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Abstract

Sparse Mixture of Experts (SMoE) is an ef-001
fective solution for scaling up model capac-002
ity without increasing the computational costs.003
A crucial component of SMoE is the router,004
responsible for directing the input to relevant005
experts; however, it also presents a major weak-006
ness, leading to routing inconsistencies and007
representation collapse issues. Instead of fix-008
ing the router like previous works, we pro-009
pose an alternative that assigns experts to in-010
put via indirection, which employs the discrete011
representation of input that points to the ex-012
pert. The discrete representations are learnt013
via vector quantization, resulting in a new ar-014
chitecture dubbed Vector-Quantized Mixture015
of Experts (VQMoE). We provide theoretical016
support and empirical evidence demonstrating017
the VQMoE’s ability to overcome the chal-018
lenges present in traditional routers. Through019
extensive evaluations on both large language020
models and vision tasks for pre-training and021
fine-tuning, we show that VQMoE achieves a022
28% improvement in robustness compared to023
other SMoE routing methods while maintain-024
ing strong performance in fine-tuning tasks.025

1 Introduction026

Scaling Transformers with data and compute has027

demonstrated unprecedented successes across vari-028

ous domains such as natural language processing029

(NLP) tasks (Du et al., 2022; Fedus et al., 2022;030

Zhou et al., 2024), and visual representation learn-031

ing (Riquelme et al., 2021a; Shen et al., 2023b).032

However, training and inference of a single large033

Transformer-based model might require hundreds034

of thousands of compute hours, costing millions of035

dollars (Kaddour et al., 2023). This issue has mo-036

tivated contemporary studies to investigate Sparse037

Mixture of Experts (SMoE) (Shazeer et al., 2017;038

Zoph et al., 2022; Xue et al., 2024; Jiang et al.,039

2024). SMoE models that are inspired by (Jacobs040

et al., 1991a) usually include a set of experts shar- 041

ing the same architecture and a router that activates 042

only one or a few experts for each input. Compared 043

to dense models of the same size, SMoE counter- 044

parts significantly reduce inference time thanks to 045

not using all experts simultaneously (Artetxe et al., 046

2022; Krajewski et al., 2024). 047

However, training SMoEs remains a challenge 048

due to representation collapse, that is, either a small 049

number of experts receive most of the routed tokens 050

or all experts converge to learn similar representa- 051

tions. To tackle the issue, several works (Chi et al., 052

2022; Chen et al., 2023a; Do et al., 2023) have 053

focused on router policy improvement. However, 054

these do not touch a fundamental question, ‘Do we 055

really need a router in the first place?’ Our research 056

suggests that adopting a discrete representation 057

could help solve the challenges currently faced by 058

the router method. Discrete representation learning 059

in the context of SMoE is motivated by its ability to 060

capture structured and interpretable patterns within 061

data, aligning with the way that humans categorize 062

and process information through distinct symbols, 063

like tokens. This approach enables better gener- 064

alization and facilitates knowledge transfer across 065

different contexts. Additionally, discrete represen- 066

tations provide a robust and efficient mechanism 067

for selecting and routing inputs to the appropriate 068

experts by clustering them more effectively. By 069

bridging the gap between discrete and continuous 070

representations, this method leads to more stable 071

and interpretable expert assignments, helping to 072

mitigate issues such as representation collapse and 073

overfitting, which are common challenges in SMoE 074

training. 075

Employing vector quantization (VQ) techniques 076

to learn discrete representation, this paper proposes 077

a novel mixture of expert framework, named VQ- 078

MoE, which overcomes the representation collapse 079

and inconsistency in training sparse mixture of ex- 080

perts. More specifically, we prove that the exist- 081
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ing router methods are inconsistent and VQMoE082

