;) is generated whenever the
change in log-intensity exceeds a contrast threshold Ciyres:

AL(uw;, t;) = L(w;, t;) — L(w;, t; — 0t), |AL(w;,t;)| > Cinres, (D

with the polarity p; € {—1,+1} indicating an increase or decrease in brightness. We represent a
window of events as:

B ={ei}hily, )
where N is the number of events in the interval. Given an event window E; _r ), the aim in EMDE
is to predict a dense metric depth map

df" = Fed(Ey—ry) € RFW, 3
where Fyq is the learned event-to-depth model and H x W is the image resolution.
Event Representation. Following prior works [8] 9} 35, [36]], we convert the asynchronous event

stream into a grid-based voxel representation. Given a stream of events E = {(u;, t;, p;) }¥.; within
a fixed temporal window AT, we divide this window into B temporal bins to construct a voxel



grid V € RIXWXB \where H and W are the spatial dimensions of the sensor, and B denotes the
temporal resolution. Each event is first temporally normalized to the range [0, B — 1] using:

o (B —1)(t; — Ty)
3 AT 9
where Tj is the start time of the event slice. We then perform linear interpolation to distribute the
polarity of each event p; across its nearest temporal bins. The voxel value at (u, t) is accumulated as:

V(ll, t) = Zpi : max((), 1- |t - tﬂ)d(u - ui)a (5)

“

which ensures that contributions are smoothly distributed over time. This results in a dense spatiotem-
poral tensor that encodes both the spatial layout and fine-grained motion cues of the event stream for
effective learning of dynamic structure in monocular depth estimation.

3.1 Dense Depth Prior Distillation

To enhance supervision in EMDE, we distill
dense depth priors from pretrained image-based
foundational depth models. Specifically, we
use DepthAnythingV2 [14], a state-of-the-art
monocular depth predictor trained on large-scale
RGB-depth datasets to generate synthetic depth
pseudolabels from image frames temporally
aligned with events. These frames may be (i)
APS images captured by hybrid event cameras
(e.g., DAVIS240C) or (ii)) RGB frames from
synchronized external cameras. The resulting
synthetic depths serve as auxiliary supervision Frame  LiDAR Depth Synthetic Depth
signals during training. Fig[3|illustrates the su-

pervision signals. Compared to the sparse and Figure 3: LiDAR vs. synthetic depth. LiDAR is
artifact-laden LiDAR depth maps, the synthetic sparse, incomplete, and exhibits artifacts, while
pseudolabels are significantly denser, smoother, synthetic depths are dense and consistent.

and more spatially coherent, especially around

object boundaries. This enables more effective spatial learning from sparse event inputs. To maximize
label quality, we apply DepthAnythingV2 primarily to well-lit daytime scenes. Formally, for an
image frame I; at time ¢, we define the synthetic pseudolabel as:

y" = Faa(ly), y?" € RV, (©6)

syn

where Fg, denotes the pretrained DepthAnythingV2 model. The resulting depth map y,” is then
used alongside sparse LiDAR ground truth y¢' to supervise the event-based depth prediction network.
This cross-modal distillation transfers rich structural priors from the image domain into the event
domain to improve depth estimation in regions where LiDAR is missing or unreliable.

3.2 Confidence-guided Calibrated Depth Loss (CCDL)

The Confidence-guided Calibrated Depth Loss (CCDL) aims to metrically align synthetic depth
pseudolabels and emphasize reliable spatial regions to provide useful synthetic supervision. Illustrated
in Fig. 2] the CCDL comprises two subcomponents: 1) Nonlinear Depth Calibration (NDC) to
metrically align synthetic depths to LiDAR depths, and 2) Alignment-aware Confidence Estimation
(ACE) to emphasize spatial supervision based on mapped depth agreement.

