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Abstract

Sparse Mixture of Experts (SMoE) is an ef-
fective solution for scaling up model capac-
ity without increasing the computational costs.
A crucial component of SMoE is the router,
responsible for directing the input to relevant
experts; however, it also presents a major weak-
ness, leading to routing inconsistencies and
representation collapse issues. Instead of fix-
ing the router like previous works, we pro-
pose an alternative that assigns experts to in-
put via indirection, which employs the discrete
representation of input that points to the ex-
pert. The discrete representations are learnt
via vector quantization, resulting in a new ar-
chitecture dubbed Vector-Quantized Mixture
of Experts (VQMoE). We provide theoretical
support and empirical evidence demonstrating
the VQMOE’s ability to overcome the chal-
lenges present in traditional routers. Through
extensive evaluations on both large language
models and vision tasks for pre-training and
fine-tuning, we show that VQMOoE achieves a
28% improvement in robustness compared to
other SMoE routing methods while maintain-
ing strong performance in fine-tuning tasks.

1 Introduction

Scaling Transformers with data and compute has
demonstrated unprecedented successes across vari-
ous domains such as natural language processing
(NLP) tasks (Du et al., 2022; Fedus et al., 2022;
Zhou et al., 2024), and visual representation learn-
ing (Riquelme et al., 2021a; Shen et al., 2023b).
However, training and inference of a single large
Transformer-based model might require hundreds
of thousands of compute hours, costing millions of
dollars (Kaddour et al., 2023). This issue has mo-
tivated contemporary studies to investigate Sparse
Mixture of Experts (SMoE) (Shazeer et al., 2017;
Zoph et al., 2022; Xue et al., 2024; Jiang et al.,
2024). SMoE models that are inspired by (Jacobs

et al., 1991a) usually include a set of experts shar-
ing the same architecture and a router that activates
only one or a few experts for each input. Compared
to dense models of the same size, SMoE counter-
parts significantly reduce inference time thanks to
not using all experts simultaneously (Artetxe et al.,
2022; Krajewski et al., 2024).

However, training SMoEs remains a challenge
due to representation collapse, that is, either a small
number of experts receive most of the routed tokens
or all experts converge to learn similar representa-
tions. To tackle the issue, several works (Chi et al.,
2022; Chen et al., 2023a; Do et al., 2023) have
focused on router policy improvement. However,
these do not touch a fundamental question, ‘Do we
really need a router in the first place?’” Our research
suggests that adopting a discrete representation
could help solve the challenges currently faced by
the router method. Discrete representation learning
in the context of SMoE is motivated by its ability to
capture structured and interpretable patterns within
data, aligning with the way that humans categorize
and process information through distinct symbols,
like tokens. This approach enables better gener-
alization and facilitates knowledge transfer across
different contexts. Additionally, discrete represen-
tations provide a robust and efficient mechanism
for selecting and routing inputs to the appropriate
experts by clustering them more effectively. By
bridging the gap between discrete and continuous
representations, this method leads to more stable
and interpretable expert assignments, helping to
mitigate issues such as representation collapse and
overfitting, which are common challenges in SMoE
training.

Employing vector quantization (VQ) techniques
to learn discrete representation, this paper proposes
a novel mixture of expert framework, named VQ-
MokE, which overcomes the representation collapse
and inconsistency in training sparse mixture of ex-
perts. More specifically, we prove that the exist-



ing router methods are inconsistent and VQMOoE
suggests an optimal expert selection for training
SMokE. Additionally, our method guarantees supe-
rior SMoE training strategies compared to the exist-
ing methods by solving the representation collapse
by design.

We evaluate the proposed method by conducting
pre-training of Large Language Models (LLMs)
on several advanced SMoE architectures, such as
SMOoE (Jiang et al., 2024), StableMoE (Dai et al.,
2022), or XMoE (Chi et al., 2022), followed by
fine-tuning on downstream tasks on both Language
and Vision domains.

In summary, the primary contributions of this
paper are threefold: (1) we theoretically demon-
strate that learning a discrete representation is an
optimal approach for expert selection and that VQ-
MOoE inherently addresses the issue of representa-
tion collapse; (2) we propose the use of the Vector
Quantization method to learn cluster structures and
resolve related challenges; and (3) we conduct ex-
tensive experiments on large language models and
vision pre-training and fine-tuning tasks, provid-
ing an in-depth analysis of VQMOoE’s behavior to
showecase its effectiveness.

2 Related Work

Sparse Mixture of Experts (SMoE). Sparse Mix-
ture of Experts (SMoE) builds on the Mixture of
Experts (MoE) framework introduced by Jacobs
et al. (1991b); Jordan and Jacobs (1994), with the
core idea that only a subset of parameters is utilized
to process each example. This approach was first
popularized by Shazeer et al. (2017). SMoE’s pop-
ularity surged when it was combined with large
language models based on Transformers (Zhou
et al., 2022; Li et al., 2022; Shen et al., 2023a),
and its success in natural language processing led
to its application across various fields, such as com-
puter vision (Riquelme et al., 2021b; Hwang et al.,
2023; Lin et al., 2024), speech recognition (Wang
et al., 2023; Kwon and Chung, 2023), and multi-
task learning (Ye and Xu, 2023; Chen et al., 2023b).

