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ABSTRACT

Missing data is a common challenge in spatiotemporal systems, arising in appli-
cations such as air quality monitoring and urban traffic management. Traditional
machine learning approaches, like recurrent and graph neural networks, rely on
iterative propagation, which tends to accumulate errors over time and space. Re-
cent diffusion-based methods mitigate error propagation but require iterative sam-
pling and often depend on problem-agnostic Gaussian priors, limiting both ef-
ficiency and effectiveness. To address these limitations, we propose GiFlow, a
Graph-Informed Flow Matching framework for spatiotemporal imputation. Gi-
Flow replaces the typical Gaussian prior with a graph-informed prior constructed
via spatiotemporal filtering of observable signals, which better aligns the source
distribution to the target and thereby simplifies the generation trajectory. The flow
field is parameterized by a hybrid vector field model that integrates spatial atten-
tion, temporal attention, and spatiotemporal propagation, enabling joint modeling
of spatial and temporal dependencies. Unlike diffusion models, GiFlow is trained
via direct regression and supports deterministic, few-step generation at inference.
Extensive experiments on both synthetic and real-world datasets with different
missing patterns and missing rates demonstrate that the proposed GiFlow outper-
forms the state-of-the-art approaches in spatiotemporal imputation.

1 INTRODUCTION

Spatiotemporal data characterizes both spatial and temporal information and is ubiquitous in do-
mains such as environmental science, urban systems, and climate forecasting (Atluri et al., 2018;
Wang et al.,[2020). In practice, spatiotemporal data is often incomplete due to sensor failures, trans-
mission errors, or system instability (Y1 et al.l 2016). The incompleteness of spatiotemporal data
compromises the reliability of subsequent analyses (Ma et al.| 2024} Marisca et al.| 2024)), motivat-
ing the need for robust spatiotemporal imputation techniques (Cao et al., 2018}; |Cini et al., [2022)).

Early approaches to spatiotemporal imputation rely on statistical models that impose restrictive as-
sumptions on the underlying data distribution, such as temporal smoothness levels, often failing to
capture complex, nonlinear dependencies (Liu et al.|[2023aj He et al., [2025)). Deep learning methods
have been introduced to better exploit spatiotemporal correlations. Specifically, recurrent neural net-
works (RNNs) are used to capture temporal dependencies by propagating hidden states (Cao et al.,
2018)), while graph neural networks (GNNs) are deployed to model spatial relationships over the
underlying graph topology (Cini et al., 2022). Despite their success, these models generally rely on
iterative propagation across space and time, which can lead to error accumulation and information
bottlenecks (Deng et al.l 2024; He et al., 2025} |Cini et al., [2025)).

Generative models provide an alternative paradigm by directly modeling conditional data distribu-
tions, thereby avoiding the accumulation of errors during iterative propagation (Liu et al., [2023aj
He et al., [2025). Among them, diffusion models have demonstrated remarkable success across var-
ious domains (Croitoru et al.| 2023} |Yang et al., [2023; |Cao et al., [2024), and recent works have
adapted them for spatiotemporal imputation (Liu et al.,[2023a; He et al.| 2025). However, diffusion
models typically rely on the problem-agnostic Gaussian prior, presenting an absence of the avail-
able problem-specific structure. Moreover, the sampling of diffusion models requires many iterative
denoising steps, and the imputation often demands multiple sampling runs followed by averaging,
limiting both efficiency and robustness when applied to large-scale spatiotemporal data.
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Recent work has explored flow matching (FM) as a generalization of diffusion models, which fol-
lows deterministic transport path (Lipman et al., {2023} |Albergo & Vanden-Eijnden, 2023} Liu et al.
2023b). FM avoids stochastic noise injection, supports efficient deterministic sampling, and does not
rely on Gaussian priors. These characteristics make FM particularly attractive for conditional tasks
such as imputation, where partial observations encode strong structural information. The flexibility
on prior selection allows FM to have shorter geenrative paths which enhances generation perfor-
mance (Tong et al., 2024)). Building on these insights, we propose GiFlow, the first Graph-Informed
Flow Matching framework for spatiotemporal imputation. Unlike existing diffusion-based methods
that rely on problem-agnostic Gaussian priors (Liu et al.|[2023a; |He et al.,[2025)), GiFlow constructs
a graph-informed prior using spatiotemporal filtering of observable signals, simplifying generation
trajectories. Combined with a hybrid vector field integrating attention mechanisms and spatiotem-
poral propagation, our approach overcomes the limitations of iterative propagation in RNN- and
GNN-based models, as well as the unstructured priors and inefficiency of diffusion-based methods.

Our contributions are summarized as follows:

* We introduce GiFlow, a novel generative model for spatiotemporal imputation that integrates
graph-informed priors into the flow matching framework.

* We design a graph-informed prior based on adaptive spatiotemporal filtering. Compared to the
problem-agnostic Gaussian prior, this problem-tailored prior is more aligned with the target dis-
tribution and provably reduces transport cost. We also theoretically analyze the relationship
between filtering factors and the receptive field in the spatiotemporal filtering process.

* We conduct extensive experiments on both synthetic and real-world datasets, demonstrating that
the proposed GiFlow model achieves competitive or superior performance across diverse missing
patterns and missing rates, outperforming state-of-the-art baselines.

2 PRELIMINARIES

2.1 NOTATIONS AND PROBLEM DEFINITION

Notations. We use calligraphic letters like X' to represent sets, uppercase bold letters like X to
represent matrices, and lowercase bold letters like x to represent vectors. We use X;; to represent
the element in the é-th row and j-th column of X. vec(-) is the vectorization operation of a matrix.
diag(x) represents a matrix with its diagonal elements given by vector x. o represents element-wise
multiplication between matrices and & denotes the Kronecker sum operator between matrices.

