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ABSTRACT

The graph coloring problem (GCP) is an NP-hard combinatorial optimization task
aimed at assigning the minimum number of colors to graph vertices such that no
two adjacent vertices share the same color. While deep reinforcement learning
(DRL) and graph neural networks (GNNs) are promising approaches to solving
the GCP, their scalability is usually limited by the large number of Markov states
and high computational complexity as the graph size increases. In this paper, we
introduce LOMAC, a novel GNN-based DRL framework that integrates a one-
way, two-dimensional Markov chain and a linear-complexity GNN model with
pseudonode-enhanced message passing. This integration significantly reduces
both space and computational complexity. We transform the GCP into a one-
way Markov chain model, introducing two key concepts: Markov state potential
and graph state potential. Through theoretical analysis of Markov- and graph-state
potentials, we effectively guide the search for an optimal vertex-coloring solution.
We show that LOMAC reduces the number of Markov states from O(KN ) to
O(NK), simplifying decision-making with unidirectional state transitions. Addi-
tionally, an invalid action penalty mechanism is implemented to further optimize
the coloring process. Experimental results in various sizes of Erdős–Rényi- and
Barabási–Albert graphs and 16 real-world benchmarks demonstrate that LOMAC
achieves state-of-the-art performance in the number of required colors.

1 INTRODUCTION
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Figure 1: Comparison of Markov states in the state
space during the Markov decision process for graph
coloring between conventional DRL models (with
O(KN ) Markov states) and the proposed DRL model
(with O(NK) Markov states).

The graph coloring problem (GCP) is a
critical challenge in combinatorial opti-
mization (CO) and graph theory. It in-
volves assigning the fewest number of
colors to the vertices of a graph so that
no two adjacent vertices share the same
color. Efficient solutions to GCP have sig-
nificant applications, including resource
scheduling (Rina et al., 2022), register al-
location (Das et al., 2020), pilot assign-
ment (Liu et al., 2020), content caching
(Javedankherad et al., 2022), and wire-
less channel assignment (Ge et al., 2023).
However, determining whether a graph
can be colored with K colors is NP-
complete, and minimizing the chromatic
number is NP-hard. This means that there
is no polynomial-time algorithm for solv-
ing the GCP under the P ̸= NP con-
jecture. Recent advances have explored
deep reinforcement learning (DRL) and
graph neural networks (GNN) (Colanto-
nio et al., 2024; Pugachewa et al., 2024;
Lemos et al., 2019; Langedal & Manne, 2024; Prates et al., 2019; Huang et al., 2019; Yuan et al.,
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2024) as promising approaches to solve GCP. DRL aids in sequential decision making, while GNNs
are capable of modeling and processing graph-structured data. However, these models face scala-
bility issues due to the large number of Markov states in the state space, even for moderately sized
graphs. This is because they typically model the entire coloring process as a Markov Decision Pro-
cess (MDP), in which each possible color assignment for every node in the graph is treated as an
independent Markov state. As the size of the graph increases, the state space expands exponentially.

To address the scalability limitations of traditional methods, we propose LOMAC, which integrates
a Markov chain into DRL and employs a pseudonode-enhanced GNN for efficient graph coloring.
Specifically, we design a one-way, two-dimensional Markov chain with finite states, which signifi-
cantly reduces state space and computational demands compared to conventional DRL methods. As
shown in Fig.1, conventional DRL models assign one of the K colors to each vertex, resulting in
O(KN ) Markov states. In contrast, our model reduces the state space to O(NK), which is at most
O(N2) when the chromatic number is unknown. The one-way Markov chain restricts transitions
to a single direction, further simplifying the decision-making process and reducing computational
requirements. Additionally, we introduce new definitions of the Markov state potential and graph
state potential. By analyzing the relations between these potentials, we establish inequality con-
straints that guide the coloring process toward states with fewer colors. We also propose a potential-
based reward function that penalizes invalid actions and guides the identification of optimal color-
ing strategies. Inspired by the work of N2 (Sun et al., 2024), we designed a pseudonode-enhanced
GNN model for GCP that enables the passing of dynamic messages in linear time. This model uti-
lizes pseudonodes as intermediaries for message passing to effectively learn Q-value embeddings
for node selection actions. This design reduces computational overhead and alleviates dependence
on the input graph topology. The experimental results demonstrate that LOMAC achieves better
performance compared to existing methods. The contributions of this paper are threefold.

• We provide a GNN-based DRL solution to the GCP by introducing a novel one-way, two-
dimensional Markov chain with finite states. This design significantly reduces the state
space and computational complexity, even for graphs with unknown chromatic numbers.
We also propose a pseudonode-enhanced GNN for linear-time message passing, which
effectively learns Q-value embeddings for node selection actions.

• We introduce two new definitions, the Markov state potential and the graph state potential.
Furthermore, we establish inequality relations between the potential values of Markov and
graph states to find an optimal vertex-coloring solution and validate a reward function that
enhances model efficiency and solution quality. Additionally, we propose an invalid action
penalty mechanism to further optimize the coloring process.

• We show that LOMAC outperforms existing methods in various sizes of Erdős–Rényi (ER)-
and Barabási–Albert (BA) graphs, as well as 16 real-world benchmarks, excelling in the
number of required colors, matching ratio, and execution time.

2 RELATED WORKS

Traditional Heuristic Algorithms. Early heuristic approaches to graph coloring often employed
greedy strategies such as Largest First (LF), Smallest First (SF) (Gebremedhin et al., 2013), and
Tabu Search (Blochliger & Zufferey, 2008). More recent evolutionary algorithms, such as simulated
annealing (Kose et al., 2017), heuristic feedback (Inaba et al., 2022), and genetic algorithms (Shem-
Tov & Elyasaf, 2024), have also shown success. For example, Inaba et al. (Inaba et al., 2022) applied
the Potts model to graph coloring, iteratively updating interaction matrices to minimize Potts energy.
Although these methods provide feasible solutions, they are tremendously time consuming and often
based on manually crafted heuristics, which limits their ability to explore the solution space more
effectively.

