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ABSTRACT

We revisit the Information Bottleneck (IB) through the lens of information ge-
ometry and propose a Geometric Information Bottleneck (G-IB) that dispenses
with direct mutual information (MI) estimation. We show that mutual infor-
mation I(X;Z) and I(Z;Y ) admit exact projection forms as minimal Kull-
back–Leibler (KL) distances from the joint distributions to their respective inde-
pendence manifolds. Guided by this view, G-IB controls information compression
with two complementary terms: (i) a distribution-level Fisher–Rao (FR) discrep-
ancy, which matches KL to second order and is reparameterization-invariant; and
(ii) a geometry-level Jacobian–Frobenius (JF) term that provides a local capacity-
type upper bound on Iφ(Z;X) by penalizing pullback volume expansion of the
encoder. We further derive a natural-gradient optimizer consistent with the FR
metric and prove that the standard additive natural-gradient step is first-order
equivalent to the geodesic update. We conducted extensive experiments and ob-
served that the G-IB achieves a better trade-off between prediction accuracy and
compression ratio in the information plane than the mainstream IB baselines on
popular datasets. G-IB offers a principled and scalable alternative that unifies dis-
tributional and geometric regularization under a single bottleneck multiplier, im-
proving invariance and optimization stability. The source code of G-IB is released
at https://anonymous.4open.science/r/G-IB-0569.

1 INTRODUCTION

The Information Bottleneck (IB) principle (Tishby et al., 2000) casts representation learning as
extracting a representationZ fromX that preserves only what is useful for predicting Y . Concretely,
one seeks an encoder qφ(z | x) such that Z carries as much information about Y as possible while
remaining maximally compressed with respect to X , which can be formulated as:

max
φ

Iφ(Z;Y ) s.t. Iφ(X;Z) ≤ R, (1)

where I(·; ·) denotes the mutual information, φ are the parameters of the encoder, and R sets the
compression budget. Here, Iφ(·; ·) is computed under the data distribution p(x, y) and the encoder
qφ(z | x). To address this constrained optimization problem, the IB method ((Tishby et al., 2000;
Alemi et al., 2016)) introduces a positive Lagrange multiplier β, transforming the problem into

min
φ
−Iφ(Z;Y ) + βIφ(X;Z), (2)

where β ≥ 0 (the “bottleneck” parameter) balances predictive sufficiency against compression.

The IB principle is appealing because it formalizes what constitutes a useful representation via a
fundamental balance between compression and predictive sufficiency (Alemi et al., 2016; Tishby
et al., 2000; Wu et al., 2020a). Thus, IB and a wide range of variants (Wan et al., 2021; Yang et al.,
2025; Yu et al., 2024; Zhai & Zhang, 2022) have been adopted across diverse applications, including
image segmentation (Xu et al., 2024), domain generalization (Li et al., 2022), semantic communi-
cation (Xie et al., 2023; Wang et al., 2024), and privacy compression (Dubois et al., 2021; Razeghi
et al., 2023). Moreover, prior work (Shwartz-Ziv & Tishby, 2017) suggests that IB provides a prin-
cipled lens for interpreting certain training dynamics of deep neural networks and unveil universal
attrition to interpret vision transformers (Hong et al., 2025).
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Figure 1: Comparison of VIB and G-IB. Both models parametrize the encoder as qφ(z | x) =
N (µ(x),diag(σ2(x))) by a network fφ and use a task decoder pθ(y | z) to increase I(Z;Y ) by a
network fθ. (a) VIB: compression is enforced by the variational upper bound. (b) G-IB: replaces
explicit MI estimation with two geometry-aware penalties computed deterministically on statistical
manifolds: a Fisher–Rao quadratic proxy LFR and a Jacobian-Frobenius term LJF. Solid arrows
denote deterministic mappings; dashed arrows indicate reparameterized sampling z = µ+ σ � ε.

Research Gap. Despite this success, most practical IB implementations optimize Euclidean surro-
gates of mutual information (MI), e.g., variational bounds as in VIB (Alemi et al., 2016) or neural MI
estimators such as MINE (Belghazi et al., 2018). These surrogates disregard the statistical-manifold
geometry of the encoder or posterior family and thus offer no explicit geometric guarantees (e.g.,
reparameterization invariance, curvature-aware regularization) over I(X;Z). Recent extensions,
such as structure IB (Yang et al., 2025; Hu et al., 2024), try to extract the structure information
from the input. However, they still rely on Euclidean MI proxies, often degrading accuracy in the
strong-compression regime and making results highly sensitive to β and estimator hyperparameters.

Research Question. This motivates the following research question: “Can we design a geometry-
aware IB that operates on statistical manifolds and provides stable, principled control of representa-
tion compression?”

In this paper we introduce the Geometric Information Bottleneck (G-IB), which reframes IB through
the lens of statistical–manifold geometry. We first establish exact projection characterizations:
both I(X;Z) and I(Z;Y ) can be written as minimal Kullback–Leibler (KL) distances from the
corresponding joint distributions to their independence submanifolds. Then, we design the G-IB
method, which regulates compression via two complementary components: (i) a distribution-level
Fisher–Rao (FR) discrepancy that agrees with KL to second order and is invariant under smooth
reparameterizations of z; and (ii) a geometry-level Jacobian–Frobenius (JF) penalty that yields a
local capacity–type upper bound on Iφ(Z;X) by discouraging pullback volume expansion of the
encoder. Finally, we derive an optimizer with respect to the Fisher–Rao (FR) metric whose update
direction is the natural gradient, and we prove first-order equivalence with the geodesic update. To
summarize, we make the following contributions:

• Geometric Reformulation of IB. We show that both I(Z;X) and I(Z;Y ) admit exact projec-
tion forms as minimal KL distances from the joint distributions to their respective independence
manifolds, clarifying the geometric structure underlying the IB principle.

• A G-IB Solution. We propose G-IB, which controls compression via two complementary terms:
(i) a distribution-level Fisher–Rao (FR) discrepancy and (ii) a geometry-level Jacobian–Frobenius
(JF) penalty. We also derive a natural-gradient optimizer consistent with the FR metric and
prove that: the standard additive natural-gradient step is first-order equivalent to the geodesic
(exponential-map) update.

• Empirical Validation. We conducted extensive experiments to compare with representative
benchmarks. G-IB attains favorable accuracy–compression trade-offs in the information plane rel-
ative to the state-of-the-art IB baselines, with improved robustness in strong compression regimes.
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As the page limitation, we provide the Related Work Section in Appendix B.