suggests an optimal expert selection for training083

SMoE. Additionally, our method guarantees supe-084

rior SMoE training strategies compared to the exist-085

ing methods by solving the representation collapse086

by design.087

We evaluate the proposed method by conducting088

pre-training of Large Language Models (LLMs)089

on several advanced SMoE architectures, such as090

SMoE (Jiang et al., 2024), StableMoE (Dai et al.,091

2022), or XMoE (Chi et al., 2022), followed by092

fine-tuning on downstream tasks on both Language093

and Vision domains.094

In summary, the primary contributions of this095

paper are threefold: (1) we theoretically demon-096

strate that learning a discrete representation is an097

optimal approach for expert selection and that VQ-098

MoE inherently addresses the issue of representa-099

tion collapse; (2) we propose the use of the Vector100

Quantization method to learn cluster structures and101

resolve related challenges; and (3) we conduct ex-102

tensive experiments on large language models and103

vision pre-training and fine-tuning tasks, provid-104

ing an in-depth analysis of VQMoE’s behavior to105

showcase its effectiveness.106

2 Related Work107

Sparse Mixture of Experts (SMoE). Sparse Mix-108

ture of Experts (SMoE) builds on the Mixture of109

Experts (MoE) framework introduced by Jacobs110

et al. (1991b); Jordan and Jacobs (1994), with the111

core idea that only a subset of parameters is utilized112

to process each example. This approach was first113

popularized by Shazeer et al. (2017). SMoE’s pop-114

ularity surged when it was combined with large115

language models based on Transformers (Zhou116

et al., 2022; Li et al., 2022; Shen et al., 2023a),117

and its success in natural language processing led118

to its application across various fields, such as com-119

puter vision (Riquelme et al., 2021b; Hwang et al.,120

2023; Lin et al., 2024), speech recognition (Wang121

et al., 2023; Kwon and Chung, 2023), and multi-122

task learning (Ye and Xu, 2023; Chen et al., 2023b).123

However, SMoE faces a major problem in train-124

ing known as representation collapse, i.e., the ex-125

perts converge to similar outputs. To address this,126

various methods have been introduced. XMoE (Chi127

et al., 2022) calculates routing scores between128

tokens and experts on a low-dimensional hyper-129

sphere. SMoE-dropout (Chen et al., 2023a) uses130

a fixed, randomly initialized router network to ac-131

tivate experts and gradually increase the number132

of experts involved to mitigate collapse. Similarly, 133

HyperRouter (Do et al., 2023) utilizes HyperNet- 134

works (Ha et al., 2016) to generate router weights, 135

providing another pathway for training SMoE ef- 136

fectively. StableMoE (Dai et al., 2022) introduces 137

a balanced routing approach where a lightweight 138

router, decoupled from the backbone model, is 139

distilled to manage token-to-expert assignments. 140

The StableMoE strategy ensures stable routing by 141

freezing the assignments during training, while 142

SimSMoE (Do et al., 2024) forces experts to learn 143

dissimilar representations. Despite these extensive 144

efforts, the representation collapse issue persists, as 145

highlighted by Pham et al. (2024). While most so- 146

lutions focus on improving routing algorithms, our 147

approach takes a different path by learning a dis- 148

crete representation of input that points to relevant 149

experts. 150

Discrete Representation. Discrete represen- 151

tations align well with human thought processes; 152

for example, language can be understood as a se- 153

ries of distinct symbols. Nevertheless, the use of 154

discrete variables in deep learning has proven chal- 155

lenging, as evidenced by the widespread prefer- 156

ence for continuous latent variables in most cur- 157

rent research. VQVAE (van den Oord et al., 2017) 158

implements discrete representation in Variational 159

AutoEncoder (VAE) (Kingma and Welling, 2022) 160

using vector quantisation (VQ). IMSAT (Hu et al., 161

2017) attains a discrete representation by maximiz- 162

ing the information-theoretic dependency between 163

data and their predicted discrete representations. 164

Recent works follow up the vector quantisation 165

ideas and make some enhancements for VAE, for 166

example: (Yu et al., 2022); (Mentzer et al., 2023); 167

and (Yang et al., 2023). Mao et al. (2022) utilize a 168

discrete representation to strengthen Vision Trans- 169

former (ViT) (Dosovitskiy et al., 2021). To the best 170

of our knowledge, our paper is the first to learn a 171

discrete representation of Sparse Mixture of Ex- 172

perts. 173

3 Method 174

We propose a novel model, Vector-Quantized Mix- 175

ture of Experts (VQMoE), which learns discrete 176

representations for expert selection. As illustrated 177

in Fig. 1a, our approach selects experts directly 178

based on the input representation, eliminating the 179

need for a trained router. To prevent information 180

loss, we integrate discrete and continuous represen- 181

tations within the model. 182
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3.1 Preliminaries183

Sparse Mixture of Experts. Sparse Mixture of184

Experts (SMoE) is often a transformer architecture185

that replaces the MLP layers in standard transform-186

ers with Mixture of Experts (MoE) layers (Shazeer187

et al., 2017). Given x ∈ Rn×d as the output of the188

multi-head attention (MHA), the output of SMoE189

with N experts is a weighted sum of each expert’s190

computation Ei(x) by the router function S(x):191

fSMoE(x) =
N∑
i=1

S(x)i · Ei(x)

=
N∑
i=1

S(x)i ·W 2
FFNi

ϕ
(
W 1

FFNi
x
)
(1)192

Where S(x) is computed by TopK function as193

equation (2) that determines the contribution of194

each expert to the SMoE output.195

S(x) = TopK(softmax(G(x)), k),

TopK(v, k) =

{
vi if vi ∈ top k largest of v,
−∞ otherwise.

(2)196

Discrete Representation Learning. van den197

Oord et al. (2017) propose VQVAE, which uses198

Vector Quantisation (VQ) to learn a discrete rep-199

resentation. Given an input x ∈ Rn×d, VQ-200

VAE discretized the input into a codebook V ∈201

RK×d where K is the codebook size and d is202

the dimension of the embedding. Let denote203

zv(x) ∈ Rn×d denotes the output of the VQ-204

VAE and 1() is the indicator function. The dis-205

crete representation zq(xi) = vk, where k =206

argminj ∥zv(xi)− vj∥2 is achieved by vector207

quantizer qθ that maps an integer z for each input208

x as:209

qθ(z = k | x) = 1

(
k = argmin

j=1:K
∥zv(x)−Vj∥2

)
(3)210

3.2 Vector-Quantized Mixture of Experts211

(VQMoE)212

Pre-training VQMoE. Existing Sparse Mixture213

of Experts (SMoE) models learn continuous rep-214

resentations and select experts based on routing215

scores derived from token-expert embeddings. In216

this paper, we propose a novel architecture that217

learns simultaneously continuous and discrete rep-218

resentations at a training phase as Figure 1a. The219

continuous representation enables the model to 220

capture complex structures in the data, while the 221

discrete representation learns latent representation 222

from data and then transfers the knowledge to 223

downstream tasks. Given x ∈ Rn×d as the out- 224

put of the MHA and fv is a vector quantization 225

operator, the output of the VQMOE layer at the 226

Pre-training phase as follows: 227

fVQMoE(x) = g (x)c f
SMoE(x) + g (x)d

∑K
l=1 f

FFN
l (x̃l)

(4) 228

Where x̃l = vk if xl ∈ Vl codebook, other- 229

wise x̃l = 0⃗ ; fFFN
l (x̃l) corresponds to the ex- 230

pert associated with the Vl codebook; g(x)c(x) = 231

col0(G(x)), g(x)d(x) = col1(G(x)) is gating 232

function for continuous and discrete representation 233

with G(x) = softmax(W T
g × x). W T

g ∈ R2×d is 234

a learnable weight and K is number of codes. 235

Fine-tuning VQMoE. According to (Geva 236

et al., 2021), the Feed-forward layers (FFN) con- 237

stitute two-thirds of a transformer model’s parame- 238

ters. Thus, VQMoE enhances the robustness and 239

efficiency of the Mixture of Experts by leveraging 240

the discrete representations learned during the Pre- 241

training phase. For further details, the output of 242

VQMoE during the fine-tuning stages only requires 243

the discrete representation part as Figure 1b, lead- 244

ing to the following output from the VQMoE layer 245

in the fine-tuning phase: 246

fVQMoE(x) =
K∑
l=1

fFFN
l (x̃l) (5) 247

248
3.3 Training Procedure 249

Pretraining. The training objective is jointly min- 250

imizing the loss of the target task and losses of the 251

Vector Quantization module (Ll2 and Lcommitment ) 252

as in (van den Oord et al., 2017). Equation 6 speci- 253

fies the overall loss function for training VQMoE 254

with three components: (1) task loss; (2) l2 loss; 255

(3) a commitment loss. While Ll2 helps to move 256

the embedding vi towards the outputs zv(x), the 257

commitment loss makes sure the output of the Vec- 258

tor Quantization module commits to the embed- 259

ding and its output does not grow. The Vector 260

Quantization algorithm does not vary with β, we 261

follow β = 0.25 as van den Oord et al. (2017). 262

We introduce a new parameter, α, to regulate the 263

contribution of the Vector Quantization loss to the 264

overall loss. A higher value of α favors a stronger 265

adherence to the discrete representation, and vice 266

versa. 267
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L = Ltask + α(∥sg [zv(x)]− v∥22 + β ∥zv(x)− sg[v]∥22)
(6)268