GNN Methods. GNNs have become a popular approach for solving combinatorial optimization
problems by learning features from graph-structured data (Kose et al., 2017; Prates et al., 2019;
Lemos et al., 2019). Once trained, GNNs can efficiently generate solutions for new instances. For
example, a Potts model inspired GNN (Colantonio et al., 2024) was applied to the graph coloring
problem, while Pugachewa et al. (Pugachewa et al., 2024) used recurrent GNNs to obtain optimal
solutions. Langedal et al. (Langedal & Manne, 2024) introduced a GNN-based ordering heuristic for
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graph coloring, achieving execution times comparable to greedy algorithms. However, GNN-based
models often require substantial training in various instances to be generalized effectively.

DRL Methods. Unlike GNN models, DRL provides a dynamic framework for learning optimal
policies based on expected outcomes (Ma et al., 2020). For example, Li et al. (Li et al., 2021)
developed an unsupervised DRL method for a traveling salesman problem. Zhang et al. (Zhang
et al., 2022) proposed a meta-learning-based DRL model for handling multi-objective combinato-
rial optimization problems. Although DRL is superior in learning optimal policies from states and
rewards, it struggles to fully leverage graph-structured data.

GNN-based DRL Algorithms. A notable advancement in this area is FastColorNet (Huang et al.,
2019), a graph coloring algorithm that integrates DRL and GNN for vertex color assignments. Other
frameworks, such as S2V-DQN (Khalil et al., 2017; Manchanda et al., 2020), ECO-DQN (Barrett
et al., 2020), and those in (Xu et al., 2022; Li et al., 2023; Liu & Huang, 2023), model combinatorial
optimization problems as MDP and use GNNs for representation learning to guide the actions of
DRL agents. These approaches use graph embeddings as Q-values for each node and add nodes
to the solution one by one, based on their corresponding Q-values. For large-scale GCPs, Yuan
et al. (Yuan et al., 2024) proposed a multicolumn selection strategy combining DRL and GNN,
significantly reducing training iterations and runtime. Despite these advancements compared to
standalone GNN and DRL methods, GNN-based DRL algorithms still face scalability issues due
to high space and computational complexity. In this paper, we introduce a novel GNN-based DRL
framework that integrates a one-way, two-dimensional Markov chain with O(NK) states and a
linear-complexity GNN model, significantly reducing both space and computational complexity.

LLM approaches. Large Language Models (LLMs) have recently gained significant attention
for logical reasoning and planning tasks. Recent studies (Stechly et al., 2023; Zhang et al., 2023;
Zhou et al., 2023; Zhang et al., 2024; Mittal et al., 2024) have explored their potential for graph
coloring using prompt-based reasoning techniques, such as chain-of-thought (Zhang et al., 2023)
and least-to-most prompting (Zhou et al., 2023). For example, Stechly et al. (Stechly et al., 2023)
investigated iterative prompting for graph coloring and found that self-critique-based prompting
struggled with reasoning and correctness verification. Although these methods show promise in
enhancing logical reasoning and solution accuracy, LLMs are inherently sequence-based, lacking
explicit logical reasoning modules. This makes them prone to generating invalid or suboptimal
solutions.

3 LOMAC FRAMEWORK

This section introduces the one-way Markov chain model for graph coloring, presents the input
representation for the model, and describes the proposed framework.

3.1 ONE-WAY MARKOV CHAIN MODEL

Consider an undirected graph G = {V,E}, where V represents the vertices and E = {(i, j)|i, j ∈
V } represents the edges. The goal of graph coloring is to assign a unique color c to each vertex
v, minimizing the chromatic number while ensuring that adjacent vertices do not share the same
color. Let K denote the number of colors, and let N be the number of vertices. The set of colors
is represented as C = {c1, c2, . . . , cK}, with cv denoting the color assigned to the vertex v, and ηv
indicating the number of neighbors of v. V c represents the set of colored vertices. As shown in Fig.
2, we introduce a one-way, two-dimensional Markov chain to model the coloring process. Starting
from an initial state m(0, 0), where no vertex is colored, the process progresses to the state m(1, 1)
with one colored vertex, and continues up to m(i, j), where j vertices are colored using i colors.
A graph with N vertices requires at most N colors. The total number of states is not more than
O(N2), especially in a fully connected graph, where each vertex requires a unique color.

In this model, transitioning from state m(i, j) involves three scenarios: 1) If a valid
color exists for vertex v, the state moves to m(i, j + 1); 2) If no valid color ex-
ists for v, a new color is introduced and the state moves to m(i + 1, j + 1);
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Figure 2: The one-way Markov chain model for graph
coloring.

3) If v is already colored, the state remains
at m(i, j). The process reaches comple-
tion at the statem(i,N), where all vertices
are colored. Except for the third case, the
model ensures a streamlined one-way tran-
sition towards the final state. Importantly,
Markov states and graph states hereinafter
are distinct. Markov state is determined by
the number of colored vertices and the col-
ors used, while the graph state is defined
by the coloring of vertices. It is easy to
see that the graph state s cannot be inferred
from a Markov state m(i, j), but the cor-
responding Markov state can be derived
from the graph state s by counting the col-
ored vertices and the colors used. To avoid
confusion, we will specify these states in subsequent sections.

3.2 INPUT REPRESENTATION

To formalize the input of the proposed LOMAC framework, we introduce the following definitions
relevant to the GCP.

Definition 1 (Colored Edge and Uncolored Edge). An edge is a colored edge if at least one of its
incident vertices is colored. Otherwise, it is an uncolored edge.
Definition 2 (Colored Degree of a Graph).The colored degree ζG of a graph G = {V,E} is the
total number of colored edges in E. Proper coloring ensures that the adjacent vertices have different
colors.
Definition 3 (Uncolored Vertex Degree). For an uncolored vertex v, its uncolored degree ℓv is the
number of uncolored edges incident to v. For colored vertices, ℓv = 0.
Definition 4 (Uncolored Degree of a Graph). The uncolored degree ζ ′G of graph G = {V,E} is
the total count of uncolored edges, with ζG + ζ ′G = |E| representing the total number of edges.
Definition 5 (Valid Color Set). For an uncolored vertex v, the valid color set Cv includes colors
that ensure proper coloring when assigned to v. If Cv = ∅, a new color must be introduced.
Definition 6 (Saturation Degree). The saturation degree ρv of a vertex v is defined as the number
of its colored neighbors.
Definition 7 (Degree Centrality). The centrality of the degree dv of a vertex v is defined as the
ratio of its degree to the maximum vertex degree in the graph.
Definition 8 (Color Number of Neighbors). The color number of neighbors δv is defined as the
number of different colors that appear among its adjacent vertices.