However, SMoE faces a major problem in train-
ing known as representation collapse, i.e., the ex-
perts converge to similar outputs. To address this,
various methods have been introduced. XMoE (Chi
et al., 2022) calculates routing scores between
tokens and experts on a low-dimensional hyper-
sphere. SMoE-dropout (Chen et al., 2023a) uses
a fixed, randomly initialized router network to ac-
tivate experts and gradually increase the number

of experts involved to mitigate collapse. Similarly,
HyperRouter (Do et al., 2023) utilizes HyperNet-
works (Ha et al., 2016) to generate router weights,
providing another pathway for training SMoE ef-
fectively. StableMoE (Dai et al., 2022) introduces
a balanced routing approach where a lightweight
router, decoupled from the backbone model, is
distilled to manage token-to-expert assignments.
The StableMoE strategy ensures stable routing by
freezing the assignments during training, while
SimSMoE (Do et al., 2024) forces experts to learn
dissimilar representations. Despite these extensive
efforts, the representation collapse issue persists, as
highlighted by Pham et al. (2024). While most so-
lutions focus on improving routing algorithms, our
approach takes a different path by learning a dis-
crete representation of input that points to relevant
experts.

Discrete Representation. Discrete represen-
tations align well with human thought processes;
for example, language can be understood as a se-
ries of distinct symbols. Nevertheless, the use of
discrete variables in deep learning has proven chal-
lenging, as evidenced by the widespread prefer-
ence for continuous latent variables in most cur-
rent research. VQVAE (van den Oord et al., 2017)
implements discrete representation in Variational
AutoEncoder (VAE) (Kingma and Welling, 2022)
using vector quantisation (VQ). IMSAT (Hu et al.,
2017) attains a discrete representation by maximiz-
ing the information-theoretic dependency between
data and their predicted discrete representations.
Recent works follow up the vector quantisation
ideas and make some enhancements for VAE, for
example: (Yu et al., 2022); (Mentzer et al., 2023);
and (Yang et al., 2023). Mao et al. (2022) utilize a
discrete representation to strengthen Vision Trans-
former (ViT) (Dosovitskiy et al., 2021). To the best
of our knowledge, our paper is the first to learn a
discrete representation of Sparse Mixture of Ex-
perts.

3 Method

We propose a novel model, Vector-Quantized Mix-
ture of Experts (VQMoE), which learns discrete
representations for expert selection. As illustrated
in Fig. 1a, our approach selects experts directly
based on the input representation, eliminating the
need for a trained router. To prevent information
loss, we integrate discrete and continuous represen-
tations within the model.



3.1 Preliminaries

Sparse Mixture of Experts. Sparse Mixture of
Experts (SMoE) is often a transformer architecture
that replaces the MLP layers in standard transform-
ers with Mixture of Experts (MoE) layers (Shazeer
et al., 2017). Given x € R™*¢ as the output of the
multi-head attention (MHA), the output of SMoE
with N experts is a weighted sum of each expert’s
computation E;(z) by the router function S(x):

N
fsMoE(T) = Zs(w)i - Ei(x)

N
= ZS(CU)i - Wien, ¢ (Wipy, )

ey

Where S(z) is computed by T'opK function as

equation (2) that determines the contribution of
each expert to the SMoE output.

S(x) = TopK(softmax(G(x)), k),

TopK (v, k) v; if v; € top k largest of v,
o U? = .
P —oo otherwise.

2
Discrete Representation Learning. van den
Oord et al. (2017) propose VQVAE, which uses
Vector Quantisation (VQ) to learn a discrete rep-
resentation. Given an input z € R™*? VQ-
VAE discretized the input into a codebook V' &
RE*d where K is the codebook size and d is
the dimension of the embedding. Let denote
z,(z) € R™? denotes the output of the VQ-
VAE and 1() is the indicator function. The dis-
crete representation z4(z;) = vy, Where k=
argmin; ||z, (x;) — vy, is achieved by vector
quantizer gy that maps an integer z for each input
x as:

wle=k|r) =1 (k = argmin |2, (2) — V|

=1:K
3)
3.2 Vector-Quantized Mixture of Experts
(VQMOoE)

Pre-training VQMOoE. Existing Sparse Mixture
of Experts (SMoE) models learn continuous rep-
resentations and select experts based on routing
scores derived from token-expert embeddings. In
this paper, we propose a novel architecture that
learns simultaneously continuous and discrete rep-
resentations at a training phase as Figure 1a. The

continuous representation enables the model to
capture complex structures in the data, while the
discrete representation learns latent representation
from data and then transfers the knowledge to
downstream tasks. Given x € R™ ¢ as the out-
put of the MHA and fV is a vector quantization
operator, the output of the VQMOE layer at the
Pre-training phase as follows:

FYQIE(@) = g (@), SN (@) + g (@) Si ST @)
“)
Where z; = v if z; € V; codebook, other-
wise #; = 0 ; fFFN(d#;) corresponds to the ex-
pert associated with the V; codebook; g(z).(z) =
colp(G(x)), g(x)e(x) = coli(G(x)) is gating
function for continuous and discrete representation
with G(x) = softmax(WJ] x ). Wl R2%d js
a learnable weight and K is number of codes.
Fine-tuning VQMOoE. According to (Geva
et al., 2021), the Feed-forward layers (FFN) con-
stitute two-thirds of a transformer model’s parame-
ters. Thus, VQMOoE enhances the robustness and
efficiency of the Mixture of Experts by leveraging
the discrete representations learned during the Pre-
training phase. For further details, the output of
VQMOoE during the fine-tuning stages only requires
the discrete representation part as Figure 1b, lead-
ing to the following output from the VQMOoE layer
in the fine-tuning phase:

K
FYME () =~ fFFN (&) (5)
=1

3.3 Training Procedure

Pretraining. The training objective is jointly min-
imizing the loss of the target task and losses of the
Vector Quantization module (£!2 and (commitment
as in (van den Oord et al., 2017). Equation 6 speci-
fies the overall loss function for training VQMOoE
with three components: (1) task loss; (2) [ loss;
(3) a commitment loss. While £ helps to move
the embedding v; towards the outputs z,(x), the
commitment loss makes sure the output of the Vec-
tor Quantization module commits to the embed-
ding and its output does not grow. The Vector
Quantization algorithm does not vary with 3, we
follow 8 = 0.25 as van den Oord et al. (2017).
We introduce a new parameter, «, to regulate the
contribution of the Vector Quantization loss to the
overall loss. A higher value of « favors a stronger
adherence to the discrete representation, and vice
versa.



