

000 001 002 003 004 005 006 LOMAC: GNN-BASED DEEP REINFORCEMENT 007 LEARNING WITH ONE-WAY MARKOV CHAIN FOR 008 GRAPH COLORING 009 010

011 **Anonymous authors**
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
0100

010 Paper under double-blind review
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
0100

ABSTRACT

The graph coloring problem (GCP) is an NP-hard combinatorial optimization task aimed at assigning the minimum number of colors to graph vertices such that no two adjacent vertices share the same color. While deep reinforcement learning (DRL) and graph neural networks (GNNs) are promising approaches to solving the GCP, their scalability is usually limited by the large number of Markov states and high computational complexity as the graph size increases. In this paper, we introduce LOMAC, a novel GNN-based DRL framework that integrates a one-way, two-dimensional Markov chain and a linear-complexity GNN model with pseudonode-enhanced message passing. This integration significantly reduces both space and computational complexity. We transform the GCP into a one-way Markov chain model, introducing two key concepts: Markov state potential and graph state potential. Through theoretical analysis of Markov- and graph-state potentials, we effectively guide the search for an optimal vertex-coloring solution. We show that LOMAC reduces the number of Markov states from $O(K^N)$ to $O(NK)$, simplifying decision-making with unidirectional state transitions. Additionally, an invalid action penalty mechanism is implemented to further optimize the coloring process. Experimental results in various sizes of *Erdős–Rényi*- and *Barabási–Albert* graphs and 16 real-world benchmarks demonstrate that LOMAC achieves state-of-the-art performance in the number of required colors.

1 INTRODUCTION

The graph coloring problem (GCP) is a critical challenge in combinatorial optimization (CO) and graph theory. It involves assigning the fewest number of colors to the vertices of a graph so that no two adjacent vertices share the same color. Efficient solutions to GCP have significant applications, including resource scheduling (Rina et al., 2022), register allocation (Das et al., 2020), pilot assignment (Liu et al., 2020), content caching (Javedankherad et al., 2022), and wireless channel assignment (Ge et al., 2023). However, determining whether a graph can be colored with K colors is NP-complete, and minimizing the chromatic number is NP-hard. This means that there is no polynomial-time algorithm for solving the GCP under the $P \neq NP$ conjecture. Recent advances have explored deep reinforcement learning (DRL) and graph neural networks (GNN) (Colantino et al., 2024; Pugachewa et al., 2024; Lemos et al., 2019; Langedal & Manne, 2024; Prates et al., 2019; Huang et al., 2019; Yuan et al.,

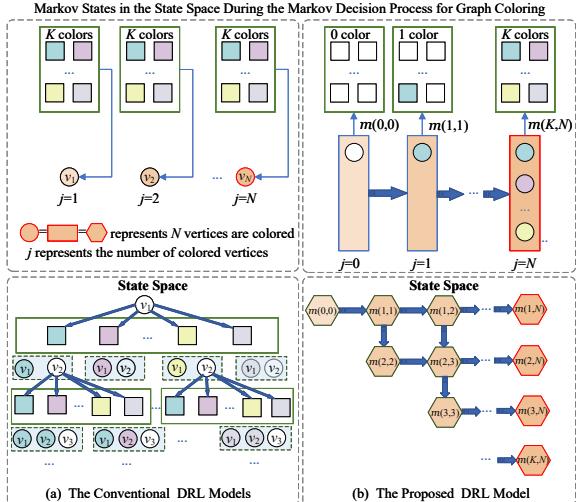


Figure 1: Comparison of Markov states in the state space during the Markov decision process for graph coloring between conventional DRL models (with $O(K^N)$ Markov states) and the proposed DRL model (with $O(NK)$ Markov states).

054 2024) as promising approaches to solve GCP. DRL aids in sequential decision making, while GNNs
 055 are capable of modeling and processing graph-structured data. However, these models face scal-
 056 ability issues due to the large number of Markov states in the state space, even for moderately sized
 057 graphs. This is because they typically model the entire coloring process as a Markov Decision Pro-
 058 cess (MDP), in which each possible color assignment for every node in the graph is treated as an
 059 independent Markov state. As the size of the graph increases, the state space expands exponentially.

060 To address the scalability limitations of traditional methods, we propose LOMAC, which integrates
 061 a Markov chain into DRL and employs a pseudonode-enhanced GNN for efficient graph coloring.
 062 Specifically, we design a one-way, two-dimensional Markov chain with finite states, which signifi-
 063 cantly reduces state space and computational demands compared to conventional DRL methods. As
 064 shown in Fig.1, conventional DRL models assign one of the K colors to each vertex, resulting in
 065 $O(K^N)$ Markov states. In contrast, our model reduces the state space to $O(NK)$, which is at most
 066 $O(N^2)$ when the chromatic number is unknown. The one-way Markov chain restricts transitions
 067 to a single direction, further simplifying the decision-making process and reducing computational
 068 requirements. Additionally, we introduce new definitions of the Markov state potential and graph
 069 state potential. By analyzing the relations between these potentials, we establish inequality con-
 070 straints that guide the coloring process toward states with fewer colors. We also propose a potential-
 071 based reward function that penalizes invalid actions and guides the identification of optimal color-
 072 ing strategies. Inspired by the work of N^2 (Sun et al., 2024), we designed a pseudonode-enhanced
 073 GNN model for GCP that enables the passing of dynamic messages in linear time. This model util-
 074 izes pseudonodes as intermediaries for message passing to effectively learn Q-value embeddings
 075 for node selection actions. This design reduces computational overhead and alleviates dependence
 076 on the input graph topology. The experimental results demonstrate that LOMAC achieves better
 077 performance compared to existing methods. The contributions of this paper are threefold.