2 PROBLEM STATEMENT FROM A GEOMETRIC VIEW

Let P be the statistical manifold of all joint distributions over (X,Z) and let the independence
manifold be IXZ = { q(x)r(z) }. In exponential (e-) coordinates IXZ is a e-flat submanifold
(Amari & Nagaoka, 2000; Amari, 2016). For any q and r, we have the information-geometric
Pythagorean identity (Amari & Nagaoka, 2000)

KL
(
pφ(x, z) ‖ q(x)r(z)

)
= KL

(
pφ(x, z) ‖ p(x)pφ(z)

)︸ ︷︷ ︸
= Iφ(X;Z)

+ KL
(
p(x)pφ(z) ‖ q(x)r(z)

)︸ ︷︷ ︸
≥0

, (3)

whence Iφ(Z;X) = minq,r KL
(
pφ(x, z) ‖ q(x)r(z)

)
with minimizer (q, r) = (p(x), pφ(z)). An

identical relation holds for (Y,Z) by replacing x with y, q with q′, and r with r′:

KL
(
pφ(y, z) ‖ q′(y)r′(z)

)
= Iφ(Z;Y ) + KL

(
p(y)pφ(z) ‖ q′(y)r′(z)

)
. (4)

We assume absolute continuity so that all KL terms are finite and Fubini’s theorem (Kallenberg,
1997) applies; in particular pφ(x, z) � q(x)r(z) and pφ(y, z) � q′(y)r′(z) for candidate product
measures. We provide the detailed proof of Eq. (3) in Appendix C, and Eq. (4) can also be proved
in the same way. The Information Bottleneck loss (Tishby et al., 2000), LIB(φ) = β Iφ(Z;X) −
Iφ(Z;Y ), can thus be written exactly as

LIB(φ) = βmin
q,r

KL
(
pφ(x, z) ‖ q(x)r(z)

)
− min

q′,r′
KL
(
pφ(y, z) ‖ q′(y)r′(z)

)
, (5)

where the inner minima are achieved at (q, r) = (p(x), pφ(z)) and (q′, r′) = (p(y), pφ(z)). Opti-
mizing Eq. (5) over φ is therefore equivalent to:

• push pφ(x, z) toward the independence manifold IXZ by minimizing
βKL

(
pφ(x, z) ‖ p(x)pφ(z)

)
;

• pull pφ(y, z) away from its independence manifold IY Z = {q′(y)r′(z)} by maximizing
KL
(
pφ(y, z) ‖ p(y)pφ(z)

)
.

Although the projection-based formulation is exact, directly optimizing it is computationally chal-
lenging due to the need to evaluate KL projections and encoder marginals at scale. We introduces
an approximate solution that replaces explicit MI estimation with geometry-derived surrogates.

3 GEOMETRIC INFORMATION BOTTLENECK METHOD

Overview. As introduced in the above section, we recast the IB objective through information ge-
ometry: the mutual information Iφ(X;Z) and Iφ(Z;Y ) are the minimal KL distances from the joint
distributions pφ(x, z) and pφ(y, z) to their respective independence manifolds, turning the IB La-
grangian into a difference of projection distances. Based on this, our Geometric IB (G-IB) controls
compression with two complementary terms: (i) a distribution-level Fisher–Rao (FR) discrepancy
and (ii) a geometry-level Jacobian–Frobenius (JF) term. During training, we propose a natural gradi-
ent descent method that combines the geometric information to achieve a better optimization effect.

3.1 DISTRIBUTION PROXY VIA THE FISHER–RAO (FR) QUADRATIC

We approximate the conditional–marginal divergence that defines the compression term by the local
second-order FR metric:

Iφ(Z;X) = Ep(x)DKL

(
qφ(z|x) ‖ pφ(z)

)
≈ 1

2 Ep(x)dFR
(
qφ(z|x), r(z)

)2
, (6)

where r(z) is a reference marginal (e.g., a standard normal or a learned prior), and dFR(·, ·) denotes
the Fisher–Rao geodesic distance between distributions, i.e., the Riemannian distance induced by
the Fisher information metric. The approximation follows from the local equivalence for smooth
parametric families {pθ}, for θ′ = θ + ∆ with ‖∆‖ small:

DKL

(
pθ′ ‖ pθ

)
= 1

2 ∆>F (θ) ∆ + o(‖∆‖2) = 1
2 dFR

(
pθ′ , pθ

)2
+ o(‖∆‖2), (7)

3
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with F (θ) the Fisher information. Replacing pθ′ by qφ(z|x) and pθ by r(z) in Eq. (7) yields Eq. (6).
We provide the proof in Appendix D.

Diagonal Gaussian Example. If qφ(z|x) = N
(
µφ(x),diag(σ2

φ(x))
)

and r(z) = N (0, I), the exact
KL is

DKL

(
qφ(z|x) ‖N (0, I)

)
= 1

2

dz∑
j=1

(
µj(x)2 + σj(x)2 − log σj(x)2 − 1

)
. (8)

Expanding Eq. (8) at µ = 0, σ2 = 1 gives

DKL

(
qφ‖N (0, I)

)
= 1

2‖µ‖
2
2 + 1

4‖ log σ2‖22 + O
(
‖ log σ2‖32

)
, (9)

which equals 1
2 dFR

(
qφ,N (0, I)

)2
up to second order. In practice, when r = N (0, I) we can opti-

mize the closed-form KL in Eq. (8): LKL(φ) = ÊxDKL

(
qφ(z|x) ‖ r(z)

)
. If r is learned/complex

(e.g., VampPrior/flow), we may optimize the FR proxy

LFR(φ) = 1
2 Êx dFR

(
qφ(z|x), r(z)

)2
, (10)

and optionally monitor ÎKL
XZ = ÊxDKL

(
qφ(z|x) ‖ p̂φ(z)

)
to gauge tightness.

3.2 GEOMETRIC BOUND VIA THE JACOBIAN–FROBENIUS TERM

Assume a reparameterized encoder z = fφ(x)+ε,where ε ∼ N
(
0,Σ(x)

)
, and denote the Jacobian

Jf (x) = ∂fφ(x)/∂x. The pullback metric on the input manifold is gx = Jf (x)>Σ(x)−1Jf (x).