where sg(.) is the stop gradient operator defined as269

follows:270

sg(x) =

{
x forward pass
0 backward pass

(7)271

Fine-tuning. For downstream tasks, we fine-tune272

the pretraining model by utilizing the codebook273

learned from the Equation 6 by freezing all param-274

eters at the Vector Quantization module. Thus, the275

training objective simply becomes: L = Ltask .276

4 VQMoE solves Representation Collapse277

by Design278

The representation collapse problems in SMoE,279

which leads all experts to learn the same thing,280

first declared by (Chi et al., 2022). Same as (Chi281

et al., 2022); (Do et al., 2023), we illustrate the282

presentation collapse issue by the Jacobian matrix283

approach. Indeed, Jacobian matrix of SMoE with284

respect to x ∈ Rn×d is followed as:285

JSMoE = S(x)kJFFN +

N∑
j=1

S(x)k (δkj − Sj)E(x)ie
⊤
j

= S(x)kJFFN +
N∑
j=1

cje
⊤
j .

(8)286

where cj = S(x)k (δkj − Sj)E(x)i. Equation287

8 consists two terms: (1) S(x)kJFFN represents a288

contribution from input token and experts to the fi-289

nal output; (2)
∑N

j=1 cje
⊤
j indicates to learn better290

gating function to minimize the task loss. More-291

over, Equation 8 is suggested to be updated toward292

a linear combination of the expert embeddings.293

Since N << d in practice, the above equation294

shows representation collapse from Rd to RN .295

Compared to SMoE, does VQMoE reduce the296

representation collapse issue? To answer the essen-297

tial question, we calculate the Jacobian matrix of298

VQMoE with respect to x ∈ Rn×d is given by:299

JV QMoE = g (x)c JSMoE + Jg(x)cfSMoE(x)+

g (x)d JV Q + Jg(x)dfVQMoE(x)
(9)300

Equation 9 is written shortly as below:301

JV QMoE = J1 +
N∑
j=1

cje
⊤
j +

K∑
l=1

dle
⊤
l +

∑
m∈{c,d}

gme⊤m

= J1 +
N+K+2∑

j=1

oje
⊤
j .

(10) 302

where J1 = S(x)kJFFN ; cj = 303

S(x)k (δkj − Sj)E(x)i ; dl = g (x)d (due 304

to the vector quantization operator using pass 305

gradient trick (van den Oord et al., 2017)); 306

gm = S(x)m (δmk − Sk) fm where fm ∈ 307

[fSMoE(x), fVQMoE]. 308

Same as the Jacobian matrix of SMoE, the Ja- 309

cobian matrix of VQMoE consists two terms: (1) 310

J1 depends on input token and experts to the final 311

output; (2)
∑N+K+2

j=1 oje
⊤
j indicates to learn better 312

gating function to minimize the task loss. We can 313

see that N +K+2 >> N , implying that VQMoE 314

is better than SMoE in solving the representation 315

collapse issue. In theory, we can choose the number 316

of codes to be approximately d−N−2 with a hash- 317

ing index to experts to address the issue. However, 318

this involves a trade-off with the computational 319

resources required to learn the codebook. 320

5 Experiment 321

We conduct experiments to explore the follow- 322

ing hypotheses: (i) VQMoE provides an effective 323

SMoE training algorithm for LLMs; (ii) VQMoE 324

delivers a robust and efficient solution during the 325

fine-tuning phase; and (iii) VQMoE outperforms 326

other routing methods in vision domain. 327

5.1 Experimental Settings 328

To answer the three above hypotheses, we con- 329

duct experiments on Vision, Language, and Time- 330

series tasks. For Pre-training language models, 331

we examine two common tasks in the training and 332

evaluation of large language models: character- 333

level language modeling using the enwik8 and 334

text8 datasets (Mahoney, 2011), and word-level 335

language modeling with the WikiText-103 (Merity 336

et al., 2016) and One Billion Word datasets (Chelba 337

et al., 2014). For Parameter-efficient fine-tuning, 338

we consider pre-trained base models on enwik8 339

and efficient Fine-tuning it on a downstream task. 340

We choose the SST-2 (Socher et al., 2013), SST- 341

5 (Socher et al., 2013), IMDB (Maas et al., 2011), 342

and BANKING77 (Casanueva et al., 2020) datasets. 343

For vision tasks, we employ the Vision Trans- 344

former model (Dosovitskiy et al., 2021) with the 345
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(a) VQMoE Pre-training (b) VQMoE Fine-tuning

Figure 1: Illustration of the proposed VQMoE architecture for Pre-training and fine-tuning. (a) At the Pre-training
stage, VQMoE architecture learns simultaneously continuous and discrete representation at the Pre-training phase.
The continuous representation is learned by the conventional SMoE, while the Vector Quantization block facilitates
the learning of a discrete representation. The final output is then combined by a gate layer. (b) VQMoE learns a
discrete representation that is capable of operating efficiently and robustly on downstream tasks. VQMoE computes
the discrete representation only during the fine-tuning stage to achieve robustness and efficiency.