- 078 • We provide a GNN-based DRL solution to the GCP by introducing a novel one-way, two-
 079 dimensional Markov chain with finite states. This design significantly reduces the state
 080 space and computational complexity, even for graphs with unknown chromatic numbers.
 081 We also propose a pseudonode-enhanced GNN for linear-time message passing, which
 082 effectively learns Q-value embeddings for node selection actions.
- 083 • We introduce two new definitions, the Markov state potential and the graph state potential.
 084 Furthermore, we establish inequality relations between the potential values of Markov and
 085 graph states to find an optimal vertex-coloring solution and validate a reward function that
 086 enhances model efficiency and solution quality. Additionally, we propose an invalid action
 087 penalty mechanism to further optimize the coloring process.
- 088 • We show that LOMAC outperforms existing methods in various sizes of *Erdős–Rényi* (ER)-
 089 and *Barabási–Albert* (BA) graphs, as well as 16 real-world benchmarks, excelling in the
 090 number of required colors, matching ratio, and execution time.

091 2 RELATED WORKS

092 **Traditional Heuristic Algorithms.** Early heuristic approaches to graph coloring often employed
 093 greedy strategies such as Largest First (LF), Smallest First (SF) (Gebremedhin et al., 2013), and
 094 Tabu Search (Blochliger & Zufferey, 2008). More recent evolutionary algorithms, such as simulated
 095 annealing (Kose et al., 2017), heuristic feedback (Inaba et al., 2022), and genetic algorithms (Shem-
 096 Tov & Elyasaf, 2024), have also shown success. For example, Inaba et al. (Inaba et al., 2022) applied
 097 the Potts model to graph coloring, iteratively updating interaction matrices to minimize Potts energy.
 098 Although these methods provide feasible solutions, they are tremendously time consuming and often
 099 based on manually crafted heuristics, which limits their ability to explore the solution space more
 100 effectively.

101 **GNN Methods.** GNNs have become a popular approach for solving combinatorial optimization
 102 problems by learning features from graph-structured data (Kose et al., 2017; Prates et al., 2019;
 103 Lemos et al., 2019). Once trained, GNNs can efficiently generate solutions for new instances. For
 104 example, a Potts model inspired GNN (Colantonio et al., 2024) was applied to the graph coloring
 105 problem, while Pugachewa et al. (Pugachewa et al., 2024) used recurrent GNNs to obtain optimal
 106 solutions. Langedal et al. (Langedal & Manne, 2024) introduced a GNN-based ordering heuristic for

108 graph coloring, achieving execution times comparable to greedy algorithms. However, GNN-based
 109 models often require substantial training in various instances to be generalized effectively.
 110

111 **DRL Methods.** Unlike GNN models, DRL provides a dynamic framework for learning optimal
 112 policies based on expected outcomes (Ma et al., 2020). For example, Li *et al.* (Li et al., 2021)
 113 developed an unsupervised DRL method for a traveling salesman problem. Zhang *et al.* (Zhang
 114 et al., 2022) proposed a meta-learning-based DRL model for handling multi-objective combinato-
 115 rial optimization problems. Although DRL is superior in learning optimal policies from states and
 116 rewards, it struggles to fully leverage graph-structured data.
 117

118 **GNN-based DRL Algorithms.** A notable advancement in this area is FastColorNet (Huang et al.,
 119 2019), a graph coloring algorithm that integrates DRL and GNN for vertex color assignments. Other
 120 frameworks, such as S2V-DQN (Khalil et al., 2017; Manchanda et al., 2020), ECO-DQN (Barrett
 121 et al., 2020), and those in (Xu et al., 2022; Li et al., 2023; Liu & Huang, 2023), model combinatorial
 122 optimization problems as MDP and use GNNs for representation learning to guide the actions of
 123 DRL agents. These approaches use graph embeddings as Q-values for each node and add nodes
 124 to the solution one by one, based on their corresponding Q-values. For large-scale GCPs, Yuan
 125 *et al.* (Yuan et al., 2024) proposed a multicolumn selection strategy combining DRL and GNN,
 126 significantly reducing training iterations and runtime. Despite these advancements compared to
 127 standalone GNN and DRL methods, GNN-based DRL algorithms still face scalability issues due
 128 to high space and computational complexity. In this paper, we introduce a novel GNN-based DRL
 129 framework that integrates a one-way, two-dimensional Markov chain with $O(NK)$ states and a
 130 linear-complexity GNN model, significantly reducing both space and computational complexity.
 131

132 **LLM approaches.** Large Language Models (LLMs) have recently gained significant attention
 133 for logical reasoning and planning tasks. Recent studies (Stechly et al., 2023; Zhang et al., 2023;
 134 Zhou et al., 2023; Zhang et al., 2024; Mittal et al., 2024) have explored their potential for graph
 135 coloring using prompt-based reasoning techniques, such as chain-of-thought (Zhang et al., 2023)
 136 and least-to-most prompting (Zhou et al., 2023). For example, Stechly *et al.* (Stechly et al., 2023)
 137 investigated iterative prompting for graph coloring and found that self-critique-based prompting
 138 struggled with reasoning and correctness verification. Although these methods show promise in
 139 enhancing logical reasoning and solution accuracy, LLMs are inherently sequence-based, lacking
 140 explicit logical reasoning modules. This makes them prone to generating invalid or suboptimal
 141 solutions.
 142

3 LOMAC FRAMEWORK

144 This section introduces the one-way Markov chain model for graph coloring, presents the input
 145 representation for the model, and describes the proposed framework.
 146

3.1 ONE-WAY MARKOV CHAIN MODEL

147 Consider an undirected graph $G = \{V, E\}$, where V represents the vertices and $E = \{(i, j) | i, j \in V\}$ represents the edges. The goal of graph coloring is to assign a unique color c to each vertex
 148 v , minimizing the chromatic number while ensuring that adjacent vertices do not share the same
 149 color. Let K denote the number of colors, and let N be the number of vertices. The set of colors
 150 is represented as $C = \{c_1, c_2, \dots, c_K\}$, with c^v denoting the color assigned to the vertex v , and η_v
 151 indicating the number of neighbors of v . V^c represents the set of colored vertices. As shown in Fig.
 152 2, we introduce a one-way, two-dimensional Markov chain to model the coloring process. Starting
 153 from an initial state $m(0, 0)$, where no vertex is colored, the process progresses to the state $m(1, 1)$
 154 with one colored vertex, and continues up to $m(i, j)$, where j vertices are colored using i colors.
 155 A graph with N vertices requires at most N colors. The total number of states is not more than
 156 $O(N^2)$, especially in a fully connected graph, where each vertex requires a unique color.
 157