Local Capacity-type Upper Bound. Linearizing fφ around x and letting Cx be the local input
covariance, a Gaussian channel upper bound yields

Iφ(Z;X) ≤ 1
2 Ep(x)

[
log det

(
I + Σ(x)−

1
2 Jf (x)Cx Jf (x)>Σ(x)−

1
2

)]
. (11)

Under a unit local energy constraint Cx � I (Loewner order) and the monotonicity of log det on
PSD cone Sd+, we obtain the pointwise bound

Iφ(Z;X) ≤ 1
2 Ep(x)

[
log det

(
I + Σ(x)−

1
2 Jf (x)Jf (x)>Σ(x)−

1
2

)]
(12)

= 1
2 Ep(x)

[
log det

(
I + Jf (x)>Σ(x)−1Jf (x)

)]
, (13)

≤ 1
2 Ep(x) Tr

(
Σ(x)−1Jf (x)Jf (x)>

)
= 1

2 Ep(x)
∥∥Σ(x)−

1
2 Jf (x)

∥∥2
F

=: 1
2 JF(φ).

(14)

Proof sketch. Since Z depends on X only through (fφ(X),Σ(X)), we have the Markov chain
X → (fφ(X),Σ(X)) → Z and thus I(X;Z) = I

(
(fφ(X),Σ(X)); Z

)
. Conditioning on x and

linearizing fφ at x while holding Σ(x) fixed locally yields a (local) linear Gaussian channel with
gain Jf (x) and noise covariance Σ(x). Under a unit local energy constraint on the input covariance
Cx � I , the Gaussian maximizes entropy for fixed covariance, giving the log-det bound in Eq. (11).
Using det(I + AB) = det(I + BA) gives Eq. (13), and applying log det(I + A) ≤ Tr(A) for
A � 0 yields Eq. (14). �

Unbiased Hutchinson Estimator. The trace in Eq. (14) can be estimated without forming explicit
Jacobians. For any v ∼ N (0, Idx),

Ev
[
‖Σ(x)−1/2Jf (x)v‖22

]
= Tr

(
Σ(x)−1Jf (x)Jf (x)>

)
. (15)

With S i.i.d. probe vectors {vs}Ss=1, define the per-sample estimator

ĴF(x) :=
1

S

S∑
s=1

∥∥Σ(x)−1/2 Jf (x) vs
∥∥2
2
, so that Ev[ĴF(x)] = Tr

(
Σ−1Jf (x)Jf (x)>

)
. (16)

4
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The training objective is the batch average

LJF(φ) := Êx∼batch
[
ĴF(x)

]
. (17)

In automatic differentiation frameworks, compute Jf (x)vs via Jacobian–vector products (JVP),
costing O(S) forward-mode calls per x; S = 1 or 2 is typically sufficient.

Isotropic/diagonal noise. If Σ(x) = σ(x)2I , then

Iφ(Z;X) ≤ 1
2 Ep(x) log det

(
I + 1

σ(x)2 JfJ
>
f

)
≤ 1

2 Êx
‖Jf (x)‖2F
σ(x)2

. (18)

With a scalar floor σ2
min > 0, this yields a simple, stable surrogate.

Geometric meaning. Because gx = J>f Σ−1Jf , we have Tr(gx) = ‖Σ(x)−
1
2 Jf (x)‖2F , the direction-

averaged local stretch (Dirichlet energy density under the Σ−1 metric). Minimizing the JF term
therefore controls average geodesic-length distortion, providing a principled compression surrogate
for Iφ(Z;X).

3.3 NATURAL-GRADIENT OPTIMIZATION FOR G-IB

Building on the above, we formulate the G-IB objective as

LG-IB(φ, θ) = Ep(x,y)Eqφ(z|x)
[
− log pθ(y | z)

]︸ ︷︷ ︸
↑ Iφ(Z;Y )

+ β
(
L̂FR(φ) + L̂JF(φ)

)
︸ ︷︷ ︸

↓ Iφ(Z;X)

, (19)

where β ≥ 0 is the bottleneck multiplier. Minimizing Ep(x,y)Eqφ(z|x)
[
− log pθ(y | z)

]
reduces

H(Y | Z) and increases Iφ(Z;Y ) (since H(Y ) is fixed); the FR and JF terms jointly penalize
Iφ(Z;X).

Natural Gradient on the Encoder. Viewing {qφ(z | x)}φ as a statistical manifold endowed with
the Fisher–Rao metric, the natural gradient of any scalar objective J (φ) is

∇̃φJ = F−1φ ∇φJ , Fφ := Ep(x)Eqφ(z|x)
[
∇φ log qφ(z | x)∇φ log qφ(z | x)>

]
, (20)

where the matrix Fφ in Eq. (20) is the Fisher–Rao metric tensor. We update the encoder by precon-
ditioning the Euclidean gradient of the full objective:

φt+1 = φt − ηφ F−1φt

(
∇φ Ex,y,z[− log pθ(y | z)] + β

[
∇φLFR +∇φLJF

])
, (21)

which is first-order invariant under smooth reparameterizations of φ and couples the distribution-
level FR and geometry-level JF signals through a single preconditioner Fφ. We can also prove that
the additive natural-gradient step φ+ = φ−ηF−1φ ∇φJ is a first-order approximation to the geodesic
update in geometry.
Proposition 1 (Natural gradient equals the Riemannian gradient). LetM = {pφ : φ ∈ Θ ⊂ Rd}
be a regular statistical manifold endowed with the Fisher–Rao metric gφ(u, v) := u>Fφv, where
Fφ = Ep(x)Eqφ(z|x)[∇φ log qφ∇φ log q>φ ]. For a scalar objective J : M → R, its Riemannian
gradient at φ satisfies

gradJ (φ) = F−1φ ∇φJ , (22)

i.e., the natural gradient ∇̃φJ := F−1φ ∇φJ is exactly the Riemannian gradient on (M, g).

