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ABSTRACT

Despite their significant advancements, Multimodal Large Language Models
(MLLMs) often generate factually inaccurate information, referred to as hallucina-
tion. In this work, we address object hallucinations in MLLMs, where information
is generated about an object not present in the input image. We introduce Data-
augmented Phrase-level Alignment (DPA), a novel loss which can be applied to
instruction-tuned off-the-shelf MLLMs to mitigate hallucinations, while preserving
their general vision-language capabilities. To fine-tune MLLMs with DPA, we first
generate a set of ‘hallucinated’ and ‘correct’ response pairs through generative data
augmentation by selectively altering the ground-truth information of the correct
responses at a phrase level. The DPA loss is then used to train MLLMs to reduce
the likelihood of hallucinated phrases compared to the correct ones. In contrast,
existing alignment techniques act at the sequence level and often lead to a sharp
trade off between mitigating hallucinations and preserving model capabilities. Our
thorough evaluation on various benchmarks confirms the effectiveness of DPA
in mitigating hallucination while retaining the out-of-the-box performance of the
MLLMs on general tasks. For instance, MLLMs finetuned with DPA, which we
refer to as Hallucination Attenuated Language and Vision Assistant (HALVA),
improve F1 by up to 13.4% on hallucination visual question-answering and reduce
the hallucination rate by up to 4.2% on image description tasks.

1 INTRODUCTION

User

In the image, there are four
different types of utensils:  a fork,
a knife, a spoon, and a tooth-pick. LLaVA-v1.5

HALVA

In the image, there are several
utensils, including forks, knives,
and spoons, made out of Legos.

Compare the utensils in the
image.

User

Yes

LLaVA-v1.5

HALVA

No

Is there a tie in this image?
Please answer yes or no.

Figure 1: Examples of object hallucinations.

Recent advancements in Large Language Models
(LLMs) (Chowdhery et al., 2023; Anil et al., 2023;
Raffel et al., 2020; Touvron et al., 2023a;b; Team
et al., 2023; Brown et al., 2020) have laid the foun-
dation for the development of highly capable mul-
timodal LLMs (MLLMs) (Team et al., 2023; Liu
et al., 2024; 2023c; Dai et al., 2023; Li et al., 2023c;
Achiam et al., 2023). MLLMs can process addi-
tional modalities such as image or video, while re-
taining language understanding and generation capa-
bilities. Despite their impressive performance across
a variety of tasks, the issue of object hallucination
in MLLMs presents a significant challenge to their
widespread and reliable use (Wang et al., 2023c; Hu
et al., 2023; Rohrbach et al., 2018; Bai et al., 2024).
Object hallucination refers to generated language that includes descriptions of objects or their at-
tributes that are not present in, or cannot be verified by, the given input. We illustrate a few examples
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Figure 2: (A): A high-level overview comparing the performance of HALVA (the finetuned model
with DPA) with existing finetuning methods in mitigating object hallucination, and their ability
on general vision-language tasks. (B): Unlike HALVA, the existing finetuning approaches (e.g.,
HA-DPO and EOS) substantially diverge from their base model (LLaVA-v1.57B).
of object hallucinations in Figure 1, where on the left LLaVA-v1.513B inaccurately describes a ‘tooth-
pick’ in an image of utensils (knife, spoon, fork) as these items frequently appear together, while it
missed identifying ‘Legos’ due to their rare occurrence with utensils. On the right, LLaVA-v1.513B
incorrectly confirms the presence of a ‘tie’ for the image of a ‘wedding cake’. This is likely due to
two reasons: first, the frequent co-occurrence of wedding attire such as ‘ties’ and ‘wedding cakes’,
and second, MLLMs tend to answer ‘Yes’ for most instructions presented due to positive instruction
bias in the training data (Liu et al., 2023b; Bai et al., 2024).

Prior research has attempted to address object hallucination in one of three key stages: inference
(Deng et al., 2024a; Yin et al., 2023; Leng et al., 2023; Lee et al., 2023; Zhou et al., 2023; Biten
et al., 2022), pretraining (Sun et al., 2023; Jiang et al., 2023; Liu et al., 2023b), and finetuning (Zhao
et al., 2023b; Yue et al., 2024). Inference-based methods aim to mitigate hallucinations during text
generation, either through specialized decoding (Leng et al., 2023; Deng et al., 2024a; Zhu et al.,
2024) or through iterative corrections (Lee et al., 2023; Wu et al., 2024; Zhou et al., 2023), among
others. One of the key limitations of such approaches is that they can substantially increase inference
time and cost, and often require modifications to the serving infrastructure (Lee et al., 2023; Bai
et al., 2024). Pretraining techniques, such as negative instruction tuning or contrastive learning, have
also been used to mitigate object hallucination (Liu et al., 2023b; Jiang et al., 2023). The main
limitation of such approaches is that they require massive training data (>500K samples) and can not
be applied to off-the-shelf MLLMs. Finally, finetuning-based approaches attempt to mitigate object
hallucination through preference optimization (Zhao et al., 2023b) or human feedback (Sun et al.,
2023; Yu et al., 2023a), among others (Ben-Kish et al., 2023; Yue et al., 2024).

We note that hallucinations typically occur locally and can be pinpointed to specific words or phrases,
such as ‘tooth-pick’ in Figure 1. This is in contrast to other alignment problems such as helpfulness,
where it is difficult to identify if a particular word contributes to the overall helpfulness (or lack
thereof) in a response. Existing alignment methods (e.g., DPO (Rafailov et al., 2023)) do not leverage
this and instead attempt to mitigate hallucinations using a sequence-level loss. Such sequence level
loss provides a coarse and noisy signal, making it less effective and causing the model to degenerate
from its initial state, leading to a deterioration in general vision-language capabilities (see Figure 2).

Our goal is to achieve a fine-grained mechanism to mitigate hallucinations that allows to tackle
hallucinations while not hurting the general capabilities of the model without adding to inference
time or requiring substantial re-training.To this end, we first use generative data augmentation (Qin
et al., 2022; Zheng et al., 2024) to construct a training set of ‘hallucinated’ and ‘correct’ response
pairs, by selectively altering the ground-truth phrases in the correct responses, while keeping the
overall structure intact. Next, to reduce the likelihood of hallucinations, we introduce a training
objective called Data-augmented Phrase-level Alignment (DPA), to finetune MLLMs using the
constructed correct and hallucinated response pairs. Our proposed DPA loss consists of two terms:
the first term computes the relative log-probability of the hallucinated tokens compared to the
correct ones, and the second term calculates the token-wise KL divergence using a frozen reference
model. Accordingly, the MLLM is trained to minimize the likelihood of hallucinated tokens while
keeping the divergence minimal. As a result, while DPA is effective in mitigating hallucination it
closely retains the general capabilities of the base MLLM. We refer to MLLMs trained with our
proposed DPA loss as Hallucination Attenuated Language and Vision Assistant (HALVA). We
perform rigorous evaluations on hallucination benchmarks, showing the benefits of our method in
mitigating hallucination in both generative and discriminative vision-language tasks. While the
primary goal of this work is to mitigate object hallucinations, we take a further step to also evaluate on
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general vision-language hallucination benchmarks. The results show that DPA also provides benefits
toward other forms of vision-language hallucinations that may arise due to visual illusions among
others. Finally, to ensure that the proposed DPA does not adversely affect the general capabilities
of MLLMs, we evaluate HALVA on popular vision-language benchmarks. Our extensive studies
confirm the effectiveness of the proposed method in mitigating object hallucinations while retaining
or improving the performance in general vision-language tasks.

In summary, our main contribution is DPA, a novel method to finetune MLLMs for mitigating object
hallucination in vision-language tasks. Unlike existing finetuning-based hallucination mitigation
methods, DPA works at a phrase-level and penalizes the tokens where hallucination occurs and
not across all the tokens. Such localized and fine-grained feedback reduces object hallucination
while retaining the general performance of MLLMs. We open-source the code, checkpoints, and the
generated hallucinated and correct response pairs used in training, at GitHub.

2 METHOD: DATA-AUGMENTED PHRASE-LEVEL ALIGNMENT (DPA)

Consider an MLLM, denoted as πθ, trained in an auto-regressive manner to predict an output y for a
given vision-language instruction x={xv, xq}, where xv is an image and xq is the corresponding
instruction. During inference, the generated sequence s of length Ts is represented as {t1, t2, . . . , tTs},
where each ti represents a language token. The sequence s is said to contain hallucinations if the
occurrence of ti is not grounded in, or cannot be verified from, the input x. If the data used to train πθ
comprises frequent appearance of certain concepts (e.g., objects, object-attribute pairs), the MLLM
may generate responses based on learned spurious correlations while ignoring the given inputs (Zhou
et al., 2023; Bai et al., 2024; Rohrbach et al., 2018; Li et al., 2023d). Here, we present our strategy to
mitigate object hallucinations that may occur due to such co-occurrences.

Hallucinated:  A young woman in a black dress
and red sneakers is rollerblading in a  roller rink.

Objects

Correct:  A young man in a white shirt 
and blue jeans is skateboarding in a skate park.

Attributes Actions Locations

Instruction: Provide a one-sentence caption for
the provided image.

...

Figure 3: An example of correct
and hallucinated response pairs con-
structed through our generative data-
augmentation. The hallucinated re-
sponses are generated by selectively al-
tering the true concepts in the correct re-
sponse. For instance, we alter ‘objects’:
shirt ) dress, & jeans ) sneakers; ‘at-
tributes’: white ) black, & blue ) red;
‘actions’: skateboarding ) rollerblad-
ing; and other object-related information
such as ‘location’: skate park ) roller
rink. Best viewed in color.

Generative data augmentation. We discuss our strategy
to construct ‘hallucinated’ and ‘correct’ response pairs
through generative data augmentation. Let yc and yh be a
correct and hallucinated response, respectively, to a vision-
language instruction {xv, xq}. We design a generative
data-augmentation setup to generate yh by selectively alter-
ing the ground-truth concepts in yc, thus introducing hallu-
cinated concepts that are not present in the vision input xv .
Note that there is no overlap between the correct and the
induced hallucinated concepts. Formally, we generate yh,
by replacing the ground-truth set o containing the true con-
cepts in yc, with the hallucinated set o′, where o′ ∈ O and
o′ /∈ xv . Here, O is a set containing hallucinated concepts.
We define O = {(oi, ci) | oi ∈ U and ci ⊆ U}, where
oi is a concept (e.g., object, attribute, or action), ci is a
subset of concepts that co-occur with oi, and U represents
the universal set of all possible concepts of objects and
object-related attributes. See an example in Figure 3.

We approximate O for hallucinated concepts that are both
closed set (Occ) and open-set (Ooc). We prepare Occ based
on the co-occurring concepts in a large object-centric
dataset. For Ooc we sample hallucinated concepts by
directly prompting an LLM. In addition to generating de-
scriptive responses, we also use a small set of Yes-or-No
questions based on an existing visual question-answering
dataset, for which we generate yh by simply inverting yc.
This yields the correct and hallucinated response pairs
{yc, yh}, which we subsequently use in DPA. Additional
details of generative data augmentation, including the tem-
plates for generating correct and hallucinated responses,
as well as end-to-end examples of the entire augmentation process, are presented in Appendix D.3.

Proposed phrase-level loss. Given an off-the-shelf trained MLLM susceptible to hallucinations,
our objective is to minimize the likelihood of generating hallucinated tokens using the correct and
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xr
v

Provide a one-
sentence
caption for the
provided image.

Provide a one-
sentence
caption for the
provided image.
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q

log-probabilityr

log-probabilityc

log-probabilityh

Multimodal LLM Multimodal LLM

A young woman in a black dress
and red sneakers is rollerblading
in a  roller rink.

A young man in a white shirt and
blue jeans is skateboarding in a
skate park.

yc

yhA young man in a white shirt and
blue jeans is skateboarding in a
skate park.

yr

Figure 4: Overview of our method: Given a vision-language instruction and its correct and
hallucinated response pair, the alignment objective (La) reduces the log-likelihood of hallucinated
tokens compared to the correct ones. Also, a token-wise KL divergence regularizer (Ld) is employed
using a reference model (πref), to restrict the divergence of the MLLM (πθ) during DPA training.

hallucinated response pairs {yc, yh} obtained through generative data-augmentation. To this end, we
define an alignment objective based on the relative probabilities of correct and hallucinated phrases.

Let’s take an example with a correct response yc as ‘A young man in a white shirt’ and its correspond-
ing hallucinated response yh as ‘A young woman in a black dress’. Let yhi denote the i-th hallucinated
phrase in yh and yci be the corresponding correct phrase in yc. In this example, the hallucinated
phrases are ‘woman’ and ‘black dress’, while their corresponding correct phrases are ‘man’ and ‘white
shirt’. yh can be expressed as a sequence of tokens Th = {th1 , th2 , . . . , th|Th|}, according to which
yhi = Th[s

h
i : ehi ], where shi and ehi are the start and end indices of yhi with 1 ≤ shi ≤ ehi ≤ |Th|.

Accordingly, we can compute the probability of hallucinated phrase yhi as
∏ehi
j=shi

πθ(t
h
j |x, th<j).

Similarly, the probability of the correct phrase yci can be expressed as:
∏eci
j=sci

πθ(t
c
j |x, tc<j), where

sci and eci are the start and end indices of yci . Note that for every yhi ∈ yh there exists a corresponding
yci ∈ yc. To reduce the relative likelihood of hallucinated phrases compared to the correct ones, we
define the alignment loss La as:

La =
1

N

N∑
i=1

− log

∏eci
j=sci

πθ(t
c
j |x, tc<j)∏eci

j=sci
πθ(tcj |x, tc<j) +

∏ehi
j=shi

πθ(thj |x, th<j)
, (1)

where N represents the total number of hallucinated phrases in yh. Note that our loss is designed
to penalize the model πθ only for the hallucinated tokens rather than for all tokens in the sequence.
This localized and fine-grained feedback is one of the key concepts that sets our method apart from
existing preference optimization techniques, e.g., (Christiano et al., 2017; Rafailov et al., 2023).