158 In this model, transitioning from state $m(i, j)$ involves three scenarios: 1) If a valid
 159 color exists for vertex v , the state moves to $m(i, j + 1)$; 2) If no valid color ex-
 160 ists for v , a new color is introduced and the state moves to $m(i + 1, j + 1)$;

162 3) If v is already colored, the state remains
 163 at $m(i, j)$. The process reaches completion
 164 at the state $m(i, N)$, where all vertices
 165 are colored. Except for the third case, the
 166 model ensures a streamlined one-way transi-
 167 tion towards the final state. Importantly,
 168 Markov states and graph states hereinafter
 169 are distinct. Markov state is determined by
 170 the number of colored vertices and the col-
 171 ors used, while the graph state is defined
 172 by the coloring of vertices. It is easy to
 173 see that the graph state s cannot be inferred
 174 from a Markov state $m(i, j)$, but the cor-
 175 responding Markov state can be derived
 176 from the graph state s by counting the col-
 177 ored vertices and the colors used. To avoid
 178 confusion, we will specify these states in subsequent sections.

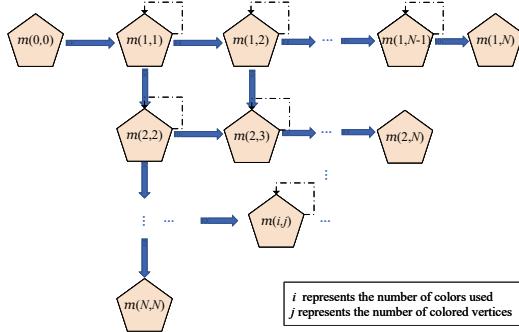


Figure 2: The one-way Markov chain model for graph coloring.

3.2 INPUT REPRESENTATION

To formalize the input of the proposed LOMAC framework, we introduce the following definitions relevant to the GCP.

Definition 1 (Colored Edge and Uncolored Edge). An edge is a colored edge if at least one of its incident vertices is colored. Otherwise, it is an uncolored edge.

Definition 2 (Colored Degree of a Graph). The colored degree ζ_G of a graph $G = \{V, E\}$ is the total number of colored edges in E . Proper coloring ensures that the adjacent vertices have different colors.

Definition 3 (Uncolored Vertex Degree). For an uncolored vertex v , its uncolored degree ℓ_v is the number of uncolored edges incident to v . For colored vertices, $\ell_v = 0$.

Definition 4 (Uncolored Degree of a Graph). The uncolored degree ζ'_G of graph $G = \{V, E\}$ is the total count of uncolored edges, with $\zeta_G + \zeta'_G = |E|$ representing the total number of edges.

Definition 5 (Valid Color Set). For an uncolored vertex v , the valid color set C^v includes colors that ensure proper coloring when assigned to v . If $C^v = \emptyset$, a new color must be introduced.

Definition 6 (Saturation Degree). The saturation degree ρ_v of a vertex v is defined as the number of its colored neighbors.

Definition 7 (Degree Centrality). The centrality of the degree d_v of a vertex v is defined as the ratio of its degree to the maximum vertex degree in the graph.

Definition 8 (Color Number of Neighbors). The color number of neighbors δ_v is defined as the number of different colors that appear among its adjacent vertices.

We model the graph coloring task as an MDP. This process is defined as $M = (\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathcal{V}, \gamma)$, where \mathcal{S} is the graph state space (distinct from the Markov state space in Fig. 2), \mathcal{A} is the action space, \mathcal{R} is the reward function, $\mathcal{V}(s)$ is the state value of s and γ is the discount factor. A graph state s is represented as $s = [s'_1, s'_2, \dots, s'_N] \in \mathbb{R}^{N \times m'}$, where s'_i is the set of attributes for the vertex v_i , which contains m' attributes. Specifically, the state of each vertex is represented by six attributes: its color, uncolored vertex degree, size of the valid color set, saturation degree, degree centrality, and color number of neighbors. Initially, all vertices are uncolored, so $c^{v_i} = -1$ for all $1 \leq i \leq N$. The uncolored degree ℓ_v is updated when the neighboring vertices are colored. The action space \mathcal{A} consists of actions a_{v_i} for each vertex v_i , and a_{v_i} represents the selection and coloring of the vertex v_i . Only one vertex is colored per step, and once a vertex is colored, it is not recolored. If one vertex v_j has been a colored vertex, the action a_{v_j} , i.e., selecting and coloring v_j repeatedly, is called an invalid action. We use deep Q-learning and a message passing neural network to solve the graph coloring task. For further details on deep Q-learning and message-passing neural networks, please refer to Appendix A. The action that maximizes the Q-value is selected at each step:

$$a^* = v^* = \arg \max_{a \in \mathcal{A}} Q(s, a). \quad (1)$$

To optimize the coloring process while minimizing the number of colors used, we establish the following inequality relations between the potentials of Markov states (denoted as $V'_{i,j}$ for the Markov

216 state $m(i, j)$):

$$\begin{cases} V'_{i,j+1} - V'_{i,j} \geq 1, \\ V'_{i,j} = V'_{i+1,j+1}, \\ V'_{i,j} > V'_{i+1,j}. \end{cases} \quad (2)$$

217 As previously outlined, the agent’s progression from the current state is restricted to transitions to the
 218 right or downward, without considering invalid actions. This restriction ensures that the potential
 219 of Markov states increases monotonically, as specified by the first two equations. Eq. (2) shows
 220 that the Markov state of coloring j vertices with fewer colors has greater potential. To quantify the
 221 potential of a graph state s , we define it as a combination of $V'_{i,j}$, which represents the potential of
 222 the Markov state, and $V''(\zeta_G)$, the ratio of colored edges within the graph. This is formalized as
 223 follows.

$$\begin{cases} \mathcal{V}(s) = V'_{i,j} + V''(\zeta_G), \\ V''(\zeta_G) = \frac{\zeta_G}{\|E\|}, \end{cases} \quad (3)$$

224 where $V''(\zeta_G)$ is the proportion of colored edges to the total number of edges. This formulation
 225 reveals that $\mathcal{V}(s)$ depends on the number of colors, colored vertices, and colored edges within the
 226 graph G . In particular, different graph states may share identical counts of colors, colored vertices,
 227 and colored edges.