See proof in Appendix E.
Proposition 2 (Steepest descent under the Fisher–Rao metric). Let (M, g) be endowed with the
Fisher–Rao metric gφ(u, v) = u>Fφv and let J be smooth. The direction of steepest descent per
unit FR length solves

min
‖v‖gφ≤1

DJ (φ)[v], (23)

and the (unit-norm) optimizer is v? = − gradJ (φ)
‖gradJ (φ)‖gφ

, with the convention v? = 0 if gradJ (φ) =

0. In particular, by Proposition 1, its direction coincides with the negative natural gradient:
−gradJ (φ) ≡ −F−1φ ∇φJ .
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Proof sketch. By the Riemannian gradient definition in (Amari & Nagaoka, 2000), DJ (φ)[v] =
〈gradJ (φ), v〉gφ . Cauchy–Schwarz gives 〈gradJ , v〉gφ ≥ −‖gradJ ‖gφ ‖v‖gφ ≥ −‖gradJ ‖gφ ,
with equality iff v is collinear with −gradJ and ‖v‖gφ = 1. �

By Proposition 2, the steepest descent direction per unit FR length is −gradJ (φ). We thus update
along this direction using the exponential map.
Theorem 1 (Geodesic update via the exponential map). Let Expφ : TφM→M be the Riemannian
exponential map of the FR metric. The discrete update

φ+ = Expφ
(
− η gradJ (φ)

)
lies on the unique FR geodesic γ starting at φ with initial velocity γ̇(0) = −η gradJ (φ); i.e.,
φ+ = γ(1).

See proof in Appendix F.
Corollary 1 (First-order equivalence to the additive update). Let Rφ be any retraction onM sat-
isfying Rφ(0) = φ and DRφ(0) = Id (the exponential map is a canonical retraction). In local
coordinates,

Expφ
(
− η F−1φ ∇φJ

)
= φ− η F−1φ ∇φJ + O(η2).

By Proposition 1, gradJ = F−1φ ∇φJ . Hence the common additive natural-gradient step φ+ =

φ− ηF−1φ ∇φJ is a first-order approximation to the geodesic update.

Natural Gradient on the Decoder. For the decoder, we use the natural gradient on {pθ(y | z)}θ:

θt+1 = θt − ηθ F−1θ ∇θEx,y,z[− log pθ(y | z)], (24)

where Fθ = Eqφ(z)Epθ(y|z)
[
∇θ log pθ(y | z)∇θ log pθ(y | z)>

]
. In practice, we compute F−1θ g

using scalable approximations and solvers, such as K-FAC (Martens & Grosse, 2015; Martens et al.,
2018). As the page limitation, we present the whole G-IB algorithm in Appendix G.

4 EXPERIMENTS

In this section, we conduct experiments to answer the following research questions (RQ) about G-IB:

• RQ1: How does the proposed G-IB perform on information compression and prediction accuracy,
as compared with the state-of-the-art IB solutions? (See Sections 4.2 and 4.3)

• RQ2: How do different hyperparameters, such as the Lagrange multiplier β and representation
dimensionality K, influence the G-IB? (See Sections 4.4 and 4.5)

4.1 EXPERIMENTAL SETTINGS

Datasets. We have conducted experiments on three widely adopted public datasets: MNIST (Deng,
2012), CIFAR10 (Krizhevsky et al., 2009), and CelebA (Liu et al., 2018), offering a range of ob-
jective categories with varying levels of learning complexity. We present detailed statistics of all
datasets and how do we use them in Appendix H.

Models. We select three model architectures of different sizes in our experiments: a 7-layer con-
volutional neural network (CNN), a 5-layer multi-layer perceptron (MLP), and ResNet18. For the
MNIST dataset, we employ two MLPs to form the G-IB model (one as the compression encoder and
one as the task decoder). For CIFAR10 and CelebA, we employ the ResNet18 as the encoder and
one MLP and CNN as decoder for CIFAR10 and CelebA respectively.

Metrics. We quantify model utility by top-1 classification Accuracy on the held-out test set. Infor-
mation compression is assessed by the mutual information I(Z;X) between the learned represen-
tation and the input, estimated with MINE (Belghazi et al., 2018). To probe the leakage contained
in Z, we perform two standard representation-level attacks: (i) a model inversion attack that re-
constructs x from z (Fredrikson et al., 2015), evaluated by mean squared error ( MSE; lower MSE
indicates stronger leakage); and (ii) a membership inference attack (Shokri et al., 2017), evaluated
by the membership inference accuracy (MIA) (higher values indicate stronger leakage).
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Table 1: General Evaluation Results on image datasets, MNIST and CIFAR10, and CelebA. Results
in bold are the best; those in italics are the second best.

Methods MNIST, β = 0.0001,K = 128 CIFAR10, β = 0.0001,K = 128 CelebA, β = 0.0001,K = 128

Accuracy I(X;Z) MSE Accuracy I(X;Z) MSE Accuracy I(X;Z) MSE

VIB (Alemi et al., 2016) 98.72% 1.81 0.034 82.65% 0.87 0.887 95.85% 0.55 0.054
SIB (Yang et al., 2025) 99.08% 1.86 0.037 75.81% 0.63 0.051 97.25% 0.38 0.072

MINE (Belghazi et al., 2018) 98.85% 1.76 0.032 82.64% 0.88 0.806 96.29% 0.51 0.048
AIB (Zhai & Zhang, 2022) 99.01% 1.69 0.043 82.63% 0.84 0.812 96.05% 0.52 0.053

G-IB (Our) 99.28% 1.69 0.043 85.54% 1.01 0.899 97.01% 0.47 0.066

Compared IB Benchmarks. We compare G-IB against four representative Information Bottleneck
(IB) variants: (1) the standard Variational IB (VIB) (Alemi et al., 2016); (2) an IB variant where
the mutual information term is estimated with MINE (Belghazi et al., 2018); (3) the state-of-the-
art Structured IB (SIB) focusing on structure-aware feature learning (Yang et al., 2025); and (4) the
Adversarial IB (AIB) that incorporates adversarial regularization into the bottleneck (Zhai & Zhang,
2022). For fairness, all methods use the same backbone, data preprocessing, and training schedule;
hyperparameters are tuned on the validation set following the original papers where applicable.

4.2 OVERALL EVALUATION OF G-IB

Setup. We compare G-IB with four representative IB variants on MNIST, CIFAR10, and CelebA
under the same backbone and schedule. We fix the Lagrange multiplier β = 10−4 and the rep-
resentation dimensionality K = 128 for an apples-to-apples comparison. We report top-1 accu-
racy (higher is better), the estimated mutual information I(X;Z) via MINE (lower I(X;Z) value
indicates stronger compression), and model-inversion MSE from reconstructing x from z (higher
indicates less leakage) in Table 1.

Results. Across the three datasets, G-IB attains the best or second-best results on all metrics. On
MNIST, G-IB achieves the highest accuracy and a (tied) lowest I(X;Z), while matching the top
inversion MSE. This suggests strong compression without sacrificing utility. On CIFAR10, G-IB
delivers the best accuracy and the highest inversion MSE (least leakage). Although SIB attains the
lowest I(X;Z), G-IB offers a better accuracy–privacy trade-off overall. On CelebA, SIB slightly
leads in accuracy and MI. G-IB ranks second with competitive accuracy and privacy (indicated by
MSE), confirming robustness on a more fine-grained, structured dataset.
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Figure 2: Evaluation of compression ratio and prediction accuracy from the information plane.