Graphs and Signals. Let spatiotemporal data be represented as a matrix X € RY*%E where the
r-th column of X denotes the signals observed at time r across /N nodes (e.g., traffic sensors or
air quality stations). We denote by R = {1,..., R} the set of timesteps. The relationships among
the nodes are captured by a graph G = (N, &), with N being the set of nodes and £ being the set
of edges. Let A € RV*¥ denote the adjacency matrix, D = diag(A1) the degree matrix, and
L = D — A the Laplacian. For simplicity, we focus on one-dimensional signals, though the method
generalizes to multi-dimensional signals.

Spatiotemporal Imputation. We consider scenarios where some entries of X are missing. Define
a binary mask M € {0, 1}?V*% such that M;,, = 1 if the data on the node i at time r is observed,
and 0 otherwise. The incomplete observations are then given by X o M. The task of spatiotemporal
imputation is to estimate the missing entries based on the incomplete observations, leveraging both
spatial dependencies across nodes and temporal dependencies across timesteps.

2.2 CONDITIONAL FLOW MATCHING

FM learns a vector field that transports samples from a source distribution pg to a target distribution
p1 (Albergo & Vanden-Eijnden,2023; Lipman et al.,2023; |Liu et al.,|2023b)). Let ¢, : [0, 1] x RY —
R? denote a step-dependent flow map with ¢ being the flow step, that evolves xo ~ pg to X; ~ p;
via the ordinary differential equation (ODE):

de(x) = ue(¢e(x))dt,  o(x) = o, (1)
where u; : [0,1] x R — R? is a step-dependent vector field. This induces a step-dependent
probability density path p; through the push-forward operator p; = [¢:].po (Lipman et al., 2023).
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Figure 1: Schematic overview of the GiFlow framework. GiFlow constructs a graph-informed prior
via adaptive spatiotemporal filtering of the observable signals, aligning the source distribution closer
to the target, and hence simplifying the generation trajectories. In contrast, because a problem-
agnostic Gaussian prior ignores the spatiotemporal structure, it differs significantly from the target
distribution, and thereby the model must traverse a longer path to reach the target distribution.

The FM objective seeks a trainable vector field v(-; 0) that approximates u;:

Lem(0) = Evrao,1]5xp, [|ve(x30) — Ut(X)\Q]- )

This objective allows sampling from p; given a sample from pg, as well as modeling continuous
sample dynamics. However, it is generally intractable, as both p; and u; are unknown.

Conditional flow matching (CFM) (Lipman et al.,[2023)) provides a tractable alternative by approxi-
mating a conditional vector field u;(x | z):

Lerm(0) = Eoart(0,1),2~q(2) xpr (x12) [[00(%50) — ui(x | 2)[?]. (3)

Here, z is chosen such that the marginal distributions of p;(x | z) match the boundary distributions
po and p;. Typically, z = (xg,x1) is sampled from a joint distribution ¢(z) = m(xg,x1) with
marginals pg and p;. Importantly, Lcpym and Lgym are equivalent in the sense that their gradients
with respect to @ coincide (Lipman et al., 2023)).

More discussions on spatiotemporal imputation and flow matching are provided in Appendix [A]

3 GRAPH-INFORMED FLOW MATCHING

In this section, we first construct a graph-informed prior via adaptive spatiotemporal filtering and
then introduce the GiFlow framework for spatiotemporal imputation, with theoretical justifications
on its effectiveness. A schematic overview of the GiFlow framework is provided in Figure[I]

3.1 GRAPH-INFORMED PRIOR VIA ADAPTIVE SPATIOTEMPORAL FILTERING

Let X! = X; oM denote the observable spatiotemporal signal. The goal of GiFlow is to model the
conditional distribution p; (X1 | X}7) via a generative model pg(X; | X¥). Typically, generative
models start from an isotropic Gaussian and treat X{” as a conditioning variable (Liu et al., [2023a;
He et al., [2025)). However, the reliance on such a simple prior complicates the generative process
since the prior distribution differs significantly from the target distribution (Kollovieh et al., [2025).
To construct a more structured prior, we can decompose the conditional distribution as

po(Xy | XM) = / po(X1 | Xo, XM)go(Xo | XM) dX. @

Setting qo to a problem-agnostic standard Gaussian, as in most existing diffusion and FM models, ne-
glects the spatiotemporal structure. Leveraging the flexibility of FM, we construct a graph-informed
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prior more aligned to the target data distribution p;. By aligning the source distribution to the target
distribution, we aim to reduce the overall transport cost.

We construct the graph-informed prior leveraging the joint continuous spatiotemporal filtering,
which has been adopted in previous joint spatiotemporal frameworks (Stanley et al., 2020; Pan et al.,
2021} Einizade et al., [2024). Specifically, we consider x}/ = vec(X?) as a spatiotemporal graph
signal living on top of the Cartesian product between the spatial and temporal graphs. We denote by
L,, and L the spatial and temporal graph Laplacians, respectively. Then the spatiotemporal filtering
operator can be defined as the Kronecker sum of L, and L¢, i.e., L = 7¢L¢ @ 7,,L;;, where 7,, and
T¢ control the range of the receptive field. In this way, the joint spatiotemporal filtering operation
can be described as x, = e~ Lme x{” . It can be shown (Stanley et al., 2020) that the matrix form of
this spatiotemporal filtering operation, where x, = vec(X.), takes the form of

X, = e Tnln XM gTele, (5)

The continuous spatiotemporal model enables adaptive filtering. From the perspective of minimizing
transport cost, we obtain the optimal T = (7,), 7¢) by solving the following problem:

_ - _ Tooo- _
minimize HXl—e Tl X Me TfLﬁH +aTtr(( “Taln X Me TﬁLﬁ) L,e X Me TﬁLf),

Tn>TE >0
(6)
where the first term enforces signal alignment and the second term encourages Laplacian smoothness
(Bontonou et al., 2019} |[Dong et al., 2020). This optimization balances alignment and smoothness,
producing a spatiotemporal graph-informed prior that is close to the target distribution.