Nonlinear Depth Calibration (NDC). The dense predictions from DepthAnythingV?2 are relative
depth estimates (RDE) that lack metric scale. In contrast, EMDE is supervised using metric depths
derived from LiDAR. Consequently, synthetic depths cannot be directly used as pseudolabels without
appropriate calibration. Existing methods [8, 9, 111, 12} commonly rely on the scale-
invariant loss Lg; [8]] to address this mismatch, which assume a global scale and shift discrepancy
between relative and metric spaces. However, this scale-shift assumption is often over-simplified. In
practice, relative depths exhibit nonlinear scale compression, especially in scenes with large depth



variation. To address this issue, we propose learning a nonlinear calibration function using a small
~syn,

MLP F,1, which maps synthetic log-depths log y;”" to calibrated log-depths log 7
log 7" = Fea(log ™), Lea = |[log 3" —logy'[13, ™

where L, is the loss function. This allows us to correct systematic nonlinear distortions in the
synthetic depths for better alignment to real-world metric scales. Using a logarithmic depth represen-
tation improves numerical stability and emphasizes relative depth relationships, which is important
for aligning synthetic and LiDAR depths. Driving scenes span a large depth range, from near objects
under 2 m to distant backgrounds tens of meters away. The logarithmic transform compresses this
range into a bounded interval (approximately 0—1 in our normalized setup), allowing both near and
far regions to contribute comparably to the loss.

The calibrated depths 7;"" are subsequently used to super-

vise the metric depth predictions d}* from our Distil-E2D Non-linear Depth Mapping
network using an alignment loss: T MVSEC

Latign (A7, 52" = L (A7, 52") + Lam(d, 57, (8)

0.8 1

where Ly, denotes the multi-scale gradient matching loss
from [8]]. Concurrently, metric predictions also receive
supervision from sparse LiDAR depths:

Lmde( Tayft) = Esi( ln7yfl) + Egm( ;n7yfl)- (9)

The use of calibrated synthetic depths provides dense and
semantically rich supervision that complements sparse
LiDAR signals. This encourages better generalization by

exposing the model to a broader range of depth cues during 005 o2 04 06 08 10
training. Dense supervision helps the network learn fine- log depth (RDE)

grained spatial structures, such as object boundaries and Figure 4: Learned nonlinear maps for
scene layout, which are difficult to infer from sparse labels
alone.

e
=
I

log depth (MDE)
o
-
1

0.2

relative-to-metric depth alignment.

Alignment-Aware Confidence Estimation (ACE). However, nonlinear calibration may leave
residual misalignments that make some synthetic depth regions less reliable. To address this issue, we
introduce an Alignment-Aware Confidence Estimator (ACE) that assigns per-pixel reliability scores
given a calibrated depth map ;" and a sparse LIDAR depth map 35"

~syn

w; = exp(—|log §" —logyf'|), wi € RV, (10)

The ACE formulation ensures that:
1) well-aligned regions receive higher
weights, and 2) a fixed absolute error
at larger ground-truth depth results in
smaller penalization. Due to the spar-
sity of ytgt, the initial confidence map
w; is also sparse. Therefore, we train
a lightweight CNN F., to propagate
the sparse confidences to produce a
dense confidence map wy:

wi = Foone(wi, y)¥",m§),  (11)

gt . . . g

where m;is the binary validity mask g0 5. ACE confidence maps at epoch 1 (top row) and
indicating valid depth locations in y; . epoch 200 (bottom row).

The network leverages the synthetic

depth map to provide spatial context and uses mft to provide LiDAR location cues. The resulting

dense confidence map w¢ is then used to weigh Lyign, emphasizing supervision in spatially reliable
regions.

LiDAR Depth Calibrated Depth Confidence Map

To prevent collapse of w¢, we incorporate two stabilizing mechanisms: base clamping and a sparse
confidence regularizer. Specifically, we reparametrize:



¢ = a+ (1 - a)w?, (12)

with a = 0.1. This enforces w{ € [0.1, 1] to avoid vanishing gradients. Additionally, we apply an L1
regularization loss:
l:conf = H,thd - wt ||17 (13)

where w; is the min-max normalized sparse confidence map from section This regularizer
encourages consistency with high-confidence regions and promotes non-trivial and spatially adaptive
weighting.