L = Lusx + a(lsg [z(2)] — UH2 + B l|zo(x [U]”
(6)

where sg(.) is the stop gradient operator defined as
follows:

x  forward pass

sg(z) = 7
8(@) {0 backward pass @

Fine-tuning. For downstream tasks, we fine-tune
the pretraining model by utilizing the codebook
learned from the Equation 6 by freezing all param-
eters at the Vector Quantization module. Thus, the
training objective simply becomes: L = L -

4 VQMOoE solves Representation Collapse
by Design

The representation collapse problems in SMoE,
which leads all experts to learn the same thing,
first declared by (Chi et al., 2022). Same as (Chi
et al., 2022); (Do et al., 2023), we illustrate the
presentation collapse issue by the Jacobian matrix
approach. Indeed, Jacobian matrix of SMoE with
respect to x € R™*? is followed as:

S;) E(z)ie]

JsmoE = (a“)kJFFN + ZS 5]” j

j=1

SC) JFFN Z

®)
where ¢; = S(2)j (6x; — S;) E(x);. Equation
8 consists two terms: (1) S(z)zJ¥FN represents a
contribution from input token and experts to the fi-
nal output; (2) Z;V: 1 cje;— indicates to learn better
gating function to minimize the task loss. More-
over, Equation 8 is suggested to be updated toward
a linear combination of the expert embeddings.
Since N << d in practice, the above equation
shows representation collapse from R to R,
Compared to SMoE, does VQMOoE reduce the
representation collapse issue? To answer the essen-
tial question, we calculate the Jacobian matrix of
VQMOoE with respect to € R"*? is given by:

JvomoE = 9 (7). JsmoE + Jy(), fomor()+

9(2)g v + Jg(), fvamoe(z)
&)

Equation 9 is written shortly as below:

N K
JVQMoE =J1+ ZCje;-r + Zdlel—r + Z gme;

j=1 =1 me{c,d}
N+K+2
:J1+ Z ojejT.
j=1
(10)
where J; = S(z) JTN ¢ =
S(x)k(ék]—SJ)E(x)z 5 dl = g(x)d (due

to the vector quantization operator using pass
gradient trick (van den Oord et al., 2017));
gm = S(@)m (Omk — Sk) fm where f, €
[fsMoE(), fvQMoE]-

Same as the Jacobian matrix of SMoE, the Ja-
cobian matrix of VQMOoE consists two terms: (1)
J1 depends on input token and experts to the final
output; (2) ZN tK+2 ojejT indicates to learn better
gating functlon to minimize the task loss. We can
see that N + K 42 >> N, implying that VQMoE
is better than SMoE in solving the representation
collapse issue. In theory, we can choose the number
of codes to be approximately d — N — 2 with a hash-
ing index to experts to address the issue. However,
this involves a trade-off with the computational
resources required to learn the codebook.

S Experiment

We conduct experiments to explore the follow-
ing hypotheses: (i) VQMOoE provides an effective
SMOoE training algorithm for LLMs; (ii)) VQMoE
delivers a robust and efficient solution during the
fine-tuning phase; and (iii) VQMOoE outperforms
other routing methods in vision domain.

5.1 Experimental Settings

To answer the three above hypotheses, we con-
duct experiments on Vision, Language, and Time-
series tasks. For Pre-training language models,
we examine two common tasks in the training and
evaluation of large language models: character-
level language modeling using the enwik8 and
text8 datasets (Mahoney, 2011), and word-level
language modeling with the WikiText-103 (Merity
et al., 2016) and One Billion Word datasets (Chelba
et al., 2014). For Parameter-efficient fine-tuning,
we consider pre-trained base models on enwik8
and efficient Fine-tuning it on a downstream task.
We choose the SST-2 (Socher et al., 2013), SST-
5 (Socher et al., 2013), IMDB (Maas et al., 2011),
and BANKING?77 (Casanueva et al., 2020) datasets.
For vision tasks, we employ the Vision Trans-
former model (Dosovitskiy et al., 2021) with the
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Figure 1: Illustration of the proposed VQMOoE architecture for Pre-training and fine-tuning. (a) At the Pre-training
stage, VQMOE architecture learns simultaneously continuous and discrete representation at the Pre-training phase.
The continuous representation is learned by the conventional SMoE, while the Vector Quantization block facilitates
the learning of a discrete representation. The final output is then combined by a gate layer. (b) VQMOoE learns a
discrete representation that is capable of operating efficiently and robustly on downstream tasks. VQMoE computes
the discrete representation only during the fine-tuning stage to achieve robustness and efficiency.

state-of-the-art routing method and our method to
train and evaluate the image classification task.
Our experiments encompass five widely recog-
nized image classification datasets: Cifarl0, Ci-
far100 (Krizhevsky, 2009), STL-10 (Coates et al.,
2011), SVHN (Netzer et al., 2011), ImageNet-
1K(Deng et al., 2009).