Expanding the exponentials via the Taylor series gives

X _ <i< m) Lk> XM <i< SOl Lm> -

k=0 m=0

which propagates information across all nodes and timesteps for any nonzero (7, 7¢). Truncating it
to K, spatial hops and K temporal hops gives

Ky, Ke l (*Tn)k k M o (*T)
X = Z Ly | Xi Z - Ly . (8)
k=0 m=0

Proposition 1 (Adaptive spatiotemporal receptive field). Let Cs and C; denote the spectral radii of
L, and Ly, respectively. Then the truncation error is bounded by

|x. ‘XK"’K5H3<< s bl CF) (Z |Tg|f”0m>

k=K, +1

" (OO Tn"“ck) ( 3 'Tﬁ'mcm>>|xMu
Ko m! t
k=0 m=K¢+1 ’

The proof of Proposition [I]is provided in Appendix [B.1] According to Eq. (9, the truncation er-
ror can be reduced either by decreasing (7, 7¢) or increasing (K, K¢). In particular, for smaller
filtering factor (7,), ¢ ), a smaller truncation order (K, K¢) suffices to achieve the same approxima-
tion error. Therefore, (7, 7¢) effectively controls the spatial and temporal receptive fields: smaller
values yield more localized receptive fields, while larger values expand them to capture long-range
dependencies. Optimizing T = (7, 7¢) thus enables an adaptive spatiotemporal receptive field.

©))

In the following theorem, we explicitly show how the graph-informed prior in GiFlow enables more
efficient transport compared to standard FM start from an isotropic Gaussian, highlighting the benefit
of incorporating structural spatiotemporal knowledge.

Theorem 1 (Control of transport cost). Consider flow matching for spatiotemporal imputation. Let
pS' denote the graph-informed prior obtained via the spatiotemporal filtering operator defined in
Eq. (5), with (1, T¢) being the optimal solution to Problem (@) with a; = 0, and let p§*'® be the
standard isotropic Gausstcm prior. Denote by q, the target distribution. Then, the transport cost of
flow matching with p§ is no larger than that with p§"ss:

Crm(p§ = @1) < Crm(p§™™ — q1), (10)
where Cryp denotes the expected quadratic cost along the probability path.
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The proof of Theorem I]is provided in Appendix [B.2] Intuitively, since the standard Gaussian prior
ignores the spatiotemporal structure, the model must traverse a longer path to reach the target distri-
bution. In contrast, the graph-informed prior integrates spatial smoothness and temporal consistency
via adaptive spatiotemporal filtering, aligning the source distribution closer to the target distribution
and thereby reducing the overall transport cost.

3.2 GRAPH-INFORMED PROBABILITY FLOWS

For imputation problems, the data naturally comes in pairs (Xo, X;) (Albergo et al., 2024). To
construct an FM model, it suffices to specify a conditional probability path and a vector field. We
adopt a linear conditional probability path, which is optimal in the sense that the resulting conditional
flow corresponds to the optimal transport displacement map, minimizing a bound on the kinetic
energy (Lipman et al.l 2023). Specifically, for a data pair (X!, X;), the graph-informed linear
conditional flow is defined as

¢ (X | Z) = (1 —t)e ™l XMe=mebe 14X, (a1
This induces a unique vector field:
(X | Z) = Xy — e Tl X Memmebe, (12)

Let v; be the parameterized vector field. The regression loss of GiFlow is then given by

2
‘CGIFM (0) = Et'\/u[O}l],Zf\/q(Z),XNpt(X) |: HM o (Ut(Xt; 0’ M7 L) — Xl + eiTnLﬂXiweinIé) H :| .

3.3 VECTOR FIELD MODEL

We parameterize the vector field model v; using a spatiotemporal model that captures both spatial
and temporal dependencies. The architecture has three main components: spatial attention, temporal
attention, and spatiotemporal propagation.

Spatial attention. We first learn correlations between nodes using static node embeddings. Node
embeddings are processed by a GNN developed in (Morris et al.l 2019) to capture spatial informa-
tion. The propagated node embedding X,, serves as both the key and query for spatial attention.
The value is computed by X = MLP(X;) € R¥*H where X; is computed using the defined
conditional flow as in Eq. (TI)). To learn pairwise spatial associations, we employ self-attention:

Q" =X, W), K'=X,W}, V'=X/WJ, (13)
exp((q,, k7))

azl o = , (14)
e Zn’e/\f eXp((qu,kZ,>)

where W, Wi WY, € R"*H are learnable matrices, Q", K", V" € RV*# denote the query,

key, and value matrices for spatial self-attention, with q_', k', v; representing their i-th rows. For
a given spatiotemporal point (n,r), we aggregate spatial messages from all nodes, weighted by
the learned attention scores, to obtain the spatial embedding for each node. This aggregation is

computed as
h’ = MLP< > a;@’n,,vz,) (15)
n’eN

Temporal attention. To capture correlations across timesteps, we employ a temporal attention
mechanism. Unlike recurrent sequence models such as RNNs or LSTMs, Transformers do not
inherently encode sequential information (Wen et al.l [2023). To address this, we first incorporate
standard positional encoding (Vaswani et al., |2017). When real-world timestamps are available, we
additionally use a learnable embedding layer to encode them (Zhou et al., 2021). Let X pp and X7
denote the positional encoding and timestamp encoding. The input to the temporal attention module
is then given by

X5 = MLP(X]) + Xpp + Xpp € REXH, (16)
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For any pair of timesteps (r1,72) € R, Xf serves as the key, query, and value in the temporal
attention computation. The temporal attention scores and aggregation are computed as