228 **Theorem 1.** For the Markov decision process $M = (\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathcal{V}, \gamma)$, the potential of the Markov
 229 and graph states adheres to Eqs. (2) and (3), respectively, producing the following:

$$\begin{cases} \mathcal{V}(s(i, n)) \geq \mathcal{V}(s(i', n)) \text{ if } i' \leq i. \\ \mathcal{V}(s(i, j)) \geq \mathcal{V}(s(i, j+1)). \\ \mathcal{V}(s(i, j)) \leq \mathcal{V}(s(i+1, j+1)). \\ \mathcal{V}(s(i, j)) \geq \mathcal{V}(s(i+1, j)). \end{cases} \quad (4)$$

229 *Proof.* Please refer to Appendix B.

230 **Theorem 2.** For MDP $M = (\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathcal{V}, \gamma)$ as shown in Fig. 2, let $\mathcal{V}(s(k, N))$ be the largest
 231 potential of the graph states when all N vertices are colored. Here, k equals the chromatic number
 232 κ .

233 *Proof.* Please refer to Appendix C.

234 The proofs for these statements demonstrate the inherent monotonic increase in the potential of
 235 graph states and Markov states within the MDP model, highlighting the model’s preference for
 236 graph states with fewer colors and more colored edges, given the same number of colored vertices.

237 3.3 CONSTRAINED REWARD SHAPING

238 In this subsection, we introduce a graph state potential-based reward function that also penalizes
 239 invalid actions. Based on the Markov chain model described previously, there are three types of
 240 actions a_v , each corresponding to a specific state transition: from state $s(i, j)$ to $s(i, j+1)$, from
 241 $s(i, j)$ to $s(i+1, j+1)$, and from $s(i, j)$ to $s(i, j)$. $s(i, j)$ denotes a graph state in which j vertices are
 242 colored using i colors. It differs from the abstract Markov state $m(i, j)$ by preserving the full vertex-
 243 level coloring configuration. For the first two types of action, the reward is the potential difference
 244 between the old and new graph states. For the invalid action, we assign a negative constant z (where
 245 $z < 0$) as a penalty. The reward function and the corresponding graph state potential function are
 246 defined below.

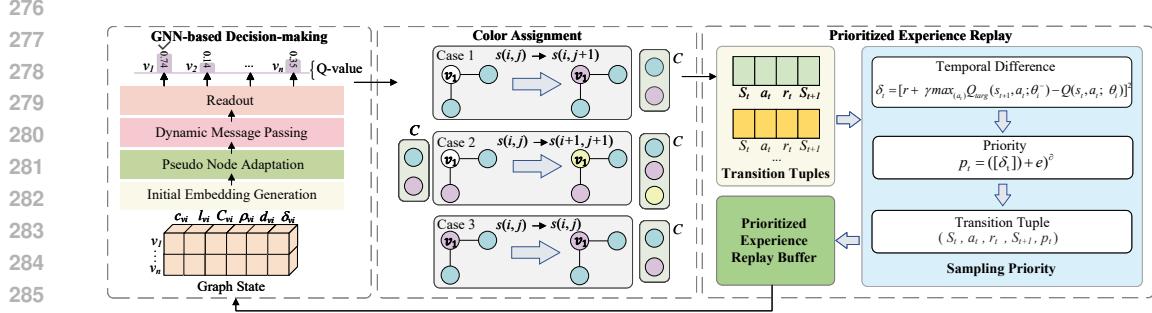
$$\mathcal{R}(s, a_v) = \begin{cases} 1 + \frac{\Delta \zeta_G}{\|E\|}, & c^v = -1 \wedge \mathcal{C}^v \neq \emptyset \\ \frac{\Delta \zeta_G}{\|E\|}, & c^v = -1 \wedge \mathcal{C}^v = \emptyset \\ z, & c^v \neq -1 \end{cases} \quad (5)$$

$$\mathcal{V}(s(i, j)) = (j - i) + \frac{\zeta_G^{(i, j)}}{\|E\|} \quad (6)$$

247 where $\Delta \zeta_G$ denotes the change in ζ_G induced by action a_v , and $\zeta_G^{(i, j)}$ represents the number of
 248 colored edges in the Markov state $s(i, j)$.

270 3.4 SYSTEM ARCHITECTURE
271

272 As illustrated in Fig. 3, the proposed LOMAC system architecture consists of three phases: 1)
273 GNN-based decision making phase: Identifies the optimal vertex for coloring. 2) Color assignment
274 phase: Dynamically assigns colors and updates the graph state. 3) Prioritized experience replay
275 phase: Consolidates learning trajectories for model refinement.



277
278
279
280
281
282
283
284
285
286
287 Figure 3: GNN-based DRL framework for GCPs, consisting of three phases: GNN-based decision-
288 making, color assignment, and prioritized experience replay.

290 **GNN-based decision making phase.** The network processes the graph state $s = [s'_1, \dots, s'_N] \in$
291 $\mathbb{R}^{N \times 6}$, where each node v_i is represented by $s'_i = [c^{v_i}, \ell_{v_i}, C^{v_i}, \rho_v, d_v, \delta_v]$. Using the GNN
292 model described in Section 4, which includes initial embedding generation, pseudonode adap-
293 tation, dynamic message passing, and readout blocks, the optimal vertex for coloring is selected as
294 $a^* = v^* = \arg \max_{a \in \mathcal{A}} Q(s, a)$.