We model the graph coloring task as an MDP. This process is defined as M = (S,A,R,V, γ),
where S is the graph state space (distinct from the Markov state space in Fig. 2), A is the action
space, R is the reward function, V(s) is the state value of s and γ is the discount factor. A graph state
s is represented as s = [s′0, s

′
1, . . . , s

′
N ] ∈ RN×m′

, where s′i is the set of attributes for the vertex vi,
which contains m′ attributes. Specifically, the state of each vertex is represented by six attributes:
its color, uncolored vertex degree, size of the valid color set, saturation degree, degree centrality,
and color number of neighbors. Initially, all vertices are uncolored, so cvi = −1 for all 1 ≤ i ≤ N .
The uncolored degree ℓv is updated when the neighboring vertices are colored. The action space A
consists of actions avi for each vertex vi, and avi represents the selection and coloring of the vertex
vi. Only one vertex is colored per step, and once a vertex is colored, it is not recolored. If one vertex
vj has been a colored vertex, the action avj , i.e., selecting and coloring vi repeatedly, is called an
invalid action. We use deep Q-learning and a message passing neural network to solve the graph
coloring task. For further details on deep Q-learning and message-passing neural networks, please
refer to Appendix A. The action that maximizes the Q-value is selected at each step:

a∗ = v∗ = argmax
a∈A

Q(s, a). (1)

To optimize the coloring process while minimizing the number of colors used, we establish the fol-
lowing inequality relations between the potentials of Markov states (denoted as V ′

i,j for the Markov
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state m(i, j)): 
V ′
i,j+1 − V ′

i,j ≥ 1.

V ′
i,j = V ′

i+1,j+1.

V ′
i,j > V ′

i+1,j .

(2)

As previously outlined, the agent’s progression from the current state is restricted to transitions to the
right or downward, without considering invalid actions. This restriction ensures that the potential
of Markov states increases monotonically, as specified by the first two equations. Eq. (2) shows
that the Markov state of coloring j vertices with fewer colors has greater potential. To quantify the
potential of a graph state s, we define it as a combination of V ′

i,j , which represents the potential of
the Markov state, and V ′′(ζG), the ratio of colored edges within the graph. This is formalized as
follows. {

V(s) = V ′
i,j + V ′′(ζG),

V ′′(ζG) =
ζG
∥E∥ ,

(3)

where V ′′(ζG) is the proportion of colored edges to the total number of edges. This formulation
reveals that V(s) depends on the number of colors, colored vertices, and colored edges within the
graph G. In particular, different graph states may share identical counts of colors, colored vertices,
and colored edges.

Theorem 1. For the Markov decision process M = (S,A,R,V, γ), the potential of the Markov
and graph states adheres to Eqs. (2) and (3), respectively, producing the following:

V(s(i, n)) ≥ V(s(i′, n)) if i′ ≤ i.

V(s(i, j)) ≥ V(s(i, j + 1)).

V(s(i, j)) ≤ V(s(i+ 1, j + 1)).

V(s(i, j)) ≥ V(s(i+ 1, j)).

(4)

Proof. Please refer to Appendix B.

Theorem 2. For MDP M = (S,A,R,V, γ) as shown in Fig. 2, let V(s(k,N)) be the largest
potential of the graph states when all N vertices are colored. Here, k equals the chromatic number
κ.
Proof. Please refer to Appendix C.

The proofs for these statements demonstrate the inherent monotonic increase in the potential of
graph states and Markov states within the MDP model, highlighting the model’s preference for
graph states with fewer colors and more colored edges, given the same number of colored vertices.

3.3 CONSTRAINED REWARD SHAPING

In this subsection, we introduce a graph state potential-based reward function that also penalizes
invalid actions. Based on the Markov chain model described previously, there are three types of
actions av , each corresponding to a specific state transition: from state s(i, j) to s(i, j + 1), from
s(i, j) to s(i+1, j+1), and from s(i, j) to s(i, j). s(i, j) denotes a graph state in which j vertices are
colored using i colors. It differs from the abstract Markov statem(i, j) by preserving the full vertex-
level coloring configuration. For the first two types of action, the reward is the potential difference
between the old and new graph states. For the invalid action, we assign a negative constant z (where
z < 0) as a penalty. The reward function and the corresponding graph state potential function are
defined below.

R(s, av) =


1 + ∆ζG

∥E∥ , cv=−1 ∧ Cv ̸= ∅
∆ζG
∥E∥ , cv=−1 ∧ Cv = ∅
z, cv ̸=−1

(5)

V(s(i, j)) = (j − i) +
ζ
(i,j)
G

∥E∥
(6)

where ∆ζG denotes the change in ζG induced by action av , and ζ(i,j)G represents the number of
colored edges in the Markov state s(i, j).
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3.4 SYSTEM ARCHITECTURE

As illustrated in Fig. 3, the proposed LOMAC system architecture consists of three phases: 1)
GNN-based decision making phase: Identifies the optimal vertex for coloring. 2) Color assignment
phase: Dynamically assigns colors and updates the graph state. 3) Prioritized experience replay
phase: Consolidates learning trajectories for model refinement.
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Figure 3: GNN-based DRL framework for GCPs, consisting of three phases: GNN-based decision-
making, color assignment, and prioritized experience replay.

GNN-based decision making phase. The network processes the graph state s = [s′1, . . . , s
′
N ] ∈

RN×6, where each node vi is represented by s′i = [cvi , ℓvi , C
vi , ρv, dv, δv]. Using the GNN

model described in Section 4, which includes initial embedding generation, pseudonode adapta-
tion, dynamic message passing, and readout blocks, the optimal vertex for coloring is selected as
a∗ = v∗ = argmaxa∈AQ(s, a).

Color assignment phase. This phase assigns an appropriate color to the selected vertex, with the
color assignment process detailed in Section 3.1.