Qf =XiW;, KS=X{Wi, V&=XiWy, (17)
e _ oxp((af, k)
1,72 ZWGR exp (<q§«1,k§/>)

where Wg,Wi,W@ € RH*H are learnable parameter matrices, and Q¢, K¢, V¢ ¢ REXH

denote the query, key, and value matrices. For a spatiotemporal point (n, '), temporal messages from
all timesteps are aggregated using the learned attention weights, producing the temporal embedding:

ht = MLP( > afm,,vf,). (19)

r"eR

: (18)

Spatiotemporal propagation. The aggregated spatial and temporal messages are concatenated with
the original features and time embedding that encodes the information of the step ¢ in the probability
density path, then projected via a linear layer to obtain H € RN*®*H We then perform Lj;p
layers of message passing in both spatial and temporal domains, with the ¢-th (¢ = 1,..., Ly/p)
layer defined by

H("D = GNN(H,,G,) e RV vreR,

H(*") = GNN(H,,,G,) e RF*H vne N,

where spatial message passing is applied independently for each timestep, and temporal message
passing is applied independently for each node. The GNN model follows the architecture developed
in (Wu et al., 2019). After Ly, p layers, we obtain HP™°P ¢ RN*RXH Thenp a linear layer projects
the features back to the original signal dimension. For one-dimensional signals, the final output is

XUt = MLP(HP™P) ¢ RV*E, 1)

(20)

The GiFlow model integrates graph-informed priors with a spatiotemporal architecture in the flow
matching framework, providing an effective generative model for spatiotemporal imputation.

4 EXPERIMENTS

We assess the performance of GiFlow using synthetic data (Qiu et al.,[2017; Giraldo et al.}[2022)) as
well as four widely used real-world datasets that have different sizes and spatiotemporal patterns:
two air quality datasets (Air-36 and AQI) (Zheng et al.,[2015;|Y1 et al., 2016) and two traffic datasets
(PeMS04 and PeMSO08) (Guo et al.,[2021). To simulate realistic incomplete spatiotemporal signals,
we adopt two missing data injection strategies: (1) Point missing: following the setup of (Cini et al.}
2022; Deng et al.l [2024), we randomly mask a fraction p of the available data; (2) Block missing:
we first randomly select a node and a starting timestep, then mask a contiguous segment of data
from that timestep for the selected node. This process is repeated iteratively until a fraction p of
the available data is masked. We compare the performance of GiFlow with five non-parametric
methods (Mean-S, Mean-T, Linear, KNN, and FP (Rossi et al.| 2022)), two RNN-based methods
(BRITS (Cao et al.,[2018)) and SAITS (Du et al.| 2023)), three spatiotemporal GNN-based methods
(SPIN (Marisca et al., [2022), GRIN (Cini et al., [2022)), and OPCR (Deng et al., 2024)), and one
diffusion-based method (PriSTI (Liu et al., [2023a)). Details about the datasets and baselines are
provided in Appendix and Appendix respectively. To evaluate the performance, we use
three metrics: mean absolute error (MAE), root mean squared error (RMSE), and mean absolute
percentage error (MAPE). All the experiment results are conducted five times using different seeds,
and we report the average performance. The implementation details can be found in Appendix

4.1 PERFORMANCE EVALUATION ON SYNTHETIC DATASETS

To evaluate the proposed GiFlow, we generate a synthetic spatiotemporal dataset following the
procedure described in (Qiu et al., [2017; |Giraldo et al) 2022)). This yields a smooth, temporally
evolving graph signal X € RY*¥, Specifically, we sample 50 nodes uniformly at random within
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Table 1: Imputation performance with point missing strategy (p = 20%).

Model Air-36 AQI
MAE RMSE MAPE MAE RMSE MAPE

Mean-S 19.22+0.17 31.81 £0.50 45.60+0.75 3493 +0.05 4894 £0.53 112.45+0.27
Mean-T 30.39+0.22 4483 £0.55 83.64+1.22 20.57+0.02 33.78+£0.31 5544+0.18
Linear 11.02+£0.12 2128+ 0.60 27.68+£0.50 897+£0.04 1995+025 2142+0.11
KNN 2033 £0.14 3425+0.71 41.74£0.96 1895+0.03 33.03+0.27 52.44+0.20
FP 16.51 £0.17 28.68 £0.80 3851 +1.70 15.65+0.02 2720+£041 4570+£0.18
BRITS 1423 +0.17 24.64+059 3142+£0.72 16.55+0.12 2678 £0.36 41.25+0.35
SAITS 14324+ 0.13 23.85+0.61 31.62+£0.85 17.95+0.07 2895+041 44.89+0.30
SPIN 11.05+ 087 2097+£190 2226+156 872+£0.12 19.61 £0.67 18.55+0.28
GRIN 994 +£0.12 1909 £0.87 21954+022 7974+0.08 1846+0.54 16.81 +0.24
OPCR 10.03+£0.12 1932 +£0.60 21.61£0.68 840=£0.20 1930£0.69 1691 £ 0.59
PriSTI 1029 £0.14 19.66 £0.25 2191£0.66 817£0.28 19.85+£0.28 16.37 £ 0.59
GiFlow 9.54 +£0.18 18.10+0.78 21.27+0.33 7.83+0.10 17.80+0.28 16.24 + 0.31

a 50x50 square domain. A graph is then constructed using KNN based on the spatial positions,

with k = 5. Let L,, € RY*Y be the spatial graph Laplacian, for which we compute the eigen-

decomposition L,, = VAV . Its inverse square root is used to construct a smoothed propagation
1 1

p— 1 1 —3 -1 « e . .
operator L, > = UA"2U" where A~2 = diag(0, A\, 2, ..., Ay>). The initial signal is generated
in the spectral domain as a low-frequency signal. Subsequent signals are generated iteratively via
1
X, = X,—1 + L, *f,, where f is an i.i.d. Gaussian signal. The length of the generated signal is set
to R = 3000. To simulate the real-
world noisy conditions, we add small

Table 2: Imputation performance on the synthetic dataset.
Gaussian noise to the signal using