5.2 Pre-training Language Models

Training tasks We explore two common tasks
in the training and evaluation of LLMs. First,
character-level language modeling on the enwik8
or text8 datasets (Mahoney, 2011), which are com-
mon datasets to evaluate the model’s pre-training
capabilities. We also consider the word-level lan-
guage modeling task on WikiText-103 (Merity
et al., 2016) and One Billion Word dataset (Chelba
et al., 2014), a much larger and more challeng-
ing dataset, to test the models scaling capabili-
ties. For all datasets, we follow the default splits
of training-validation-testing. Second, we con-
sider Fine-tuning the models on downstream ap-
plications to investigate the models’ capabilities of
adapting to different domains. To this end, we con-
sider pre-trained medium models on enwik8 and
Fine-tuning them on a downstream task. We choose
the SST-2 (Socher et al., 2013), SST-5 (Socher
etal., 2013), IMDB (Maas et al., 2011), and BANK-
ING77 (Casanueva et al., 2020) datasets, which are
common NLP tasks to evaluate pre-trained models.
Following Chen et al. (2023a), we freeze the router
and only optimize the experts’ parameter in this

experiment.

Models. For the language tasks, we follow the
same settings as in SMoE-Dropout (Chen et al.,
2023a). We consider two decoder-only architec-
tures: (i) the standard Transformer (Vaswani et al.,
2017); and (ii) and Transformer-XL (Dai et al.,
2019a) with the same number of parameters as
Transformer. We evaluate our method versus the
state of art Sparse Mixture of Expert Layers such
as StableMoE (Dai et al., 2022) and XMoE (Chi
et al., 2022). We consider two model configura-
tions: (i) base: with four SMoE blocks and 20M
parameters; (ii) large: with twelve SMoE layers
and 210M parameters. We emphasize that we are
not trying to achieve state-of-the-art results due to
the limited resource constraints. Instead, we evalu-
ate the small and large models on various datasets
to demonstrate the scalability and efficacy of our
algorithm. Lastly, we conduct extensive investiga-
tions using the tiny model to understand the algo-
rithm behaviours and their robustness to different
design choices. Lastly, unless otherwise stated, we
implement them with K = 2 in the experiments.

Baselines. We compare our VQMoE with
state-of-the-art SMoE training strategies for LLMs.
SMoE (Jiang et al.,, 2024) employs a simple
router trained end-to-end with the experts. Sta-
bleMoE (Dai et al., 2022) proposes a two-phase
training process where the first phase trains only
the router, and then the router is fixed to train the
experts in the second phase. XMoE (Chi et al.,



Configuration Enwik8 (BPC) Text8 (BPC) WikiText-103 (PPL)  lmlb (PPL)

Architecture Algorithm Base Large Base Large Base Large Base Large
VQMOoE 148 141 147 140 38.74 31.98 5948 49.30

SMoE 1.49 1.41 149 140 3950 32.30 60.88 51.30
Transformer SMoE-Dropout 1.82 222 1.70 1.89 72.62 107.18 97.45 159.09
XMoE 1.51 1.42 149 142 39.56 32.65 61.17 51.84

StableMoE 1.49 1.42 149 141 3945 32.34 60.72  50.74

VQMOoE 1.19 1.08 128 117 2948 23.85 56.85 48.70

SMoE 1.20 1.09 1.29  1.18 30.16 24.02 58.00 48.71

Transformer-XL. SMoE-Dropout 1.56  2.24 1.56 1.86 58.37 40.02 93.17 68.65
XMoE 1.21 1.09 1.28 1.17 30.34 2422 58.33  50.64

StableMoE 120  1.10 128 1.19 2997 24.19 58.25 49.17

# Params 20M  210M 20M 210M 20M 210M 20M  210M

Table 1: BPC on the enwik-8 and text8 test sets; and perplexity on the Wikitext-103 and One Billion Word test sets.

Lower is better, best results are in bold.

2022) implements a deep router that comprises a
down-projection and normalization layer and a gat-
ing network with learnable temperatures. Lastly,
motivated by SMoE-Dropout (Chen et al., 2023a),
we implement the SMoE-Dropout strategy that
employs a randomly initialized router and freeze it
throughout the training process.

Training procedure. For the language mod-
eling experiments, we optimize the base models
and the large models for 100,000 steps. We use an
Adam (Kingma and Ba, 2017) optimizer with a Co-
sine Annealing learning rate schedule (Loshchilov
and Hutter, 2017). The lowest validation loss
checkpoint is used to report the final performance
on the test set.

Q1: Does VOMoE perform better on Pre-
training tasks compared to routing methods? Al:
Yes.

Table 1 presents the evaluation metrics com-
paring VQMOoE with state-of-the-art approaches.
We also show the performance progression of
the base model on the validation set. Notably,
across all methods, the Transformer-XL architec-
ture consistently outperforms the standard Trans-
former on all datasets. While advanced strategies
like XMoE and StableMoE tend to surpass vanilla
SMoE when model complexity is increased (from
small to medium) or more data is introduced (mov-
ing from enwik8 to WikiText-103 or One Billion
Word), these improvements are often inconsistent
or marginal. In contrast, VQMOoE consistently out-
performs all competitors across benchmarks (keep-
ing in mind that the BPC metric is log-scaled), ar-

chitectures, and also converges more quickly. This
highlights VQMOE's effectiveness in learning an
efficient routing policy for the language modeling
pre-training task.

Q2: Does VOMOoE keep outperforming the
router method when scaling up? A2: Yes.