4.3 INFORMATION-PLANE EVALUATION: COMPRESSION VS. ACCURACY

Setup. We trace each method’s information plane on MNIST, CIFAR10, and CelebA by randomly
selecting the Lagrange multiplier β from 10−6 to 101. During this experiment, we fixed representa-
tion size K = 128. For every β, we train to convergence and record test accuracy (higher is better)
and the estimated mutual information I(X;Z) via MINE as shown in Figure 2.

Results. In Figure 2, across datasets, G-IB’s curve is consistently shifted up and left relative to
the baselines, achieving higher accuracy at a matched I(X;Z), or a smaller I(X;Z) at a matched
accuracy (Pareto improvement). When compression is weak, i.e., large I(X;Z), all methods reach
a high-accuracy plateau. As compression strengthens, i.e., smaller I(X;Z), VIB, MINE, and SIB
exhibit clear accuracy drops, while G-IB maintains accuracy over a wider low-I(X;Z) range before
degrading. On CIFAR10 the gap is most visible, where G-IB preserves accuracy at lower I(X;Z),
And on CelebA, the curves cluster near the top but G-IB attains comparable accuracy with less
information in Z.
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Figure 3: Evaluation about the impact of the Bottleneck multiplier β.

4.4 ABLATION: INFLUENCE OF THE BOTTLENECK MULTIPLIER β

Setup. We study the impact of the Bottleneck multiplier by sweeping β on a logarithmic grid from
10−6 to 101, with representation size fixed at K = 128. For each β, we train a model and report test
accuracy (higher is better), the estimated mutual information I(X;Z) (lower means stronger com-
pression), and the model-inversion MSE from reconstructing x from z (higher means less leakage).
Results for MNIST, CIFAR10, and CelebA are shown in Figure 3.

Results. (Left column) Accuracy vs. β. G-IB maintains the highest or near-highest accuracy over
a wide range of β on all datasets. Baselines, especially MINE and SIB, exhibit sharp degradation
when β≥10−1; on CIFAR10 and CelebA, SIB collapses at large β.

(Middle) I(X;Z) vs. β. All methods show the expected monotonic decrease of I(X;Z) as β in-
creases. SIB achieves the smallest I(X;Z) (strongest compression) but at the cost of the pronounced
accuracy drop above, whereas G-IB attains competitive compression while preserving accuracy.

(Right) MSE vs. β. G-IB yields the best or second-best MSE across most β, indicating stronger
resistance to inversion attacks. At extreme β (100−101), the MSE of some baselines spikes due
to representation collapse. Reconstructions become effectively random, which inflates MSE but
coincides with poor utility.

Qualitative visualization. To examine how the bottleneck strength shapes the representation, we
visualize a 2-D t-SNE of the representation µ(x) = E[Z | x] for 10,000 MNIST test images at three
values of β (Figure 4); the CIFAR10 results are in Figure 6 in Appendix I. With a small Bottleneck
multiplier (β = 10−4), clusters are well separated and exhibit relatively large within-class spread,
indicating that Z retains fine-grained input details. At β = 100, representation clusters contract
toward class-wise prototypes while remaining separable. At β = 101, representation embeddings
concentrate along narrow arcs near the class centers, consistent with stronger compression and the
accuracy drop observed in Figure 3.

4.5 ABLATION: INFLUENCE OF THE REPRESENTATION DIMENSIONALITY K

Setup. We vary the representation dimensionality K from 21 to 29 with the Lagrange multiplier
fixed at β = 10−4. For each K, we report the accuracy, mutual information I(X;Z), MSE, and
MIA for different IB methods. Results for MNIST and CIFAR10 are shown in Figure 5.
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(a) β = 10−4, Accuracy = 99.28% (b) β = 100, Accuracy = 98.77% (c) β = 101, Accuracy = 95.53%

Figure 4: Visualizing representation embeddings of posterior means µ(x) for 10,000 test images in
two dimensions on MNIST (K = 128). Colors denote true labels. From left to right: β = 10−4, 100,
and 101; the corresponding test accuracies are shown below each panel. As β increases, within-class
dispersion shrinks and clusters move toward class-wise prototypes, indicating stronger compression;
accuracy decreases accordingly.
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Figure 5: Evaluation about the impact of the Representation Dimensionality K.

Results. In the Left column of Figure 5, accuracy improves with K and then saturates (MNIST:
gains plateau around K ≥ 32; CIFAR10: around K ≥ 128). G-IB attains the highest or near-
highest accuracy across K, especially in the low-to-mid range. In the Mid-left column, as expected,
I(X;Z) increases with K, indicating weaker compression when the latent space is wider. Tail
non-monotonicity on MNIST at very large K is minor and likely due to the representation dimen-
sionality of K = 32 is already large enough for MNIST dataset. The Mid-right column shows that
MSE generally decreases as K grows (reconstructions become easier), reflecting increased leakage
with higher-dimensional Z. G-IB keeps MSE competitively high (i.e., more resistant to inversion)
at small and medium K. In the Right column, MIA success rises with K on both datasets, corrob-
orating that larger Z carries more membership signal. Across a broad range of K, G-IB remains
competitive; when K is small-to-medium, it attains a favorable utility–privacy balance.

5 SUMMARY AND FUTURE WORK

We propose the G-IB to solve the IB problem from a information geometry perspective. The key
ingredients are (i) a distribution-level Fisher–Rao (FR) discrepancy that locally matches KL to sec-
ond order and is invariant under smooth reparameterizations of the latent, and (ii) a geometry-level
Jacobian–Frobenius (JF) penalty that provides a local capacity-type upper bound on Iφ(Z;X) by
discouraging pullback volume expansion. On the optimization side, we propose a natural gradient
that aligned updates with the FR metric and prove that the standard additive natural-gradient step is
first-order equivalent to the exponential-map (geodesic) update.

Promising directions include tightening the FR-based proxies beyond the local (second-order)
regime and replacing the trace relaxation with sharper spectral approximations; connecting JF con-
trolled smoothness to robustness and generalization bounds; and extending G-IB to federated and
privacy-preserving settings where FR and JF controls might yield verifiable unlearning guarantees.
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STATEMENTS

Ethic Statements. Our study only involves the use of images of public datasets, with a long history
of works having used these images for research. There are no new ethical implications for the
humans within the datasets in this paper. Our work does not contain any user participants, and the
outcome of this research influences benefits all individuals equally. As such “Respect for Persons”
is satisfied.