Note that simply optimizing πθ to minimize La may cause πθ to substantially diverge from its initial
state, which may hurt its ability in general vision-language tasks. To mitigate this effect, we train πθ
with a KL-divergence constraint using a frozen reference model πref. For a given reference sample
{xr, yr}, yr can be expressed as a sequence of tokens Tr = {tr1, tr2, . . . , tr|Tr|}. We formulate the
token-wise KL-divergence regularization term Ld as:

Ld =

|Tr|∑
j=1

πref(t
r
j |xr, tr<j) ·

(
log
(
πref(t

r
j |xr, tr<j)

)
− log

(
πθ(t

r
j |xr, tr<j)

))
. (2)

Our formulation of Ld serves as a token-level regularizer to restrict the model from diverging too
far from its initial state, thus losing its general initial abilities. Note that {xr, yr} represent any set
of vision-language instructions and their correct responses, which may or may not include {xc, yc}.
Moreover, note that πref and πθ are initialized from the same checkpoint, therefore Ld estimates the
divergence of πθ from its initial state during training. It should be noted that we adopt a forward
KL-divergence approach in calculating Ld which is different from the reverse KL-divergence used in
RLHF (Christiano et al., 2017). This choice is essential in our case, as we do not conduct rollouts of
πθ during training and rely solely on responses from πref, ensuring that πθ focuses on high-probability
tokens of the reference distribution. Finally, we train πθ to minimize the final DPA objective:

Ldpa = La + α · Ld, (3)
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where α is a coefficient to control the divergence of πθ during training. The value of α is set based
on ablation studies presented in Section 4.4. We present the pseudo code in Appendix A.

3 EXPERIMENT SETUP

Training data. We prepare vision-language instructions based on Visual Genome (VG) (Krishna
et al., 2017), which is an object-centric image dataset consisting of a total of 108K images and their
annotations. Accordingly, we prepare the correct responses with both descriptive (e.g., Describe
the image in detail.) and non-descriptive (e.g., <Question>, Please answer in
one word, yes or no) instructions. Descriptive instructions include one-sentence captions,
short descriptions, and detailed descriptions of images. Moreover, the non-descriptive question-
answers are directly taken from (Zhao et al., 2023b). We prepare the correct responses using
Gemini Vision Pro (Team et al., 2023) and based on the original images and ground-truth annotations.
Subsequently, we perform generative data augmentation to obtain hallucinated responses, as described
in Section 2. Our final training set consists of a total of 21.5K vision-language instructions and their
corresponding correct and hallucinated responses.

Implementation details. We use LLaVA-v1.5 (Liu et al., 2023c) and VILA-v1.5 (Lin et al., 2024)
as our base models considering their superior performance in general vision-language tasks and the
availability of their code and models. LLaVA-v1.5 uses Vicuna-v1.5 (Chiang et al., 2023; Touvron
et al., 2023b) as the language encoder and CLIP ViT-L14 (Radford et al., 2021) as the vision encoder.
VILA-v1.5 uses Vicuna-v1.5 (Chiang et al., 2023; Touvron et al., 2023b) as the language encoder
and SigLip-L-400M (Zhai et al., 2023) as the vision encoder. Note that while LLaVA-v1.5 uses
images of resolution 336 pixels, VILA-v1.5 is trained with images of resolution 384 pixels. During
training, we freeze the vision encoder and projection layers, and only train the LLM using LoRA (Hu
et al., 2021). We refer to the resulting DPA trained checkpoints as HALVA, i.e., HALVA7B based on
LLaVA-v1.513B, HALVA13B based on LLaVA-v1.513B, and HALVA13B/384 based on VILA-v1.513B/384.
All experiments are conducted on 4 A100-80GB GPUs. We utilize an effective batch size of 64 and
train for 1 epoch or 342 steps. The training time ranges from 1.5 to 3 hours for 7B and 13B variants.
The additional implementation details are presented in Appendix D.

Evaluation setup. First, we evaluate HALVA on four object hallucination benchmarks encompassing
both generative and discriminative tasks, including CHAIR (Rohrbach et al., 2018), MME-Hall (Fu
et al., 2023), AMBER (Wang et al., 2023b), and MMHal-Bench (Sun et al., 2023). Additionally, we
perform a curiosity driven experiment to critically test the impact of our proposed DPA beyond object
hallucination, using HallusionBench (Liu et al., 2023a). Furthermore, to ensure that DPA does not
adversely affect the general language generation capabilities of MLLMs, we evaluate HALVA on
five popular vision-language benchmarks: VQA-v2 (Goyal et al., 2017), MM-Vet (Yu et al., 2023b),
TextVQA (Singh et al., 2019), MME (Fu et al., 2023) and LLaVA-Bench (Liu et al., 2024). All
evaluations are conducted thrice, and we report average scores. In the case of GPT-4-based evaluation,
the performance slightly varies due to the randomness, where we also report the standard deviations.

4 RESULTS

Earlier in Figure 2, we present a high-level overview of HALVA vs. existing finetuning approaches
(e.g., HA-DPO and EOS) in mitigating object hallucinations and their effect on the general vision-
language capabilities. Note that both HA-DPO and EOS are based on the same LLaVA-v1.57B as
HALVA, ensuring a fair comparison. We consider LLaVA-v1.57B as the lower bound and GPT-4V as
strong reference point given its performance on the standard benchmarks.

Image description task. In Figure 2 (A) Left, we compare MLLMs on image description tasks
in terms of both hallucination rate (AMBER CHAIR) and their detailedness, captured through the
number of ground-truth objects covered (AMBER Cover). Our goal is to mitigate hallucinations
while retaining or improving the richness of image descriptions compared to the base model. As
shown, HALVA captures more ground-truth objects while hallucinating less than HA-DPO. Moreover,
while EOS achieves a lower hallucination rate, it degrades the detailedness of image descriptions,
performing worse than the base model. This is an undesired artifact in MLLMs, particularly for tasks
that require detailedness such as medical imaging analysis (Wang et al., 2023c; Hu et al., 2023).
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Table 1: Results on CHAIR. ‡ and † indicate that the
reported values are from (Chen et al., 2023a) and (Yue
et al., 2024). *Results are computed by us, using their of-
ficial checkpoints. Ci and Cs refer to CHAIR at instance
and sentence levels.

Method Ci(↓) Cs(↓) Len.

mPLUG-Owl‡7B (Ye et al., 2023a) 30.2 76.8 98.5
MultiModal-GPT‡7B (Gong et al., 2023) 18.2 36.2 45.7
MiniGPT-v2‡7B (Chen et al., 2023a) 8.7 25.3 56.5
InstructBlip7B (Dai et al., 2023) 17.5 62.9 102.9

LLaVA-v1.5†7B (Liu et al., 2023c) 15.4 50.0 100.6
EOS7B (Yue et al., 2024) 12.3 40.2 79.7
OPERA7B (Huang et al., 2023) 12.8 44.6 -
DoLA7B (Chuang et al., 2023) 13.8 47.8 -
HA-DPO*

7B (Zhao et al., 2023b) 11.0 38.2 91.0
MEMVR7B (Zou et al., 2024) 13.0 46.6 99.6
AGLA7B (An et al., 2024) 14.1 43.0 98.8
HALVA7B (Ours) 11.7↓3.7 41.4↓8.6 92.2

MiniGPT-4†13B (Zhu et al., 2023) 9.2 31.5 116.2
InstructBlip13B (Dai et al., 2023) 16.0 51.2 95.6
LLaVA‡13B (Liu et al., 2024) 18.8 62.7 90.7

LLaVA-v1.5†13B (Liu et al., 2023c) 13.0 47.2 100.9
EOS13B (Yue et al., 2024) 11.4 36.8 85.1
HALVA13B (Ours) 12.8↓0.2 45.4↓1.8 98.0

VILA-v1.513B/384 (Lin et al., 2024) 9.2 33.0 183.4
HALVA13B/384 (Ours) 8.4↓0.8 30.0↓3.0 182.6

Table 2: Results on MME-Hall. ‡ indicat-
ing reported values from (Bai et al., 2024).
*Results are computed by us, using official
checkpoints. Red: worse than base model.

Method MME-Hall (↑)

Cheetor7B
‡ (Li et al., 2023b) 473.4

LRV-Instruction7B
‡ (Liu et al., 2023b) 528.4

Otter7B
‡ (Li et al., 2023a) 483.3

mPLUG-Owl27B
‡ (Ye et al., 2023b) 578.3

Lynx7B
‡ (Zeng et al., 2023) 606.7

Qwen-VL-Chat7B
‡ (Bai et al., 2023) 606.6

LLaMA-Adapter V27B
‡ (Gao et al., 2023) 493.3

LLaVA-v1.57B (Liu et al., 2023c) 648.3
HA-DPO*

7B (Zhao et al., 2023b) 618.3
EOS*

7B (Yue et al., 2024) 606.7
VCD7B (Leng et al., 2023) 604.7
Woodpecker*

7B (Yin et al., 2023) 366.7
MEMVR7B (Zou et al., 2024) 648.3
ARA7B (Qu et al., 2024) 648.3
AGLA7B (An et al., 2024) 640.0
HALVA7B (Ours) 665.0↑16.7
BLIVA11B

‡ (Hu et al., 2024) 580.0
MMICL12B

‡ (Zhao et al., 2023a) 568.4
InstructBLIP13B

‡ (Dai et al., 2023) 548.3
SPHINX13B

‡ (Lin et al., 2023) 668.3
Muffin13B

‡ (Lou et al., 2023) 590.0
RLHF-V13B (Yu et al., 2023a) 585.0

LLaVA-v1.513B (Liu et al., 2023c) 643.3
HALVA13B (Ours) 675.0↑31.7

VILA-v1.513B/384 (Lin et al., 2024) 688.3
HALVA13B/384 (Ours) 691.7 ↑3.4

Question answering task. In Figure 2 (A) Right, we compare the performance of MLLMs on visual
question-answering tasks using both object hallucination (AMBER) and general vision-language
(TextVQA) benchmarks. As shown, both HA-DPO and EOS underperform HALVA in mitigating
object hallucination and even deteriorate general vision-language abilities compared to the base
model. These results show the shortcomings of existing approaches, which we address in this work.

To further understand the limitations of existing methods in greater detail, we measure divergence
from the base model in Figure 2 (B). Here we observe that unlike HALVA, both HA-DPO and EOS
substantially diverge from the base model, resulting in poor performance in general tasks.

4.1 EVALUATION ON OBJECT HALLUCINATION

CHAIR. MLLMs can be prone to hallucinations when generating detailed image descriptions (Bai
et al., 2024; Rohrbach et al., 2018; Wang et al., 2023b). To assess the impact of DPA in such scenarios,
we evaluate HALVA on CHAIR, which stands for Caption Hallucination Assessment with Image
Relevance (Rohrbach et al., 2018). This metric calculates the number of objects that appear in the
image caption but are not present in the image. Specifically, CHAIR measures hallucination at
two levels: instance-level (Ci) and sentence-level (Cs). During this task, HALVA is prompted with
‘Describe the image in detail’, allowing for the generation of detailed image descrip-
tions. The results in Table 1 demonstrate that HALVA substantially reduces hallucination in image
descriptions compared to the base variants. For instance, compared to LLaVA-v1.57B, HALVA7B
reduces Cs from 50.0 to 41.4, similarly, compared to VILA-v1.513B/384, HALVA13B/384 reduces Cs
from 33.0 to 30.0. Furthermore, HALVA7B outperforms or matches the performance of other hal-
lucination mitigation methods, such as OPERA (Huang et al., 2023), EOS (Yue et al., 2024), and
HA-DPO (Zhao et al., 2023b). It should be noted that our proposed DPA does not negatively impact
the language generation ability or expressiveness of MLLMs, unlike EOS (Yue et al., 2024), which
substantially reduces the average generation length from 100 to 85 and 79 for the 13B and 7B variants,
respectively. As discussed earlier in Section 4, such a degree of reduction can lead to missing key
details in image descriptions and are undesirable for MLLMs. In contrast, HALVA maintains the
same generation length as the base model, e.g., 98 vs. 100.9 or 182.6 vs. 183.4, while effectively
reducing hallucination. However, a limitation of CHAIR (Rohrbach et al., 2018) is that it does not
consider other key aspects of image descriptions, such as coverage of objects and detailedness of
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descriptions, when evaluating hallucination. Therefore, we also evaluate on AMBER (Wang et al.,
2023b), a more recent object hallucination benchmark, which we discuss later.

MME-Hall. We evaluate HALVA on discriminative tasks using MME (Fu et al., 2023). Specifically,
we utilize the hallucination subset of MME, which consists of four object-related subtasks: existence,
count, position, and color, referred to as MME-Hall. The full score of each category is 200, making
the maximum total score 800. The results presented in Table 2 demonstrate that HALVA substantially
improves performance compared to the base model. For instance, HALVA13B achieves a score of
675.0, resulting in a performance gain of 31.7 points with respect to the base model LLaVA-v1.513B.
Moreover, as presented in Table 2, existing methods including finetuning (e.g., HA-DPO, EOS) and
inference-based (e.g., VCD, Woodpecker) approaches are ineffective in mitigating hallucinations
across such broad categories and worsen the performance compared to their base model. The detailed
results of MME-Hall are presented in Appendix C.

Table 3: Results on AMBER. Cover.: coverage of ground-
truth objects; Hall.: Hallucination Rate; ‡ indicates that
the reported values are from (Wang et al., 2023b). *Results
are computed by us, using their checkpoint. Red: worse
than base model.

Method Generative Discriminative
CHAIR (↓) Cover. (↑) Hall. (↓) (F1↑)

mPLUG-Owl‡7B (Ye et al., 2023a) 21.6 50.1 76.1 18.9
LLaVA‡7B (Liu et al., 2024) 11.5 51.0 48.8 32.7
MiniGPT-4‡7B (Zhu et al., 2023) 13.6 63.0 65.3 64.7
mPLUG-Owl2‡7B (Ye et al., 2023b) 10.6 52.0 39.9 78.5
InstructBLIP‡7B (Dai et al., 2023) 8.8 52.2 38.2 81.7

LLaVA-v1.5‡7B 7.8 51.0 36.4 74.7
HA-DPO*

7B (Zhao et al., 2023b) 6.7 49.8 30.9 78.1
EOS*

7B (Yue et al., 2024) 5.1 49.1 22.7 75.6
Woodpecker*

7B (Yin et al., 2023) 6.9 48.9 30.4 67.0
HALVA7B (Ours) 6.6↓1.2 53.0↑2.0 32.2↓4.2 83.4↑8.7
RLHF-V13B/448 Yu et al. (2023a) 6.8 46.1 27.4 87.1

LLaVA-v1.513B (Liu et al., 2023c) 6.6 51.9 30.5 73.1
HALVA13B (Ours) 6.4↓0.2 52.6↑0.7 30.4↓0.1 86.5↑13.4
VILA-v1.513B/384 (Lin et al., 2024) 9.9 63.3 56.1 82.2
HALVA13B/384 (Ours) 9.1↓0.8 63.9↑0.6 54.2↓1.9 87.9↑5.7
GPT-4V‡ (Achiam et al., 2023) 4.6 67.1 30.7 87.4

AMBER. To evaluate performance on
both generative and discriminative tasks,
we use AMBER (Wang et al., 2023b),
which measures hallucination using sev-
eral metrics. For generative tasks, AM-
BER assesses the frequency of halluci-
nated objects in image descriptions, sim-
ilar to (Rohrbach et al., 2018). Moreover,
AMBER evaluates hallucination in three
additional aspects of generative abilities:
the number of ground-truth objects cov-
ered in the description, the hallucination
rate, and the similarity of hallucinations
in MLLMs to those observed in human
cognition. Discriminative tasks are cat-
egorized into three broad groups: exis-
tence, attribute, and relation, each as-
sessed using F1 scores. For additional
details on these evaluation metrics, we
refer the reader to (Wang et al., 2023b).