Prioritized experience replay phase. To improve training stability, we use a prioritized experience
replay to focus on transitions with higher temporal difference errors. At each step, the agent stores
the transition tuple (st, at, rt, st+1, pt) in a replay buffer, where the priority pt is computed as:

pt = δt + ϵ. (7)

The temporal difference (TD) error is defined as:

δt =

[
rt + γmax

(at)
Qtarg(st+1, at; θ

−
i )−Q(st, at; θi)

]2
, (8)

where st is the current state, at is the action taken at state at, rt is the immediate reward received
after executing at, and st+1 is the next state reached. γ is the discount factor that controls future
reward weighting, ϵ is a small positive constant to ensure a nonzero sampling probability, θi denotes
the parameters of the current Q network, θ−i denotes the parameters of the target Q network, and
Qtarg denotes the target Q network which is a slower-updating copy of the current Q network. The
training and testing processes of LOMAC are described in Appendix E.

4 SYSTEM IMPLEMENTATION OF LOMAC

This section details the implementation of the core component in LOMAC, GNN-based decision-
making using pseudonode-enhanced message passing. The GNN architecture establishes a shared
embedding space H ∈ Rq for both physical graph nodes V = {vi}Ni=1 and trainable pseudonodes
U = {uj}Mj=1. Let Q ∈ RN×q and R ∈ RM×q represent their respective state matrices. Node
proximity is measured through adaptive feature correlation:

ϕ(ri, rj) =

q∑
t=1

λtσ(ri,t)σ(rj,t), (9)
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Figure 4: GNN-based decision making architecture featuring four key blocks, initial embedding
generation, adaptive pseudo-node coordination, message passing (local/global), and readout.

where λ1:q are learned attention weights and σ denotes a perceptron layer equipped with LeakyReLU
activation and dropout regularization. The architecture employs four specialized processing blocks
described in the following.

Initial Embedding Generation. The block establishes initial node representations through the
projection of permutation-equivariant features.

Q(0) = fθ(M
(0)
V ) ∈ RN×q, (10)

where fθ is a linear transformation learned initialized from the graph state s.

Pseudo Node Adaptation. The block orchestrates the global information flow through three phase-
coordinated operations:

Diffusion: G = EnpM
(l−1)
V , Enp

ij = ϕ(ri, qj) (11)

Refinement: Ĝ = EppG, Epp
ij = ϕ(ri, rj) (12)

Redistribution: M̂g(l) = EpnM
(l)
U , Epn

ij = ϕ(qi, r̂j) (13)

Dynamic Message Passing. The block combines neighborhood aggregation with global state diffu-
sion. For each graph node v:

Mloc(l)
v =

1

ηv + 1

ml−1
u +

∑
u′∈N (v)

σ(ml−1
u′ ∥ ml−1

u )

 (14)

Q̂(l) = Q(l−1) + σ(Mloc(l)) (15)

Global message updates follow operator sequences similar to those in Eqs. (11)-(13) but using
current-layer states.

Readout. The block computes the Q value of the action avi after the L propagation layers:

Q(avi
) = ψ(Q(L)[i, :]), (16)

where ψ maps the final node states to the Q value.

5 EXPERIMENT

In this section, we evaluate the performance of LOMAC on synthetic and real-world benchmarks.
LOMAC is implemented in PyTorch and is trained on a Nvidia GeForce RTX 4090 GPU. Detailed
experimental settings are provided in Appendix D.2.
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Dataset. We generate random graphs based on the ER and BA distributions. The model is trained
on W = 12500 randomly generated graph samples and evaluated on a separate set of 100 holdout
graphs drawn from the same distributions. We examine the experimental results for the sizes of the
graphs N = 20, 40, 60, 200, 500, 1000. ER graphs are generated using the ER G(N, p′ = 0.15)
model, while BA graphs follow the BA model, where each node is connected to m0 = 4 nodes.

Baseline algorithms. We compare LOMAC with four categories of baseline algorithms: (1) Tradi-
tional heuristic algorithms, including Tabu (Blochliger & Zufferey, 2008) and DLF-GA (Gebremed-
hin et al., 2013); (2) GNN method, specifically GNN-GCP (Lemos et al., 2019); (3) GNN-based
DRL algorithms, including SAT-DRL (Yolcu & Póczos, 2019), ECO-DQN (Barrett et al., 2020) and
MCSS (Yuan et al., 2024); (4) LLMs, including LTMP (Zhou et al., 2023) and AUTO-COT (Zhang
et al., 2023). For details of the baseline algorithms, please refer to Appendix D.1. We also performed
Wilcoxon’s significance tests to assess the statistical robustness of LOMAC against these baselines.
The detailed results of the Wilcoxon test are reported in Appendix D.4.

Evaluation Metrics. We adopted the following evaluation metrics. Required number of colors
(RNC): A smaller RNC indicates a more efficient coloring, which is crucial for applications such
as registration allocation and pilot assignment. Matching ratio (MR): The proportion of test cases
in which the model successfully matches the known chromatic number κ, obtained using the CSP-
Solver1 as reference. Execution time (ET): The average time taken to solve the coloring tasks,
excluding model training time for learning-based algorithms, as the training is performed offline.

5.1 PERFORMANCE ON ER AND BA GRAPH INSTANCES

We compare the performance of LOMAC with eight baseline algorithms on the ER and BA graphs
in terms of RNC, MR, and ET, averaged over 100 test samples, as shown in Table 1. Additional
results are reported in Appendix D.5. Unsolvable instances are marked as ’NA’. From the tables, we
observe that LOMAC outperforms other algorithms in RNC. As the size of the graph increases from
N = 40 to 200 and 1000, LOMAC significantly reduces the number of colors required, while most
algorithms fail to provide solutions for larger graphs. Even in the worst cases, the LOMAC RNC
deviates by no more than 4% from the best results in multiple runs. Furthermore, LOMAC strikes
an optimal balance between ET and RNC, achieving the lowest RNC in a shorter execution time.

Table 1: Performance Comparison of LOMAC and Baseline Methods on ER Graphs with 40, 200,
and 1000 nodes. RNC values are reported as mean±standard deviation over 5 runs with different
random seeds.