state-of-the-art routing method and our method to346

train and evaluate the image classification task.347

Our experiments encompass five widely recog-348

nized image classification datasets: Cifar10, Ci-349

far100 (Krizhevsky, 2009), STL-10 (Coates et al.,350

2011), SVHN (Netzer et al., 2011), ImageNet-351

1K(Deng et al., 2009).352

5.2 Pre-training Language Models353

Training tasks We explore two common tasks354

in the training and evaluation of LLMs. First,355

character-level language modeling on the enwik8356

or text8 datasets (Mahoney, 2011), which are com-357

mon datasets to evaluate the model’s pre-training358

capabilities. We also consider the word-level lan-359

guage modeling task on WikiText-103 (Merity360

et al., 2016) and One Billion Word dataset (Chelba361

et al., 2014), a much larger and more challeng-362

ing dataset, to test the models scaling capabili-363

ties. For all datasets, we follow the default splits364

of training-validation-testing. Second, we con-365

sider Fine-tuning the models on downstream ap-366

plications to investigate the models’ capabilities of367

adapting to different domains. To this end, we con-368

sider pre-trained medium models on enwik8 and369

Fine-tuning them on a downstream task. We choose370

the SST-2 (Socher et al., 2013), SST-5 (Socher371

et al., 2013), IMDB (Maas et al., 2011), and BANK-372

ING77 (Casanueva et al., 2020) datasets, which are373

common NLP tasks to evaluate pre-trained models.374

Following Chen et al. (2023a), we freeze the router375

and only optimize the experts’ parameter in this376

experiment. 377

Models. For the language tasks, we follow the 378

same settings as in SMoE-Dropout (Chen et al., 379

2023a). We consider two decoder-only architec- 380

tures: (i) the standard Transformer (Vaswani et al., 381

2017); and (ii) and Transformer-XL (Dai et al., 382

2019a) with the same number of parameters as 383

Transformer. We evaluate our method versus the 384

state of art Sparse Mixture of Expert Layers such 385

as StableMoE (Dai et al., 2022) and XMoE (Chi 386

et al., 2022). We consider two model configura- 387

tions: (i) base: with four SMoE blocks and 20M 388

parameters; (ii) large: with twelve SMoE layers 389

and 210M parameters. We emphasize that we are 390

not trying to achieve state-of-the-art results due to 391

the limited resource constraints. Instead, we evalu- 392

ate the small and large models on various datasets 393

to demonstrate the scalability and efficacy of our 394

algorithm. Lastly, we conduct extensive investiga- 395

tions using the tiny model to understand the algo- 396

rithm behaviours and their robustness to different 397

design choices. Lastly, unless otherwise stated, we 398

implement them with K = 2 in the experiments. 399

Baselines. We compare our VQMoE with 400

state-of-the-art SMoE training strategies for LLMs. 401

SMoE (Jiang et al., 2024) employs a simple 402

router trained end-to-end with the experts. Sta- 403

bleMoE (Dai et al., 2022) proposes a two-phase 404

training process where the first phase trains only 405

the router, and then the router is fixed to train the 406

experts in the second phase. XMoE (Chi et al., 407
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Configuration Enwik8 (BPC) Text8 (BPC) WikiText-103 (PPL) lm1b (PPL)

Architecture Algorithm Base Large Base Large Base Large Base Large

Transformer

VQMoE 1.48 1.41 1.47 1.40 38.74 31.98 59.48 49.30
SMoE 1.49 1.41 1.49 1.40 39.50 32.30 60.88 51.30
SMoE-Dropout 1.82 2.22 1.70 1.89 72.62 107.18 97.45 159.09
XMoE 1.51 1.42 1.49 1.42 39.56 32.65 61.17 51.84
StableMoE 1.49 1.42 1.49 1.41 39.45 32.34 60.72 50.74

Transformer-XL

VQMoE 1.19 1.08 1.28 1.17 29.48 23.85 56.85 48.70
SMoE 1.20 1.09 1.29 1.18 30.16 24.02 58.00 48.71
SMoE-Dropout 1.56 2.24 1.56 1.86 58.37 40.02 93.17 68.65
XMoE 1.21 1.09 1.28 1.17 30.34 24.22 58.33 50.64
StableMoE 1.20 1.10 1.28 1.19 29.97 24.19 58.25 49.17

# Params 20M 210M 20M 210M 20M 210M 20M 210M

Table 1: BPC on the enwik-8 and text8 test sets; and perplexity on the Wikitext-103 and One Billion Word test sets.
Lower is better, best results are in bold.