295 **Color assignment phase.** This phase assigns an appropriate color to the selected vertex, with the
296 color assignment process detailed in Section 3.1.

298 **Prioritized experience replay phase.** To improve training stability, we use a prioritized experience
299 replay to focus on transitions with higher temporal difference errors. At each step, the agent stores
300 the transition tuple $(s_t, a_t, r_t, s_{t+1}, p_t)$ in a replay buffer, where the priority p_t is computed as:

$$301 \quad p_t = \delta_t + \epsilon. \quad (7)$$

303 The temporal difference (TD) error is defined as:

$$305 \quad \delta_t = \left[r_t + \gamma \max_{(a_t)} Q_{\text{targ}}(s_{t+1}, a_t; \theta_i^-) - Q(s_t, a_t; \theta_i) \right]^2, \quad (8)$$

307 where s_t is the current state, a_t is the action taken at state a_t , r_t is the immediate reward received
308 after executing a_t , and s_{t+1} is the next state reached. γ is the discount factor that controls future
309 reward weighting, ϵ is a small positive constant to ensure a nonzero sampling probability, θ_i denotes
310 the parameters of the current Q network, θ_i^- denotes the parameters of the target Q network, and
311 Q_{targ} denotes the target Q network which is a slower-updating copy of the current Q network. The
312 training and testing processes of LOMAC are described in Appendix E.

314 4 SYSTEM IMPLEMENTATION OF LOMAC
315

316 This section details the implementation of the core component in LOMAC, GNN-based decision-
317 making using pseudonode-enhanced message passing. The GNN architecture establishes a shared
318 embedding space $\mathbf{H} \in \mathbb{R}^q$ for both physical graph nodes $V = \{v_i\}_{i=1}^N$ and trainable pseudonodes
319 $U = \{u_j\}_{j=1}^M$. Let $\mathbf{Q} \in \mathbb{R}^{N \times q}$ and $\mathbf{R} \in \mathbb{R}^{M \times q}$ represent their respective state matrices. Node
320 proximity is measured through adaptive feature correlation:

$$322 \quad \phi(r_i, r_j) = \sum_{t=1}^q \lambda_t \sigma(r_{i,t}) \sigma(r_{j,t}), \quad (9)$$

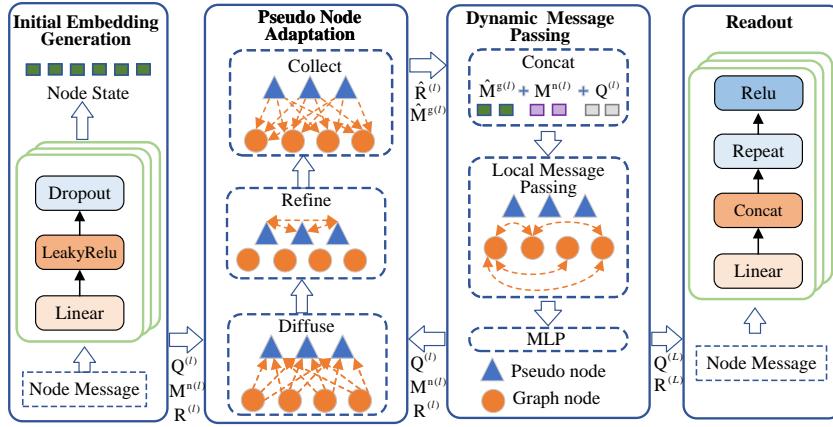


Figure 4: GNN-based decision making architecture featuring four key blocks, initial embedding generation, adaptive pseudo-node coordination, message passing (local/global), and readout.

where $\lambda_{1:q}$ are learned attention weights and σ denotes a perceptron layer equipped with LeakyReLU activation and dropout regularization. The architecture employs four specialized processing blocks described in the following.

Initial Embedding Generation. The block establishes initial node representations through the projection of permutation-equivariant features.

$$\mathbf{Q}^{(0)} = f_{\theta}(\mathbf{M}_V^{(0)}) \in \mathbb{R}^{N \times q}, \quad (10)$$

where f_{θ} is a linear transformation learned initialized from the graph state s .

Pseudo Node Adaptation. The block orchestrates the global information flow through three phase-coordinated operations:

$$\text{Diffusion: } \mathbf{G} = \mathbf{E}^{\text{np}} \mathbf{M}_V^{(l-1)}, \quad \mathbf{E}_{ij}^{\text{np}} = \phi(r_i, q_j) \quad (11)$$

$$\text{Refinement: } \hat{\mathbf{G}} = \mathbf{E}^{\text{pp}} \mathbf{G}, \quad \mathbf{E}_{ij}^{\text{pp}} = \phi(r_i, r_j) \quad (12)$$

$$\text{Redistribution: } \hat{\mathbf{M}}^{g(l)} = \mathbf{E}^{\text{pn}} \mathbf{M}_U^{(l)}, \quad \mathbf{E}_{ij}^{\text{pn}} = \phi(q_i, \hat{r}_j) \quad (13)$$

Dynamic Message Passing. The block combines neighborhood aggregation with global state diffusion. For each graph node v :

$$\mathbf{M}_v^{\text{loc}(l)} = \frac{1}{\eta_v + 1} \left[m_u^{l-1} + \sum_{u' \in \mathcal{N}(v)} \sigma(m_{u'}^{l-1} \| m_u^{l-1}) \right] \quad (14)$$

$$\hat{\mathbf{Q}}^{(l)} = \mathbf{Q}^{(l-1)} + \sigma(\mathbf{M}^{\text{loc}(l)}) \quad (15)$$

Global message updates follow operator sequences similar to those in Eqs. (11)-(13) but using current-layer states.