Nodes
40 200 1000

MR RNC ET MR RNC ET MR RNC ET

Tabu 0.99 4.0±0.1 2.66 0.84 11.2±0.4 191.7 NA NA NA
DLF-GA 0.07 5.3±0.4 0.0078 0 14.0±0.2 0.01 0.34 47.7±0.9 0.15
SAT-DRL 0.99 4.0±0.1 25.23 NA NA NA NA NA NA
GNN-GCP 0.77 4.2±0.4 0.5 NA NA NA NA NA NA
ECO-DQN 0.95 4.1±0.4 0.08 0.8 11.2±0.4 1.51 0.62 45.6±0.9 77.7
MCSS 0.93 4.1±0.3 3.99 NA NA NA NA NA NA
LTMP 0.9 4.1±0.3 0.009 0 13.0±0.2 0.15 NA NA NA
AUTO-COT 0.92 4.1±0.3 0.02 0.23 12.8±0.4 3.63 NA NA NA
LOMAC 0.99 4.0±0.1 0.37 0.84 11.2±0.3 5.24 0.78 42.8±0.8 43.1

5.2 PERFORMANCE ON REAL INSTANCES

To assess the effectiveness of LOMAC in real-world scenarios, we evaluated it on a small-scale
COLOR02/03/04 Workshop dataset2, which comprises instances with 11 to 149 vertices. Further-
more, we tested LOMAC on large-scale benchmark datasets, including Cora, Citeseer, and PubMed,
with instances ranging from 2708 to 19717 vertices. Table 2 shows the performance of Tabu, GNN-
GCP, SAT-DRL, LTMP, ECO-DQN, and LOMAC across these datasets in terms of RNC and ET.

1https://developers.google.com/optimization/cp
2https://mat.tepper.cmu.edu/COLOR02/
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LOMAC consistently achieved or closely matched the minimal chromatic number in a shorter execu-
tion time. These results highlight LOMAC’s robust generalization, efficiency, and clear superiority
in both small-scale and large-scale real-world applications.

Table 2: Performance of LOMAC and Baseline Algorithms on COLOR02/03/04 Workshop dataset
and large-scale benchmark datasets, Cora, Citeseer, and PubMed.

Instance Nodes κ
DLF-GA GNN-GCP SAT-DRL LTMP ECO-DQN LOMAC

RNC ET RNC ET RNC ET RNC ET RNC ET RNC ET

myciel3 11 4 4 0.00025 4 0.567 4 1.25 4 0.0018 4 0.0075 4 0.26
myciel4 23 5 5 0.0005 6 0.645 5 15.74 5 0.00126 5 0.0044 5 0.25
myciel5 47 6 6 0.0013 7 0.808 6 293.58 4 0.0013 6 0.15 6 0.34
huck 74 11 11 0.0025 14 1.338 NA NA 11 0.00324 11 0.26 11 0.51
mugg100 25 100 4 4 0.004 3 0.904 4 9.38 4 0.00388 4 0.28 4 0.57
games120 120 9 9 0.0058 13 1.481 NA NA 9 0.00593 9 0.36 9 0.70
anna 138 11 12 0.00734 13 1.878 NA NA 11 0.00794 11 0.47 11 0.74
2 - Insertions 4 149 4 5 0.0056 4 1.135 NA NA 5 0.00828 5 0.45 5 0.77

Cora 2708 5 7 627 NA NA NA NA NA NA 6 954 5 997
Citeseer 3327 6 9 854 NA NA NA NA NA NA 7 1003 6 1020
Pubmed 19717 6 12 4632 NA NA NA NA NA NA 10 4726 8 4929

5.3 MODEL ANALYSIS

Complexity Analysis. The dominant computational complexity of the proposed LOMAC method
lies in the pseudonode-based GNN model during the testing process. For each coloring node, the
computational cost consists of two parts: the GNN model to select an optimal coloring node with a
linear time complexity of O(N) for a graph of size N (Sun et al., 2024), and the color assignment
to color the node and update the node state of neighbors with a time complexity of O(1). Due to the
invalid action penalty mechanism, the occurrence of invalid actions (i.e. repeatedly selecting already
colored nodes) is rare during testing. Therefore, the overall complexity of the LOMAC method is
O(N2).

Ablation Study. To evaluate the contribution of different components, we design three ablation vari-
ants of LOMAC: (1) Ablation on Pseudo Nodes, which removes pseudo nodes from the message-
passing network; (2) Ablation on Markov chain, which replaces the chain-based state transitions
with direct color prediction using a predefined color set; and (3) Ablation on Potential Function,
which removes the graph state potential-based reward function. As shown in Fig. 5, removing the
Markov chain results in the largest performance drop in RNC, highlighting its crucial role in reduc-
ing the number of colors required. Excluding the potential function weakens the reward guidance,
leading to less compact colorings, while removing pseudonodes reduces the efficiency of message
passing. These results show that each component is essential and contributes to LOMAC’s overall
performance. Detailed results of these ablation experiments are provided in Appendix D.3.

6 CONCLUSION

In this paper, we introduce LOMAC, a novel GNN-based DRL framework for solving GCP. By in-
tegrating a one-way, two-dimensional Markov chain with a pseudonode-enhanced GNN, LOMAC
significantly reduces the state space and computational complexity compared to traditional DRL
approaches. We propose two key concepts, the Markov state potential and the graph state potential,
and demonstrate their effectiveness in guiding the search for optimal solutions. Experimental results
show that LOMAC outperforms existing methods on both synthetic and real-world datasets, achiev-
ing superior performance in terms of the number of colors required, matching ratio, and execution
time. LOMAC also demonstrates strong generalization and efficiency across different types and
sizes of graphs. Future work could explore applying LOMAC to other combinatorial optimization
problems, further extending the applicability of GNN-based DRL models with one-way Markov
chains.
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7 ETHICS STATEMENT

This work focuses on the development of reinforcement learning and graph neural network methods
to solve the graph coloring problem. The study does not involve human subjects, personal or sen-
sitive data, or applications that could directly cause harm. All datasets used are publicly available
benchmark graphs, and all external code or data strictly follow their respective licenses. We believe
that this work raises no ethical concerns related to privacy, security, fairness, or potential misuse.

8 REPRODUCIBILITY STATEMENT

All code implementations of the LOMAC model and baseline methods are available in the Sup-
plementary Material. The code is organized in a modular fashion with a clear separation between
the definitions of the models, the training procedures, and the evaluation scripts. All experimental
parameters, including learning rates, batch sizes, and network architectures, are explicitly speci-
fied in the training configuration files. The graph datasets used in our experiments, including both
synthetic graphs and public benchmarks, are described in detail in the paper, with generation param-
eters provided. We have also included utility scripts for data preprocessing and result visualization
to facilitate the reproduction of all figures and tables presented.
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the authors. The authors are solely responsible for the accuracy of all statements, the correctness of
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A PRELIMINARIES

This section provides an overview of deep Q-learning and message-passing neural networks, which
are foundational to our study.