Table 1 also demonstrates that VQMOoE main-
tains consistently strong performance when scaled
up to 12-layer Transformer and Transformer-XL
architectures. Across all four datasets, the per-
formance gap between VQMOoE and other routing
methods widens as the dataset size increases, from
enwik8 to the One Billion Word dataset. This sug-
gests that our approach has the potential to scale
effectively with larger language models and big-
ger datasets. An interesting observation is that
SMoE-Dropout (Chen et al., 2023a) performs the
worst among all methods, indicating that a random
routing policy is insufficient and requires updating
for effective training. This finding highlights that
the success of SMoE-Dropout is largely due to its
self-slimmable strategy, which linearly increases
the number of activated experts (K') during train-
ing. However, this approach transforms the sparse
network into a dense one, contradicting the origi-
nal motivation behind using SMoE for large-scale
models.

03: When does VOMoE outperform router
methods in terms of robustness? A3: The lower
hidden size of FFN.

Compared to the routing methods, VQMoE
achieves competitive performance which only re-
quires 80% number of parameters. Figure 2a



FLOPs(x10')
Dataset SST2 SST-5 IMDB BANKING77 SST-2 SST-5 IMDB BANKING77

VQMoE 5.6145 826 411 895 84.8 833 420 891 853
SMoE 7.7620 82.1 39.5 89.3 82.6 80.8 404 88.6 80.2
SMoE-Dropout 7.7620 81.3 39.6 88.9 779 81.8 40.0 89.1 713
XMoE 7.7620 82.4 399 89.0 83.1 81.3 403 88.7 82.7
StableMoE 7.7620 822 40.4 89.1 827 82.5 41.1 88.5 78.6

Architecture Transformer Transformer-XL

Table 2: Accuracy of the model after fine-tuned on
various datasets. Higher is better, best results are in
bold.

and Figure 2b demonstrate the robustness of our
method on the Enwik8 and Text8 datasets, respec-
tively.

5.3 Parameter-Efficient Fine-Tuning

Q4: What is the biggest advantage of SMoE, com-
pared to the conventional SMoE? A4: Parameter-
Efficient Fine-Tuning.

We see that the discrete representation that VQ-
MOoE learns at the Pretraning stage 5.2 might con-
sist of rich knowledge. To test this hypothesis,
we use only the discrete representation for down-
stream tasks, allowing VQMOE to save 28% of
computational resources compared to SMoE. Ta-
ble 2 reports the accuracy of the models fine-tuned
on the test sets of various datasets. Overall, we
observe that VQMoE demonstrates strong trans-
fer learning capabilities by achieving the highest
accuracy on all datasets. Notably, on the more
challenging datasets of SST-5 and BANKING77,
which have fewer training samples or more classes,
we observe larger performance gains from VQMoE
versus the remaining baselines (over 5% improve-
ments compared to the second-best method). This
result shows that VQMOE can learn a discrete rep-
resentation that is not only good for pre-training but
also exhibits strong transfer capabilities to various
downstream tasks.

5.4 Vision

05: Can VOMoE compete with SMoE in the Vi-
sion domain? A5: Yes.

To make our performance comparison informa-
tive and comprehensive, we consider two kinds of
baselines that are fairly comparable to VQMOoE: (1)
Dense Model (Vision Transformer) (Dosovitskiy
etal., 2021); (2) SoftMoE (Puigcerver et al., 2024)
- the most advanced MoE in Vision domain. We
perform two configurations for training the Mix-
ture of Experts: (1) small - 10 million parameters
(10M); (2) large - 110 million parameters (110M).
The result at Table 3 shows that VQMoE outper-
forms both Vision Transformer Dense (Dosovitskiy
etal.,2021), SoftMoE (Puigcerver et al., 2024), and
other routing methods such as (Dai et al., 2022),

(Chi et al., 2022) on six out of eight tasks across
four image classification datasets. We conduct our
experiments three times on four datasets (CIFAR-
10, CIFAR-100, STL-10, and SVHN) using differ-
ent seeds, reporting the average results along with
the standard deviation. For the large-scale dataset
ImageNet-1K, we perform a single run due to re-
source constraints. The average performance of
our method surpasses other baselines and is more
stable, as indicated by the low standard deviation.

Architecture Vision Transformer (Small) Vision Transformer (Large) Average
# params 10M 110M -

0 STL-10  SVHN ImageNet-IK  Cifar

713 76550
710 740415
708 742511
70.6 T38s1s

01
SoftMoE 856103 61dis 654102 94850, 41.6 803597 429414 05 935501
ViT (Dense) 890102 6574035 666102 956101 522 922405 602405 641105

682 697515
96.010.1 711 753105

Table 3: Accuracy of models evaluated on vision
datasets. Higher is better, the best results are in bold.

5.5 In-depth Analysis

Consistent Score. Figure 3a illustrates that ex-
pert selections when training SMoE face inconsis-
tent problems. As the Theorem A.3, this incon-
sistency arises because the router’s coverage rate
significantly exceeds that of the Transformer rep-
resentation. Figure 3a also shows that our method
achieves the highest consistency score compared
to the SMoE and XMoE models. However, the
VQMOoE model’s consistency score is around 75%,
as our method also requires learning a continuous
representation during the Pre-training phase.