2022) implements a deep router that comprises a408

down-projection and normalization layer and a gat-409

ing network with learnable temperatures. Lastly,410

motivated by SMoE-Dropout (Chen et al., 2023a),411

we implement the SMoE-Dropout strategy that412

employs a randomly initialized router and freeze it413

throughout the training process.414

Training procedure. For the language mod-415

eling experiments, we optimize the base models416

and the large models for 100,000 steps. We use an417

Adam (Kingma and Ba, 2017) optimizer with a Co-418

sine Annealing learning rate schedule (Loshchilov419

and Hutter, 2017). The lowest validation loss420

checkpoint is used to report the final performance421

on the test set.422

Q1: Does VQMoE perform better on Pre-423

training tasks compared to routing methods? A1:424

Yes.425

Table 1 presents the evaluation metrics com-426

paring VQMoE with state-of-the-art approaches.427

We also show the performance progression of428

the base model on the validation set. Notably,429

across all methods, the Transformer-XL architec-430

ture consistently outperforms the standard Trans-431

former on all datasets. While advanced strategies432

like XMoE and StableMoE tend to surpass vanilla433

SMoE when model complexity is increased (from434

small to medium) or more data is introduced (mov-435

ing from enwik8 to WikiText-103 or One Billion436

Word), these improvements are often inconsistent437

or marginal. In contrast, VQMoE consistently out-438

performs all competitors across benchmarks (keep-439

ing in mind that the BPC metric is log-scaled), ar-440

chitectures, and also converges more quickly. This 441

highlights VQMoE’s effectiveness in learning an 442

efficient routing policy for the language modeling 443

pre-training task. 444

Q2: Does VQMoE keep outperforming the 445

router method when scaling up? A2: Yes. 446

Table 1 also demonstrates that VQMoE main- 447

tains consistently strong performance when scaled 448

up to 12-layer Transformer and Transformer-XL 449

architectures. Across all four datasets, the per- 450

formance gap between VQMoE and other routing 451

methods widens as the dataset size increases, from 452

enwik8 to the One Billion Word dataset. This sug- 453

gests that our approach has the potential to scale 454

effectively with larger language models and big- 455

ger datasets. An interesting observation is that 456

SMoE-Dropout (Chen et al., 2023a) performs the 457

worst among all methods, indicating that a random 458

routing policy is insufficient and requires updating 459

for effective training. This finding highlights that 460

the success of SMoE-Dropout is largely due to its 461

self-slimmable strategy, which linearly increases 462

the number of activated experts (K) during train- 463

ing. However, this approach transforms the sparse 464

network into a dense one, contradicting the origi- 465

nal motivation behind using SMoE for large-scale 466

models. 467

Q3: When does VQMoE outperform router 468

methods in terms of robustness? A3: The lower 469

hidden size of FFN. 470

Compared to the routing methods, VQMoE 471

achieves competitive performance which only re- 472

quires 80% number of parameters. Figure 2a 473
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Architecture FLOPs(x1010) Transformer Transformer-XL

Dataset SST-2 SST-5 IMDB BANKING77 SST-2 SST-5 IMDB BANKING77

VQMoE 5.6145 82.6 41.1 89.5 84.8 83.3 42.0 89.1 85.3
SMoE 7.7620 82.1 39.5 89.3 82.6 80.8 40.4 88.6 80.2
SMoE-Dropout 7.7620 81.3 39.6 88.9 77.9 81.8 40.0 89.1 77.3
XMoE 7.7620 82.4 39.9 89.0 83.1 81.3 40.3 88.7 82.7
StableMoE 7.7620 82.2 40.4 89.1 82.7 82.5 41.1 88.5 78.6

Table 2: Accuracy of the model after fine-tuned on
various datasets. Higher is better, best results are in
bold.

and Figure 2b demonstrate the robustness of our474

method on the Enwik8 and Text8 datasets, respec-475

tively.476

5.3 Parameter-Efficient Fine-Tuning477

Q4: What is the biggest advantage of SMoE, com-478

pared to the conventional SMoE? A4: Parameter-479

Efficient Fine-Tuning.480

We see that the discrete representation that VQ-481

MoE learns at the Pretraning stage 5.2 might con-482

sist of rich knowledge. To test this hypothesis,483

we use only the discrete representation for down-484

stream tasks, allowing VQMoE to save 28% of485

computational resources compared to SMoE. Ta-486

ble 2 reports the accuracy of the models fine-tuned487

on the test sets of various datasets. Overall, we488

observe that VQMoE demonstrates strong trans-489

fer learning capabilities by achieving the highest490

accuracy on all datasets. Notably, on the more491

challenging datasets of SST-5 and BANKING77,492

which have fewer training samples or more classes,493

we observe larger performance gains from VQMoE494

versus the remaining baselines (over 5% improve-495

ments compared to the second-best method). This496

result shows that VQMoE can learn a discrete rep-497

resentation that is not only good for pre-training but498

also exhibits strong transfer capabilities to various499

downstream tasks.500

5.4 Vision501

Q5: Can VQMoE compete with SMoE in the Vi-502

sion domain? A5: Yes.503

To make our performance comparison informa-504

tive and comprehensive, we consider two kinds of505

baselines that are fairly comparable to VQMoE: (1)506

Dense Model (Vision Transformer) (Dosovitskiy507

et al., 2021); (2) SoftMoE (Puigcerver et al., 2024)508

- the most advanced MoE in Vision domain. We509

perform two configurations for training the Mix-510

ture of Experts: (1) small - 10 million parameters511

(10M); (2) large - 110 million parameters (110M).512

The result at Table 3 shows that VQMoE outper-513

forms both Vision Transformer Dense (Dosovitskiy514

et al., 2021), SoftMoE (Puigcerver et al., 2024), and515

other routing methods such as (Dai et al., 2022),516

(Chi et al., 2022) on six out of eight tasks across 517

four image classification datasets. We conduct our 518

experiments three times on four datasets (CIFAR- 519

10, CIFAR-100, STL-10, and SVHN) using differ- 520

ent seeds, reporting the average results along with 521

the standard deviation. For the large-scale dataset 522

ImageNet-1K, we perform a single run due to re- 523

source constraints. The average performance of 524

our method surpasses other baselines and is more 525

stable, as indicated by the low standard deviation. 526

Architecture Vision Transformer (Small) Vision Transformer (Large) Average
# params 10M 110M -

Dataset Cifar10 Cifar100 STL-10 SVHN ImageNet-1K Cifar10 Cifar100 STL-10 SVHN ImageNet-1K -

VQMoE 89.7±0.4 67.3±0.4 66.5±0.3 95.6±0.1 54.8 92.8±0.3 67.0±0.5 64.3±0.5 96.0±0.2 71.3 76.5±0.3

SMoE 88.7±0.2 65.4±0.5 66.4±0.1 95.4±0.1 52.8 85.7±8.5 55.5±2.8 64.4±0.2 94.5±0.1 71.0 74.0±1.6

XMoE 88.8±0.2 65.5±0.5 66.3±0.2 95.4±0.1 52.5 87.1±6.4 55.9±0.6 64.6±0.3 94.1±0.2 70.8 74.2±1.1

StableMoE 88.8±0.1 65.5±0.1 66.5±0.2 95.4±0.1 52.5 84.7±10.5 55.5±1.8 64.3±0.6 94.5±0.9 70.6 73.8±1.8

SoftMoE 85.6±0.3 61.4±0.3 65.4±0.2 94.8±0.1 41.6 80.3±9.7 42.9±1.4 63.2±0.5 93.5±0.1 68.2 69.7±1.6

ViT (Dense) 89.0±0.2 65.7±0.3 66.6±0.2 95.6±0.1 52.2 92.2±0.3 60.2±2.6 64.1±0.5 96.0±0.1 71.1 75.3±0.5

Table 3: Accuracy of models evaluated on vision
datasets. Higher is better, the best results are in bold.