A.1 DEEP Q-LEARNING

Deep Q-learning Mnih et al. (2015), a reinforcement learning technique, employs a trial-and-error
approach within an uncertain environment to sequence decisions and actions toward a solution.
Updates a Q-table to learn the reward associated with each state action pair, with the aim of choosing
the state action pair that maximizes the reward. This method formalizes the decision making process
as a Markov Decision Process (MDP), represented by the tuple (S,A,R,V, γ), where S denotes
the state space, A the action space, R the reward function, V(s) the value of being in state s and γ
the discount factor for future rewards. The Bellman equation for Q-learning is expressed as:

V(s) = max
a

[R(s, a) + γV(s′)] (17)

Here, s and s′ represent the current and subsequent states after taking action a. The reward value
Q(s, a) for action a in state s is updated based on:

Q(s, a) = Q(s, a) + α[R+ (1−D)γmax
a′

Q(s′, a′)−Q(s, a)] (18)

with α as the learning rate, s′ and a′ denoting potential next states and actions, and D indicating if
the terminal state is reached (D = 1 for terminal states, otherwise D = 0).
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A.2 MESSAGE-PASSING NEURAL NETWORKS

We employ a message-passing neural network (MPNN) framework to enhance deep Q-learning for
graph coloring, adept at processing graph-structured data Gilmer et al. (2017). The graph embedding
transforms each vertex v ∈ V into a multidimensional vector hv . MPNN operates through a message
passing phase and a read-out phase in T steps, utilizing message functions F and vertex update
functions U . The message f t+1

v and the hidden state ht+1
v for the vertex v are updated as follows:

f t+1v = Fn(h
t
v, h

t
uu ∈ o(v)) (19)

ht+1
v = Ut(h

t
v, f

t+1
v ) (20)

Here, o(v) denotes the set of neighbors for v, with f t+1v and h0v = sv representing the message and
initial state, respectively. Through this iterative process, vertex embeddings aggregate information
from their neighborhood. The final read-out phase applies a function R to the final embeddings,
displaying action predictions (Q-values) as:

Q(s, a) = R({hTv }a∈A) (21)

B THE PROOF OF THEOREM 1

1) When all N vertices are colored, V ′′(ζG) = 1. According to Eq. (3), we have V(s1) = V ′
i,N +1,

V(s2) = V ′
i′,N + 1. According to Eq. (2), V ′

i,N < V ′
i′,N since i′ < i. Proposition 1 holds.

2) According to Eq. (2), V ′
i,j+1 − V ′

i,j ≥ 1. The range of V ′′(.) is limited to [0, 1], where V ′′(.) is
the proportion of colored edges in all edges as defined in Eq. (3).

V(s(i, j + 1)) = V ′
i,j+1 + V ′′(ζG(i,j+1)

)

≥ V ′
i,j + 1

≥ V ′
i,j + V ′′(ζG(i,j)

)

≥ V(s(i,j)) (22)

The inequality V(s(i, j)) ≥ V(s(i, j + 1)) holds.

3) According to Eq. (2), V ′
i,j = V ′

i+1,j+1. For a newly selected vertex u, u will transform adjacent
uncolored edges of u into colored edges. Without loss of generality, assume thatm′′ is the number of
adjacent uncolored edges of u. Thus, for the vertex u, u will transform adjacent uncolored edges of
u into colored edges. Without loss of generality, assume thatm′′ is the number of adjacent uncolored
edges of u. Thus,

V(s(i, j)) = V ′
i,j + V ′′(ζG(i,j)

)

= V ′
i+1,j+1 +

ζG(i,j)

∥E∥

≤ V ′
i+1,j+1 +

ζG(i,j)
+m′′

∥E∥

= V ′
i+1,j+1 +

ζG(i+1,j+1)

∥E∥
= V(s(i+ 1, j + 1)) (23)

4) The maximum number of colored edges ζG in the graph G is equal to the number of edges ∥E∥.
Thus, V ′′(ζG) =

ζG
∥E∥ ≤ 1.

V(s(i+ 1, j)) = V ′
i+1,j + V ′′(ζG(i+1,j)

)

≤ V ′
i,j−1 + 1 (24)

V(s(i, j)) = V ′
i,j + V ′′(ζG(i,j)

)

≥ V ′
i,j−1 + 1 + V ′′(ζG(i,j)

)

> V ′
i,j−1 + 1 (25)

Thus, we have V(s(i, j)) > V(s(i+ 1, j)).

13
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C THE PROOF OF THEOREM 2

Assume that k ̸= κ. The following two cases are taken into account.

1) k > κ. According to Theorem 1, V(s(k,N)) < V(s(κ,N)). It contradicts the notion that
V(s(k,N)) is the largest potential value of the graph states.

2) k < κ. It contradicts the definition of the chromatic number, which is the smallest number of
colors required for graph coloring.

Therefore, k equals κ when reaching a maximum on the potential of the graph states V(s(k,N)).

D DETAILS ON EXPERIMENTS

We conducted extensive experiments to evaluate the proposed LOMAC framework and reproduced
the baseline models under consistent conditions. Hyper-parameters were determined via grid search
based on validation loss, as summarized in Tab 3. All learnable parameters in LOMAC, including
the weights of linear transformations, proximity measurement, and pseudonode states, were opti-
mized jointly during training. For optimization, we adopted the Adam optimizer with a dynamically
adjusted learning rate schedule.

D.1 DESCRIPTIONS OF BASELINE ALGORITHMS

For graph coloring, we consider the following four types of baseline methods for performance com-
parison:

D.1.1 TRADITIONAL HEURISTIC ALGORITHMS

Tabu (Blochliger & Zufferey, 2008): performs neighborhood search based on tabu lists and aspira-
tion criteria.
DLF-GA (Gebremedhin et al., 2013): assigns the smallest available color sequentially through local
optimization.

D.1.2 GNN METHODS

GNN-GCP (Lemos et al., 2019): uses GNN message passing to update the embeddings, predicts
the colorability of C through supervised learning and generates solutions.

D.1.3 GNN-BASED DRL ALGORITHMS

SAT-DRL (Yolcu & Póczos, 2019): encodes graph coloring as a CNF formula, models variable
relationships using GNN, and optimizes variable selection through reinforcement learning.
ECO-DQN (Barrett et al., 2020): explores the solution space dynamically through reinforcement
learning and optimizes vertex states with a reward mechanism.
MCSS (Yuan et al., 2024): selects optimal column combinations dynamically using neural networks
and a multicolumn selection strategy driven by reinforcement learning.