The results presented in Table 3 demonstrate that HALVA outperforms the base model by a large
margin, in both generative and discriminative tasks. For instance, HALVA7B reduces hallucination
in caption generation from 7.8 to 6.6, while increasing the coverage of ground-truth objects in
the descriptions from 51% to 53%. This confirms that our method reduces hallucination without
compromising the descriptive power of MLLMs. On the other hand, while HA-DPO and EOS report
slightly lower hallucination rates, the number of ground-truth objects covered is reduced to 49.8%
and 49.1%, respectively. This indicates a degradation in the overall performance of these MLLMs
on general tasks. Similar shortcomings are also noticed when using inference-based correction
methods such as Woodpecker (Yin et al., 2023), where the object coverage is reduced by 2.1%
compared to the base model. Woodpecker also performs poorly on discriminative tasks as it fails
to capture key concepts from short responses of LLaVA-v1.5 which it aims to correct. Moreover,
our proposed DPA substantially enhances performance on discriminative tasks, for both 7B and 13B
variants. For instance, HALVA7B improves the F1-score on the attribute category from 64.6% to
80.0%. Additionally, HALVA13B improves the F1 score on relation-based tasks from 45.0% to 73.5%.
Overall, HALVA7B outperforms both HA-DPO and EOS on discriminative tasks by a large margin,
achieving a 5.3% and 7.8% higher F1 score respectively. Furthermore, HALVA13B and HALVA13B/384
perform better or on par with GPT-4V on discriminative tasks, i.e., F1-score of 86.5 by HALVA13B,
87.9 by HALVA13B/384, and 87.4 by GPT-4V. The detailed results are in Appendix C.

MMHal-Bench. We also conduct LLM-assisted hallucination evaluation to rigorously test for
potential hallucinations in generated responses that might not be captured when validated against
a limited ground-truth information, as done in (Rohrbach et al., 2018). We utilize MMHal-Bench
(Sun et al., 2023), which evaluates hallucination across 12 object-topics, including object attributes,
presence of adversarial objects, and spatial relations, among others. Following (Sun et al., 2023), we
use GPT-4 (Achiam et al., 2023) as the judge to rate the responses on a scale of 0 to 6, with respect to
standard human-generated answers and other ground-truth information of the images. The results
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Table 4: Results on MMHal-Bench. †, ‡, and **

indicate that the reported values are from (Sun
et al., 2023), (Jiang et al., 2023), and (Yu et al.,
2024). *Results are computed by us, using their
official checkpoint. Red: worse than base model.

Method Overall
Score (↑)

Hall.
Rate (↓)

Kosmos-2‡ (Peng et al., 2023) 1.69 0.68
IDEFIC‡9B (Laurençon et al., 2024) 1.89 0.64
InstructBLIP‡7B (Dai et al., 2023) 2.10 0.58
LLaVA‡7B (Liu et al., 2024) 1.55 0.76
VCD**

7B (Leng et al., 2023) 2.12 0.54
OPERA7B (Huang et al., 2023) 2.33 0.50
LURE7B (Zhou et al., 2023) 1.64 0.60

LLaVA-SFT7B (Sun et al., 2023) 1.76 0.67
LLaVA-RLHF7B (Sun et al., 2023) 2.05 0.68
LLaVA-v1.57B (Liu et al., 2023c) 2.11±0.05 0.54±0.01

HACL7B (Jiang et al., 2023) 2.13 0.50
HA-DPO*

7B (Zhao et al., 2023b) 1.97 0.60
EOS*

7B (Yue et al., 2024) 2.03 0.59
HALVA7B (Ours) 2.25±0.09

↑0.14 0.54±0.01
↓0.00

LLaVA†13B (Liu et al., 2024) 1.11 0.84
InstructBLIP‡13B (Dai et al., 2023) 2.14 0.58
RLHF-V13B/448 (Yu et al., 2023a) - 0.52

LLaVA-SFT13B (Sun et al., 2023) 2.43 0.55
LLaVA-RLHF13B (Sun et al., 2023) 2.53 0.57
LLaVA-v1.513B (Liu et al., 2023c) 2.37±0.02 0.50±0.00

CODE13B (Kim et al., 2024) 2.49 0.51
HALVA13B (Ours) 2.58±0.07

↑0.21 0.45±0.02
↓0.05

VILA-v1.513B/384 (Lin et al., 2024) 2.58±0.02 0.46±0.01

HALVA13B/384 (Ours) 2.58±0.06 0.45±0.01
↓0.01

GPT4V (Achiam et al., 2023) 3.49 0.28

Table 5: Results on HallusionBench. † indicates
that the reported values are from (Liu et al., 2023a).
*Results are computed by us, using their official
checkpoint.

Method Yes/No Bias
(∼0)

Overall
Acc. (↑)

mPLUG Owl-v1†7.2B (Ye et al., 2023a) 0.32 43.93
MiniGPT5†7B (Zheng et al., 2023) 0.25 40.30
MiniGPT4†7B (Zhu et al., 2023) 0.19 35.78
InstructBLIP†7B (Dai et al., 2023) -0.13 45.26
BLIP2†7B (Li et al., 2023c) 0.18 40.48
mPLUG Owl-v2†7B (Ye et al., 2023b) 0.25 47.30
LRV-Instruction†7B (Liu et al., 2023b) 0.26 42.78

LLaVA-1.5*
7B (Liu et al., 2023c) 0.31 47.09±0.14

LLaVA-RLHF*
7B Sun et al. (2023) 0.24 42.96

HA-DPO*
7B (Zhao et al., 2023b) 0.26 48.36

EOS*
7B (Yue et al., 2024) 0.29 48.72

HALVA7B (Ours) 0.17↓0.14 48.95±0.13
↑1.86

Qwen-VL†9.6B (Bai et al., 2023) 0.12 39.15
Open-Flamingo†9B (Awadalla et al., 2023) 0.33 38.44
BLIP2-T5†12B (Li et al., 2023c) 0.08 48.09
RLHF-V*

13B/448 (Yu et al., 2023a) 0.13 47.47

LLaVA-1.5†13B (Liu et al., 2023c) 0.26 46.94
LLaVA-1.5*

13B (Liu et al., 2023c) 0.38 46.50±0.09

LLaVA-RLHF*
13B(Sun et al., 2023) 0.17 46.41

HALVA13B (Ours) 0.20↓0.18 49.10±0.05
↑2.60

VILA-v1.5*
13B/384 (Lin et al., 2024) 0.19 55.39±0.05

HALVA13B/384 (Ours) 0.02↓0.17 56.60±0.18
↑1.21

GPT4V† (Achiam et al., 2023) 0.06 65.28
Gemini Pro Vision† (Team et al., 2023) -0.02 36.85

presented in Table 4 demonstrate that HALVA considerably improves performance with respect to
LLaVA-v1.5. Furthermore, we observe that our approach is more effective in mitigating hallucination
than existing RLHF, SFT, or DPO-based methods. For example, HALVA7B achieves a score of 2.25
surpassing the 7B variants of RLHF, DPO, and SFT -based methods, which report scores of 2.05,
1.97, and 1.76, respectively. Moreover, HALVA13B reduces the hallucination rate to 0.45, compared
to 0.57 for LLaVA-RLHF. Note that as LLaVA-RLHF and LLaVA-SFT use the same language and
vision encoders as HALVA (Vicuna-V1.5 and ViT-L/14), ensuring a fair direct comparison. The
detailed results for the individual categories are presented in Appendix C.

4.2 EVALUATION ON HALLUCINATION BENCHMARKS BEYOND OBJECT HALLUCINATION

To further stress-test DPA on other forms of vision-language hallucinations that are not restricted to
objects and may occur due to visual illusions, we evaluate performance on HallusionBench (Liu et al.,
2023a). The results presented in Table 5 demonstrate that our proposed method directly benefits
other forms of vision-language hallucinations as well. HALVA7B, HALVA13B, and HALVA13B/384
improve the overall accuracy by 1.86%, 2.16%, and 1.21%, respectively, compared to their base
models. Moreover, DPA mitigates Yes/No bias in MLLM responses. Specifically, HALVA13B/384
reduces Yes/No bias from 0.19 to 0.02. Detailed results on HallusionBench are in Appendix C.

4.3 EVALUATION ON NON-HALLUCINATION BENCHMARKS

We further assess HALVA on general vision-language tasks using four popular benchmarks: VQA-v2
(Goyal et al., 2017), MM-Vet (Yu et al., 2023b), TextVQA (Singh et al., 2019), MME (Fu et al.,
2023), and LLaVA-Bench-in-the-Wild (LLaVA-BW) (Liu et al., 2024). We follow the evaluation
protocol mentioned in LLaVA-v1.5 (Liu et al., 2023c). The results presented in Table 6 show
that HALVA maintains or improves performance with respect to the base models. For example,
HALVA7B improves on MME, MM-Vet, and LLaVA-BW by 16.3, 1%, and 1.8% respectively, while
retaining the same performance on VQA-v2. A similar trend is noticed in the case of HALVA13B
and HALVA13B/384. Unlike HALVA7B, existing finetuning methods such as HA-DPO7B and EOS7B,
based on LLaVA-v1.57B, exhibit statistically significant performance drops in general tasks when
tuned for hallucination mitigation. We present the details of our statistical analysis in Appendix C.11.
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No, the cloud in the image is not
black. It is a white cloud.

Yes, the cloud in the image is black.

User

User

Yes, the cloud in the image is white.

Yes, the cloud in the image is white.

B

The same image given in a separate trial.

User

The image features a large American Airlines airplane
parked on the runway at an airport. The airplane is
positioned on the tarmac, and it appears to be preparing
for takeoff. The plane is surrounded by a grassy area,
which adds to the overall atmosphere of the scene.

Describe the
image in detail.

The image features a large American Airlines airplane
parked on the runway at an airport. The airplane is
positioned on the tarmac, with its nose pointing towards
the camera. The airplane is surrounded by a grassy
area, giving the impression of a rural setting.
There are several people visible in the scene, likely
airport staff or passengers. Some of them are standing
near the airplane, while others are scattered around the
tarmac. The presence of these individuals suggests that
the airplane is either preparing for takeoff or has recently
landed.

A

Is the cloud black in this image?

Is the cloud white in this image?

User

Yes, the right orange circle is smaller
than the left orange circle.

Is the right orange circle smaller
than the left orange circle?

No, the right orange circle is larger
than the left orange circle.

D

Yes

No

CAre there five people in
this image? Please answer
yes or no.

User

Figure 6: Qualitative comparisons between HALVA [ ] and LLaVA-v1.5 [ ]. Our proposed DPA
effectively mitigates hallucination under different setups: (A) detail image description, (B) visual
question-answering, (C) Yes-or-No answer, (D) visual illusion. Hallucinations are highlighted in red.
More examples, comparing with LLaVA-v1.5 and VILA-v1.5, are in Appendix E.

Table 6: Results on general vision-language
tasks. ∗Results are computed by us, using their
official checkpoint. Red underline indicates that
the performance drop is statistically significant.

Method VQAv2
↑ MM-Vet↑ TextVQA↑ MME↑ LLaVA-BW↑

LLaVA-v1.57B 78.5 31.1 58.3 1510.7 65.4
HA-DPO7B 77.6 ∗↓0.9 30.7∗↓0.4 56.7 ∗↓1.6 1502.6∗↓8.1 66.2↑0.8
EOS7B 77.6 ∗↓0.9 31.4∗↑0.3 55.2 ∗↓3.1 1424.4 ∗↓102.6 65.8↑0.4
HALVA7B 78.5 32.1↑1.0 58.2↓0.04 1527.0↑16.3 67.2↑1.8
LLaVA-v1.513B 80.0 36.1 61.2 1530.1 72.5
HALVA13B 80.0 37.8↑1.7 61.2 1544.0↑13.9 72.7↑0.2
VILA-v1.513B 82.8 44.3 65.0 1569.6 80.8
HALVA13B/384 82.8 44.3 64.8↓0.2 1575.7↑6.1 82.4↑1.6
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Figure 5: Left: Changes in the model state due to
DPA training with varying α. Right: Changes is
alignment loss before and after training across all
training samples. Default α is 0.4 for HALVA7B.

4.4 ABLATION STUDY

Recalling the final DPA objective, which combines the alignment loss (La) and KL divergence
(Ld), defined as Ldpa = La + α · Ld, we examine the change in model state with varying α, as
depicted in Figure 5 (Left). The y axis represents the extent to which the model diverges from its
initial state during DPA training, while the x axis shows the change in the relative log-probability of
the hallucinated tokens. Each data point in this figure represents the calculated alignment loss and
divergence after training for different values of α. The figure illustrates that with a very low α, e.g.
0.01, the model substantially diverges from its initial state. As α increases, the model tends to retain a
state similar to the base model. We empirically find that α=0.4 works optimally for HALVA7B. The
change in La before and after DPA training computed over the entire training samples is presented in
Figure 5 (Right). In-depth ablation studies on the proposed loss and generative data-augmentation
are presented in Appendix C.