Representation Collapse issue. To visualize
the Representation collapse problem in practice,
we apply Principal Component Analysis (PCA)
method to reduce from d dimension of the Trans-
former to 2D for plotting purposes, thanks to (Chi
et al., 2022). Figures 3b and 3c show the expert
representations from the pretrained VQMoE and
SMoE models. The results suggest that VQMoE
experiences less representation collapse in the ex-
pert space compared to SMoE. The analysis is in
line with the theorem proof at Section 4. How-
ever, projecting the d-dimensional space onto 2D
for visualization may lead to information loss.

5.6 Ablation Study

We examine the effectiveness of VQMOoE across
various hyper-parameter settings, with all experi-
ments conducted using the base Transformer archi-
tecture on the WikiText-103 dataset.

Vector Quantization Method. To learn a dis-
crete representation, we research various types
of Vector Quantization methods, including VQ-
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Figure 2: Illustration of the proposed Robust VQMOoE architecture for Pre-training on Enwik8 and Text8 dataset. (a)
Robust VQMOoE architecture achieves the same performance with the routing methods while only using 80% of
the parameters on Enwik8 dataset. (b) Roubust VQMoE demonstrates robustness on the Text8 dataset. Bits-per-
character (BPC) on the Enwik8 and Text8 datasets, and lower is better.
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(b) VQMOE Representation.
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Figure 3: Analysis Inconsistent Expert Selection and Representation Collapse issues when training SMoE. Figure
3a demonstrates consistent score movement from VQMOoE, compared with SMoE and XMoE. Figure 3b and Figure
3c visualize the representation by experts in 2D dimension using Principal Component Analysis (PCA) method.

VAE (van den Oord et al., 2017), VQGAN (Yu
et al., 2022), LFQ (Yu et al., 2023), and Residu-
alVQ (Yang et al., 2023). We observe that VQGAN
using cosine similarity for distance achieves good
and stable results in practice as Figure 5a. Inter-
estingly, VQGAN with lower dimensionality also
delivers strong performance and exhibits robust-
ness.

Number of codebook impact. The number of
codebook entries is a crucial hyperparameter when
training Vector Quantization techniques. As shown
in Figure 5b, we can see the best performance
when the number of codebook entries matches the
number of experts. This aligns with the proof by
(Dikkala et al., 2023), which demonstrates that in
the optimal case, the number of clusters equals the
number of experts.

Sensitiveness of VQ loss contribution «a. Fig-
ure 5c illustrates the impact of o, which controls
the contribution of the Vector Quantization loss to
the overall loss. If « is too high, it leads to a better
discrete representation but may negatively affect
the final target. Conversely, if « is too low, it may
result in a poor discrete representation. Therefore,

« should be selected based on the data, typically
within the range of (0.05, 0.15).

6 Conclusion and Future Directions

This study illustrates Vector-Quantized Mixture
of Experts (VQMOoE), a novel and theoretically-
grounded architecture, to overcome challenges in
training SMoE such as representation collapse and
inconsistency. We evaluate our method on vari-
ous Pre-training and Fine-tuning tasks, for both
language and vision domains. The results show
that VQMOoE outperforms the routing methods both
theoretically and empirically. Furthermore, fine-
tuning VQMOoE with the discrete representation
for downstream tasks could reduce computational
resource usage by 28%. We believe that focus-
ing on discrete representation learning will offer a
promising strategy for training and testing sparse
mixtures of experts (SMoE) at a large scale. Fi-
nally, we believe that our approach opens up new
research avenues for effectively training SMoE,
where cutting-edge techniques in discrete repre-
sentation learning and vector quantization can be
harnessed to enhance their performance.



Limitations

Our study focuses on enhancing the efficiency
and effectiveness of training large language mod-
els (LLMs) with SMoE. Although our results
are promising, our experiments were restricted to
medium-scale datasets and base and large language
models due to computational limitations. Conse-
quently, additional empirical evaluations are re-
quired to assess the scalability of VQMoE and
other SMoE approaches on modern LLMs with
up to a few billion parameters.

Ethics Statement

Despite promising results, training large-scale
LLMs remains inherently costly and demands sig-
nificant computational resources, which must be
carefully managed. Additionally, our paper utilized
web-sourced data, which is known to contain gen-
der and racial biases, necessitating further efforts
to mitigate these negative impacts. Lastly, while
our study marks a promising step toward advancing
the development of new LLMs, it underscores the
need for careful regularization to prevent potential
misuse in harmful applications.
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A Appendix

Supplementary Material for “On
the effectiveness of discrete
representations in sparse mixture of
experts”

This document is organized as follows. Ap-
pendix A.1 provides a detailed theoretical analysis
of the SMoE Router. Appendix A.2 presents addi-
tional experimental results demonstrating the effec-
tiveness of our method compared to the baselines.
Finally, Appendix A.3 offers an in-depth analysis
of representation collapse, while Appendix A.4 de-
tails the implementation aspects.

A.1 Theory Analysis for SMoE Router

A.1.1 Optimal Experts Selection

Problem settings. We consider an MoE layer with
each expert being an MLP layer which is trained by
gradient descent and input data {(x;, v;)};_, gen-
erated from a data distribution D. Same as (Chen
etal., 2022); (Dikkala et al., 2023), we assume that
the MoE input exhibits cluster properties, mean-
ing the data is generated from K distinct clusters
(C1,Cy, ..., Cy).

Definition A.1 (Consistent Router) A sequence
of points x1,xa,...,T, and a corresponding se-
quence of clusters C1,Co, ..., Cy are said to be
consistent if, for every point x,, € C;, the condition

dist(xp, u;) < m;n dist(xp, uj)
JF
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is satisfied, where dist(a,b) denotes the distance
between a and b, and u; is the center of cluster C;.