Figure [5] illustrates the evolution of the ACE confidence maps from epoch 1 (top) to epoch 200
(bottom). Initially, the confidence weights are poorly defined due to the lack of reliable correspondence
between synthetic and ground-truth depths. As training progresses, the confidence maps converge
toward coherent spatial patterns that align closely with scene geometry, highlighting regions where
depth alignment is more consistent. This progression shows that F..nr learns to propagate confidence
from sparse LiDAR locations to structurally meaningful areas, enabling adaptive weighting of Ljign.
Consequently, the network focuses training on geometrically reliable regions, leading to more stable
and accurate depth learning.

Combining NDC and ACE, we define the final training objective as CCDL.:
Eccd - Ecal + lbf . Lalign (d;rn’ flsyn) + Emde(d;ny ygt)~ (14)

This composite loss combines dense calibrated synthetic priors, sparse metric supervision, and
adaptive weighting to effectively guide the learning of EMDE.

3.3 Network Architecture

As illustrated in Fig. 2| (left), we introduce two model variants: Distil-E2D(E) (left, top) for event-only
input, and Distil-E2D(E+I) (left, bottom) for configurations including co-recorded APS or RGB
frames. Distil-E2D(E) comprises two main branches: 1) an event branch that employs a recurrent
convolutional encoder to process event voxel sequences, and 2) a context branch that encodes depth
prediction of the previous timestep along with the current event voxel. 3) An image branch is
introduced in Distil-E2D(E+I), which uses DepthAnythingV2 [14] as the frame encoder. Both
models incorporate a Context Transformer for temporal integration and a Dual-Decoder Training
regime to improve the quality of the encoder representation. The encoders in the context, event and
image branches produce feature tensors f¢, ff, and f{, respectively.

Context Transformer (CT). As highlighted in green in Fig]2] we introduce the CT modules in
the bottleneck region of our network. The CT module connects the event branch to the context
branch, and also the image branch to the event branch in Distil-E2D(E+I). To incorporate past
context into current predictions, we refine the event features f; by attending to the context features
ff via cross-attention:

-

K )
CrossAttention(Q, K, V') = softmax (Cf/d» ) V, Q=fwe K=fwEk v=gfw",
k
(15)

where ff serves as the query and f; supplies the keys and values. Multi-head cross-attention is
performed within a Transformer module placed at the bottleneck of the event branch. The refined
event features are denoted by:

ok

2 2 w

fte:fevtr(fteaftc)» fteeRl Xlﬁa (16)
where F., denotes the event-branch transformer module. In Distil-E2D(E+I), the image branch
updates f} with refined event features f7:

= Fimel S, J0), Ji € RTS8, (17)
where Fin; is the image-branch transformer module. We use two Transformer blocks per branch
with a multi-head self-attention layer followed by a multi-head cross-attention layer, respectively.
Attention is applied in a low-resolution latent space for per-pixel reasoning. Positional encodings are
learned for each latent pixel to preserve spatial consistency. This architecture allows efficient extrac-
tion of relevant temporal and semantic context for more accurate and consistent depth predictions.
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Figure 6: (Left) Qualitative results on MVSEC Dataset.

Table 1: Quantitative results on MVSEC Dataset.

dayl nightl night2 night3
I0m| 20m} 30m} 10m} 20mJ} 30mJ) 10m) 20mJ} 30mJ) 10m}] 20m] 30m] runtime(ms)

Event-only (E)

ULODEJ28] 2.72 3.84 4.40 3.13 4.02 4.89 2.19 3.15 3.92 2.86 4.46 5.05 25.0
MDDE+[8] 1.85 2.64 3.13 3.38 3.82 4.46 1.67 2.63 3.58 1.42 2.33 3.18 8.0
EMDI[30] 1.40 2.07 2.65 2.18 2.70 3.64 2.06 2.76 3.42 2.09 2.82 3.52 53
ERE[LT] 1.44 2.23 275 1.85 245 3.24 1.66 2.53 3.15 1.49 2.37 297 35.0
EvT+ (B)[12] 1.31 1.92 232 1.54 231 2.96 1.47 222 2.92 1.36 2.13 2.84 35.0
Ours (E) 1.14 1.56 1.81 1.41 2.16 2.75 1.33 2.06 2.70 113 2.04 2.79 10.5
Event+Image (E+I)