4.5 QUALITATIVE ANALYSIS

A qualitative comparison of HALVA to the base model is shown in Figure 6, with additional examples
in Appendix E. HALVA consistently provides more accurate image descriptions than LLaVA-v1.5.
For example, in Figure 6 (A), LLaVA-v1.5 hallucinates ‘people’, ‘airport staff’, ‘passengers’ in
an image of a parked airplane. In contrast, HALVA accurately describes the image with necessary
details. Additionally, our method does not exhibit LLaVA-v1.5’s tendency to answer ‘Yes’ to most
questions, which can contribute to hallucinations. This is shown in Figure 6 (B), where HALVA
correctly answers ‘Yes’ when asked ‘Is the cloud white in the image?’ and responds with ‘No’ when
asked ‘Is the cloud black in this image?’, whereas LLaVA-v1.5 answers ‘Yes’ to both cases. In
another example, shown in Figure 6 (C), unlike LLaVA-v1.5, HALVA provides the correct answer to
the number of people present in the image. Lastly, we present an example of hallucination caused
by visual illusion in Figure 6 (D). While HALVA is not explicitly trained for such vision-language
hallucinations, our approach shows some ability to mitigate it.
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5 RELATED WORK

Multimodal LLM (MLLM). Vision-language models (VLMs) often align image and text features in
a shared embedding space, as pioneered by CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021),
and others (Yu et al., 2022; Chen et al., 2022; Li et al., 2022; Wang et al., 2022). This alignment is
achieved through contrastive learning on large image-text datasets. VLMs show strong generalization
across various tasks. Leveraging LLMs and vision encoders from VLMs like CLIP, recent MLLMs
(Liu et al., 2024; Zhu et al., 2023; Team et al., 2023; Achiam et al., 2023; Dai et al., 2023; Li et al.,
2023c; Peng et al., 2023; Hu et al., 2024; Dai et al., 2023; Bai et al., 2023; Chen et al., 2023b) further
enhance visual perception, understanding, and reasoning. While some MLLMs are open-source,
others are only accessible through APIs (Achiam et al., 2023; Team et al., 2023; Bai et al., 2023).
Among the publicly available MLLMs, LLaVA (Liu et al., 2024; 2023c) and VILA (Lin et al., 2024)
are widely used due to their simplicity and the availability of code, models, and training data. This
makes them suitable base models for demonstrating applicability of DPA on off-the-shelf MLLMs.

Alignment. Reinforcement learning from human feedback (RLHF) (Christiano et al., 2017) aligns
models by training a new model via a KL-regularized RL problem using an outcome reward.
DPO (Rafailov et al., 2023) and many follow-ups (Azar et al., 2024; Pal et al., 2024; Tang et al., 2024;
Amini et al., 2024) emerged as a simple alternative to RLHF that sidesteps reward modeling. Note
that all these methods operate at the sequence level, which provides noisy feedback in alignment
in all intermediate steps. On the other hand, recent work has focused on token-level alignment
methods (Mudgal et al., 2023; Zeng et al., 2024; Rafailov et al., 2024; Chakraborty et al., 2024)
with a process reward (q-function). In contrast, our proposed DPA is an offline alignment method
designed to overcome two key limitations of existing methods: providing fine-grained feedback
through phrase-level alignment and restricting divergence by applying a strong token-wise forward
KL regularizer. Notably, the forward KL regularizer helps avoid the mode-seeking behavior of reverse
KL-based RL fine-tuning, which may lead to low diversity in generations (Wang et al., 2023a).

Hallucination mitigation. Multimodal hallucination generally refers to the misrepresentation of
verifiable information in relation to the given input. This phenomenon has been primarily studied in
the context of object hallucination (Rohrbach et al., 2018; Bai et al., 2024; Zhou et al., 2023; Sun
et al., 2023; Biten et al., 2022). Prior work to mitigate this issue can be categorized into three phases:
pretraining, where techniques include using balanced instruction-tuning data with equal positive and
negative examples (Liu et al., 2023b) or generating and correcting image-instruction pairs on-the-fly
(Wang et al., 2024); inference, with methods involving specialized decoding strategies (Leng et al.,
2023; Deng et al., 2024a; Zhu et al., 2024) or iterative corrections using offline models to detect and
correct hallucinations at inference time (Zhou et al., 2023; Yin et al., 2023); and finetuning, with
approaches relying on human feedback (Sun et al., 2023; Yu et al., 2023a) to train reward models
or employing preference optimization techniques (Zhao et al., 2023b; Yu et al., 2023a; 2024; Pi
et al., 2024; Zhou et al., 2024; Deng et al., 2024b). While finetuning methods are a more efficient
direction as they do not require training from scratch (unlike pretraining-based methods) nor changes
in the serving infrastructure (unlike inference-based methods), existing finetuning approaches may
deteriorate the performance of the base model on general vision-language tasks (Figure 2). To
address this, we introduce DPA, which is effective in mitigating object hallucination on a broad set
of vision-language tasks while retaining or improving the general abilities of the base model. In
contrast to (Gunjal et al., 2024) that explores training a reward model to provide sub-sequence level
feedback for preference optimization training, we introduce a fine-grained objective function that can
be directly used to finetune multimodal LLMs for hallucination mitigation.

6 CONCLUDING REMARKS

We introduce data-augmented phrase-level alignment to mitigate object hallucination in MLLMs.
Our approach uses generative data augmentation to create pairs of hallucinated and correct responses
by selectively altering ground-truth phrases in the correct responses. These pairs are then used to
train MLLMs with our proposed DPA loss, which reduces the relative log-likelihood of hallucinated
tokens compared to correct ones. Our extensive study demonstrates the effectiveness of DPA in
mitigating various forms of object hallucinations, including those related to existence and attributes,
as well as hallucinations arising from visual illusions or complex charts. Additionally, unlike existing
fine-tuning-based solutions, DPA effectively mitigates hallucination across diverse vision-language
tasks while maintaining or even enhancing performance on general vision-language tasks.
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Appendix
The organization of the appendix is as follows:

Appendix A: Pseudo code
Appendix B: Distinction between ours DPA and DPO-based hallucination mitigation methods
Appendix C: Additional experiments and eesults
Appendix D: Implementation details
Appendix E: Qualitative results
Appendix F: Limitations

A DPA PSEUDO CODE

Our proposed DPA is fairly straightforward to implement. Below, we provide a PyTorch-based pseudo
code. Please note that this is a minimal implementation to present the key steps of our algorithm.
Some of the intermediary and rudimentary steps (e.g., ignoring padded inputs during loss calculation)
are intentionally omitted for brevity. The code will be made publicly available.

import torch
import torch.nn.functional as F

def forward(self, **inputs):
"""x: vision-language input
y_pos: correct response of x
y_neg: hallucinated response of x constructed through gen. data aug.
x_ref, y_ref: reference input-output pair to calculate divergence
"""

batch_size = x.shape[0]

# forward pass with correct and hallucinated responses
pos_logits = self.model(x, y_pos)
neg_logits = self.model(x, y_neg)

# calculate log-probabilities
pos_logps, pos_labels = self.log_softmax(pos_logits, y_pos)
neg_logps, neg_labels = self.log_softmax(neg_logits, y_neg)

# accumulate log-probabilities of
# correct and hallucinated tokens at phrase level
pos_logps = self.accumulate_logps(pos_logps)
neg_logps = self.accumulate_logps(neg_logps)

# phrase-level alignment loss
alignment_loss = torch.log(1 + torch.exp(neg_logps - pos_logps))
alignment_loss = alignment_loss.mean()

# forward pass with the reference samples
logits = self.model(x_ref, y_ref)
with torch.no_grad():

reference_logits = self.reference_model(x_ref, y_ref)

# calculate probability
proba = F.softmax(logits, dim=-1)
reference_proba = F.softmax(reference_logits, dim=-1)

# token-wise KL divergence
divergence = (reference_proba*(reference_proba.log()-proba.log()))
divergence = divergence.sum()/batch_size

# final loss
loss = alignment_loss + self.alpha*divergence
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return loss

B DISTINCTION BETWEEN OURS DPA AND DPO-BASED HALLUCINATION
MITIGATION METHODS

Several existing and concurrent works, such as HA-DPO (Zhao et al., 2023b), RLHF-V (Yu et al., 2023a), and
RLAIF (Yu et al., 2024), have introduced hallucination mitigation techniques for MLLMs, that are derived from
DPO (Rafailov et al., 2023). Following, we discuss the differences between our proposed DPA and DPO.

We write both DPA (ours) and the DPO (Rafailov et al., 2023) objectives using the same notations, which are as
follows: πθ as the model being trained; πref as the frozen reference model; x as the input; yc and yh as correct and
hallucinated responses; D as training samples. We express yh as a sequence of tokens Th = {th1 , th2 , . . . , th|Th|}
and denote the i-th hallucinated phrase yhi = Th[shi : ehi ], where shi and ehi are the start and end indices of yhi
with 1 ≤ shi ≤ ehi ≤ |Th|. Similarly, yc is expressed as a sequence of tokens Tc = {tc1, tc2, . . . , tc|Tc|}, and
we denote the i-th correct phrase yci = Tc[s

c
i : eci ], where sci and eci are the start and end indices of yci with

1 ≤ sci ≤ eci ≤ |Tc|. N is the total number of hallucinated phrases in yh; α and β are loss coefficients to control
the influence of the reference model in training. For the sake of simplicity, we assume that {xc, yc} are reused
as reference sample in DPA. Therefore, as discussed in Section 2, the final DPA loss can be expressed as:

Ldpa(πθ;πref) =− E(x,yc,yh)∼D

[
1

N

N∑
i=1

− log

eci∏
j=sci

πθ(t
c
j |x, tc<j)

eci∏
j=sci

πθ(tcj |x, tc<j) +
ehi∏
j=shi

πθ(thj |x, th<j)︸ ︷︷ ︸
phrase-level alignment loss

+ α ·
|Tc|∑
j=1

πref(t
c
j |x, tc<j) ·

(
log
(
πref(t

c
j |x, tc<j)

)
− log

(
πθ(t

c
j |x, tc<j)

))
︸ ︷︷ ︸

token-wise KL divergence

]

On the other hand, the training objective of DPO is:

Ldpo(πθ;πref) =− E(x,yc,yh)∼D

[
log σ(β log

πθ(y
c|x)

πref(yc|x)
− β log

πθ(y
h|x)

πref(yh|x)
)

]
Note that in our proposed DPA (Ldpa), given {x, yc, yh}, we calculate the phrase-level alignment loss based
on the log-probabilities of the tokens in the hallucinated phrases and not on all the tokens of a sequence.
Additionally, the KL-regularizer is applied at the token-level to closely retain the vision-language capabilities
of the base model. In DPO (LDPO), however, given x, yc, yh, the reward margin between the correct and
hallucinated responses is maximized to increase the log-likelihood of the correct response while reducing that
of the hallucinated response. Despite the fact that the loss formulation of DPO is different from ours DPA,
one fundamental difference is that their loss is calculated at a sequence level, i.e., penalizing all the tokens of
a hallucinated response. Intuitively, the training objective of DPA provides more localized and fine-grained
feedback unlike DPO (Rafailov et al., 2023) and other existing alignment techniques (Christiano et al., 2017;
Schulman et al., 2017). This makes DPA unique and effective compared to existing and concurrent works.

Accordingly, the nature of the correct and hallucinated responses used in DPO-based methods and our DPA also
differ. To illustrate this we present one side-by-side comparison using a training sample from HA-DPO (Zhao
et al., 2023b) and ours in Figure S1, which shows that while HA-DPO make changes at the sequence level, we
apply changes at the word or phrase-level to construct the negative responses. In particular, unlike, HA-DPO, we
selectively alter the ground-truth information in the correct description, while keeping the rest of the response
intact.
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Chosen: The photo depicts an exciting moment of a snowboarder executing a mid-air jump,
with the snowboard prominently visible underneath. The snowboarder is wearing protective
gear, including a helmet and goggles, to ensure safety while experiencing the exhilarating
activity. The snowy landscape with trees in the backdrop sets the scene, and the
snowboarder takes center stage, exhibiting impressive skill and athleticism as they soar
through the air.

Rejected: The picture depicts an electrifying moment of a snowboarder executing a mid-air
jump, with the snowboard clearly visible underneath. The snowboarder, wearing a helmet and
goggles, ensures safety while relishing in the exhilarating activity. The snowy landscape,
adorned with trees, serves as the backdrop for this scene, where the snowboarder takes
center stage, showcasing their skill and athleticism as they soar through the air.

Correct: A snowboarder is jumping in the air. The snowboarder is surrounded by snow and
has a blue sky in the background. He has a patch of clear blue sky behind him. The
snowboarder is doing a trick and has his legs bent in the air with his arms extended
downward. He has a black and white glove on his right hand. The snowboarder is wearing a
white vest with a black number on the back.

Hallucinated: A skier is jumping in the air. The skier is surrounded by snow and has a blue
water in the background. He has a patch of clear blue water behind him. The skier is doing a
trick and has his legs bent in the air with his arms extended downward. He has a black and
white hat on his right hand. The skier is wearing a white vest with a black number on the
back.

Figure S1: We present training samples from the DPO-based method on the left (from HA-DPO)
and ours on the right, highlighting differences in the nature of the negative samples. While HA-DPO
makes changes (highlighted in blue) at a sequence level, we apply one-to-one changes (highlighted in
green and red) at the word or phrase-level to construct the negatives. The positives are referred to as
‘Chosen’ in HA-DPO, while we refer to them as ‘Correct’; and the negatives are referred to as ‘Reject’
in HA-DPO, while we refer to them an ‘Hallucinated’. Since there are no overlapping samples of
descriptive responses between HA-DPO and our data, we use a sample that closely resemble each
other.
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C ADDITIONAL EXPERIMENTS AND RESULTS

C.1 ABLATION ON LOSS

Recall our final objective function, which is comprised of both alignment loss (La), and token-wise KL
divergence (Ld) between the πθ (the model being trained) and πref (the reference model that is kept frozen),
defined as: Ldpa = La + α · Ld. First, we study the behavior of HALVA with varying α. Simply put, a lower
α allows πθ to diverge more from πref, whereas a higher α aligns πθ more closely with πref. By default, we
initialize both πθ and πref from the same base model. Therefore, a higher α would result in πθ to perform the
same as the base model. Following, we analyze the impact of varying α on HALVA7B and HALVA13B, while
tracking their performance on the MME-Hall dataset. The results are presented in Figures S2 and S3. We
observe that for HALVA7B, an α of between 0.3 and 0.4 yields a better outcome, whereas the model behaves
similar to the base model when α > 0.4. For HALVA13B on the other hand, an α in the range of 0.4 to 0.6 shows
the highest performance. We present qualitative examples in Figure S4, showing the adverse effect of using a
very low α. By default, we use α = 0.4 for HALVA7B, α = 0.5 for HALVA13B, and α = 0.2 for HALVA13B/384.
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Figure S2: The training curves with varying α (a) and their performance on object hallucination (b)
are presented. α in the range of 0.3 to 0.4 achieves optimal performance on the 7B variant.
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Figure S3: The training curves with varying α (a) and their performance on object hallucination (b)
are presented. α in the range of 0.4 to 0.6 achieves optimal performance on the 13B variant.
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Question: Provide a one-sentence
caption for the provided image.

α = 0.01: A painting of a house
with a white house with a pink house
with a large white house with a
pink house with a large white house
with a pink house with a large white
house with a pink house with a large
white house with a pink house with a
large white house with a pink house
with a large

α = 0.4 (default): A painting
of a house with a white porch and
pink flowers.