Readout. The block computes the Q value of the action a_{v_i} after the L propagation layers:

$$Q(a_{v_i}) = \psi(\mathbf{Q}^{(L)}[i, :]), \quad (16)$$

where ψ maps the final node states to the Q value.

5 EXPERIMENT

In this section, we evaluate the performance of LOMAC on synthetic and real-world benchmarks. LOMAC is implemented in PyTorch and is trained on a Nvidia GeForce RTX 4090 GPU. Detailed experimental settings are provided in Appendix D.2.

378 **Dataset.** We generate random graphs based on the ER and BA distributions. The model is trained
 379 on $W = 12500$ randomly generated graph samples and evaluated on a separate set of 100 holdout
 380 graphs drawn from the same distributions. We examine the experimental results for the sizes of the
 381 graphs $N = 20, 40, 60, 200, 500, 1000$. ER graphs are generated using the ER $G(N, p' = 0.15)$
 382 model, while BA graphs follow the BA model, where each node is connected to $m_0 = 4$ nodes.
 383

384 **Baseline algorithms.** We compare LOMAC with four categories of baseline algorithms: (1) Traditional
 385 heuristic algorithms, including Tabu (Blochliger & Zufferey, 2008) and DLF-GA (Gebremed-
 386 hin et al., 2013); (2) GNN method, specifically GNN-GCP (Lemos et al., 2019); (3) GNN-based
 387 DRL algorithms, including SAT-DRL (Yolcu & Póczos, 2019), ECO-DQN (Barrett et al., 2020) and
 388 MCSS (Yuan et al., 2024); (4) LLMs, including LTMP (Zhou et al., 2023) and AUTO-COT (Zhang
 389 et al., 2023). For details of the baseline algorithms, please refer to Appendix D.1. We also performed
 390 Wilcoxon’s significance tests to assess the statistical robustness of LOMAC against these baselines.
 391 The detailed results of the Wilcoxon test are reported in Appendix D.4.
 392

393 **Evaluation Metrics.** We adopted the following evaluation metrics. Required number of colors
 394 (RNC): A smaller RNC indicates a more efficient coloring, which is crucial for applications such
 395 as registration allocation and pilot assignment. Matching ratio (MR): The proportion of test cases
 396 in which the model successfully matches the known chromatic number κ , obtained using the CSP-
 397 Solver¹ as reference. Execution time (ET): The average time taken to solve the coloring tasks,
 398 excluding model training time for learning-based algorithms, as the training is performed offline.
 399

400 5.1 PERFORMANCE ON ER AND BA GRAPH INSTANCES

401 We compare the performance of LOMAC with eight baseline algorithms on the ER and BA graphs
 402 in terms of RNC, MR, and ET, averaged over 100 test samples, as shown in Table 1. Additional
 403 results are reported in Appendix D.5. Unsolvable instances are marked as ‘NA’. From the tables, we
 404 observe that LOMAC outperforms other algorithms in RNC. As the size of the graph increases from
 405 $N = 40$ to 200 and 1000, LOMAC significantly reduces the number of colors required, while most
 406 algorithms fail to provide solutions for larger graphs. Even in the worst cases, the LOMAC RNC
 407 deviates by no more than 4% from the best results in multiple runs. Furthermore, LOMAC strikes
 408 an optimal balance between ET and RNC, achieving the lowest RNC in a shorter execution time.
 409

410 Table 1: Performance Comparison of LOMAC and Baseline Methods on ER Graphs with 40, 200,
 411 and 1000 nodes. RNC values are reported as mean \pm standard deviation over 5 runs with different
 412 random seeds.

413 Nodes	40			200			1000		
	414 MR	RNC	ET	415 MR	RNC	ET	416 MR	RNC	ET
416 Tabu	0.99	4.0 \pm 0.1	2.66	0.84	11.2 \pm 0.4	191.7	NA	NA	NA
417 DLF-GA	0.07	5.3 \pm 0.4	0.0078	0	14.0 \pm 0.2	0.01	0.34	47.7 \pm 0.9	0.15
418 SAT-DRL	0.99	4.0 \pm 0.1	25.23	NA	NA	NA	NA	NA	NA
419 GNN-GCP	0.77	4.2 \pm 0.4	0.5	NA	NA	NA	NA	NA	NA
420 ECO-DQN	0.95	4.1 \pm 0.4	0.08	0.8	11.2 \pm 0.4	1.51	0.62	45.6 \pm 0.9	77.7
421 MCSS	0.93	4.1 \pm 0.3	3.99	NA	NA	NA	NA	NA	NA
422 LTMP	0.9	4.1 \pm 0.3	0.009	0	13.0 \pm 0.2	0.15	NA	NA	NA
423 AUTO-COT	0.92	4.1 \pm 0.3	0.02	0.23	12.8 \pm 0.4	3.63	NA	NA	NA
424 LOMAC	0.99	4.0\pm0.1	0.37	0.84	11.2\pm0.3	5.24	0.78	42.8\pm0.8	43.1

425 5.2 PERFORMANCE ON REAL INSTANCES

426 To assess the effectiveness of LOMAC in real-world scenarios, we evaluated it on a small-scale
 427 COLOR02/03/04 Workshop dataset², which comprises instances with 11 to 149 vertices. Furthermore,
 428 we tested LOMAC on large-scale benchmark datasets, including Cora, Citeseer, and PubMed,
 429 with instances ranging from 2708 to 19717 vertices. Table 2 shows the performance of Tabu, GNN-
 430 GCP, SAT-DRL, LTMP, ECO-DQN, and LOMAC across these datasets in terms of RNC and ET.
 431

¹<https://developers.google.com/optimization/cp>

²<https://mat.tepper.cmu.edu/COLOR02/>

LOMAC consistently achieved or closely matched the minimal chromatic number in a shorter execution time. These results highlight LOMAC’s robust generalization, efficiency, and clear superiority in both small-scale and large-scale real-world applications.