RAMNet[9] 1.39 2.17 2.76 2.50 3.19 3.82 1.21 2.31 3.28 1.01 2.34 343 6.2
EvT+ (E+D)[12] 1.24 191 2.36 1.45 2.10 2.88 1.48 2.13 2.90 1.38 2.03 2.77 52.0
Ours (E+I) 1.04 1.44 1.75 1.35 2.02 2.79 1.20 2.04 2.62 0.99 1.96 2.71 475

Dual-Decoder Training (DDT). As highlighted in pink in Fig. 2] we introduce two decoders: the
MDE Decoder for metric depth estimation and the RDE Decoder for relative depth estimation to
enrich the feature representations of the encoder. The MDE Decoder predicts d;* and is supervised
using CCDL (section @), and the RDE Decoder predicts d} and is trained with uncalibrated synthetic

depths y*¥" via:
'Crde( :a ysyn) = Esi( ;7 ysyn) + 'Cgm( :a ysyn).

The RDE Decoder used only during training provides dense supervision to accelerate convergence
and guide the encoder to focus on fine-grained scene details: object boundaries and edge consistency,
which are often missed with sparse LiDAR supervision. Using separate MDE and RDE Decoders
also prevents gradient interference and allows each to specialize in its respective depth abstraction
while jointly regularizing the encoder towards a robust and generalizable feature space.

4 Experiments

4.1 Experimental Setup

We evaluate our proposed Distil-E2D framework under two settings: (E) using event data only, and
(E+I) using both event and image (APS or RGB). We benchmark Distil-E2D (E) against five prior
event-only methods: ULODE[28]], MDDE+[8], EMD[30], ERE[11]] and EvT+ (E)[12] . For the (E+I)
configuration, we compare against multi-modal methods RAMNet[19]] and EvT+ (E+I)[12]. We
evaluate against two real-world driving datasets:

1) MVSEC. This dataset [2]] is a standard benchmark for event-based depth estimation, comprising
synchronized events, grayscale APS images, and LiDAR depth from outdoor driving sequences
recorded with a DAVIS 240C (260 x 346). Following prior work, we use the outdoor_day_2
sequence for training and evaluate on the remaining four sequences.

2) DSEC. This dataset [3] provides high-resolution stereo event and RGB data (480 x 640 events,
1080 x 1440 RGB frames) along with LiDAR depths across 41 driving sequences under diverse



Table 2: Ablations on MVSEC Dataset.

dayl nightl night2 night3
SYN NDC ACE CT DDT 10mJ) 20m} 30m) 10mJ) 20m} 30m] 10mJ 20m] 30mJ) 10m| 20m] 30m/]

1.19 1.59 1.86 1.44 221 2.79 1.36 2.10 278 1.18 2.06 2.81
114 1.56 1.81 1.41 2.16 2.75 133 2.06 2.70 113 2.04 2.79

v X X X X 2.89 4.01 3.91 3.53 4.01 5.52 2.63 3.56 4.01 2.29 3.12 4.11
X X X X X 2.63 3.52 3.68 5.96 4.63 5.11 291 3.05 3.96 2.62 273 3.66
v v X X X 1.47 1.95 2.41 1.74 245 322 1.60 243 3.33 1.35 223 297
v v v X X 1.35 1.76 2.01 1.53 2.32 3.04 1.47 2.17 3.01 1.21 2.14 2.82
4 4 4 X
v v v v v

lighting conditions. We use 28 sequences for training and 13 for testing. Since [30] is the only work
reporting on DSEC, we compare directly with their results.

4.2 Quantitative Results

Table T]reports the quantitative results on MVSEC following the standard evaluation protocol of the
prior works with average depth errors at cutoff distances of 10m, 20m, and 30m. Our Distil-E2D
consistently outperforms all supervised baselines. This demonstrates that the use of dense and high-
quality calibrated pseudolabels distilled from foundation depth models yields greater performance
gains than solely relying on sparse LiIDAR supervision.