Reproducibility Statements. To ensure the reproducibility of our research, we are committed to
ensuring that our research is transparent, reproducible, and accessible to the broader community.
The source code and the artifact of the G-IB is available at https://anonymous.4open.
science/r/G-IB-0569.
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A LLM USAGE DECLARATION

The authors declare that Large Language Models (LLMs) were used for grammar correction and
text refinement. All research ideas, analyses, results, tables, and figures presented in this paper are
original contributions by the authors and were not generated by LLMs.

B RELATED WORK

The Information Bottleneck (IB) Lagrangian (Tishby et al., 2000) has been widely studied in rep-
resentation learning (Achille & Soatto, 2018; Rosati et al., 2024) and practical training techniques
(Xu et al., 2022; Li et al., 2025b). A practical deep implementation is the Variational Information
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Bottleneck (VIB) (Alemi et al., 2016), which introduces a variational encoder qφ(z | x), a prior
r(z), and a decoder/classifier qθ(y | z), and uses the following bounds:

I(Z;X) = Ep(x)
[
KL
(
qφ(z | x) ‖ qφ(z)

)]
≤ Ep(x)

[
KL
(
qφ(z | x) ‖ r(z)

)]
= Ep(x)qφ(z|x) log qφ(z | x) − Eqφ(z) log r(z),

(25)

I(Z;Y ) = H(Y )−H(Y | Z) ≥ H(Y ) + Ep(x,y) qφ(z|x) log qθ(y | z). (26)

Here qφ(z) =
∫
qφ(z | x)p(x) dx is the encoder marginal. Eq. (25) uses KL

(
qφ(z) ‖ r(z)

)
≥ 0

(with equality if r(z) = qφ(z)). Eq. (26) follows from the non-negativity of KL
(
p(y | z) ‖ qθ(y | z)

)
(cross-entropy bound).

Beyond VIB, a complementary line of work replaces the prior–KL surrogate with neural mutual-
information estimators. These methods train a critic to optimize variational bounds on MI and
related quantities, enabling more direct optimization of the IB objective. Representative examples
include MINE (Belghazi et al., 2018), which maximizes a Donsker–Varadhan lower bound; NWJ
and related f -divergence bounds (Letizia et al., 2024); and CLUB, which provides an upper bound
useful for penalizing I(Z;X) (Cheng et al., 2020). These estimators remove the need to choose a
prior r(z), but introduce practical trade-offs (bias/variance, saturation for large MI, dependence on
negatives and critic capacity), as analyzed by McAllester & Stratos (2020).

Moreover, IB methods are studies across diverse scenarios. In graph learning, IB appears as the
Graph Information Bottleneck (GIB) for minimal-sufficient node and structure representations that
are also robust to perturbations (Wu et al., 2020b; Sun et al., 2022); follow-ups include variational
GIB for subgraph recognition and VIB-guided graph structure learning that jointly optimizes topol-
ogy and features (Yu et al., 2022). In semantic communication, IB gives a principled way to trans-
mit meaning rather than raw bits. Task-oriented links use variational IB to trade informativeness vs.
channel robustness and to handle distribution shift (Xie et al., 2023; Li et al., 2025a). The IB method
also has informed the design of contrastive objectives and augmentation strategies, encouraging rep-
resentations that discard nuisance variation yet retain label-sufficient information (Wei et al., 2022;
Li et al., 2025b; Zhao et al., 2020; Xu et al., 2022).

Another important application scenario of IB is compressive privacy for privacy preserving. It
achieves privacy protection of original data when participating in machine learning service via com-
pressing the original data into low-dimensional space for the target machine learning task (Kung,
2018; Song et al., 2019; Zhang et al., 2023). Moreover, (Tseng & Wu, 2020) proposed a new
privacy-preserving generative adversarial network (GAN) based on compressive pricacy. In their
method (Tseng & Wu, 2020), the users will upload the compressed data Z to the server side to
achieve a machine learning service.

While effective, most of the above approaches hinge on explicit or variational MI estimates in high
dimensions, which can be brittle. We exploit the geometry of the statistical manifold to implement
information bottleneck. Specifically, in information geometry, the Fisher–Rao metric endows dis-
tributions with a Riemannian structure under which KL is locally the squared geodesic distance
(Amari & Nagaoka, 2000); thus, a Fisher–Rao (FR) discrepancy d2FR

(
qφ(z | x), r(z)

)
provides a

reparameterization-invariant surrogate for the I(Z;X) compression term. Complementarily, view-
ing the encoder mean map µφ : X →Z as inducing a pullback metric J>µ Jµ suggests penalizing
local volume distortion, which connects to contractive and Jacobian-based regularization (Ross &
Doshi-Velez, 2018). We present the detailed introduction of the geometric information bottleneck
in the methodology section.
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APPENDIX

C PROOF OF EQUATION 3

Proof. Using the log-factorization identity and Fubini/Tonelli

KL
(
p(x, z) ‖ q(x)r(z)

)
=

∫∫
p(x, z) log

p(x, z)

q(x)r(z)
dx dz

=

∫∫
p(x, z) log

p(x, z)

pX(x)pZ(z)
dx dz

+

∫∫
p(x, z) log

pX(x)

q(x)
dx dz +

∫∫
p(x, z) log

pZ(z)

r(z)
dx dz

= KL
(
p(x, z) ‖ pX(x)pZ(z)

)︸ ︷︷ ︸
= I(X;Z)

+

∫
pX(x) log

pX(x)

q(x)
dx︸ ︷︷ ︸

=KL(pX‖q)

+

∫
pZ(z) log

pZ(z)

r(z)
dz︸ ︷︷ ︸

=KL(pZ‖r)

.

The last step uses Fubini’s theorem to integrate out z and x respectively. Because each KL term is
nonnegative, the minimum over q, r is achieved at q = pX , r = pZ , with value I(X;Z).

Remark 1 (Information-geometric Pythagorean relation). Since I is flat in the appropriate dual
affine coordinates, the above decomposition is also the IG “Pythagorean theorem”:

KL
(
p ‖ qr

)
= KL

(
p ‖ pXpZ

)
+ KL

(
pXpZ ‖ qr

)
, qr ∈ I.