Table 2: Performance of LOMAC and Baseline Algorithms on COLOR02/03/04 Workshop dataset and large-scale benchmark datasets, Cora, Citeseer, and PubMed.

Instance	Nodes	κ	DLF-GA		GNN-GCP		SAT-DRL		LTMP		ECO-DQN		LOMAC	
			RNC	ET	RNC	ET	RNC	ET	RNC	ET	RNC	ET	RNC	ET
myciel3	11	4	4	0.00025	4	0.567	4	1.25	4	0.0018	4	0.0075	4	0.26
myciel4	23	5	5	0.0005	6	0.645	5	15.74	5	0.00126	5	0.0044	5	0.25
myciel5	47	6	6	0.0013	7	0.808	6	293.58	4	0.0013	6	0.15	6	0.34
huck	74	11	11	0.0025	14	1.338	NA	NA	11	0.00324	11	0.26	11	0.51
mugg100 25	100	4	4	0.004	3	0.904	4	9.38	4	0.00388	4	0.28	4	0.57
games120	120	9	9	0.0058	13	1.481	NA	NA	9	0.00593	9	0.36	9	0.70
anna	138	11	12	0.00734	13	1.878	NA	NA	11	0.00794	11	0.47	11	0.74
2 - Insertions 4	149	4	5	0.0056	4	1.135	NA	NA	5	0.00828	5	0.45	5	0.77
Cora	2708	5	7	627	NA	NA	NA	NA	NA	NA	6	954	5	997
Citeseer	3327	6	9	854	NA	NA	NA	NA	NA	NA	7	1003	6	1020
Pubmed	19717	6	12	4632	NA	NA	NA	NA	NA	NA	10	4726	8	4929

5.3 MODEL ANALYSIS

Complexity Analysis. The dominant computational complexity of the proposed LOMAC method lies in the pseudonode-based GNN model during the testing process. For each coloring node, the computational cost consists of two parts: the GNN model to select an optimal coloring node with a linear time complexity of $O(N)$ for a graph of size N (Sun et al., 2024), and the color assignment to color the node and update the node state of neighbors with a time complexity of $O(1)$. Due to the invalid action penalty mechanism, the occurrence of invalid actions (i.e. repeatedly selecting already colored nodes) is rare during testing. Therefore, the overall complexity of the LOMAC method is $O(N^2)$.

Ablation Study. To evaluate the contribution of different components, we design three ablation variants of LOMAC: (1) Ablation on Pseudo Nodes, which removes pseudo nodes from the message-passing network; (2) Ablation on Markov chain, which replaces the chain-based state transitions with direct color prediction using a predefined color set; and (3) Ablation on Potential Function, which removes the graph state potential-based reward function. As shown in Fig. 5, removing the Markov chain results in the largest performance drop in RNC, highlighting its crucial role in reducing the number of colors required. Excluding the potential function weakens the reward guidance, leading to less compact colorings, while removing pseudonodes reduces the efficiency of message passing. These results show that each component is essential and contributes to LOMAC’s overall performance. Detailed results of these ablation experiments are provided in Appendix D.3.

6 CONCLUSION

In this paper, we introduce LOMAC, a novel GNN-based DRL framework for solving GCP. By integrating a one-way, two-dimensional Markov chain with a pseudonode-enhanced GNN, LOMAC significantly reduces the state space and computational complexity compared to traditional DRL approaches. We propose two key concepts, the Markov state potential and the graph state potential, and demonstrate their effectiveness in guiding the search for optimal solutions. Experimental results show that LOMAC outperforms existing methods on both synthetic and real-world datasets, achieving superior performance in terms of the number of colors required, matching ratio, and execution time. LOMAC also demonstrates strong generalization and efficiency across different types and sizes of graphs. Future work could explore applying LOMAC to other combinatorial optimization problems, further extending the applicability of GNN-based DRL models with one-way Markov chains.

486 7 ETHICS STATEMENT
487488 This work focuses on the development of reinforcement learning and graph neural network methods
489 to solve the graph coloring problem. The study does not involve human subjects, personal or sen-
490 sitive data, or applications that could directly cause harm. All datasets used are publicly available
491 benchmark graphs, and all external code or data strictly follow their respective licenses. We believe
492 that this work raises no ethical concerns related to privacy, security, fairness, or potential misuse.
493494 8 REPRODUCIBILITY STATEMENT
495496 All code implementations of the LOMAC model and baseline methods are available in the Sup-
497 plementary Material. The code is organized in a modular fashion with a clear separation between
498 the definitions of the models, the training procedures, and the evaluation scripts. All experimental
499 parameters, including learning rates, batch sizes, and network architectures, are explicitly speci-
500 fied in the training configuration files. The graph datasets used in our experiments, including both
501 synthetic graphs and public benchmarks, are described in detail in the paper, with generation param-
502 eters provided. We have also included utility scripts for data preprocessing and result visualization
503 to facilitate the reproduction of all figures and tables presented.
504505 REFERENCES
506507 T. Barrett, W. Clements, J. Foerster, and A. Lvovsky. Exploratory combinatorial optimization with
508 reinforcement learning. In *The AAAI Conf. Artif. Intell.*, pp. 3243–3250, Jan. 2020.
509 I. Blochliger and N. Zufferey. A graph coloring heuristic using partial solutions and a reactive tabu
510 scheme. *Comput. Oper. Res.*, 35(3):960–975, 2008.
511 L. Colantonio, A. Cacioppo, F. Scarpati, and S. Giagu. Efficient graph coloring with neural net-
512 works: a physics-inspired approach for large graphs, 2024.
513 D. Das, S. A. Ahmad, and V. Kumar. Deep learning-based approximate graph-coloring algorithm
514 for register allocation. In *IEEE/ACM 6th Workshop on the LLVM Compiler Infrastructure in HPC
515 (LLVM-HPC) and Workshop on Hierarchical Parallelism for Exascale Computing (HiPar)*, pp.
516 23–32, GA, USA, 2020.
517 C. Ge, S. Xia, Q. Chen, and F. Adachi. 2-layer interference coordination framework based on graph
518 coloring algorithm for a cellular system with distributed mu-mimo. *IEEE Trans. Veh. Technol.*,
519 72(3):3557–3568, 2023.
520 A. H. Gebremedhin, D. Nguyen, M. M. A. Patwary, and A. Pothen. Colpack: Software for graph
521 coloring and related problems in scientific computing. *ACM Trans. Math. Softw.*, 40(1):1–31,
522 2013.
523 J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing for
524 quantum chemistry. In *Proc. ICLR*, pp. 1263–1272, 2017.
525 J. Huang, M. Patwary, and G. Diamos. Coloring big graphs with alphagozero. *arXiv preprint
526 arXiv:1902.10162*, 2019.
527 K. Inaba, T. Inagaki, K. Igarashi, S. Utsunomiya, T. Honjo, T. Ikuta, K. Enbutsu, T. Umeki, R. Kasa-
528 hara, K. Inoue, Y. Yamamoto, and H. Takesue. Potts model solver based on hybrid physical and
529 digital architecture. *Commun. Phys.*, 5(1):137, 2022.
530 M. Javedankherad, Z. Zeinalpour-Yazdi, and F. Ashtiani. Mobility-aware content caching using
531 graph-coloring. *IEEE Trans. Veh. Technol.*, 71(5):5666–5670, 2022.
532 E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song. Learning combinatorial optimization algo-
533 rithms over graphs. In *The Adv. Neural Inf. Process. Syst.*, pp. 6348–6358, Apr. 2017.
534 A. Kose, B. A. Sonmez, and M. Balaban. Simulated annealing algorithm for graph coloring, 2017.
535