Question: Describe the image in
detail.

α = 0.01: The image is a black
and white photo of a man and a
little girl sitting together on
a couch. The man is holding the
little girl, and they are both
smiling.

α = 0.4 (default): The image
is a black and white photo of a man
and a young girl sitting together
on a couch. The man is wearing a tie,
and the little girl is wearing a
dress. They are both smiling and
appear to be enjoying their time
together.

Figure S4: Qualitative examples demonstrating the impact of DPA training with a very low α. As
presented here, training with a very low α of 0.01 may occasionally hurt the language generation
ability of an MLLM. The example on the left side shows an instance of degeneration, while the
example on the right side shows a lack of descriptive power, failing to mention key details in the
description, such as ‘the man is wearing a tie’ or ‘the girl is wearing a dress’. The 7B variant is used
in this study.
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C.2 ABLATION ON GENERATIVE DATA AUGMENTATION

We perform an ablation study to explore the effect of different sampling strategies which have been used in
generative data augmentation. As mentioned in Section 2, we generate hallucinated responses in three setups:
closed-set co-occurrences (9K), open-set co-occurrences (11K), and Yes-or-No questions (1.5K). We generate a
total of 21.5K samples that contains 28K unique pairs of correct and hallucinated phrases based on 5K unique
hallucinated objects. We study the impact of these categories along with their varying number of samples.
We perform this study on HALVA7B and use the same training hyperparameters as those obtained by tuning
on the entire data. From the results presented in Table S1, three key observations are made. First, open-set
hallucinated descriptions show benefits in reducing hallucinations in generative tasks, as evidenced by the
superior performance on CHAIR. Second, mixing the Yes-or-No hallucinated responses reduces hallucination in
discriminative tasks, leading to an F1 boost on the AMBER dataset. Finally, combining all the splits results
in overall improvements or competitive performances across a broader range of tasks. We present the key
statistics of all the splits in Table S2. In Figure S5, we present the training curves for different generative data
augmentations, demonstrating stability during training across various data splits.

Table S1: Ablation study on sampling strategy used in generative data augmentation. Ci and Cs refer
to CHAIR at instance and sentence-level; F1 refers to the F1-scores of all the discriminative tasks
and HR refers to hallucination rate on generative tasks.

Data Split CHAIR AMBER MME-Hall
Ci ↓ Cs ↓ F1↑ HR ↓ Score ↑

Closed set 12.6 45.0 73.9 34.7 643.3
Open-set 11.2 39.6 73.1 33.3 643.3
Closed set + Open-set (50%) 11.7 41.8 79.8 32.0 643.3
Closed set + Open-set 12.6 43.6 74.1 34.0 648.3
Closed set + Open-set + Y-or-N (50%) 11.8 43.2 82.4 32.2 641.0

Closed set + Open-set + Y-or-N 11.7 41.4 83.4 32.2 665.0

Table S2: Key statistics of training samples used in DPA training.

Data Split # Samples # Avg. hallucinated
instances per sample

Length (in words)
Avg./Min./Max.

One-sentence caption 528 2.7 15/6/53
Short description 11573 6.9 42/12/128
Detailed description 8268 11.3 71/32/246
Yes-or-No (one word answer) 1510 1 1/1/1
Full 21874 8.1 49/1/246
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Figure S5: Training curves for different generative data augmentations using α = 0.4.
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Table S3: Ablation study on divergence measure using HALVA7B. (a) We find that using seen samples
as the reference data for divergence measure achieve overall better performance. (b) Our study shows
that initializing the reference model and the model being trained from the same checkpoint, achieves
optimal performance. Ci and Cs refer to CHAIR at instance and sentence-level; F1 refers to the
F1-scores of all the discriminative tasks and HR refers to hallucination rate in the image descriptions.

(a) Ablation study on reference data.

Ref. Data CHAIR AMBER MME-Hall

Ci ↓ Cs ↓ F1↑ HR ↓ Score ↑

Unseen data 12.7 47.4 81.7 34.7 668.3
Seen data 11.7 41.4 83.4 32.2 665.0

(b) Ablation study on reference model.

Ref. Model CHAIR AMBER MME-Hall

Ci ↓ Cs ↓ F1↑ HR ↓ Score ↑

7B 11.7 41.4 83.4 32.2 665.0
13B 12.4 45.2 80.1 34.7 640.0

C.3 ABLATION ON DIVERGENCE MEASURE

Reference data. We experiment with the reference data that has been used to measure KL divergence with
respect to the reference model. We briefly experiment in two setups:

• Unseen data: we directly use the vision-language instructions and correct responses as the reference
samples.

• Seen data: we take a fraction of the instruction tuning dataset the base model is originally trained on,
and use them as reference samples.

We perform this experiment on HALVA7B and the results are presented in Table S3 (a). The results demonstrate
that using seen samples to measure divergence gives a better estimate of model state during training, and
accordingly the tuned model overall performs better, across various benchmarks.

Reference model. By default, we initialize the reference model (the model kept frozen) and the online model
(the model being trained) from the same checkpoint. Additionally, we experiment with initializing the reference
model different than the model being trained. In particular, we experiment with training LLaVA7B while using
LLaVA13B as the reference model. We find this interesting to explore as both LLaVA7B and LLaVA13B are
originally trained in a similar setup, and LLaVA13B performs relatively better compared to the LLaVA7B, on most
of the benchmarks (Liu et al., 2023c). The results presented in Table S3 (b) show that initializing the reference
model and the online model from the same checkpoint, achieve optimal performance. We believe this is likely
since the reference model initialized from an identical state of the model being trained, gives a true estimate of
divergence and accordingly optimized model performs better across a variety of benchmarks.

C.4 DETAILED RESULTS OF MME-HALL

In Table S4, we present the detailed results of the MME-Hall (Fu et al., 2023) benchmark across its four
sub-categories: existence, count, position, and color. Our results indicate that DPA mitigates (or retains the
same performance as the base model) object hallucination across different aspects, unlike prior finetuning
methods such as HA-DPO (Zhao et al., 2023b) and EOS (Yue et al., 2024), or inference-based methods such as
VCD (Leng et al., 2023) and Woodpecker (Yin et al., 2023), which either degrade overall performance or show
improvement in one category but suffer in others.

Table S4: Detailed results on MME-Hall.

Method Object (↑) Attribute (↑) Total (↑)
Existence Count Position Color

LLaVA-v1.57B 190.0 155.0 133.3 170.0 648.3
HA-DPO7B 190.0 133.3 136.7 158.3 618.3
EOS7B 190.0 138.3 118.3 160.0 606.7
VCD7B 184.7 138.3 128.7 153.0 604.7
Woodpecker7B 165.0 98.3 56.7 46.7 366.7
HALVA7B (Ours) 190.0 165.0 135.0 175.0 665.0
LLaVA-v1.513B 185.0 155.0 133.3 170.0 643.3
HALVA13B (Ours) 190.0 163.3 141.7 180.0 675.0
VILA-v1.513B/384 185.0 170.0 148.3 185.0 688.3
HALVA13B/384 (Ours) 185.0 173.3 148.3 185.0 691.7
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C.5 DETAILED RESULTS OF AMBER

In Table S5, we present the detailed results of AMBER (Wang et al., 2023b). As shown, HALVA reduces hallu-
cination (e.g., from 7.8 to 6.6) while improving object coverage (from 51% to 53%) in image description tasks,
outperforming HA-DPO, EOS, and Woodpecker. HALVA significantly improves performance on discriminative
tasks, achieving F1 score improvements of up to 13.4%.

Table S5: Detailed results on AMBER.

Method Generative Task Discriminative Task (F1↑)
CHAIR (↓) Coverage (↑) Hall. Rate (↓) Cognition (↓) Existence Attribute Relation Overall

LLaVA-v1.5‡7B 7.8 51.0 36.4 4.2 83.3 64.6 65.6 74.7
HA-DPO7B 6.7 49.8 30.9 3.3 88.1 66.1 68.8 78.1
EOS7B 5.1 49.1 22.7 2.0 82.8 67.4 69.2 75.6
Woodpecker7B 6.9 48.9 30.4 3.6 81.7 53.5 41.5 67.0
HALVA7B (Ours) 6.6 53.0 32.2 3.4 93.3 77.1 63.1 83.4
LLaVA-v1.513B 6.6 51.9 30.5 3.3 78.5 70.2 45.0 73.1
HALVA13B (Ours) 6.4 52.6 30.4 3.2 92.6 81.4 73.5 86.5
VILA-v1.513B/384 9.9 63.3 56.1 4.8 87.5 77.8 66.7 82.2
HALVA13B/384 (Ours) 9.1 63.9 54.2 4.0 93.9 82.6 75.9 87.9

C.6 DETAILED RESULTS OF MMHAL-BENCH

In Table S6, we present the detailed results of MMHal-Bench (Sun et al., 2023) across its eight sub-categories.
Our proposed DPA demonstrates consistent effectiveness in mitigating object hallucinations in the following
types: adversarial, comparison, relation, and holistic on both HALVA7B and HALVA13B. Additionally, DPA
improves performance in 6 out of 8 subcategories for both the 13B variants. Moreover, recent hallucination miti-
gation methods such as HA-DPO and EOS prove ineffective in addressing such broad categories of hallucinations,
even resulting in worsened baseline performance.

Table S6: Detailed results on MMHal-Bench.

Method Overall Hall. Score in Each Question Type (↑)
Score (↑) Rate (↓) Attribute Adversarial Comparison Counting Relation Environment Holistic Other

LLaVA-v1.57B 2.11±0.06 0.56±0.01 3.06±0.27 1.00±0.00 1.61±0.05 1.97±0.09 2.36±0.05 3.20±0.05 2.14±0.30 1.53±0.25
HA-DPO7B 1.97±0.04 0.59±0.01 3.56±0.17 1.08±0.09 1.14±0.13 1.89±0.21 2.22±0.33 3.31±0.10 1.42±0.14 1.17±0.00
EOS7B 2.03±0.02 0.59±0.02 2.69±0.13 1.78±0.09 1.89±0.13 1.53±0.18 2.09±0.14 3.08±0.30 1.67±0.29 1.53±0.09
HALVA7B (Ours) 2.25±0.10 0.54±0.01 2.78±0.09 1.47±0.18 1.97±0.13 1.89±0.05 3.03±0.21 3.20±0.05 2.42±0.43 1.22±0.27
LLaVA-v1.513B 2.38±0.02 0.50±0.01 3.20±0.05 2.53±0.18 2.55±0.05 2.20±0.05 1.97±0.05 3.33±0.14 1.50±0.22 1.72±0.13
HALVA13B (Ours) 2.58±0.08 0.46±0.02 3.03±0.09 2.58±0.09 2.66±0.14 2.08±0.14 2.45±0.05 3.36±0.17 2.44±0.39 2.00±0.08
VILA-v1.513B/384 2.58±0.02 0.46±0.01 3.36±0.13 1.08±0.09 3.39±0.13 2.05±0.05 2.97±0.21 3.11±0.05 2.19±0.13 2.47±0.05
HALVA13B/384 (Ours) 2.58±0.06 0.45±0.01 3.11±0.05 1.47±0.05 3.47±0.05 2.08±0.00 3.11±0.13 3.19±0.13 1.64±0.24 2.58±0.09

C.7 DETAILED RESULTS OF HALLUSIONBENCH

In Table S7, we present the detailed results of HallusionBench (Liu et al., 2023a), which evaluates MLLMs
beyond object hallucination, including those may cause by visual illusions and quantitative analysis form
charts or graphs, among others. In addition to improving the overall performance, the results demonstrate the
effectiveness of DPA on all the sub-categories (i.e., easy set, hard set) of HallusionBench as well. For example,
we find that HALVA7B and HALVA13B substantially improve performance (4.34%-6.90%) on the Hard Set of
HallusionBench, which consists of human-edited image-question pairs specially crafted to elicit hallucinations in
MLLMs. We note that, in addition to hallucination mitigation, DPA helps MLLMs in reducing Yes/No bias. As
discussed earlier, LLaVA-v1.5 is prone to answering ‘Yes’, in most cases. Our proposed DPA effectively reduces
Yes/No bias from 0.31 to 0.17 and from 0.38 to 0.20 on HALVA7B and HALVA13B, respectively. Moreover, in
the case of HALVA13B/384, the Yes/No bias is reduced from 0.19 to 0.02, with 0 being ideal.

C.8 A CRITICAL ANALYSIS OF OUR PROPOSED DPA

Here, we critically assess whether the performance enhancement observed in our proposed DPA is attributable
to generative data augmentation, the proposed training objective, or their combination. To investigate this, we
apply our generative data augmentation directly to another finetuning-based hallucination mitigation approach,
HA-DPO (Zhao et al., 2023b). In HA-DPO, correct and hallucinated pairs are employed to finetune MLLMs,
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Table S7: Detailed results on HallusionBench.

Method Yes/No Bias Question Pair Acc. Fig. Acc. Easy Acc. Hard Acc. All Acc.
Pct. Diff (∼ 0) FP Ratio (∼ 0.5) (qAcc) ↑ (fAcc) ↑ (Easy aAcc) ↑ (Hard aAcc) ↑ (aAcc) ↑

LLaVA-v1.57B 0.31±0.00 0.79±0.00 10.70±0.13 19.65±0.00 42.34±0.13 41.47±0.13 47.09±0.14
HA-DPO7B 0.26 0.76 11.21 19.08 42.86 44.19 48.36
EOS7B 0.29 0.78 11.21 18.50 43.96 42.09 48.72
HALVA7B (Ours) 0.17±0.00 0.67±0.00 13.85±0.00 21.48±0.17 42.71±0.13 45.81±0.00 48.95±0.14
LLaVA-v1.513B 0.38±0.00 0.85±0.00 8.79±0.22 15.22±0.17 44.25±0.13 35.97±0.13 46.50±0.09
HALVA13B (Ours) 0.20±0.00 0.70±0.00 13.85±0.22 20.13±0.17 44.47±0.13 42.87±0.13 49.10±0.05
VILA-v1.513B/384 0.19±0.00 0.71±0.00 18.90±0.00 24.86±0.29 52.38±0.13 46.20±0.27 55.39±0.05
HALVA13B/384 (Ours) 0.02±0.00 0.53±0.00 22.71±0.46 27.65±0.17 52.89±0.34 46.96±0.23 56.60±0.18

aiming to maximize the reward margin between the correct responses and the hallucinated ones. Accordingly,
we train HA-DPO by replacing their data with the output of our generative data augmentation module. We utilize
the official code released by (Zhao et al., 2023b) and conduct hyper-parameter tuning (mainly with varying β
and learning rate) ensure effective training. Subsequently, we evaluate the performance of the newly trained
HA-DPO on both hallucination (CHAIR, AMBER, MME-Hall) and non-hallucination (MME) benchmarks. The
results presented in Table S8 indicate that applying our proposed generative data augmentation to HA-DPO
does not yield the same level of performance boost as HALVA. This confirms that the performance boost of our
proposed method stems from a combination of the KL-regularized phrase-level alignment objective and the data
augmentation setup. Note that since our proposed method necessitates a pair of aligned correct and hallucinated
phrases, and the descriptive responses utilized in HA-DPO do not meet this requirement, we are unable to apply
DPA directly to their data.