Thus pXpZ is the e-projection of p onto I, and I(X;Z) is exactly the projection distance.

D PROOF OF LOCAL SECOND–ORDER (FR).

We show that for a regular parametric family {pθ : θ ∈ Θ ⊂ Rd} and θ′ near θ, i.e., ∆ = θ′ − θ,

KL
(
pθ ‖ pθ′

)
= 1

2 ∆>F (θ) ∆ + o(‖∆‖2) = 1
2 dFR

(
pθ, pθ′

)2
+ o(‖∆‖2),

where F (θ) is the Fisher information and dFR is the Fisher–Rao distance. Throughout we assume
standard regularity: common support, differentiability up to second order in θ, finiteness of F (θ),
and interchange of expectation and differentiation.

Write
KL
(
pθ ‖ pθ′

)
= Epθ [log pθ(Z)− log pθ′(Z)] .

Fix z and expand log pθ′(z) at θ:

log pθ′(z) = log pθ(z) + ∆>∇θ log pθ(z) + 1
2 ∆>∇2

θ log pθ(z) ∆ + o(‖∆‖2).

Subtract from log pθ(z), take Epθ , and use Epθ
[
∇θ log pθ(Z)

]
= 0 (zero mean score) to obtain

KL
(
pθ ‖ pθ′

)
= − 1

2 ∆>Epθ
[
∇2
θ log pθ(Z)

]
∆ + o(‖∆‖2).

By the information identity,

F (θ) = Epθ
[
∇θ log pθ(Z)∇θ log pθ(Z)>

]
= −Epθ

[
∇2
θ log pθ(Z)

]
,

hence
KL
(
pθ ‖ pθ′

)
= 1

2 ∆>F (θ) ∆ + o(‖∆‖2). (27)

The FR metric is the Riemannian metric on Θ given by gθ(u, v) = u>F (θ) v for tangent vectors
u, v ∈ Rd. Let γ : [0, 1]→ Θ be any C1 curve with γ(0) = θ and γ(1) = θ′. Its FR length is

L(γ) =

∫ 1

0

√
γ̇(t)>F (γ(t)) γ̇(t) dt,

14
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and the FR distance is dFR(pθ, pθ′) = infγ L(γ). For ‖∆‖ → 0, choose the straight segment
γ(t) = θ + t∆ to get

L(γ)2 =
(∫ 1

0

√
∆>F (θ + t∆) ∆ dt

)2
= ∆>F (θ) ∆ + o(‖∆‖2),

using continuity of F and a second–order expansion in t. Since the geodesic length is minimal,

dFR
(
pθ, pθ′

)2
= ∆>F (θ) ∆ + o(‖∆‖2). (28)

This follows from standard Riemannian geometry: in normal coordinates at θ, dFR(pθ, pθ′)
2 =

∆>F (θ)∆+O(‖∆‖3), hence equation 28. Combining equation 27 and equation 28 yields the local
equivalence

KL
(
pθ ‖ pθ′

)
= 1

2 dFR
(
pθ, pθ′

)2
+ o(‖∆‖2).

Let qφ(z|x) and a reference marginal r(z) belong to {pθ} with parameters θ(x) and θr respectively,
and assume ‖θ(x)− θr‖ is small for p(x)–almost every x. Applying the pointwise result above with
∆(x) = θ(x)− θr gives

KL
(
qφ(z|x) ‖ r(z)

)
= 1

2 dFR
(
qφ(z|x), r(z)

)2
+ o

(
‖∆(x)‖2

)
.

Taking Ep(x) and using dominated convergence (guaranteed by the regularity assumptions) yields

Ep(x)KL
(
qφ(z|x) ‖ r(z)

)
= 1

2 Ep(x)dFR
(
qφ(z|x), r(z)

)2
+ o

(
Ep(x)‖∆(x)‖2

)
.

When r(z) = pφ(z) (the aggregate posterior), this is precisely the local second–order approximation
of the compression term Ep(x)KL

(
qφ(z|x) ‖ pφ(z)

)
.

E PROOF OF PROPOSITION 1

Proof of Proposition 1. By definition, the Riemannian gradient gradJ (φ) ∈ TφM ' Rd is the
unique vector field satisfying, for all tangent directions v ∈ TφM,

〈gradJ (φ), v〉gφ = DJφ[v].

Under the Fisher–Rao metric, the inner product is 〈u, v〉gφ = u>Fφv. In coordinates, the differential
equals the Euclidean pairing with the usual gradient: dJφ[v] = v>∇φJ . Hence, for all v,

v>Fφ gradJ (φ) = v>∇φJ .

SinceFφ is positive definite at regular points, we concludeFφ gradJ (φ) = ∇φJ , i.e. gradJ (φ) =

F−1φ ∇φJ .

F PROOF OF THEOREM 1

Proof of Theorem 1. Let v := −η gradJ (φ) ∈ TφM. By existence and uniqueness for the
geodesic equation with the Levi–Civita connection of the FR metric, there exists ε > 0 and a unique
geodesic γv : (−ε, ε)→M such that γv(0) = φ and γ̇v(0) = v.

The Riemannian exponential map at φ is defined by

Expφ(w) = γw(1) whenever 1 lies in the domain of γw,

equivalently Expφ(tw) = γw(t) for t in a neighborhood of 0. (For global well-definedness one may
restrict to ‖w‖ below the injectivity radius.) Applying this with w = v gives

φ+ = Expφ(v) = γv(1),

i.e., φ+ lies on the unique FR geodesic starting at φ with initial velocity γ̇(0) = v = −η gradJ (φ).