X = X +¢€ €~ N0,02T). We  Model o=01 c=03
conduct experiments using the point MAE RMSE MAPE MAE RMSE MAPE
missing strategy (p = 20%) with  BRITS 035 056 790 039 064  12.26
both ¢ = 0.1 and ¢ = 0.3 to eval- SAITS  0.30 0.41 7.52 0.36 0.47 11.27
uate the perfom]ance under different SPIN 0.83 1.08 26.83 0.87 1.12 29.82
noisy levels. The results are given in GRIN 024 031 598 035 046 1105
Table @ where the best results are in OPCR 0.32 0.42 11.12 044 0.57 14.88
PriSTI 0.32 0.36 11.21 0.37 0.47 12.48
bold, and the second best results are - - - - - - - - __ " _ ___CT___C___ 71 ___ 7.
GiFlow  0.23 0.30 6.65 0.34 0.44 10.67

underlined. From the results, we can
see that the GiFlow model performs
well under different noisy levels.

4.2 PERFORMANCE EVALUATION ON REAL-WORLD DATASETS

We first evaluate model performance on the two air quality datasets: a small Air-36 dataset that is
collected in Beijing and a large dataset that is collected from 43 Chinese cities. The results with the
point missing and block missing strategies (p = 20%) are reported in Table [1] and [3] respectively.
The results show that simple averaging methods, Mean-S and Mean-T, fail to achieve satisfactory re-
sults, indicating that simple spatial or temporal averaging cannot capture the system dynamics. Lin-
ear interpolation performs well under point missing, but degrades significantly under block missing.
The same happens to RNN-based methods, i.e., BRITS and SAITS, which even underperform the
nonparametric FP model. This is because for block missing, there are contiguous missing blocks,
making methods that only rely on individual time series struggle with inferring missing values based
on signals from distant timesteps. The other deep learning methods that consider both spatial and
temporal information, i.e., SPIN, GRIN, OPCR, PriSTI, and GiFlow, perform better than the meth-
ods using only temporal information. Among them, GiFlow achieves the overall best results across
different missing patterns and metrics, demonstrating its effectiveness in spatiotemporal imputation.

To further evaluate the effectiveness of the proposed GiFlow model, we conduct experiments on
the Air-36 dataset, using the point missing strategy with p ranging from 20% to 60%. For compar-
ison, we choose four spatiotemporal baselines, which are shown to be better than other baselines
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Table 3: Imputation performance with block missing strategy (p = 20%).

Air-36 AQI
Model
MAE RMSE MAPE MAE RMSE MAPE

Mean-S 19.80 £0.29 32.03 +0.23 44.00+1.88 3496 +0.19 48.70+091 117.44£1.95
Mean-T 41.06 042 59.70+1.00 102.80+2.19 26.81 +£0.13 42.69+0.38 76.71 +1.19
Linear 33.03+0.57 5253 +£1.28 81.95+5.11 23874024 40.83+0.75 69.03+1.12
KNN 20.78 £0.39 3433 £0.56 4034257 1858+0.12 3280+£0.36 52.55+1.13
FP 16.65 £0.30 28.66 £0.74 35.76 £2.02 15.19+0.14 26.74 £0.53 44.81 £ 1.08
BRITS 17.78 £046 28.16 £0.93 32.19+223 17.60+0.09 28.24+0.19 4421+0.21
SAITS 18.04 £0.23 28.63 £0.52 40.54+1.01 1945+0.16 30.85+£0.66 49.86+0.79
SPIN 16.59 £0.31 28.07£0.37 31.17+£1.04 1473+£0.15 26.79+£047 3223+0.21
GRIN 16.27 £0.32 27.67+£0.67 31.86+1.17 1447+0.14 2523 +0.23 33.03+0.32
OPCR 1527 £0.19 2544 +£1.10 3338+£1.03 14.52+028 2595+£1.52 31.75+0.54
PriSTI 15.07 £ 0.65 2557+£1.27 29.84+£1.96 1454+045 26.61+148 31.77+0.39
GiFlow 14.76 +£0.38 2533 +2.14 28.95+0.80 13.74+0.30 2543 +2.61 31.09+1.79

according to the results reported in Table [T]

and |3| The results on MAPE are presented 26 OPCR

in Figure 2] while the results on MAE and 25 1;;11551

MSE are presented in Appendix [C.4] From . GRIN

the results, we observe that for all the meth- 5 24+ GiFlow

ods, the imputation performance steadily de- =

grades with increasing missing rates. More- 21

over, the proposed GiFlow model consis- 2-

tently outperforms the other methods across

different missing rates. These results vali- 20 30 40 50 60

date the robustness of the proposed GiFlow
model under different missing patterns and
missing rates.

As proved in Proposition [T} the filtering
factors 7, and 7¢ determine the receptive
field of the spatiotemporal filtering opera-
tion. Intuitively, when facing a higher miss-
ing rate, the model would require a larger re-
ceptive field to obtain a close approximation
of the missing signals based on the observ-
able ones. In the following, we investigate
how 7, and 7¢ change as the missing rate p
increases. The values of the filtering factors
T, and 7¢ under both the point missing strat-
egy and block missing strategy on the Air-36
dataset with p ranging from 20% to 60% are
presented in Figure [3] It is evident that with
increasing missing rate, 7, and 7¢ become
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Figure 2: Performance with different missing rates.
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Figure 3: Filtering factors with different missing rate.

larger and larger. This pattern corroborates the results we obtained from Proposition [If that with
increasing missing rate, the model likely requires a larger spatiotemporal receptive field. Moreover,
for block missing, 7, increases a lot as the missing rate increases, while 7¢ remains relatively stable.
This is largely due to the fact that with the block missing strategy, we have larger temporal gaps
in the data, making the model more reliant on spatial filtering. A similar phenomenon has been
observed in the AQI dataset, which is presented in Appendix [C.5]

4.3 ABLATION STUDY

In the proposed GiFlow model, the graph-informed prior construction is critical as it provides a close
alignment between the source and target distribution, and hence reduces the transport cost. To empir-
ically validate the effectiveness of the graph-informed prior generated with adaptive spatiotemporal
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Table 4: Imputation performance with point missing strategy on traffic data.