Definition A.2 (Inconsistent Router) A se-
quence of points x1, X2, ..., %y and a correspond-
ing sequence of clusters C1,Cs, ..., Cy are said
to be inconsistent if there exists a point x), € C;
such that

dist(xp, u;) > m;n dist(xp, u;j),
Ve
where dist(a, ) represents the distance between a
and b, and w; is the center of cluster Cj.

Inspired by (Dikkala et al., 2023), we conceptu-
alize the router in Sparse Mixture of Experts as a
clustering problem. This leads us to define a con-
sistent router in Definition A.l. Furthermore, we
introduce a definition for an inconsistent router in
SMOoE as outlined in Definition A.2, along with the
concept of inconsistent expert selection presented
in Theorem A.3 during the training of SMoE.

Theorem A.3 (Inconsistent Experts Selection)
Let fyrga be a multi-head attention (MHA)
function producing an output x € R™? and
consider N experts with embeddings e; for expert
i where i € [1, N]. Assume that fprpa converges
at step tn,, while the expert embeddings e converge
at step te, with t,, > t.. For each output x, the
expert K € [1, N| is selected such that

K = argjg1[117rjlv] dist(x, e;).
Under these conditions, the expert embeddings e
form an inconsistent routing mechanism.

The proof of Theorem A.3 is given in Appendix
A, and we have the following insights. Theorem
A.3 implies that an expert selection process by a
router as the conventional SMoE leads to the incon-
sistent router. Indeed, the router layer is designed
as a simple linear layer, x is the output of MHA
function in practice. In practice, an SMoE router
is significantly simpler than the MHA function.
Consequently, this design leads to the router func-
tioning as an inconsistent router, contributing to the
representation collapse issue and instability during
training.

Proposition A.4 (Optimal Experts Selection)
Given input data partitioned into k clusters
(C1,Cy,...,Ck) and a mixture of experts (MoE)
layer with k experts (E1, Es, . . ., Ey), the assign-
ment of each cluster C; to expert E; fori € [1, k|
constitutes an optimal expert selection solution.


https://arxiv.org/abs/1608.05442
https://arxiv.org/abs/1608.05442
https://arxiv.org/abs/1608.05442
https://arxiv.org/abs/2306.00008
https://proceedings.neurips.cc/paper_files/paper/2022/file/2f00ecd787b432c1d36f3de9800728eb-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/2f00ecd787b432c1d36f3de9800728eb-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/2f00ecd787b432c1d36f3de9800728eb-Paper-Conference.pdf
https://arxiv.org/abs/2202.08906
https://arxiv.org/abs/2202.08906
https://arxiv.org/abs/2202.08906

Proposition A.4 demonstrates that if we are
given a clustering structure as input, assigning each
part of the input to its corresponding expert re-
sults in an optimal expert selection. This implies
that learning a discrete representation and directing
each component to the appropriate expert yields
an optimal solution. The proof of Proposition A.4
can be found in Appendix A.

A.1.2 Proof of Theorem A.3

In this proof, we use contradiction to establish the
theorem. Assume that the expert embeddings e
form a consistent router. By Definition A.1, we
have:

dist(zp, u;) < min(dist(zp, C;)),

where u; is the representation corresponding to the
closest expert e;.

According to (Chi et al., 2022), projecting infor-
mation from a hidden representation space R? to
the expert dimension IV leads to representation col-
lapse. Now, consider three experts x, ¥, z whose
embeddings e, ey, e, collapse. Without loss of
generality, assume that e, lies between e, and e,
in the embedding space. Then, we have:

where W}EJ_ is the weight of expert F; at iteration
[, J(xj) is the Jacobian matrix with respect to
input x;, and 7 is the learning rate.

Let £ denote the loss function during the training
process described by Equation 6. After ¢, training
steps, the following condition holds:

Ei(z;) = min F;(x.).
j(5) = min Ey(r)

Under the assumption of contradiction, there

exists a set of pairs

K

Y. (CiE))

i,j=15i#]

where the loss function £ is minimized. However,
by definition of the loss minimization process, the
inequality

K K
Y (CLE)< Y (CiEy)
i=1 ij=15i#]

must hold.

This leads to a contradiction with our initial as-
sumption.

A.2 Additional Experiment Results

dist(y, uy) < min(dist(z, e;), dist(y, ey), dist(z, e, )) Q6: Can VOMoE learn Discrete Representation

< dist(ey, e;).
(11)
Let t. denote the step at which the embeddings
e, and e, converge, and t,, denote the step at
which the Multi-Head Attention (MHA) module
converges. From step t., it follows that:

lteh_)nlgm dist(y, uy) = teh—glm dist(ez, e;) = 0.
Thus, y (the output of MHA) converges at step
te.
This directly contradicts the assumption that the
MHA converges at step t,,,, where te < t,.

A.1.3 Proof of Proposition A.4

We use contradiction to prove the proposition. As-
sume that, at training step ¢, there exists a set of
pairs (Cj, E;) such that i # j. Let 21, 29, ..
represent a sequence of inputs sampled from K
clusters. From step ¢y to step tx—1, each pair
(xj,E;), where j € [1,k], is updated using the
following gradient descent equation:

Xk

W = Wh, —nJ (),
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Only from scratch? A6: Yes for small and medium
scale, but no for large scale.

The answer is yes for small and medium-
scale models. However, training a discrete
representation-only approach is feasible primarily
for small to medium-scale models with a moder-
ately sized dataset. The results of the Transformer-
XL model in Table 4 on the Enwik8 dataset support
this observation. As the model scales up, relying
solely on discrete representation reaches its limi-
tations, leading to performance below the SMoE
baselines.