5.5 In-depth Analysis 527

Consistent Score. Figure 3a illustrates that ex- 528

pert selections when training SMoE face inconsis- 529

tent problems. As the Theorem A.3, this incon- 530

sistency arises because the router’s coverage rate 531

significantly exceeds that of the Transformer rep- 532

resentation. Figure 3a also shows that our method 533

achieves the highest consistency score compared 534

to the SMoE and XMoE models. However, the 535

VQMoE model’s consistency score is around 75%, 536

as our method also requires learning a continuous 537

representation during the Pre-training phase. 538

Representation Collapse issue. To visualize 539

the Representation collapse problem in practice, 540

we apply Principal Component Analysis (PCA) 541

method to reduce from d dimension of the Trans- 542

former to 2D for plotting purposes, thanks to (Chi 543

et al., 2022). Figures 3b and 3c show the expert 544

representations from the pretrained VQMoE and 545

SMoE models. The results suggest that VQMoE 546

experiences less representation collapse in the ex- 547

pert space compared to SMoE. The analysis is in 548

line with the theorem proof at Section 4. How- 549

ever, projecting the d-dimensional space onto 2D 550

for visualization may lead to information loss. 551

5.6 Ablation Study 552

We examine the effectiveness of VQMoE across 553

various hyper-parameter settings, with all experi- 554

ments conducted using the base Transformer archi- 555

tecture on the WikiText-103 dataset. 556

Vector Quantization Method. To learn a dis- 557

crete representation, we research various types 558

of Vector Quantization methods, including VQ- 559

7



(a) Robust VQMoE Benchmark (Enwik8) (b) Robust VQMoE Benchmark (Text8)

Figure 2: Illustration of the proposed Robust VQMoE architecture for Pre-training on Enwik8 and Text8 dataset. (a)
Robust VQMoE architecture achieves the same performance with the routing methods while only using 80% of
the parameters on Enwik8 dataset. (b) Roubust VQMoE demonstrates robustness on the Text8 dataset. Bits-per-
character (BPC) on the Enwik8 and Text8 datasets, and lower is better.

(a) Consistent Score. (b) VQMoE Representation. (c) SMoE Representation.

Figure 3: Analysis Inconsistent Expert Selection and Representation Collapse issues when training SMoE. Figure
3a demonstrates consistent score movement from VQMoE, compared with SMoE and XMoE. Figure 3b and Figure
3c visualize the representation by experts in 2D dimension using Principal Component Analysis (PCA) method.

VAE (van den Oord et al., 2017), VQGAN (Yu560

et al., 2022), LFQ (Yu et al., 2023), and Residu-561

alVQ (Yang et al., 2023). We observe that VQGAN562

using cosine similarity for distance achieves good563

and stable results in practice as Figure 5a. Inter-564

estingly, VQGAN with lower dimensionality also565

delivers strong performance and exhibits robust-566

ness.567

Number of codebook impact. The number of568

codebook entries is a crucial hyperparameter when569

training Vector Quantization techniques. As shown570

in Figure 5b, we can see the best performance571

when the number of codebook entries matches the572

number of experts. This aligns with the proof by573

(Dikkala et al., 2023), which demonstrates that in574

the optimal case, the number of clusters equals the575

number of experts.576

Sensitiveness of VQ loss contribution α. Fig-577

ure 5c illustrates the impact of α, which controls578

the contribution of the Vector Quantization loss to579

the overall loss. If α is too high, it leads to a better580

discrete representation but may negatively affect581

the final target. Conversely, if α is too low, it may582

result in a poor discrete representation. Therefore,583

α should be selected based on the data, typically 584

within the range of (0.05, 0.15). 585

6 Conclusion and Future Directions 586

This study illustrates Vector-Quantized Mixture 587

of Experts (VQMoE), a novel and theoretically- 588

grounded architecture, to overcome challenges in 589

training SMoE such as representation collapse and 590

inconsistency. We evaluate our method on vari- 591

ous Pre-training and Fine-tuning tasks, for both 592

language and vision domains. The results show 593

that VQMoE outperforms the routing methods both 594

theoretically and empirically. Furthermore, fine- 595

tuning VQMoE with the discrete representation 596

for downstream tasks could reduce computational 597

resource usage by 28%. We believe that focus- 598

ing on discrete representation learning will offer a 599

promising strategy for training and testing sparse 600

mixtures of experts (SMoE) at a large scale. Fi- 601

nally, we believe that our approach opens up new 602

research avenues for effectively training SMoE, 603

where cutting-edge techniques in discrete repre- 604

sentation learning and vector quantization can be 605

harnessed to enhance their performance. 606
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Limitations607

Our study focuses on enhancing the efficiency608

and effectiveness of training large language mod-609

els (LLMs) with SMoE. Although our results610

are promising, our experiments were restricted to611

medium-scale datasets and base and large language612

models due to computational limitations. Conse-613

quently, additional empirical evaluations are re-614

quired to assess the scalability of VQMoE and615

other SMoE approaches on modern LLMs with616

up to a few billion parameters.617

Ethics Statement618

Despite promising results, training large-scale619

LLMs remains inherently costly and demands sig-620

nificant computational resources, which must be621

carefully managed. Additionally, our paper utilized622

web-sourced data, which is known to contain gen-623

der and racial biases, necessitating further efforts624

to mitigate these negative impacts. Lastly, while625

our study marks a promising step toward advancing626

the development of new LLMs, it underscores the627

need for careful regularization to prevent potential628

misuse in harmful applications.629
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A Appendix955