PeMS04 PeMSO08
MAE RMSE MAPE MAE RMSE MAPE

Mean-S  89.81 £0.08 117.55+£0.10 83.53+0.39 86.64+0.11 11359 £0.12 141.40 £ 1.67
Mean-T 2623 +0.02 39.74+0.07 20.02+0.15 21.27+0.05 39.74 £0.07 13.96 & 0.06
Linear 18.29 £0.02  29.87 £ 0.08 12.82 +0.08 1471 £0.04  24.04 £ 0.08 9.94 £ 0.05
KNN 9828 £0.09 131.83+£0.17 9547+0.40 117.65+£0.19 15250+£0.22 195.18 £2.10
FP 120.53 £ 0.11 155.00 £0.08 167.39 £0.78 118.93 £0.08 149.14 £0.30 206.13 £2.96
BRITS 22,14 £0.09 37.33+0.16 17.08+£0.22  17.66 £0.03  29.13 +0.08 12.07 £ 0.10
SAITS 24.85+£0.29 40.39 £045 18.03+£0.40  18.154+0.13  28.28 0.17 12.48 £ 0.27
SPIN 18.21 £0.07  30.49 £ 0.08 1234 +£0.24 1482 +0.06  24.26 £ 0.43 9.34 £ 0.06
GRIN 16.28 £0.13 2679 £0.33  11.12 £ 0.32 13.72£0.12 2149 £0.29 8.82 £0.27
OPCR 16.29 £0.05  26.55+0.05 11.16 £0.15 12.77+£0.20  19.88 +0.32 8.67 £0.52
PriSTI 16.66 £ 0.09  27.15 £ 0.05 11.824+£ 032  13.02+0.37  20.08 & 0.45 8.79 £0.86

GiFlow  16.39+0.27  26.76 + 0.31 11.15+0.24  12.66 =0.19  19.83 £ 0.05 8.43 +£0.18

filtering, we evaluate several variants of GiFlow. Specifically, we consider: (1) FM-Gauss: a FM
model employs the same vector field model architecture as in GiFlow but with a problem-agnostic
Gaussian prior; (2) GFM: GiFlow with a spatial-only graph-informed prior, i.e., the filtering param-
eter 7, is obtained by optimizing Problem (6) with 7¢ fixed as 0; (3) TFM: GiFlow with a temporal-
only graph-informed prior, i.e., the filtering parameter 7¢ is obtained by optimizing Problem @ with
7, fixed as 0. The results are reported in Table E} From the results, we observe that the FM-Gauss
performs the worst, and it is worse than several baselines in Table [I] emphasizing that FM with
a Gaussian prior fails to achieve state-of-the-art spatiotemporal imputation performance. TFM and
GFM give better results than FM-Gauss, indicating that the Laplacian filtering in both the spatial and
temporal domains provides more struc-

tured and informative prior to the FM Table 5: The effect of different priors.
framework. Notably, GFM outperforms

all the baselines in Table[T] indicating that ~_Model MAE RMSE MAPE
the spatial filtering alone already provides ~ FM-Gauss 1279 £0.63 22.15+£1.18 26.85+1.92

GFM 9.75+£023 18.67+0.72 21.55+0.54

both spatial and temporal dependencies, — ~rp) 954+ 0.18 1810+ 078 21.27 +0.33

GiFlow gives the best results, indicating
that combining both spatial and temporal
filtering brings additional performance gain.

4.4  APPLICABILITY TO OTHER DATASETS

In this section, we evaluate GiFlow on two traffic datasets about highway traffic flow in California
to validate its applicability to other datasets. Specifically, we conduct experiments using the point
missing strategy with p = 20% on the PeMS04 and PeMS08 datasets. The results are reported in
Table[d] It can be observed that KNN and FP perform quite bad, indicating that relying only on the
spatial dependencies cannot characterize the system dynamics well. The spatiotemporal methods
still achieve good results, highlighting the importance of considering both spatial and temporal de-
pendencies. Among the spatiotemporal approaches, GiFlow achieves superior or competitive results
compared to other methods, validating the applicability of GiFlow to other datasets.

5 CONCLUSION

In this work, we consider the problem of spatiotemporal imputation. We developed a graph-informed
flow matching method named GiFlow, which uses a graph-informed prior derived based on adaptive
spatiotemporal filtering of observable signals. Compared with the problem-agnostic Gaussian prior,
the proposed graph-informed prior better aligns with the target distribution, and it provably reduces
the transport cost from the source to the target distribution. We also theoretically analyze the re-
lationship between spatiotemporal filtering factors and the receptive field in the filtering process.
Experiments on both synthetic and real-world datasets with various missing patterns and missing
rates demonstrate the effectiveness and the robustness of the proposed GiFlow model.
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REPRODUCIBILITY STATEMENT

For the developed theoretical results, we have clearly mentioned the assumptions, and complete
proofs are given in Appendix [B] For the experiments, we use open-sourced data and we provide a
detailed description in Appendix For the implementation, we provide implementation details
in[C.3]and the the code will be open-sourced upon acceptance.
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A RELATED WORK

Spatiotemporal imputation addresses the problem of reconstructing missing values in data that com-
bine temporal dynamics with spatial dependencies, with applications in domains such as air quality
monitoring (Cao et al.||2018)), traffic forecasting (Li et al.,|2018), and weather prediction (Price et al.,
2025). Early statistical approaches rely on distributional assumptions such as temporal smooth-
ness or local similarity across series. Examples include autoregressive models (Ansley & Kohn,
1984), expectation-maximization (Nelwamondo et al., [2007), and k-nearest neighbors (Beretta &
Santaniello, 2016). While these methods are simple and theoretically well-understood, they struggle
in real-world settings where spatial and temporal dependencies are highly nonlinear and heteroge-
neous. Their limited capacity to capture complex interactions has motivated the development of
more flexible machine learning approaches.