Distil-E2D (E) and (E+I) exceed the performance of
MDDE+[8]] and RAMNet[9], both of which utilize large- I0m{ 20mJ  30mJ|
scale simulated event data for training. This highlights the
ability of our framework to bridge the synthetic-to-real
gap more effectively by combining real-world event data
with calibrated confidence-weighted synthetic pseudola-
bels. Comparing with self-supervised methods, Distil-E2D (E) surpasses EMD [30]. This shows the
superiority of depth priors distilled from image foundation models over photometric-consistency-
based pseudo-supervision.

Table 3: Results on DSEC Dataset.

EMD [30] 0.96 1.55 2.21
Ours (E) 0.64 1.11 1.61

Distil-E2D also outperforms [30] on DSEC, which shows the scalability of our method to higher
resolution event data and its compatibility with both APS and RGB modalities. As shown in Figure[7}
higher-resolution image frames yield finer and sharper depth estimates which further validates our
approach of a principled distillation of dense depth priors from foundational models.

4.3 Qualitative Results

Qualitative results are shown in Fig. [§]for MVSEC and Fig.[7|for DSEC. On MVSEC, Distil-E2D
produces sharper object boundaries such as cars, trees, and lampposts compared to the next best
method EvT+ [12] which remains visibly blurred. For example, in row 1, our Distil-E2D clearly
delineates the parked vehicles. On the other hand, methods trained only with sparse LiDAR [11}[12]
yield oversmoothed predictions. This is because EMDE inherently requires semantic understanding
and boundary precision, which are better captured by dense and semantically rich pseudolabels
generated from foundational models than by sparse LiDAR supervision. As a result, our Distil-E2D
more accurately segments and assigns depth to fine scene structures.

Similar patterns are observed in the
DSEC results (Fig[7). Although com-
parisons with EMD[30] remain quan-
titative due to unavailable code, our
Distil-E2D produces visually accurate
predictions. For example, in Fig. [7]
(row 3, column 4), LiDAR fails to
capture the full extent of the safety
bollard and road barrier. In contrast,
our Distil-E2D reconstructs them ac- =
curately. This underscores the value Frame " e isti-£2D (Ours) 6 Depth

?aszcl)ggggi\g;g(;g?lgﬁgﬁ pseudo- Figure 7: (Left) Qualitative results on DSEC Dataset.




4.4 Ablation Study

We present ablations in Tab. 2]to quantify the contribution of each core component in Distil-E2D:

NDC. Training on synthetic depth without NDC (row 1) causes the largest drop in performance,
underperforming even the LiDAR-only baseline (row 2). With NDC (row 3) depth accuracy improves
significantly. This validates the role of NDC in correcting scale and distribution mismatches between
synthetic pseudolabels and the LiDAR ground truth. The result also confirms that scale-invariant
losses alone are insufficient to bridge the nonlinear relative-metric scale gap, and that explicit
nonlinear calibration is necessary for effectively leveraging dense synthetic supervision.

ACE. Introducing ACE (row 4) yields further gains, confirming its effectiveness in weighting super-
vision towards more reliable regions. This mitigates the impact of misaligned or noisy pseudolabels,
allowing the model to prioritize cleaner training signals.

CT. Adding CT (row 5) leads to additional improvements, validating its ability to incorporate temporal
context. By attending to prior predictions, CT enhances performance in frames with sparse events or
ambiguous geometry.

DDT. Incorporating DDT (row 6) also improves performance. This shows that joint supervision on
both metric and relative depth encourages the encoder to learn richer and more generalizable features
with better semantic structure and spatial precision.

Overall, these results confirm that each component contributes uniquely to model performance.
Together, they enable Distil-E2D to achieve strong EMDE results through more effective use of
synthetic supervision, calibrated integration, and temporal reasoning.

5 Conclusion

We present Distil-E2D, a framework for event-based monocular depth estimation that distills dense
priors from pretrained image-based depth models. By leveraging synthetic pseudolabels, our method
surpasses the limitations of sparse LiDAR supervision. Our key contributions include Nonlinear
Depth Calibration (NDC) for scale alignment, Alignment-aware Confidence Estimation (ACE) for
robust supervision, a Context Transformer (CT) for temporal modeling, and Dual-Decoder Training
(DDT) for feature generalization. These components collectively enable Distil-E2D to achieve
state-of-the-art performance. Our results highlight the potential of foundation model distillation to
advance generalizable depth perception in the event domain.
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A Supplementary Material