Table S8: Effect of generative data augmentation on HA-DPO. Here, CHAIR, AMBER, and MME-
Hall are hallucination benchmarks, and MME is a general vision-language benchmark.

CHAIR (Ci) ↓ AMBER F1 ↑ MME-Hall ↑ MME ↑

HA-DPO7B 11.0 78.1 618.3 1502.6

HA-DPO7B w/
Generative Data Aug. 14.6 77.7 631.7 1508.9

HALVA7B 11.7 83.4 665.0 1527.0

C.9 RESULTS ON POPE

In addition to the hallucination benchmarks in the main paper, we also evaluate HALVA using POPE (Li et al.,
2023d). While POPE is used in prior works, we note a few key limitations and find it to be a not well suited
benchmark for evaluating MLLMs, as listed below. Please note that the similar concerns are also echoed in
recent works (Wang et al., 2023b; Bai et al., 2024).

First, POPE employs a Yes-or-No protocol to check for existence of an object, but lacks coverage of other
types of object hallucinations, such as object attributes (e.g., color, count) and object relations (e.g., position,
environment). Second, the questions are formulated based on only 500 images and include a total of 79 unique
objects, which fails to capture object hallucinations across diverse visual concepts. Third, POPE does not
evaluate hallucinations in descriptive tasks (e.g., image description), where MLLMs tend to hallucinate more.
These limitations led to introduction of more comprehensive benchmarks such as AMBER and MME among
others, which we are used as the primary evaluation benchmarks in this work.

As shown in Table S9, we observe that while models such as GPT-4o and InternVL2 perform considerably better
than others on MME and HallusionBench, they are not well-represented by POPE. Despite these shortcomings,
we were able to obtain 87.1 and 87.9 for HALVA7B and HALVA13B using a different α = 0.005.

C.10 RESULTS ON LINGUISTIC QUALITY

To analyse whether DPA training have an adverse affect on the linguistic quality of the responses generated by
MLLMs, we evaluate the responses on four aspects: grammatical correctness, fluency, detailedness, and choice
of words. Since there is no standard or commonly used benchmark for these tasks, we use randomly selected 100
detailed image descriptions (a subset from the AMBER (Wang et al., 2023b) image description task) generated

25



Published as a conference paper at ICLR 2025

Table S9: The results on POPE are presented. ∗ Results are obtained using a different α than our
default. † Added here for reference only, and should not be directly compared with 7B and 13 models,
due to the large discrepancy in their model sizes.

Method POPE
(F1 ↑)

AMBER
(F1 ↑)

HallusionBench
(Acc. ↑)

MME-Hall
(Score ↑)

MME
(Score ↑)

LLaVA-v1.57B 85.9 74.7 47.1 684.3 1510.7
LLaVA-RLHF7B 81.5 76.3 43.0 493.3 1190.0
HA-DPO7B 86.9 78.1 48.4 618.3 1502.6
EOS7B 86.0 75.6 48.7 606.7 1424.4
HALVA7B (Ours) 84.8/87.1∗ 83.4 49.0 665.0 1527.0

LLaVA-v1.513B 85.9 73.1 46.5 643.3 1530.1
LLaVA-RLHF13B 81.9 83.7 46.4 585.0 1367.7
HALVA13B (Ours) 84.9/87.9∗ 86.5 49.1 675.0 1544.0

VILA-v1.513B 86.3 82.2 55.4 688.3 1569.6
HALVA13B/384 (Ours) 86.1 87.9 56.6 691.7 1575.7

GPT-4o† (v.0513, detail-high) 85.6 - 55.0 - 2310.3
InternVL2†40B (Chen et al., 2024) 81.9 - 56.5 - 2293.1

by LLaVA 1.57B and HALVA7B, with GPT-4o-mini as the judge to rate them on a scale of 0 to 10. The template
used in evaluation is presented in Figure S6. As shown in Table S10, HALVA7B exhibits the same performance
as LLaVA 1.57B.

Table S10: Results on linguistic qualities of the responses.

Model Grammatical Correctness Fluency Detailedness Choice of Words

LLaVA 1.57B 9.90± 0.30 9.64± 0.52 8.37± 0.48 8.93± 0.26
HALVA7B (Ours) 9.99± 0.10 9.51± 0.50 8.35± 0.48 8.99± 0.23

Following is a detailed image description.
Your task is to assess the response on the following criteria:
1. Grammatical Correctness: Analyze the response for grammar,
punctuation, and syntax accuracy.
2. Fluency: Evaluate whether the response flows smoothly,
reads naturally, and maintains coherence throughout.
3. Detailedness: Check if the response provides sufficient and
relevant detail to address the topic comprehensively, without
redundancy or unnecessary information.
4. Choice of Words: Assess if the words used are appropriate,
varied, and effectively convey the intended message.

Rate each criterion on a scale from 0 to 10, where 0 indicates
poor quality and 10 signifies an excellent response.

Here is the image description to evaluate:

{description}

Your response should be in this format:

Grammatical Correctness: SCORE
Fluency: SCORE
Detailedness: SCORE
Choice of Words: SCORE

Figure S6: The template for evaluating the linguistic quality of the responses.
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Table S11: Analysing if the base models are better than the hallucination mitigation methods on
general tasks. Here Model 1 is a base model and Model 2 is a hallucination mitigation method. Red:
performance drop with statistical significance.

Evaluation benchmark Model 1 Model 2 ∆ Adjusted ∆ Standard Error # samples

LLaVA-v1.57B vs. HA-DPO7B

VQAv2 0.7850 0.7760 0.0090 0.0065 0.0013 107394
MMVet 0.3110 0.3070 0.0040 -0.0574 0.0314 218
TextVQA 0.5820 0.5670 0.0150 0.0013 0.0070 5000
MME 0.7554 0.7513 0.0041 -0.0143 0.0093 2114
LLaVA-Bench-in-the-wild 0.6540 0.6620 -0.008 -0.1284 0.0614 60

LLaVA-v1.57B vs. EOS7B

VQAv2 0.7850 0.7760 0.0090 0.0065 0.0013 107394
MMVet 0.3110 0.3140 -0.0030 -0.0644 0.0314 218
TextVQA 0.5820 0.5520 0.0300 0.0163 0.0070 5000
MME 0.7554 0.7122 0.0432 0.0248 0.0093 2114
LLaVA-Bench-in-the-wild 0.6540 0.6580 -0.0040 -0.1244 0.0614 60

LLaVA-v1.57B vs. HALVA7B (Ours)
VQAv2 0.7850 0.7850 0.0000 -0.0025 0.0013 107394
MMVet 0.3110 0.3210 -0.0100 -0.0714 0.0314 218
TextVQA 0.5820 0.5820 0.0000 -0.0137 0.0070 5000
MME 0.7554 0.7635 -0.0081 -0.0265 0.0093 2114
LLaVA-Bench-in-the-wild 0.6540 0.6720 -0.0180 -0.1384 0.0614 60

LLaVA-v1.513B vs. HALVA13B (Ours)
VQAv2 0.8000 0.8000 0.0000 -0.0024 0.0012 107394
MMVet 0.3610 0.3780 -0.0170 -0.0808 0.0325 218
TextVQA 0.6120 0.6120 0.0000 -0.0135 0.0069 5000
MME 0.7651 0.7720 -0.0070 -0.0250 0.0092 2114
LLaVA-Bench-in-the-wild 0.7250 0.7270 -0.0020 -0.1150 0.0576 60

VILA-v1.513B/384 vs. HALVA13B/384 (Ours)
VQAv2 0.8280 0.8280 0.0000 -0.0023 0.0012 107394
MMVet 0.4430 0.4430 0.0000 -0.0659 0.0336 218
TextVQA 0.6500 0.6480 0.0020 -0.0112 0.0067 5000
MME 0.7848 0.7879 -0.0031 -0.0206 0.0089 2114
LLaVA-Bench-in-the-wild 0.8080 0.8240 -0.0160 -0.1157 0.0508 60

C.11 STATISTICAL ANALYSIS

We accept the performance improvement or drop in Model 1 compared to Model 2 on a given task to be
statistically significant if the Adjusted ∆ is greater than 0, where ∆ is the performance difference between
Model 1 and Model 2. We consider the Standard Error (SE) with statistical significance at 95% confidence. Note
that the original results are scaled between 0 to 1, where 0 represents the worst and 1 represents the best. The
mathematical expressions are given below

SE =

√
Model 1× (1−Model 1)

number of samples
,

∆ = Model 1−Model 2,
Adjusted ∆ = ∆− 1.96 ∗ SE.

The results are presented in Tables S11 to S14 show that the existing finetuning-based hallucination mitigation
methods such as HA-DPO and EOS show statistically significant performance drops on general tasks. In
contrast, our proposed DPA does not exhibit such deterioration. Moreover, we observe that HALVA7B shows
statistically significant improvements in CHAIR, AMBER generative, and AMBER discriminative tasks. The
same holds true for HA-DPO7B and EOS7B. Both of our 13B variants (HALVA13B and HALVA13B/384) show
improvements across all setups, with the improvements on AMBER discriminative tasks being statistically
significant. Unlike DPA, existing methods, such as HA-DPO and EOS, exhibit performance deterioration in 2
out of 6 hallucination tasks compared to the base model, where the performance drop for EOS7B on MME-Hall
is statistically significant.
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Table S12: Analysing if hallucination mitigation methods are better than the base models on general
tasks. Here Model 1 is a hallucination mitigation method and Model 2 is a base model.

Evaluation benchmark Model 1 Model 2 ∆ Adjusted ∆ Standard Error # samples

HA-DPO7B vs. LLaVA-v1.57B
VQAv2 0.7760 0.7850 -0.0090 -0.0115 0.0013 107394
MMVet 0.3070 0.3110 -0.0040 -0.0652 0.0312 218
TextVQA 0.5670 0.5820 -0.0150 -0.0287 0.0070 5000
MME 0.7513 0.7554 -0.0041 -0.0225 0.0094 2114
LLaVA-Bench-in-the-wild 0.6620 0.6540 0.008 -0.1117 0.0611 60

EOS7B vs. LLaVA-v1.57B
VQAv2 0.7760 0.7850 -0.0090 -0.0115 0.0013 107394
MMVet 0.3140 0.3110 0.0030 -0.0586 0.0314 218
TextVQA 0.5520 0.5820 -0.0300 -0.0438 0.0070 5000
MME 0.7122 0.7554 -0.0432 -0.0624 0.0098 2114
LLaVA-Bench-in-the-wild 0.6580 0.6540 0.0040 -0.1160 0.0612 60

HALVA7B (Ours) vs. LLaVA-v1.57B
VQAv2 0.7850 0.7850 0.0000 -0.0025 0.0013 107394
MMVet 0.3210 0.3110 0.0100 -0.0520 0.0316 218
TextVQA 0.5820 0.5820 0.0000 -0.0137 0.007 5000
MME 0.7635 0.7554 0.0081 -0.0100 0.0092 2114
LLaVA-Bench-in-the-wild 0.6720 0.6540 0.0180 -0.1008 0.0606 60

HALVA13B (Ours) vs. LLaVA-v1.513B
VQAv2 0.8000 0.8000 0.0000 -0.0024 0.0012 107394
MMVet 0.3780 0.3610 0.0170 -0.0474 0.0328 218
TextVQA 0.6120 0.6120 0.0000 -0.0135 0.0069 5000
MME 0.7720 0.7651 0.0070 -0.0109 0.0091 2114
LLaVA-Bench-in-the-wild 0.7270 0.7250 0.002 -0.1107 0.0575 60

HALVA13B/384 (Ours) vs. VILA-v1.513B/384
VQAv2 0.8280 0.8280 0.0000 -0.0023 0.0012 107394
MMVet 0.4430 0.4430 0.0000 -0.0659 0.0336 218
TextVQA 0.6480 0.6500 -0.0020 -0.0152 0.0068 5000
MME 0.7879 0.7848 0.0031 -0.0144 0.0089 2114
LLaVA-Bench-in-the-wild 0.8240 0.8080 0.0160 -0.0804 0.0492 60
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Table S13: Analysing if hallucination mitigation methods are better than the base models on halluci-
nation tasks. Here Model 1 is a hallucination mitigation method and Model 2 is a base model. Green:
performance improvement with statistical significance.

Evaluation benchmark Model 1 Model 2 ∆ Adjusted ∆ Standard Error # samples

HA-DPO7B vs. LLaVA-v1.57B
CHAIR 0.6180 0.5000 0.1180 0.0754 0.0217 500
MME-Hall 0.7729 0.8104 -0.0375 -0.0905 0.027 240
AMBER-Generative (Hall. Rate) 0.6910 0.6360 0.0550 0.0264 0.0146 1004
AMBER-Discriminative 0.7810 0.7470 0.0340 0.0272 0.0035 14216
MMHal-Bench (Hall. Rate) 0.4000 0.4600 -0.0600 -0.1580 0.0500 96
Hallusion-Bench 0.4836 0.4709 0.0127 -0.0165 0.0149 1129

EOS7B vs. LLaVA-v1.57B
CHAIR 0.5980 0.5000 0.0980 0.0550 0.0219 500
MME-Hall 0.7584 0.8104 -0.0520 -0.1062 0.0276 240
AMBER-Generative (Hall. Rate) 0.7730 0.6360 0.1370 0.1111 0.0132 1004
AMBER-Discriminative 0.7560 0.7470 0.0090 0.0019 0.0036 14216
MMHal-Bench (Hall. Rate) 0.4100 0.4600 -0.0500 -0.1484 0.0502 96
Hallusion-Bench 0.4872 0.4709 0.0163 -0.0129 0.0149 1129

HALVA7B (Ours) vs. LLaVA-v1.57B
CHAIR 0.5860 0.5000 0.0860 0.0428 0.0220 500
MME-Hall 0.8313 0.8104 0.0209 -0.0265 0.0242 240
AMBER-Generative (Hall. Rate) 0.6780 0.6360 0.0420 0.0131 0.0147 1004
AMBER-Discriminative 0.8340 0.7470 0.087 0.0809 0.0031 14216
MMHal-Bench (Hall. Rate) 0.4600 0.4600 0.0000 -0.0997 0.0509 96
Hallusion-Bench 0.4895 0.4709 0.0186 -0.0106 0.0149 1129

HALVA13B (Ours) vs. LLaVA-v1.513B
CHAIR 0.5460 0.5280 0.0180 -0.0256 0.0223 500
MME-Hall 0.8438 0.8041 0.0396 -0.0063 0.0234 240
AMBER-Generative (Hall. Rate) 0.6960 0.695 0.0010 -0.0275 0.0145 1004
AMBER-Discriminative 0.8650 0.7310 0.1340 0.1284 0.0029 14216
MMHal-Bench (Hall. Rate) 0.5500 0.5000 0.0500 -0.0495 0.0508 96
Hallusion-Bench 0.4910 0.4650 0.0260 -0.0032 0.0149 1129

HALVA13B/384 (Ours) vs. VILA-v1.513B/384
CHAIR 0.7000 0.6700 0.0300 -0.0102 0.0205 500
MME-Hall 0.8646 0.8604 0.0043 -0.0390 0.0221 240
AMBER-Generative (Hall. Rate) 0.4580 0.4390 0.0190 -0.0118 0.0157 1004
AMBER-Discriminative 0.8790 0.8220 0.0570 0.0516 0.0027 14216
MMHal-Bench (Hall. Rate) 0.5500 0.5400 0.0100 -0.0895 0.0508 96
Hallusion-Bench 0.5660 0.5539 0.0121 -0.0168 0.0148 1129
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Table S14: Analysing if base models are better than the hallucination mitigation methods on halluci-
nation tasks. Here Model 1 is a base model and Model 2 is a hallucination mitigation method. Red:
performance drop with statistical significance.