Neural methods have significantly advanced imputation by better capturing temporal and spatial
dependencies. RNNs and their extensions exploit temporal correlations by recursively propagating
hidden states, as in BRITS (bidirectional recurrent imputation for time series) (Cao et al., |2018)),
while transformer-based designs such as SAITS (self-attention-based imputation for time series)
(Du et al.,|2023)) introduce attention mechanisms to jointly optimize imputation and reconstruction.
However, these approaches typically operate on individual time series and ignore spatial relation-
ships. To address this limitation, GNN models have been proposed to incorporate spatial dependen-
cies by propagating information over a graph topology. Examples include GRIN (graph recurrent
imputation network) (Cini et al., [2022), SPIN (spatiotemporal point inference network) (Marisca
et al.,[2022), and OPCR (one-step propagation and confidence-based refinement) (Deng et al.||2024)),
which combine temporal modeling with graph-based message passing. Despite their effectiveness,
these iterative propagation schemes are prone to error accumulation and information bottlenecks,
particularly under high missing rates (Cini et al., [2025).

Generative models provide an alternative paradigm by directly modeling conditional data distribu-
tions, thereby avoiding the accumulation of errors across propagation steps. Diffusion-based ap-
proaches (Sohl-Dickstein et al., 2015 Ho et al.l [2020; [Song et al.| [2021)) have demonstrated strong
generative performance in multiple domains, from vision (Dhariwal & Nichol,[2021; Rombach et al.,
2022) to spatiotemporal data (Liu et al.,[2023a; |He et al.|[2025). Conditional diffusion frameworks,
such as CSDI (conditional score-based diffusion models for imputation) (Tashiro et al.,|2021), have
been adapted to time-series imputation, while PriSTI (spatiotemporal imputation with enhanced
prior modeling) (Liu et al.,|2023a)) and related models extend them to spatiotemporal settings. How-
ever, these methods typically rely on problem-agnostic Gaussian priors and require computationally
expensive iterative denoising. In practice, accurate inference often demands multiple sampling runs
followed by averaging, which limits both efficiency and robustness when applied to large-scale spa-
tiotemporal data.

Flow matching (Albergo & Vanden-Eijnden, |2023; [Lipman et al., 2023} |Liu et al., [2023b)) general-
izes diffusion by directly learning a continuous probability flow from a source to a target distribution,
regressing vector fields along transport paths. Instead of relying on stochastic noise injection, flow
matching directly learns a continuous probability flow that transports a source distribution to the tar-
get distribution. FM can accommodate arbitrary source distributions, although Gaussian priors are
still often chosen for convenience. FM avoids stochastic noise injection, reduces training variance,
and stabilizes optimization (Lipman et al.l 2023; |Albergo & Vanden-Eijnden,[2023)). Moreover, the
deterministic inference of FM enables efficient sampling without repeated averaging as required in
diffusion models (Liu et al., 2023a). These characteristics make FM particularly suitable for tasks
where partial observations are available (Albergo et al., |2024; |Kollovieh et al., 2025} [Liu et al.,
2025)), since we can build problem-tailored priors based on it. By aligning the prior distribution to
the target distribution, the performance of FM can be further enhanced (Tong et al., 2024).

B PROOFS

B.1 PROOF OF PROPOSITION[I]

Our results on the truncation error analysis of the spatiotemporal filtering can be viewed as an
extension of the truncation error analysis for spatial filtering presented in (Behmanesh et al.| 2023)).
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The Taylor series for the spatiotemporal filtering defined in (3)) is given by

X, — (i (_Tn)kLk> XM (i (_7'5)7”Lm> (22)
T T ml &

k=0 m=0

Intuitively, for any nonzero (7,, 7¢), this series propagates information from the whole graph, as no
factor in front of the power of the Laplacian is zero. The truncated version of X is defined by
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which completes the proof.
B.2 PROOF OF THEOREM[I]
Let Xy ~ po and X; ~ ¢; be the source and target distributions of a flow matching model, while

XM = X, o M being the observable data, then the transport cost Crpn(po — q1) is defined as
follows:

Cont(Po = 1) = Bxt, mpy (o) || Xemo (X3 = X4 ] (25)

where X;—o(X4?) represents the source sample generated from the observable data X}!. Specif-
ically, for FM with a Gaussian prior, we have X{auss(XM) = XM 4+ 3 o (I- M) with
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S~N (0, 021) sampled from an isotropic Gaussian distribution. Therefore, we have

auss [ 1 2
Con ™™ = a1) = Bx, ey [0+ o (1= M) - X ]
= Ext,pu(xo) |11 0 M+ o (T- M) = X, ||
2
= Exyps (o) || (X1 = )0 (L= M) 26)

= Ext, oy (%o) |1X1 0 (1= M) ] 4+ Ext, oy ) [15 0 (1= M)

= Ex,mp (%) |[X1 0 (L= M)[P] + 0% (1= M).

For GiFlow, the graph-informed prior is constructed based on the spatiotemporal filtering defined in
, leading to X ((XM) = e~mLn XM ¢=7ele, Since 7, and 7¢ are obtained by optimizing @)
with o, = 0, we have

HX1 _ e*T"L"X{”e*TfLEHQ < HXl _ X{WH2 27)

since 7, and 7¢ represent the optimal solution of @ Note that since Problem @ is nonconvex, we
can only obtain stationary solutions in practice. In such cases, we can optimize (€ using gradient-
based methods with initialization 7, = 0 and 7¢ = 0, then Eq. (27) still holds. Therefore, we
have

Cont(B§ = 1) = Exy opy xo) [[ X1 = 77Xl e8]
< By [~ X

- , (28)
= Ex, p; (Xo) _||X1 —X; o M| }

< Ex,mp o) [1X 0 (1= M) || + 0% (1= M).