A.1 Limitations

Although Distil-E2D achieves state-of-the-art results across multiple benchmarks, it is subject to sev-
eral limitations. First, the framework is dependent on the availability and quality of dense, calibrated
pseudolabels derived from image-based foundation models. Inaccurate or biased depth estimates
from these models, especially in low-light environments or textureless regions, can degrade the
effectiveness of the training signal. Second, although Distil-E2D improves the quality of supervision
through dense synthetic depths, the quantity and diversity of event-based training data remain limited.
This constrains the model’s ability to generalize to complex, real-world driving conditions with varied
lighting, geometry, and motion patterns.

Future work could mitigate these issues by leveraging ensembles of depth foundation models to
reduce pseudolabel bias, integrating online refinement techniques for self-correction during training,
and employing video-to-event (vid2e) generation strategies to synthesize realistic event data from
large-scale monocular video datasets. Distil-E2D enables a promising direction: By coupling with
video-to-event (vid2e) conversion strategies, it can transform large-scale monocular video datasets
into synthetic event—depth datasets, significantly reducing the need for laborious data collection and
opening new avenues for scalable event-based depth learning.

A.2 Implementation Details

Data Preparation. Each depth map is paired with events from the preceding 50ms window. To
address frame rate differences between the LiDAR and RGB/APS modalities, we match each depth
map to the nearest available image frame within a £50ms margin. If no valid match is found, we
exclude the image frame from synthetic depth generation and loss computation. These images are
passed through DepthAnythingV2-Large to generate dense synthetic pseudolabels. Event data is
discretized into spatiotemporal voxel grids with B = 5 bins for MVSEC and B = 15 bins for
DSEC to accommodate varying event densities due to sensor resolution. During training, we apply
horizontal flipping to events, images, and depth maps for data augmentation. All code, pre-trained
weights, and training configurations will be released to facilitate reproducibility.

Encoder Architecture. We use DepthAnythingv2-L for the frame encoder in the E+I setting. The
architecture of our event encoder, context encoder, and RDE/MDE decoder is as follows:

Event Encoder (Recurrent):

* Input Head: Conv2d(5, 32, kernel size 5, stride 1, padding 2)
¢ Encoder 0: Conv2d(32, 64, kernel size 5, stride 2) + ConvLSTM(128, 256, kernel size 3)
¢ Encoder 1: Conv2d(64, 128, kernel size 5, stride 2) + ConvLSTM(256, 512, kernel size 3)

¢ Encoder 2: Conv2d(128, 256, kernel size 5, stride 2) + ConvLSTM(512, 1024, kernel size
3)

¢ Encoder 3: Conv2d(256, 512, kernel size 5, stride 2) + ConvLSTM(1024, 2048, kernel size
3)

Context Encoder (Feedforward):

* Input Head: Conv2d(6, 32, kernel size 5, stride 1, padding 2)
¢ Encoder 0: Conv2d(32, 64, kernel size 5, stride 2)

¢ Encoder 1: Conv2d(64, 128, kernel size 5, stride 2)

¢ Encoder 2: Conv2d(128, 256, kernel size 5, stride 2)

¢ Encoder 3: Conv2d(256, 512, kernel size 5, stride 2)

Decoder (Shared for RDE and MDE Heads):

* Decoder 0: Upsample + Conv2d(512, 256, kernel size 5, stride 1)
* Decoder 1: Upsample + Conv2d(256, 128, kernel size 5, stride 1)
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* Decoder 2: Upsample + Conv2d(128, 64, kernel size 5, stride 1)
* Decoder 3: Upsample + Conv2d(64, 32, kernel size 5, stride 1)
* Output Head: Conv2d(32, 1, kernel size 1)

Skip connections are applied between the event encoder and RDE/MDE decoders.

Nonlinear Depth Calibrator (NDC). The NDC module is a three-layer multilayer perceptron with
a 1D input and output. It contains a single hidden layer of 64 units and learns a nonlinear mapping
function that transforms relative synthetic depths to the metric scale of ground-truth LiDAR. This
component plays a crucial role in reconciling distributional differences between synthetic and real
depths.