D.1.4 LLMS

LTMP (Zhou et al., 2023): solves complex problems by sequentially addressing simpler subprob-
lems that depend on the solutions of previous ones.
AUTO-COT (Zhang et al., 2023): clusters various problems and uses LLM to generate reasoning
chains for the construction of automatic demonstrations.

D.2 EXPERIMENTAL SETUP.

The experiments were carried out using an RTX 4090 GPU and an Intel(R) Xeon(R) Platinum 8474
CPU, with software implementation in PyTorch 2.5.1. Due to limitations in memory resources, we

14
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limit the experience replay buffer to 5000 samples. The GNN employs the Adam optimizer with a
learning rate ρ, dynamically adjusted as:

ρ =


0.001τ
1000 0 ≤ τ ≤ 1000

0.001− 0.00095 τ−1000
19000 1000 < τ ≤ 20000

0.00005 τ > 20000

(26)

Table 3: Hyper-parameter setups for LOMAC.

DATASET
#MESSAGE

STEPS
(T )

HIDDEN
DIM.

Q-SPACE
DIM.

#Q-UNITS
(nq )

#PSEUDO
NODES

(np)
DROPOUT

ER-20 2 128 64 20 8 0.1
ER-40 2 128 64 40 20 0.1
ER-60 2 128 64 60 30 0.1
ER-200 2 128 64 200 96 0.2
ER-500 3 128 64 500 256 0.2
ER-1000 3 128 64 1000 520 0.3

BA-20 2 128 64 20 8 0.1
BA-40 2 128 64 40 20 0.1
BA-60 2 128 64 60 30 0.1
BA-200 2 128 64 200 96 0.2

CORA 4 128 64 2708 1256 0.3
CITESEER 4 128 64 3327 1256 0.3
PUBMED 8 128 64 19717 5200 0.3

D.3 ABLATION STUDY

We have demonstrated the effectiveness of LOMAC in solving GCP. To further analyze the con-
tribution of individual components, we conduct three ablation studies, with results shown in Fig.
5.

Ablation Study on the Markov Chain To assess the impact of the one-way Markov chain, we
performed an ablation study by removing this component and allowing the model to predict the
color of each node directly. In this setup, with a fixed number of colors K, we increment K if
a feasible coloring cannot be achieved. Without chain-based state transitions, the model relies on
a predefined color space, which increases the solution complexity and reduces the guidance from
structured state evolution. The results show that removing the Markov chain increases the number
of required colors, highlighting its effectiveness in guiding compact colorings.

Ablation Study on the Potential Function To evaluate the effect of the potential-based reward of
the graph state, we performed an ablation study by removing this component and adopting a simple
potential-free reward. In this setup, the agent receives a reward of +1 for reusing an existing color
and keeping the color valid. It gets 0 when a new color is introduced, and a penalty of −λ for
invalid actions. The results show that removing the potential function removes strong incentives for
compact colorings, resulting in an increased number of required colors.

Ablation Study on Pseudo Nodes To evaluate the impact of pseudonode-enhanced message pass-
ing, we replace the graph neural decision network with a basic GNN. In this setup, message pass-
ing relies solely on the original graph topology, limiting efficiency and overall performance. The
pseudonode-based message-passing mechanism embeds both graph nodes and pseudonodes into a
unified latent space, enabling more flexible message-passing and reducing dependency on the graph
topology. The results confirm the effectiveness of this mechanism. These three ablation studies
isolate the contribution of each key component in LOMAC.

D.4 STATISTICAL SIGNIFICANCE ANALYSIS

To assess the robustness of the proposed LOMAC method in different sizes of graphs, we performed
pairwise Wilcoxon signed rank tests between LOMAC and baseline algorithms on ER graphs with
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Figure 5: Ablation on the modules of LOMAC.

N = 20, 40, 60, 200, 500 and 1000 nodes. We used a significance level of p < 0.05. The
results are summarized in Table 4, where a smaller p-value provides stronger evidence that LOMAC
significantly outperforms the baseline algorithms in terms of RNC.

Table 4: Wilcoxon signed-rank test results on ER graphs with different node sizes. LOMAC shows
statistically significant improvements over all baselines in terms of the number of colors.

Ours Baseline p-value (RNC)

Nodes 20 40 60 200 500 1000

LOMAC Tabu 0.042 0.037 0.041 0.039 < 0.001 < 0.001
LOMAC DLF-GA < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
LOMAC SAT-DRL 0.021 0.019 0.023 < 0.001 < 0.001 < 0.001
LOMAC GNN-GCP 0.011 0.009 < 0.001 < 0.001 < 0.001 < 0.001
LOMAC ECO-DQN 0.017 0.016 0.021 0.015 < 0.001 < 0.001
LOMAC MCSS 0.024 0.023 0.025 < 0.001 < 0.001 < 0.001
LOMAC LTMP 0.012 0.011 < 0.001 < 0.001 < 0.001 < 0.001
LOMAC AUTO-COT 0.021 0.032 0.018 < 0.001 < 0.001 < 0.001

D.5 ADDITIONAL RESULTS ON SYNTHETIC AND REAL-WORLD INSTANCES

We provide additional results on both synthetic graphs (ER and BA) and real-world benchmark
instances. Tables 5 and 6 report performance on ER and BA graphs with 20, 60, and 500 nodes.
Across different sizes, LOMAC achieves the lowest RNC in the shortest execution time.

We also include results on selected real-world instances in Table 6. LOMAC consistently reaches
optimal colorings with manageable run-time, highlighting its robustness and efficiency across di-
verse graph types and scales.
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Table 5: Performance Comparison of LOMAC and Baseline Methods on ER Graphs with 20, 60,
and 500 nodes. RNC values are reported as mean±standard deviation over 5 runs with different
random seeds.