Combining Eq. (26) and Eq. (28) completes the proof.

C EXPERIMENTS

C.1 INTRODUCTION OF DATASETS

We conduct experiments on four real-world datasets: two air quality datasets, Air-36 and AQI, and
two traffic datasets, PeMS04 and PeMSO08. Air-36 and AQI collect hourly sampled PM2.5 pollutant
data. Specifically, Air-36 is collected from 36 monitoring stations in Beijing, while AQI is collected
from 437 monitoring stations spread across 43 Chinese cities. Both air quality datasets have 8760
timesteps, covering one year from 2014/05/01 to 2015/04/30 (Zheng et all 2015). PeMS04 and
PeMSO08 are two traffic datasets about highway traffic flow in California, which are collected by
the Caltrans Performance Measurement System (PeMS) (Chen et al.,|2001). Specifically, PeMS04
is collected from 307 monitoring sensors covering two months from 2018/01/01 to 2018/02/28,
while PeMSO08 is collected from 170 monitoring sensors covering two months from 2016/07/01 to
2016/08/31. Both datasets originally collect data every 30 seconds, and the collected data is then
aggregated with a 5-minute interval. The statistics of the datasets are summarized in Table 6]

Table 6: Statistics of the datasets.

Dataset ~ #Nodes # Timesteps Sampling intervals Collected date

Air-36 36 8760 1 hour 2014/05/01 — 2015/04/30
AQI 437 8760 1 hour 2014/05/01 — 2015/04/30
PeMS04 307 16992 5 minute 2018/01/01 —2018/02/28
PeMSO08 107 17856 5 minute 2016/07/01 — 2016/08/31
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C.2 INTRODUCTION OF BASELINES

To evaluate the performance of our proposed method, we compare it with various baselines:

* Mean-S: imputes the missing values using the spatial average, i.e., the mean values of all nodes
at a given timestep.

* Mean-T: imputes the missing values using the temporal average, i.e., the mean values of all
timesteps for a given node.

 Linear: imputes the missing values using temporal linear interpolation for each node indepen-
dently.

¢ KNN: imputes the missing values using the average signal of neighboring nodes.

* FP (Rossi et al., 2022): performs feature propagation to impute the missing values.

¢ BRITS (Cao et al.l[2018)): a bidirectional RNN-based model.

¢ SAITS (Du et al.,[2023)): a transformer-based model.

* SPIN (Marisca et al.,[2022): an efficient version of spatio-temporal attention-based method.
* GRIN (Cini et al.} [2022)): a GNN model with bidirectional gated recurrent unit.

¢ OPCR (Deng et al., 2024): a GNN model that contains attention-based one-step propagation
and confidence-based refinement.

e PriSTI (Liu et al.| 2023al): a conditional diffusion model.

C.3 IMPLEMENTATION DETAILS

For all the experimental results, we give the average performance and standard deviation with 5
independent trials. For all the datasets, we select windows of length 24. For each dataset, we
randomly select 70%/10%/20% of the data for training, validation, and testing. To obtain the filtering
factors 7, and 7¢, we optimize Problem @ with stochastic gradient descent. The Adam optimizer
is used in all experiments for model training (Kingma & Ba, [2015). We fix the maximum number
of epochs to 300, and we use early stopping on the validation set with a patience of 10 epochs. To
stabilize the training process, we employed an exponential moving average (EMA) of the model
parameters with a decay rate of 0.9999. To solve the ODE, we utilized an Euler solver with 20 steps.
The models’ hyperparameters are tuned based on the results of the validation set. The search space
of hyperparameters are as follows: 1) learning rate: {0.005, 0.001, 0.0005}; 2) weight decay: {0,
Se-4, 5e-3, 5e-3}; 3) dropout rate: {0, 0.1, 0.2, 0.3}; 4) GNN layers: {2, 4, 6, 8}; 5) embedding
dimension: {32, 64, 128}; 6) weight parameter «,: {0.1, 0.01, 0.001, 0.0001}.

C.4 PERFORMANCE WITH DIFFERENT MISSING RATE

To evaluate the robustness of the model under different missing rates, we conduct experiments using
the point missing strategy on the Air-36 dataset, with p ranging from 20% to 60%. The results on
MAPE are showcased in Figure 2l In the following, we present the results on MAE and RMSE
in Figure 4] and [3] respectively. The results on MAE and RMSE exhibit similar patterns as in the
MAPE results, where the imputation performance steadily degrades with increasing rates, and Gi-
Flow consistently outperforms the other baselines across different missing rates.

C.5 FILTERING FACTOR VALUES WITH INCREASING MISSING RATE

To validate the theoretical results presented in Proposition [T} we evaluate how the filtering factors
7, and 7¢ change with increasing missing rates. The results on the Air-36 dataset are showcased in
Figure 3] In the following, we present the results on the AQI dataset in Figure[6] The patterns of
T, and 7¢ with increasing missing rate on the AQI dataset coincide with the patterns on the Air-36
dataset. Specifically, the filtering factors 7, and 7¢ increase as the missing rate increases, which
corroborates the results we obtained from Proposition E} Moreover, we observe that the increase
of 7, is more significant than the increase of 7¢, indicating that the model relies more on spatial
filtering than temporal filtering.
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Figure 4: Performance on MAE with different Missing Rate.
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Figure 5: Performance on RMSE with different Missing Rate.
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Figure 6: Filtering factor values with different missing rates on the AQI dataset.
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D THE USE OF LARGE LANGUAGE MODELS

During the preparation of this work, the authors used ChatGPT to assist with grammar checking and
text polishing. After using this tool, the authors carefully reviewed and edited the content as needed
and take full responsibility for the content of this publication.
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