Supplementary Material for “On956

the effectiveness of discrete957

representations in sparse mixture of958

experts”959

This document is organized as follows. Ap-960

pendix A.1 provides a detailed theoretical analysis961

of the SMoE Router. Appendix A.2 presents addi-962

tional experimental results demonstrating the effec-963

tiveness of our method compared to the baselines.964

Finally, Appendix A.3 offers an in-depth analysis965

of representation collapse, while Appendix A.4 de-966

tails the implementation aspects.967

A.1 Theory Analysis for SMoE Router968

A.1.1 Optimal Experts Selection969

Problem settings. We consider an MoE layer with970

each expert being an MLP layer which is trained by971

gradient descent and input data {(xi, yi)}ni=1 gen-972

erated from a data distribution D. Same as (Chen973

et al., 2022); (Dikkala et al., 2023), we assume that974

the MoE input exhibits cluster properties, mean-975

ing the data is generated from K distinct clusters976

(C1, C2, ..., Ck).977

Definition A.1 (Consistent Router) A sequence978

of points x1, x2, . . . , xn and a corresponding se-979

quence of clusters C1, C2, . . . , Ck are said to be980

consistent if, for every point xp ∈ Ci, the condition981

dist(xp, ui) ≤ min
j ̸=i

dist(xp, uj)982

is satisfied, where dist(a, b) denotes the distance 983

between a and b, and ui is the center of cluster Ci. 984

Definition A.2 (Inconsistent Router) A se- 985

quence of points x1, x2, . . . , xn and a correspond- 986

ing sequence of clusters C1, C2, . . . , Ck are said 987

to be inconsistent if there exists a point xp ∈ Ci 988

such that 989

dist(xp, ui) > min
j ̸=i

dist(xp, uj), 990

where dist(a, b) represents the distance between a 991

and b, and ui is the center of cluster Ci. 992

Inspired by (Dikkala et al., 2023), we conceptu- 993

alize the router in Sparse Mixture of Experts as a 994

clustering problem. This leads us to define a con- 995

sistent router in Definition A.1. Furthermore, we 996

introduce a definition for an inconsistent router in 997

SMoE as outlined in Definition A.2, along with the 998

concept of inconsistent expert selection presented 999

in Theorem A.3 during the training of SMoE. 1000

Theorem A.3 (Inconsistent Experts Selection) 1001

Let fMHA be a multi-head attention (MHA) 1002

function producing an output x ∈ Rn×d, and 1003

consider N experts with embeddings ei for expert 1004

i where i ∈ [1, N ]. Assume that fMHA converges 1005

at step tm, while the expert embeddings e converge 1006

at step te, with tm ≫ te. For each output x, the 1007

expert K ∈ [1, N ] is selected such that 1008

K = arg min
j∈[1,N ]

dist(x, ej). 1009

Under these conditions, the expert embeddings e 1010

form an inconsistent routing mechanism. 1011

The proof of Theorem A.3 is given in Appendix 1012

A, and we have the following insights. Theorem 1013

A.3 implies that an expert selection process by a 1014

router as the conventional SMoE leads to the incon- 1015

sistent router. Indeed, the router layer is designed 1016

as a simple linear layer, x is the output of MHA 1017

function in practice. In practice, an SMoE router 1018

is significantly simpler than the MHA function. 1019

Consequently, this design leads to the router func- 1020

tioning as an inconsistent router, contributing to the 1021

representation collapse issue and instability during 1022

training. 1023

Proposition A.4 (Optimal Experts Selection) 1024

Given input data partitioned into k clusters 1025

(C1, C2, . . . , Ck) and a mixture of experts (MoE) 1026

layer with k experts (E1, E2, . . . , Ek), the assign- 1027

ment of each cluster Ci to expert Ei for i ∈ [1, k] 1028

constitutes an optimal expert selection solution. 1029
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Proposition A.4 demonstrates that if we are1030

given a clustering structure as input, assigning each1031

part of the input to its corresponding expert re-1032

sults in an optimal expert selection. This implies1033

that learning a discrete representation and directing1034

each component to the appropriate expert yields1035

an optimal solution. The proof of Proposition A.41036

can be found in Appendix A.1037

A.1.2 Proof of Theorem A.31038

In this proof, we use contradiction to establish the1039

theorem. Assume that the expert embeddings e1040

form a consistent router. By Definition A.1, we1041

have:1042

dist(xp, ui) ≤ min(dist(xp, Cj)),1043

where ui is the representation corresponding to the1044

closest expert ei.1045

According to (Chi et al., 2022), projecting infor-1046

mation from a hidden representation space Rd to1047

the expert dimension N leads to representation col-1048

lapse. Now, consider three experts x, y, z whose1049

embeddings ex, ey, ez collapse. Without loss of1050

generality, assume that ey lies between ex and ez1051

in the embedding space. Then, we have:1052

dist(y, uy) ≤ min(dist(x, ex), dist(y, ey), dist(z, ez))

≤ dist(ex, ez).
(11)1053

Let te denote the step at which the embeddings1054

ex and ez converge, and tm denote the step at1055

which the Multi-Head Attention (MHA) module1056

converges. From step te, it follows that:1057

lim
te→tm

dist(y, uy) = lim
te→tm

dist(ex, ez) = 0.1058

Thus, y (the output of MHA) converges at step1059

te.1060

This directly contradicts the assumption that the1061

MHA converges at step tm, where te ≪ tm.1062

A.1.3 Proof of Proposition A.41063

We use contradiction to prove the proposition. As-1064

sume that, at training step t, there exists a set of1065

pairs (Ci, Ej) such that i ̸= j. Let x1, x2, . . . , xk1066

represent a sequence of inputs sampled from K1067

clusters. From step t0 to step tk−1, each pair1068

(xj , Ej), where j ∈ [1, k], is updated using the1069

following gradient descent equation:1070

W l+1
Ej

= W l
Ej

− ηJ (xj),1071

where W l
Ej

is the weight of expert Ej at iteration 1072

l, J (xj) is the Jacobian matrix with respect to 1073

input xj , and η is the learning rate. 1074

Let L denote the loss function during the training 1075

process described by Equation 6. After tk training 1076

steps, the following condition holds: 1077

Ej(xj) = min
c∈[1,k]

Ej(xc). 1078

Under the assumption of contradiction, there 1079

exists a set of pairs 1080

K∑
i,j=1;i ̸=j

(Ci, Ej) 1081

where the loss function L is minimized. However, 1082

by definition of the loss minimization process, the 1083

inequality 1084

K∑
i=1

(Ci, Ei) ≤
K∑

i,j=1;i ̸=j

(Ci, Ej) 1085

must hold. 1086

This leads to a contradiction with our initial as- 1087

sumption. 1088

A.2 Additional Experiment Results 1089

Q6: Can VQMoE learn Discrete Representation 1090

Only from scratch? A6: Yes for small and medium 1091

scale, but no for large scale. 1092

The answer is yes for small and medium- 1093

scale models. However, training a discrete 1094

representation-only approach is feasible primarily 1095

for small to medium-scale models with a moder- 1096

ately sized dataset. The results of the Transformer- 1097

XL model in Table 4 on the Enwik8 dataset support 1098

this observation. As the model scales up, relying 1099

solely on discrete representation reaches its limi- 1100

tations, leading to performance below the SMoE 1101

baselines. 1102

Q7: Can VQMoE outperform the clustering- 1103

based approach such as KMean? A7: Yes. 1104

We explored a clustering-based approach similar 1105

to MoCLE(Gou et al., 2024) but found it unsuitable 1106

for our method. Unlike MoCLE, Vector Quantiza- 1107

tion allows the model greater flexibility in learning 1108

cluster representations during training, making it 1109

more competitive in practical applications. The 1110

training results using the Transformer-XL model 1111

on the Enwik8 dataset are presented in Table 5. 1112

Q8: Can VQMoE contribute to AI real-world 1113

applications? A8: Yes. 1114
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Scale TopK # Experts SMoE VQMoE (Discrete Only)