Q7: Can VOMOoE outperform the clustering-
based approach such as KMean? A7: Yes.

We explored a clustering-based approach similar
to MoCLE(Gou et al., 2024) but found it unsuitable
for our method. Unlike MoCLE, Vector Quantiza-
tion allows the model greater flexibility in learning
cluster representations during training, making it
more competitive in practical applications. The
training results using the Transformer-XL model
on the Enwik8 dataset are presented in Table 5.

08: Can VOMOoE contribute to Al real-world
applications? A8: Yes.



Scale TopK #Experts SMoE VQMOoE (Discrete Only)
1 16 1.28 1.25
2 16 1.26 -
Base 20M-50K Steps 4 16 1.26 -
8 16 1.27 -
16 16 1.27 -
1 16 1.22 1.18
2 16 1.20 -
Base 20M-100K Steps 4 16 1.21
8 16 1.21
16 16 1.21 -
1 64 1.12 1.14
2 64 1.09 -
4 64 1.09
Large (210M) 8 64 1.09
16 64 1.10
32 64 1.10
64 64 1.12

Table 4: Performance comparison of SMoE and VQ-
MoE (Discrete Only) on the Enwik8 (BPC) dataset.

Scale TopK #Experts SMoE MoCLE VQMoE
1 16 1.28 1.29 1.25
2 16 1.26 1.28 -
Base 20M-50K Steps 4 16 1.26 1.28 -
8 16 1.27 1.28 -
16 16 1.27 1.28 -

Table 5: Performance comparison of VQMOoE and
MOoCLE (Clustering approach) on the Enwik8 (BPC)
dataset.

We found that VQMOoE can directly benefit real-
world Al applications, such as image segmentation,
demonstrating its strong generalization capabilities.
Specifically, our method outperforms both the base-
line and dense models in terms of Mean Accuracy
and mloU metrics on the ADE20K dataset (Zhou
et al., 2018) using the Segmenter model(Strudel
et al., 2021). Detailed results are provided in Ta-
ble 6.

A.3 Representation Collapse Analysis

To illustrate Theorem A.3, we perform a language
model task as described in Section A.4.2, examin-
ing the movement of Expert Input Representation
in Figure 4a and Expert Embedding (router) in
Figure 4b. We analyze the dynamics of the ex-
pert input representations by tracking their changes
across training iterations. The results indicate that
the inputs to the experts become increasingly di-
vergent over time. This divergence suggests that
the model learns to represent the data in a more
specialized and diverse manner, allowing each ex-
pert to focus on distinct features or patterns within
the data. Similarly, we track the changes in expert
embeddings (router) throughout the training pro-
cess. However, the trend is the opposite: the expert
embeddings appear to converge quickly, stabilizing
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Model ViT SoftMoe SMoE StableMoE XMoE VQMOoE

20.8 19.0 23.1 224 223 234
15.0 14.0 15.5 16.0 15.7 16.6

Metrics

Mean accuracy

Segmenter mloU

Table 6: Comparison of VQMOoE versus the baselines
on the ADE20K dataset.

around 10,000 iterations. The findings align with
our assumption stated in Theorem A.3, indicat-
ing that Expert Embedding converges more quickly
than Expert Input Representation. These results

provide further evidence supporting the Theorem
A3.

A.4 Experiments implementation details

This section provides detailed parameters of our
experiments in Section 5.

A.4.1 General Settings

The experiments are based on the publicly avail-
able SMoE-Dropout implementation(Chen et al.,
2023a)'. However, the pre-training was conducted
on two H100 GPUs, so results might differ when
using parallel training on multiple GPUs.

A.4.2 Pre-training Experiments

Table 7 provides the detailed configurations for
pre-training Transformer (Vaswani et al., 2017),
Transformer-XL (Dai et al., 2019b) on Enwik$,
Text8, WikiText-103,and One Billion Word.

Dataset Input length Batch size Optimizer Lr  # Training Step
Enwik8 512 48 Adam  3.5¢e-4 100k
Text 512 48 Adam  3.5¢-4 100k
WikiText-103 512 22 Adam  3.5¢-4 100k
One Billion Word 512 11 Adam  3.5e-4 100k

Table 7: Hyperparameter settings for pre-training ex-
periments on Enwik8, Text8 , WikiText-103, and One
Billion Word.

Dataset Input length Batch size Optimizer Lr # Epochs
SST-2 512 16 Adam le-4 5
SST-5 512 16 Adam  le-4 5
IMDB 512 4 Adam  le-4 5
BANKING77 512 16 Adam  le-4 5

Table 8: Detail settings for fine-tuning experiments on
the evaluation datasets.

A.4.3 Fine-tuning Experiments
For fine-tuning experiments, we employ the iden-
tical model architecture as in pre-training. Table

1https://github.com/VITA—Gr‘oup/
Random-MoE-as-Dropout


https://github.com/VITA-Group/Random-MoE-as-Dropout
https://github.com/VITA-Group/Random-MoE-as-Dropout

8 presents the detailed configurations utilized for
fine-tuning experiments on SST-2, SST-5, IMDB,
and BANKING77 datasets. We start with the pre-
trained checkpoint of the base model on enwiks,
remove the final layer, and replace it with two ran-
domly initialized fully connected layers to serve as
the classifier for each fine-tuning dataset. All meth-
ods are fine-tuned for 5,000 steps with a uniform
learning rate.
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Figure 5: Pre-training small Transformer-XL on WikiText-103 across different hyperparameters.
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