Alignment-aware Confidence Estimator (ACE). The ACE module is a four-layer convolutional
neural network with a 3-channel input (concatenation of the sparse confidence map, synthetic depth,
and the sparse LiDAR depth mask), 32-channel hidden representation, and 1-channel confidence
output. All convolutions use 3 x 3 filters with padding 1 to preserve spatial resolution. A final
sigmoid activation ensures that confidence weights fall within [0, 1], modulating the contribution of
each pixel to the loss based on alignment quality.

Training Configuration. Distil-E2D is implemented using PyTorch 2.0 and trained with the
AdamW optimizer at a learning rate of 1 x 10~%. A OneCycleLR scheduler dynamically adjusts the
learning rate. Training is conducted over 250 epochs with full precision and a batch size of 16, using
sequences of 10 frames corresponding to a 500ms event window.

A.3 Analysis of Context-Induced Distortions under Accelerated Motion.

We analyze whether the context branch introduces distortions under acceleration on the MVSEC test
set using event-only input. The test frames are segmented into low, medium, and high motion bins
based on the average ground truth optical flow magnitude with thresholds defined by the 33rd and
66th percentiles. For each bin, we report the mean depth error at 30m.

Motion Bin Baseline (no context) Ours (w/ context) A

Low 2.66 2.34 0.32
Medium 2.71 2.52 0.19
High 2.80 2.69 0.11

The results show that with the context branch, the accuracy decreases with increasing motion due
to the growing misalignment between frames, which reduces the effectiveness of temporal fusion.
Nonetheless, the context branch continues to provide valuable temporal cues and structural continuity,
yielding improved accuracy over the baseline across all motion bins.

A.4 Compute Resources

All experiments were performed on a single NVIDIA RTX A6000 GPU with 48 GB of memory.
Generating pseudolabels from DepthAnythingV2-Large required 4-6 hours per dataset. Training
Distil-E2D took approximately 72 hours for MVSEC and 96 hours for DSEC. We did not use
distributed training or multi-GPU setups. The entire workflow is executable within compute budgets
accessible to most academic institutions.

A.5 License and Credit

We acknowledge the use of publicly available models and datasets, each used in compliance with
their respective open-source licenses:

* Depth Anything V2: Apache 2.0 License
« MVSEC Dataset: Creative Commons BY 4.0 License
¢ DSEC Dataset: Creative Commons BY-SA 4.0 License
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A.6 Broader Societal Impact

This work advances event-based depth perception, enabling power-efficient, low-latency applications
in domains such as autonomous robotics, AR/VR, and assistive systems. Although these capabilities
are beneficial in fast-motion or low-light environments, they also introduce significant risks. Real-time
depth inference using covert, low-data-rate event cameras may facilitate surveillance, unauthorized
tracking, or military use. Furthermore, distillation of pretrained models can propagate existing biases
or inadvertently expose sensitive information from uncurated datasets. These risks highlight the
importance of transparency in dataset provenance, ethical deployment practices, and model auditing.
We advocate for interdisciplinary oversight, fairness evaluations, and responsible use, especially in
socially sensitive or surveillance-adjacent applications.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Each contribution in the abstract/introduced is clearly detailed in the method
section and validated by ablations in sec 4.4.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in the supplementary.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our work does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Formulation details, architecture, and experiment settings are described in the
paper. Code will also be released upon acceptance.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We use publicly available datasets, pretrained models, and we will release
code upon acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The experiment settings are detailed in sec 4.1 of the paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We follow evaluation procedures used by existing prior works which do not
include error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: we include inference runtime comparisons in the experiments section, and the
compute requirements in the supplementary.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have reviewed and complied with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: we discuss societal impact in the supplementary.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: our proposed model is not of such nature.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: we have properly credited and reviewed the license and terms of use of the
datasets and code we use. The MVSEC Dataset uses the CC-BY 4.0 license, the DSEC

Dataset uses the CC-BY SA 4.0 license, and DepthAnythingV?2 uses the Apache License
2.0.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: we do not release new assets in this paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: we do not use crowdsourcing in this paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not use human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

21



16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We do not use LLMs in this paper.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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