Base 20M-50K Steps

1 16 1.28 1.25
2 16 1.26 -
4 16 1.26 -
8 16 1.27 -

16 16 1.27 -

Base 20M-100K Steps

1 16 1.22 1.18
2 16 1.20 -
4 16 1.21 -
8 16 1.21 -

16 16 1.21 -

Large (210M)

1 64 1.12 1.14
2 64 1.09 -
4 64 1.09 -
8 64 1.09 -

16 64 1.10 -
32 64 1.10 -
64 64 1.12 -

Table 4: Performance comparison of SMoE and VQ-
MoE (Discrete Only) on the Enwik8 (BPC) dataset.

Scale TopK # Experts SMoE MoCLE VQMoE

Base 20M-50K Steps

1 16 1.28 1.29 1.25
2 16 1.26 1.28 -
4 16 1.26 1.28 -
8 16 1.27 1.28 -
16 16 1.27 1.28 -

Table 5: Performance comparison of VQMoE and
MoCLE (Clustering approach) on the Enwik8 (BPC)
dataset.

We found that VQMoE can directly benefit real-1115

world AI applications, such as image segmentation,1116

demonstrating its strong generalization capabilities.1117

Specifically, our method outperforms both the base-1118

line and dense models in terms of Mean Accuracy1119

and mIoU metrics on the ADE20K dataset (Zhou1120

et al., 2018) using the Segmenter model(Strudel1121

et al., 2021). Detailed results are provided in Ta-1122

ble 6.1123

A.3 Representation Collapse Analysis1124

To illustrate Theorem A.3, we perform a language1125

model task as described in Section A.4.2, examin-1126

ing the movement of Expert Input Representation1127

in Figure 4a and Expert Embedding (router) in1128

Figure 4b. We analyze the dynamics of the ex-1129

pert input representations by tracking their changes1130

across training iterations. The results indicate that1131

the inputs to the experts become increasingly di-1132

vergent over time. This divergence suggests that1133

the model learns to represent the data in a more1134

specialized and diverse manner, allowing each ex-1135

pert to focus on distinct features or patterns within1136

the data. Similarly, we track the changes in expert1137

embeddings (router) throughout the training pro-1138

cess. However, the trend is the opposite: the expert1139

embeddings appear to converge quickly, stabilizing1140

Model ViT SoftMoe SMoE StableMoE XMoE VQMoE Metrics

Segmenter
20.8 19.0 23.1 22.4 22.3 23.4 Mean accuracy
15.0 14.0 15.5 16.0 15.7 16.6 mIoU

Table 6: Comparison of VQMoE versus the baselines
on the ADE20K dataset.

around 10,000 iterations. The findings align with 1141

our assumption stated in Theorem A.3, indicat- 1142

ing that Expert Embedding converges more quickly 1143

than Expert Input Representation. These results 1144

provide further evidence supporting the Theorem 1145

A.3. 1146

A.4 Experiments implementation details 1147

This section provides detailed parameters of our 1148

experiments in Section 5. 1149

A.4.1 General Settings 1150

The experiments are based on the publicly avail- 1151

able SMoE-Dropout implementation(Chen et al., 1152

2023a)1. However, the pre-training was conducted 1153

on two H100 GPUs, so results might differ when 1154

using parallel training on multiple GPUs. 1155

A.4.2 Pre-training Experiments 1156

Table 7 provides the detailed configurations for 1157

pre-training Transformer (Vaswani et al., 2017), 1158

Transformer-XL (Dai et al., 2019b) on Enwik8, 1159

Text8, WikiText-103,and One Billion Word. 1160

Dataset Input length Batch size Optimizer Lr # Training Step

Enwik8 512 48 Adam 3.5e-4 100k
Text 512 48 Adam 3.5e-4 100k
WikiText-103 512 22 Adam 3.5e-4 100k
One Billion Word 512 11 Adam 3.5e-4 100k

Table 7: Hyperparameter settings for pre-training ex-
periments on Enwik8, Text8 , WikiText-103 , and One
Billion Word.

Dataset Input length Batch size Optimizer Lr # Epochs

SST-2 512 16 Adam 1e-4 5
SST-5 512 16 Adam 1e-4 5
IMDB 512 4 Adam 1e-4 5
BANKING77 512 16 Adam 1e-4 5

Table 8: Detail settings for fine-tuning experiments on
the evaluation datasets.

A.4.3 Fine-tuning Experiments 1161

For fine-tuning experiments, we employ the iden- 1162

tical model architecture as in pre-training. Table 1163

1https://github.com/VITA-Group/
Random-MoE-as-Dropout
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8 presents the detailed configurations utilized for1164

fine-tuning experiments on SST-2, SST-5, IMDB,1165

and BANKING77 datasets. We start with the pre-1166

trained checkpoint of the base model on enwik8,1167

remove the final layer, and replace it with two ran-1168

domly initialized fully connected layers to serve as1169

the classifier for each fine-tuning dataset. All meth-1170

ods are fine-tuned for 5,000 steps with a uniform1171

learning rate.1172
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(a) Training Input Token Representations. (b) Training Router Representation (Expert embedding).

Figure 4: Comparison of Token Representation and Expert Representation across Training Iteration.

(a) Vector Quantization method. (b) Number of codebook. (c) Impact of α for VQMoE.

Figure 5: Pre-training small Transformer-XL on WikiText-103 across different hyperparameters.
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