Evaluation benchmark Model 1 Model 2 ∆ Adjusted ∆ Standard Error # samples

LLaVA-v1.57B vs. HA-DPO7B
CHAIR 0.5000 0.6180 -0.1180 -0.1618 0.0224 500
MME-Hall 0.8104 0.7729 0.0375 -0.0121 0.0253 240
AMBER-Generative (Hall. Rate) 0.6360 0.6910 -0.0550 -0.0848 0.0152 1004
AMBER-Discriminative 0.7470 0.7810 -0.0340 -0.0411 0.0036 14216
MMHal-Bench (Hall. Rate) 0.4600 0.400 0.0600 -0.0397 0.0509 96
Hallusion-Bench 0.4709 0.4836 -0.0127 -0.0418 0.0149 1129

LLaVA-v1.57B vs. EOS7B
CHAIR 0.5000 0.5980 -0.0980 -0.1418 0.0224 500
MME-Hall 0.8104 0.7584 0.0520 0.0024 0.0253 240
AMBER-Generative (Hall. Rate) 0.6360 0.7730 -0.1370 -0.1668 0.0152 1004
AMBER-Discriminative 0.7470 0.7560 -0.0090 -0.0161 0.0036 14216
MMHal-Bench (Hall. Rate) 0.4600 0.4100 0.0500 -0.0497 0.0509 96
Hallusion-Bench 0.4709 0.4872 -0.0163 -0.0454 0.0149 1129

LLaVA-v1.57B vs. HALVA7B (Ours)
CHAIR 0.5000 0.5860 -0.0860 -0.1298 0.0224 500
MME-Hall 0.8104 0.8313 -0.0209 -0.0705 0.0253 240
AMBER-Generative (Hall. Rate) 0.6360 0.6780 -0.0420 -0.0718 0.0152 1004
AMBER-Discriminative 0.7470 0.8340 -0.0870 -0.0941 0.0036 14216
MMHal-Bench (Hall. Rate) 0.4600 0.4600 0.0000 -0.0997 0.0509 96
Hallusion-Bench 0.4709 0.4895 -0.0186 -0.0477 0.0149 1129

LLaVA-v1.513B vs. HALVA13B (Ours)
CHAIR 0.5280 0.5460 -0.0180 -0.0618 0.0223 500
MME-Hall 0.8041 0.8438 -0.0396 -0.0898 0.0256 240
AMBER-Generative (Hall. Rate) 0.6950 0.6960 -0.0010 -0.0295 0.0145 1004
AMBER-Discriminative 0.7310 0.8650 -0.1340 -0.1413 0.0037 14216
MMHal-Bench (Hall. Rate) 0.5000 0.5500 -0.0500 -0.1500 0.0510 96
Hallusion-Bench 0.4650 0.4910 -0.0260 -0.0551 0.0148 1129

VILA-v1.513B/384 vs. HALVA13B/384 (Ours)
CHAIR 0.6700 0.7000 -0.0300 -0.0712 0.0210 500
MME-Hall 0.8604 0.8646 -0.0043 -0.0481 0.0224 240
AMBER-Generative (Hall. Rate) 0.4390 0.4580 -0.0190 -0.0497 0.0157 1004
AMBER-Discriminative 0.8220 0.8790 -0.0570 -0.0633 0.0032 14216
MMHal-Bench (Hall. Rate) 0.5400 0.5500 -0.0100 -0.1097 0.0509 96
Hallusion-Bench 0.5539 0.5660 -0.0121 -0.0411 0.0148 1129
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D IMPLEMENTATION DETAILS

D.1 TRAINING HYPERPARAMETERS

The details of training hyperparameters used in DPA training is presented in Table S15.

Table S15: Details of training hyperparameters used in DPA training.

HALVA7B HALVA13B HALVA13B/384

Base model LLaVA-v1.57B LLaVA-v1.513B VILA-v1.513B
LLM Vicuna-v1.57B Vicuna-v1.513B
Vision encoder CLIP ViT-L336/14 SigLIP-L-400M
Trainable module LoRA in LLM and everything else is kept frozen
LoRA setup (Hu et al., 2021) rank=128, alpha=256
Learning rate 5e-6 2.5e-5
Learning rate scheduler Cosine
Optimizer AdamW (Loshchilov & Hutter, 2017)
Weight decay 0.
Warmup ratio 0.03
Epoch 1 (342 steps)
Batch size per GPU 16
Batch size (total) 64
α (loss coefficient) 0.4 0.5 0.2
Memory optimization Zero stage 3 (Ren et al., 2021; Rajbhandari et al., 2021)
Training time 1.5 hrs 3 hrs. 3 hrs.

D.2 LICENSES OF EXISTING ASSETS USED

For images, we use publicly-available Visual Genome dataset (Krishna et al., 2017). This dataset can be
downloaded from https://homes.cs.washington.edu/˜ranjay/visualgenome/api.html
and is licensed under a Creative Commons Attribution 4.0 International License.

For the base MLLM, we use LLaVA-v1.5 (Liu et al., 2023c) and VILA-v1.5 (Lin et al., 2024). LLaVA-v1.5
is publicly available and its Apache license 2.0 can be found at https://github.com/haotian-liu/
LLaVA/blob/main/LICENSE. VILA-v1.5 is publicly available and its Apache license 2.0 can be found
at https://github.com/NVlabs/VILA/blob/main/LICENSE. The weights used in this work are
available as follows:

• LLaVA-v1.57B: https://huggingface.co/liuhaotian/llava-v1.5-7b

• LLaVA-v1.513B: https://huggingface.co/liuhaotian/llava-v1.5-13b

• VILA-v1.513B: https://huggingface.co/Efficient-Large-Model/VILA1.5-13b

D.3 GENERATIVE DATA AUGMENTATION SETUP

We present the prompt templates that are used to prepare correct and hallucinated descriptions in Figures S7,
S8, and S9. The full list of instructions used in generating image descriptions is presented in Figure S10. We
leverage Gemini Vision Pro (gemini-1.0-pro-vision) in preparing the responses. Complete examples
depicting the pipeline of generating correct descriptions, closed-set hallucinated descriptions, and open-set
descriptions are presented in Figures S11, S12, and S13. We present additional examples of training samples for
one sentence image caption, short image description, detailed image description, and Yes-or-No questions in
Figures S14, S15, S16, and S17, respectively.
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# Input

## Image

<Image>

## Text

Here are the region descriptions of the given image.

<Region description 1>
<Region description 2>
<Region description 3>
...

The descriptions are the ground truth information for the image.

Based on the given region descriptions,
write a response for the following question.

Question:

<Instruction>

The response must be correct and has strong readability.

Do NOT add any new information or additional details.

# Output

<Correct description>

Figure S7: The template for generating the correct image descriptions.
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# Input

## Text

The given text is a description of an image.
<Correct description>

Please rewrite the given text by replacing the mentioned words
with those from the given options.

Please choose the replacement that sounds the most appropriate.

Replace the word: <ground-truth object 1> - with a word from the
given options: <list of hallucinated objects 1>

Replace the word: <ground-truth object 2> - with a word from the
given options: <list of hallucinated objects 2>

...

The description should logically make sense, the style of the
new text should be the same as the original text, and
has strong readability.

Please make sure to NOT include the following words in the
description: <list of ground-truth objects>.

Your response should only include the new description
and nothing else.

# Output

<Hallucinated description>

Figure S8: The template for generating the closed-set hallucinated descriptions.
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# Input

## Text

The given text is a description of an image.
<Correct description>

Please rewrite the given text by replacing the mentioned object
with another object of similar types or categories.
For example, an animal can be replaced with another
animal or one type of vehicle can be replaced by another type
of vehicle and so on.

The description should logically makes sense, the style of
the new text should be the same as the original text,
and has strong readability.

Your response should only include the new description and
nothing else.

The following objects need to be replaced:
<list of ground-truth objects>.

# Output

<Hallucinated description>

Figure S9: The template for generating the open-set hallucinated descriptions.
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# Instructions for one sentence caption:

Provide a one-sentence caption for the provided image.

# Instructions for short description:

Describe the image concisely.
Provide a brief description of the given image.
Offer a succinct explanation of the picture presented.
Summarize the visual content of the image.
Give a short and clear explanation of the subsequent image.
Share a concise interpretation of the image provided.
Present a compact description of the photo’s key features.
Relay a brief, clear account of the picture shown.
Render a clear and concise summary of the photo.
Write a terse but informative summary of the picture.
Create a compact narrative representing the image presented.
Please provide a short description of this image.

# Instructions for detailed description:

Provide a detailed description of the given image.
Give an elaborate explanation of the image you see.
Share a comprehensive rundown of the presented image.
Offer a thorough analysis of the image.
Explain the various aspects of the image before you.
Clarify the contents of the displayed image with great detail.
Characterize the image using a well-detailed description.
Break down the elements of the image in a detailed manner.
Walk through the important details of the image.
Portray the image with a rich, descriptive narrative.
Narrate the contents of the image with precision.
Analyze the image in a comprehensive and detailed manner.
Illustrate the image through a descriptive explanation.
Examine the image closely and share its details.
Write an exhaustive depiction of the given image.
Write a detailed description of the given image.

Figure S10: Instructions for different types of image descriptions. These instructions are directly
taken from (Liu et al., 2024), we list them here for the sake of completeness.
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# Input

## Image

## Text

Here are the region descriptions of the given image.

a man jumping on a skateboard
a skate park with colorful graffiti
white clouds over mountains
man in white shirt and blue jeans
skating ramp with graffiti markings
Skateboarder making a jump
... 45 more

The descriptions are the ground truth information for the image.

Based on the given region descriptions,
write a response for the following question.

Question: Walk through the important details of the image.

The response must be correct and has strong readability.

Do NOT add any new information or additional details.

# Output

A young man in a white shirt and blue jeans is skateboarding in a
skate park. The skate park has colorful graffiti on the walls
and ramps. There are stairs and a fence behind the skate park.
There are also some trees and buildings in the background.
The sky is blue with some clouds.

Figure S11: A complete example of generating the correct image descriptions.
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# Input

## Image

## Text

The given text is a description of an image.

Correct description:

The image shows a variety of fruits on wooden tables at a farmer’s
market. There are pears, apples, oranges, and pineapples.
The fruits are arranged in boxes and crates.
There is a price sign on some of the boxes.

Please rewrite the given text by replacing the mentioned words
with those from the given options.

Please choose the replacement that sounds the most appropriate.

Replace the word: fruit - with a word from the given options:
plate, leaf, food, basket, vegetable

Replace the word: apple - with a word from the given options:
table, banana, root, bowl, shirt

Replace the word: pear - with a word from the given options:
tomato, gummed label, container, writing, hair

The description should logically make sense, the style of the
new text should be the same as the original text, and
has strong readability.

Please make sure to NOT include the following words in the
description: apple, box, crate, fruit, ground, letter,
line, pear, tree trunk, wall, word.

Your response should only include the new description
and nothing else.

# Output

The image displays an assortment of vegetables on wooden tables
at a farmer’s market. There are tomatoes, bananas, oranges,
and pineapples. The vegetables are organized in containers
and signs. There is a price tag on some of the containers.

Figure S12: A complete example of generating closed set hallucinated descriptions is provided. The
image is not fed to Gemini in generating hallucinated response, shown here for reference.
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# Input

## Image

## Text

The given text is a description of an image.

Correct description:

A young man in a white shirt and blue jeans is skateboarding
in a skate park. The skate park has colorful graffiti on
the walls and ramps. There are stairs and a fence behind
the skate park. There are also some trees and buildings in
the background. The sky is blue with some clouds.

Please rewrite the given text by replacing the mentioned object
with another object of similar types or categories.
For example, an animal can be replaced with another
animal or one type of vehicle can be replaced by another type
of vehicle and so on.

The description should logically makes sense, the style of
the new text should be the same as the original text,
and has strong readability.

Your response should only include the new description and
nothing else.

The following objects need to be replaced:
advertisement, arm, baseball cap, building, cloud, design,
distance, fence, head, jean, leaf, man, mountain, park, pole,
ramp, shadow, sign, skate park, skateboard, skating, sky, stair,
t-shirt, tree, trick, wheel.

# Output

A young woman in a black dress and red sneakers is rollerblading
in a roller rink. The roller rink has vibrant murals on the walls
and floors. There are benches and a railing behind the roller rink.
There are also some plants and shops in the background. The ceiling
is white with some lights.

Figure S13: A complete example of generating open-set hallucinated descriptions is provided. The
image is not fed to Gemini in generating hallucinated response, shown here for reference.
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Question: Provide a one-sentence
caption for the provided image.

Correct: There are three people
holding and using their black
smartphones.

Hallucinated: There are three
people holding and using their
black tablets.

Question: Provide a one-sentence
caption for the provided image.

Correct: The image shows a variety
of donuts on metal shelves in a
donut shop.

Hallucinated: The image depicts an
assortment of cupcakes on wooden
shelves in a cupcake shop.