15
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Algorithm 1: G-IB Natural-Gradient Step (per iteration)

Input: Current params (φt, θt); minibatch size B; step sizes (ηφ, ηθ); bottleneck β; # Hutchinson probes
S; damping λ; Fisher approx. mode K-FAC

Output: Updated params (φt+1, θt+1)
1 procedure GIB Step(φt, θt, B, ηφ, ηθ, β, S, λ,mode):

// 1) Sample minibatch and latent codes

2 Draw minibatch {(xi, yi)}Bi=1;;
3 zi ∼ qφt(z | xi) by reparameterization;

// 2) Estimate FR/JF terms (Hutchinson + JVPs)

4 Estimate L̂FR and L̂JF using S probe vectors and JVPs;

// 3) Compute Euclidean gradients

5 gθ ← ∇θ 1
B

∑B
i=1

[
− log pθt(yi | zi)

]
;

6 gφ ← ∇φ
{

1
B

∑B
i=1

[
− log pθt(yi | zi)

]
+ β

(
L̂FR + L̂JF

)}
;

// 4) Build Fisher approximations (Empirical Fisher or K-FAC)
7 if mode = K-FAC then
8 Build layerwise Kronecker factors for encoder/decoder to obtain F̂φ and F̂θ;
9 F̂λθ ← F̂θ + λI , F̂λφ ← F̂φ + λI;

// 5) Solve for natural directions (no explicit inversion)

10 Find vθ s.t. (F̂λθ ) vθ = gθ via Conjugate Gradient (CG);
11 Find vφ s.t. (F̂λφ ) vφ = gφ via CG;

// 6) Parameter updates (natural gradients)
12 θt+1 ← θt − ηθ vθ (Eq. (24));
13 φt+1 ← φt − ηφ vφ (Eq. (21));

14 return (φt+1, θt+1);

G THE G-IB ALGORITHM

We provide the algorithm of G-IB as the following Algorithm 1.

Algorithm 1 executes one G-IB training iteration with natural-gradient updates for the decoder θ
and encoder φ under a K-FAC curvature mode. (Step 1) Given a minibatch {(xi, yi)}Bi=1, latent
codes are drawn via the reparameterized posterior zi ∼ qφt(z | xi). (Step 2) The geometry-aware
bottleneck surrogates are estimated without forming full Jacobians: the Fisher–Rao proxy L̂FR and
the Jacobian–Frobenius penalty L̂JF are computed using S Hutchinson probe vectors together with
Jacobian–vector products (JVPs). (Step 3) We then compute the Euclidean gradients of the decoder
NLL and the full encoder objective,

gθ = ∇θ 1
B

B∑
i=1

[
− log pθt(yi | zi)

]
, gφ = ∇φ

{
1
B

B∑
i=1

[
− log pθt(yi | zi)

]
+ β
(
L̂FR + L̂JF

)}
.

(Step 4) To obtain natural directions, we build layerwise Kronecker-factored Fisher approximations
for both networks. For each layer ` with weight matrix W`, K-FAC uses the block-diagonal model
F` ≈ A` ⊗ G`, where A` := 1

B

∑
i a`,ia

>
`,i is the covariance of layer inputs (activations) and

G` := 1
B

∑
i g`,ig

>
`,i is the covariance of backpropagated pre-activation gradients. Tikhonov damp-

ing yields F̂λθ = F̂θ + λI and F̂λφ = F̂φ + λI . (Step 5) Rather than inverting these matrices, we
solve the linear systems (F̂λθ )vθ = gθ and (F̂λφ )vφ = gφ via conjugate gradients (CG). Each CG
iteration only needs Fisher–vector products, which K-FAC supplies efficiently: if V` reshapes the
vector v to the layer’s weight shape, then

FVP`(v) = vec
(

(G` + λI)V` (A` + λI)
)
.

(Step 6) Finally, parameters are updated along the natural directions: θt+1 = θt−ηθvθ (cf. Eq. (24))
and φt+1 = φt − ηφvφ (cf. Eq. (21)). The hyperparameters (ηφ, ηθ, β, S, λ) control step sizes,
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compression strength, estimator variance, and conditioning, while K-FAC trades a faithful curvature
signal for scalable, inversion-free natural-gradient steps.

Table 2: Dataset statistics.

Dataset Feature Dimension #. Classes #. Samples

MNIST (Deng, 2012) 28×28×1 10 70,000
CIFAR10 (Krizhevsky et al., 2009) 32×32×3 10 60,000

CelebA (Liu et al., 2018) 178×218×3 2 (Gender) 202,599

H DATASETS

The statistics of all datasets used in our experiments are listed in Table 2. Both MNIST and CIFAR10
are used to train 10-class classification models. The experiment on CelebA is to identify the gender
attributes of the face images. The task is a binary classification problem, different from the ones on
MNIST and CIFAR10. These datasets offer a range of objective categories with varying levels of
learning complexity. We also introduce them as below.

• MNIST (Deng, 2012). MNIST contains 60,000 handwritten digit images for the training and
10,000 handwritten digit images for the testing. All these black and white digits are size normal-
ized, and centered in a fixed-size image with 28 × 28 pixels.

• CIFAR10 (Krizhevsky et al., 2009). CIFAR10 dataset consists of 60,000 32x32 colour images in
10 classes, with 6,000 images per class. There are 50,000 training images and 10,000 test images.

• CelebA (Liu et al., 2018). CelebA is a large-scale face attributes dataset with more than 200,000
celebrity images, each with 40 attribute annotations.

I ADDITIONAL EXPERIMENTS

Qualitative visualization. To examine how the bottleneck strength shapes the representation, we
visualize a 2-D t-SNE of the representation µ(x) = E[Z | x] for 10,000 CIFAR10 test images
at three values of β (Figure 6). With a small Bottleneck multiplier (β = 10−4), clusters are well
separated and exhibit relatively large within-class spread, indicating that Z retains fine-grained input
details. At β = 100, representation clusters contract toward class-wise prototypes while remaining
separable. At β = 101, representation embeddings concentrate along narrow arcs near the class
centers, consistent with stronger compression and the accuracy drop observed in Figure 3.

(a) β = 10−4, Accuracy = 86.05% (b) β = 100, Accuracy = 82.05% (c) β = 101, Accuracy = 76.11%

Figure 6: Visualizing representation embeddings of 10000 test images in two dimensions on CI-
FAR10. The images are colored according to their true class label. We β becomes larger, we forget
more about the input and the representation embedding of each class is compressed close to the
average µ. We also report the test accuracy, which decreases as β increases.

17


	Introduction
	Problem Statement from a Geometric View
	Geometric Information Bottleneck Method
	Distribution Proxy via the Fisher–Rao (FR) Quadratic
	Geometric Bound via the Jacobian–Frobenius Term
	Natural-Gradient Optimization for G-IB

	Experiments
	Experimental Settings
	Overall Evaluation of G-IB
	Information-Plane Evaluation: Compression vs. Accuracy
	Ablation: Influence of the Bottleneck multiplier 
	Ablation: Influence of the Representation Dimensionality K

	Summary and Future Work
	LLM usage declaration
	Related Work
	Proof of Equation 3
	Proof of local second–order (FR).
	Proof of Proposition 1
	Proof of Theorem 1
	The G-IB Algorithm
	Datasets
	Additional Experiments