Nodes
20 60 500

MR RNC ET MR RNC ET MR RNC ET

Tabu 1 3.0±0.1 0.79 0.96 5.0±0.2 20.61 NA NA NA
DLF-GA 0.34 3.7±0.4 0.0001 0 6.8±0.4 0.0016 0.2 26.3±0.6 1.93
SAT-DRL 1 3.0±0.1 3.01 0.9 5.1±0.3 90.5 NA NA NA
GNN-GCP 1 3.0±0.1 0.48 0.71 5.1±0.4 0.547 NA NA NA
ECO-DQN 0.93 3.1±0.3 0.02 0.87 5.1±0.3 0.12 0.74 25.4±0.8 23.8
MCSS 0.9 3.1±0.3 0.79 0.92 5.1±0.3 3.54 NA NA NA
LTMP 0.9 3.13±0.3 0.0028 0.5 5.1±0.5 0.02 NA NA NA
AUTO-COT 0.8 3.23±0.4 0.01 0.44 5.55±0.5 0.04 NA NA NA
LOMAC 1 3.03±0.1 0.16 0.96 5.04±0.2 0.84 0.82 22.94±0.6 7.21

Table 6: Performance Comparison of LOMAC and Baseline Methods on BA Graphs with 20, 60,
and 500 nodes, in terms of MR, RNC, and ET. RNC values are reported as mean±standard deviation
over 5 runs with different random seeds.

Nodes
20 60 500

MR RNC ET MR RNC ET MR RNC ET

Tabu 0.99 4.9±0.37 1.21 0.95 5.04±0.2 26.56 NA NA NA
DLF-GA 0.05 6.41±0.46 0.01 0 8.11±0.3 0.03 0 13.24±0.4 0.28
SAT-DRL 1 4.89±0.31 34.7 0.81 5.2±0.4 84.78 NA NA NA
GNN-GCP 0.98 4.91±0.42 0.35 0.80 5.32±0.5 0.546 NA NA NA
ECO-DQN 0.96 4.93±0.46 0.03 0.95 5.04±0.2 0.21 0 9.24±0.4 7.24
MCSS 0.99 4.9±0.31 0.75 0.77 5.21±0.4 4.67 NA NA NA
LTMP 0.94 4.95±0.31 0.0049 0.81 5.18±0.2 0.013 NA NA NA
AUTO-COT 0.97 4.92±0.31 0.07 0.89 5.1±0.3 0.32 NA NA NA
LOMAC 1 4.89±0.31 0.28 0.95 5.04±0.19 1.61 0.72 7.28±0.32 9.26

Table 7: Performance of LOMAC and Baseline Algorithms on COLOR02/03/04.

Instance Nodes χ0
DLF-GA GNN-GCP SAT-DRL LTMP ECO-DQN LOMAC

RNC ET RNC ET RNC ET RNC ET RNC ET RNC ET

queen5 5 25 5 8 0.00061 6 0.662 5 38 6 0.00038 5 0.05 5 0.25
3 - Insertions 3 56 4 4 0.0015 4 0.703 4 9.19 4 0.00138 4 0.12 4 0.39
david 87 11 12 0.0033 14 1.421 NA NA 12 0.00362 13 0.29 11 0.53
mugg88 25 88 4 4 0.0033 4 0.837 4 9.82 4 0.00356 4 0.26 4 0.52
mugg100 1 100 4 4 0.0045 2 0.899 4 11.17 4 0.00402 4 0.27 4 0.57

E ALGORITHM DESCRIPTION
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Algorithm 1 The training process of LOMAC

1: In: Randomly generated W graph samples, p, K, b, z
2: Out: The network parameters θ. /* θ

′
indicates the target network parameters

3: Initialize the network with random θ.
4: τ = 0. /* τ indicates the current step number
5: for each graph sample do
6: V cv = ∅, C = ∅
7: Update the value of ε
8: for i = 1to K do
9: if V cv ̸= V then

10: r = r + 1
11: ε′=random(0,1). /* get a random number in [0,1]

12: v∗ =


ε′ < ε : Choose random v∗ ∈ V cv

ε′ ≥ ε : The GNN-based decision-making phase,
argmaxa∈AQ(s, a)

13: a∗ = v∗

14: The color assignment phase:
15: if Cv∗ ̸= ∅ then
16: stochastically assign a color from Cv∗

to v∗
17: R(s(i, j), a∗) = V(s(i, j + 1))− V(s(i, j))
18: Update the attribute values of s(i, j + 1)
19: V cv = V cv ∪ v∗, sc = s(i, j + 1)
20: else
21: if Cv∗

= ∅ then
22: assign a new color cnew to v∗
23: R(s(i, j), a∗) = V(s(i+1,j+1))− V(s(i, j))
24: Update the attribute values of s(i+ 1, j + 1)
25: V cv = V cv ∪ v∗, C = C ∪ cnew, sc = s(i+ 1, j + 1)
26: else
27: R(s(i, j), a∗) = z, sc = s(i, j)
28: end if
29: end if
30: Update Q(s(i,j), a

∗) according to Eq. (18)
31: The prioritized experience replay phase:
32: Compute the value of p according to Eqs. (7) and (8)
33: Add [s(i, j), a∗, Q(s(i, j), a∗), sc, p] into the prioritized experience replay buffer.
34: if τ mod p == 0 then
35: Get b random samples B from the buffer
36: learn θ given training samples B.
37: end if
38: end if
39: end for
40: end for
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Algorithm 2 The testing process of LOMAC

1: In: G = (V,E), the network with parameters θ
2: Out: C, S
3: V cv = ∅, C = ∅
4: for i = 1 to K do
5: if V cv ̸= V then
6: The GNN-based decision-making phase:
7: a∗ = v∗ = argmaxa∈AQ(s, a)
8: The color assignment phase:
9: if Cv∗ ̸= ∅ then

10: stochastically assign a color from Cv∗
to v∗

11: R(s(i, j), a∗) = V(s(i, j + 1))− V(s(i, j))
12: Update the attribute values of s(i, j + 1)
13: V cv = V cv ∪ v∗, sc = s(i, j + 1)
14: else
15: if Cv∗

= ∅ then
16: assign a new color cnew to v∗
17: R(s(i, j), a∗) = V(s(i+1,j+1))− V(s(i, j))
18: Update the attribute values of s(i+1,j+1)

19: V cv = V cv ∪ v∗, C = C ∪ cnew, sc = s(i+ 1, j + 1)
20: else
21: R(s(i, j), a∗) = z, sc = s(i, j)
22: end if
23: end if
24: Update Q(s(i, j), a∗) according to Eq. (18)
25: end if
26: end for
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