Question: Please provide a short
description of this image.

Correct: A man is snowboarding
down a snowy slope at night.

Hallucinated: A person is
snowboarding down a snowy hill
at night.

Question: Provide a one-sentence
caption for the provided image.

Correct: The image shows a blonde
woman wearing a pink dress with a
red bow in her hair.

Hallucinated: The image displays
a blonde woman wearing a pink gown
with a red hat on her head.

Figure S14: Examples of one sentence image captions used in DPA training.
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Question: Provide a brief
description of the given image.

Correct: A black cat is lying
on the ground next to a small brown
bird. The cat has its eyes open and
is looking at the bird.

Hallucinated: A black dog is
lying on the grass next to a small
brown leaf. The dog has its eyes
open and is looking at the leaf.

Question: Write a terse but
informative summary of the
picture.

Correct: The image is a night
view of a baseball game. There
are two baseball players, one is
the batter and the other is the
catcher.

Hallucinated: The image is a
night view of a hockey game. There
are two hockey players, one is
the shooter and the other is the
goalie.

Question: Provide a brief
description of the given image.

Correct: Two boys are standing
in a baseball field. They are
wearing baseball uniforms and
holding baseball mitts. The boy
on the left is wearing a green and
white uniform and the boy on the
right is wearing a black and white
uniform.

Hallucinated: Two children are
standing in a soccer field. They
are wearing soccer uniforms and
holding soccer balls. The child on
the left is wearing a blue and white
uniform and the child on the right
is wearing a red and black uniform.

Question: Summarize the visual
content of the image.

Correct: A brown and white bulldog
is standing on a blue surfboard in
the ocean. The bulldog is looking
at the camera with an overbite.
There is a big splash of water in
front of the surfboard.

Hallucinated: A gray and white cat
is standing on a yellow skateboard
in the snow. The cat is looking at
the camera with a snaggletooth.
There is a big pile of snow in front
of the skateboard.

Figure S15: Examples of short image descriptions used in DPA training.
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Question: Illustrate the image
through a descriptive explanation.

Correct: There are a few
motorcycles parked in a parking lot.
There is a man standing behind one
of the motorcycles. He is looking
at the motorcycle. The motorcycle
is orange and black. It has a chrome
exhaust pipe. There are some trees
and buildings in the background.

Hallucinated: There are a few
trucks parked in a parking lot.
There is a person standing behind
one of the trucks. He is looking
at the truck. The truck is orange
and black. It has a chrome license
plate. There are some plants and
houses in the background.

Question: Clarify the contents
of the displayed image with great
detail.

Correct: A yellow container
house is placed on the sidewalk.
The house has a red and yellow
sign on the front. There are some
buckets in front of the house. A
man is squatting on the sidewalk
next to the house. There are green
bushes and a brick sidewalk.

Hallucinated: A yellow trailer
home is placed on the grass. The
home has a blue and yellow flag on
the front. There are some barrels
in front of the home. A woman is
kneeling on the grass next to the
home. There are red flowers and a
stone path.

Figure S16: Examples of detailed image descriptions used in DPA training.
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Question: Describe the image in
detail.

Correct: A woman is sitting
behind a table in a park. There is
a sign on the table that says J̈ust
see the results and its free.̈ The
woman is wearing a blue jean jacket
and a beaded necklace. There is a
stack of pamphlets on the table.
The table is covered with a red
tablecloth. The ground is covered
with brown leaves. There is a large
tree in the background.

Hallucinated: A man is sitting
behind a chair in a garden. There
is a poster on the chair that says
J̈ust see the outcome and its free.̈
The man is wearing a black leather
coat and a golden chain. There is a
pile of leaflets on the chair. The
chair is covered with a blue sheet.
The floor is covered with green
grass. There is a tall building in
the background.

Question: Explain the various
aspects of the image before you.

Correct: This image shows a
brown horse standing in a stall.
The horse has a white blaze on its
forehead and white socks on its
back legs. The stall is made of
cinder blocks and has a metal gate.
There is a pile of manure in the
stall. The horse is standing on
dirt. There are green hills in the
background.

Hallucinated: This image depicts a
black cow standing in a pen. The cow
has a black spot on its forehead and
black socks on its front legs. The
pen is made of wooden planks and has
a wooden gate. There is a pile of
hay in the pen. The cow is standing
on straw. There are brown hills in
the background.

Figure S16 (Continued): Examples of detailed image descriptions used in DPA training.
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Question: Are there a total of
nine benches visible in the scene?
Please answer in one word Yes or No.

Correct: No

Hallucinated: Yes

Question: Is there a nightstand on
the left side of the bed? Please
answer in one word Yes or No.

Correct: Yes

Hallucinated: No

Question: Is there a person located
on the left side of the image?
Please answer in one word Yes or No.

Correct: No

Hallucinated: Yes

Question: Is the cup located on
the left side of the table? Please
answer in one word Yes or No.

Correct: Yes

Hallucinated: No

Figure S17: Examples of Yes-or-No questions used in DPA training.
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E QUALITATIVE RESULTS

E.1 QUALITATIVE COMPARISON BETWEEN HALVA AND LLAVA-V1.5

User

The image features a dirty, old toilet sitting in a dirt-covered
area, possibly an outhouse or an abandoned building. The
toilet is positioned in the center of the scene, surrounded by
dirt and debris. There are several carrots scattered around the
area, with some close to the toilet and others further away.
The overall scene appears to be quite unclean and neglected.

The image features a dirty, old toilet sitting in a dirt-covered
room. The toilet is positioned in the middle of the room,
surrounded by a pile of dirt and debris. The walls of the room
are made of cinder blocks, giving the space a somewhat
unfinished appearance.

Describe the image
in detail.

Figure S18: Comparing detailed image descriptions between HALVA [ ] and its base model LLaVA-
v1.5 [ ]. Unlike HALVA, LLaVA-v1.5 hallucinates ‘carrot’ in the image description. Hallucinations
are highlighted in red.
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The image captures a busy street at night with a car driving down the road. The
car is positioned in the middle of the scene, and its headlights are on,
illuminating the street. There are several traffic lights visible in the image, with
one located near the center and another towards the right side of the scene.

In addition to the car, there are two other people in the scene, one standing
closer to the left side and the other near the center. A handbag can be seen on
the ground, possibly belonging to one of the pedestrians. The overall
atmosphere of the image is bustling and lively, with the car and people
navigating the busy street at night.

The image captures a busy street at night with a car driving down the road. The
street is filled with various signs, including a traffic light and a street sign, which
are both lit up. The traffic light is positioned near the center of the scene, while
the street sign is located on the right side.

There are also two other cars visible in the scene, one behind the main car and
another further down the road. The street appears to be in a foreign country, as
indicated by the presence of foreign signs.

User

Describe the
image in detail.

Figure S19: Comparing detailed image descriptions between HALVA [ ] and its base model
LLaVA-v1.5 [ ]. LLaVA-v1.5 wrongfully describes the position of the ‘cars’ and ‘traffic lights’.
Moreover, it hallucinates the presence of ‘people’, ‘pedestrian’, and ‘handbag’. In contrast, HALVA
correctly identifies the relative positions of the ‘traffic lights’ and ‘cars’, while accurately describing
the image. Hallucinations are highlighted in red.
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User

The image captures a baseball game in progress, with a pitcher
standing on the pitcher's mound, preparing to throw the ball.
The pitcher is wearing a red shirt and is in the process of
winding up for the pitch. 

In the scene, there are several other people present, including a
batter, a catcher, and an umpire. The batter is holding a
baseball bat, ready to swing at the incoming pitch. The catcher
is positioned behind the batter, wearing a baseball glove, and
the umpire is standing nearby, observing the game closely.

The baseball is visible in the air, close to the pitcher, as the
pitcher prepares to release it towards the batter

The image captures a baseball pitcher in the middle of a pitch
on a baseball field. The pitcher is wearing a red shirt and is in
the process of throwing the ball. He is standing on the pitcher's
mound, which is a raised area in the center of the field.

The baseball can be seen in the air, close to the pitcher's hand,
as he releases it. The pitcher's baseball glove is also visible,
positioned near his other hand. The scene is set against a
backdrop of a lush green field, showcasing the baseball
diamond and the pitcher's skillful performance.

Describe the image in detail.

Figure S20: Comparing detailed image descriptions between HALVA [ ] and its base model LLaVA-
v1.5 [ ]. LLaVA-v1.5 exhibits object hallucination that may happen due to object co-occurrence in
the training data, such as the occurrence of ‘pitcher’ with ‘batter’, ‘catcher’, and ‘umpire’. HALVA
effectively mitigates such hallucination and accurately describes the image with necessary details.
Hallucinations are highlighted in red.
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User

Are there three people in
this image?

Yes, there are three people
in this image.

Yes, there are three people
in this image.

User

Are there four people in
this image?

Yes, there are four people in
this image.

No, there are three people
in this image.

The same image given in a separate trial.

User

Is there direct contact
between the dog and sea?

Yes, the dog is running on
the beach near the water,
which suggests that it is in
direct contact with the sea.

No, the dog is not directly
touching the sea. It is
running on the beach near
the water, but there is a gap
between the dog and the
water.

The same image given in a separate trial.

User

Is there direct contact
between the dog and
beach?

Yes, the dog is running
directly on the beach, with
its paws touching the sand.

Yes, the dog is running
directly on the beach, with
its paws touching the sand.

Figure S21: HALVA [ ] does not exhibit a tendency to answer ‘Yes’ for any questions asked, like
LLaVA-v1.5 [ ]. Moreover, HALVA can accurately lay out the details of the image to further
support the answer. As presented in the right side example, HALVA answers with “the dog is not
directly touching the sea. It is running on the beach near the water, but there is a gap between the dog
and the water.”. Hallucinations are highlighted in red.
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User

Is the top line longer than
the bottom line?

Yes, the top line is longer
than the bottom line.

Yes, the top line is longer
than the bottom line.

User

Is the top line shorter
than the bottom line?

Yes, the top line is shorter
than the bottom line.

No, the top line is longer
than the bottom line.

User

Is the top line the same
size as the bottom line?

Yes, the top line is the same
size as the bottom line.

No, the top line is longer
than the bottom line.

Figure S22: Examples illustrating the effectiveness of our proposed DPA in mitigating hallucinations
that arise due to visual illusions. HALVA [ ] does not exhibit a tendency to answer ‘Yes’ to any
questions asked, like LLaVA-v1.5 [ ]. Moreover, HALVA exhibits consistency in its responses
unlike LLaVA-v1.5. Hallucinations are highlighted in red.

User

According to the medal
number chart of 2008 beijng
olympic, does USA have the
most gold metals, followed by
China and Russia?

Yes, according to the metal
number chart of the 2008
Beijing Olympic Games, the
United States won the most
gold medals, followed by
China and Russia. The chart
shows the number of gold,
silver, and bronze medals
won by each country during
the games. The United
States won a total of 36 gold
medals, followed by China
with 37 gold medals, and
Russia with 23 gold medals.

No, the chart shows that
China has the most gold
medals, followed by the
United States and Russia.

Figure S23: Examples illustrating the effectiveness of our proposed DPA in mitigating hallucinations
that are beyond object centric. HALVA [ ] accurately answers to this chart-based question unlike
LLaVA-v1.5 [ ]. Hallucinations are highlighted in red.
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E.2 QUALITATIVE COMPARISON BETWEEN HALVA AND VILA-V1.5

The same image given in a separate trial.

User

Is there direct contact between the dog
and skate?

Yes, the dog is standing on top of the
skateboard, with its paws on the skateboard.

Yes, the dog is standing on the skateboard,
with its paws on the skateboard.

User

Is there direct contact between the dog
and skate?

Yes, the dog is standing on the skateboard,
which is in direct contact with the ground.

No, the dog is not directly touching the
ground. It is standing on a skateboard, which
is placed on the ground.

The same image given in a separate trial.

User

Is there one knife in this image?

Yes, there is one knife in the image, which
the man is holding.

Yes, there is one knife in the image.

User

Are there two knives in this image?

Yes, there are two knives in the image. One
knife is being held by the man, and the other
knife is sticking out of the coconut.

No, there is only one knife in the image,
which the man is holding.

Figure S24: HALVA [ ] does not exhibit a tendency to answer ‘Yes’ for any questions asked, like
VILA-v1.5 [ ]. Moreover, HALVA can accurately lay out the details of the image to further support
the answer. As presented in the right side example, HALVA answers with “the dog is not directly
touching the ground. It is standing on a skateboard, which is placed on the ground.”. Hallucinations
are highlighted in red.

F LIMITATIONS

In this work, we focused on mitigating object hallucinations in MLLMs. However, MLLMs also suffer from
other forms of hallucinations that may occur due to modality misalignment or over-reliance on language while
ignoring other input modalities, among others. While we showed some promising results on generalization to
other forms of hallucination, a rigorous exploration of those directions is left for future work. Finally, we believe
our method may have applications in other areas as well. For example, it might be adapted to mitigate bias and
harmful language generation, among others. We leave this exploration for future research.
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The same image given in a separate trial.

User

Is there direct contact between the giraffe
and grass?

Yes, the giraffe is walking through the grass,
which means it is in direct contact with the
grass.

Yes, the giraffe is walking through the grass,
which means it is in direct contact with the
grass.

User

Is there direct contact between the tree
and giraffe?

Yes, there is direct contact between the tree
and the giraffe, as the giraffe is standing
under the tree.

No, there is no direct contact between the
tree and the giraffe. The giraffe is standing in
the grassy field, and the tree is located in the
background.

The same image given in a separate trial.

User

Are there two horses in this image?

Yes, there are two horses in this image.

Yes, there are two horses in this image.

User

Are there three horses in this image?

Yes, there are three horses in this image.

No, there are two horses in the image.

Figure S25: HALVA [ ] does not exhibit a tendency to answer ‘Yes’ for any questions asked, like
base model VILA-v1.5 [ ]. Moreover, HALVA exhibit consistency in its response unlike VILA-
v1.5, as shown in the left example, HALVA confirms the presence of two horses in both the time.
Hallucinations are highlighted in red.
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User

According to the image, did the United
States suffer the greatest number of total
deaths in World War II, with China having
the second-highest?

Yes, according to the image, the United
States suffered the greatest number of
total deaths in World War II, with China
having the second-highest.

No, according to the image, the Soviet
Union suffered the greatest number of
total deaths in World War II, with China
having the second-highest.

Figure S26: Examples illustrating the effectiveness of our proposed DPA in mitigating hallucinations
that are beyond object centric. HALVA [ ] accurately answers to this chart-based question unlike
VILA-v1.5 [ ]. Hallucinations are highlighted in red.
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