540 K. Langedal and F. Manne. Graph neural networks as ordering heuristics for parallel graph coloring,
 541 2024.

542 H. Lemos, M. Prates, P. Avelar, and L. Lamb. Graph colouring meets deep learning: Effective graph
 543 neural network models for combinatorial problems. In *Proc. IEEE 31st Int. Conf. Tools Artif.
 544 Intell. (ICTAI)*, pp. 879–885, Portland, OR, USA, 2019.

545 K. Li, T. Zhang, R. Wang, Y. Han, and L. Wang. Deep reinforcement learning for combinatorial
 546 optimization: covering salesman problems. *IEEE Trans. Cybern.*, 52(12):13142–13155, 2021.

547 Z. Li, X. Wang, L. Pan, L. Zhu, Z. Wang, J. Feng, C. Deng, and L. Huang. Network topology
 548 optimization via deep reinforcement learning. *IEEE Trans. Commun.*, 71(5):2847–2859, May
 549 2023.

550 C. Liu and T. Huang. Dynamic job-shop scheduling problems using graph neural network and deep
 551 reinforcement learning. *IEEE Trans. Syst., Man, Cybern. Syst.*, July 2023. doi: 10.1109/TSMC.
 552 2023.3287655.

553 H. Liu, J. Zhang, S. Jin, and B. Ai. Graph coloring based pilot assignment for cell-free massive
 554 mimo systems. *IEEE Trans. Veh. Technol.*, 69(8):9180–9184, 2020.

555 Q. Ma, S. Ge, D. He, D. Thaker, and I. Drori. Combinatorial optimization by graph pointer net-
 556 works and hierarchical reinforcement learning. In *Proc. AAAI Workshop Deep Learn. Graphs:
 557 Methodol. Appl.*, New York, 2020.

558 S. Manchanda, A. Mittal, A. Dhawan, and et al. Gcomb: Learning budget-constrained combinatorial
 559 algorithms over billion-sized graphs. In *Proc. Adv. Neural Inf. Process. Syst.*, pp. 20000–20011,
 560 Vancouver, Canada, Dec. 2020.

561 C. Mittal, K. Kartik, Masusam, and P. Singla. Puzzlebench: can llms solve challenging first-order
 562 combinatorial reasoning problems. *arXiv preprint arXiv:2402.02611*, 2024.

563 V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
 564 miller, A. K. Fidjeland, and G. Ostrovski et al. Human-level control through deep reinforcement
 565 learning. *Nature*, 518(7540):529–533, Feb. 2015.

566 M. Prates, P. H. Avelar, H. Lemos, L. C. Lamb, and M. Y. Vardi. Learning to solve np-complete
 567 problems: a graph neural network for decision tsp. In *The AAAI Conf. Artif. Intell.*, pp. 4731–
 568 4738, Kigali, Rwanda, 2019.

569 D. Pugachewa, A. Ermakov, I. Lyskov, and I. Makarov. Enhancing gnns performance on combina-
 570 torial optimization by recurrent feature update, 2024.

571 I. Rina, D. Sulistiowati, and D. RaudhatulOktavi. Graph coloring applications in scheduling courses
 572 using welch-powell algorithm - a case study. In *International Symposium on Information Tech-
 573 nology and Digital Innovation (ISITDI)*, pp. 131–135, Padang, Indonesia, 2022.

574 E. Shem-Tov and A. Elyasaf. Deep neural crossover. In *Proc. of The Genetic and Evolutionary
 575 Computation Conference 2024 (GECCO' 24)*, pp. 1045–1053, Melbourne, Australia, 2024.

576 K. Stechly, M. Marquez, and S. Kambhampati. Gpt-4 doesn't know it's wrong: an analysis of
 577 iterative prompting for reasoning problems, 2023.

578 J. Sun, C. Yang, X. Ji, Q. Huang, and S. Wang. Towards dynamic message passing on graphs. In
 579 *NeurIPS2024*, Vancouver, Canada, 2024.

580 Q. Xu, H. Geng, S. Chen, B. Yuan, C. Zhuo, Y. Kang, and X. Wen. Goodfloorplan: Graph con-
 581 volutional network and reinforcement learning-based floorplanning. *IEEE Trans. Comput.-Aided
 582 Design Integr. Circuits Syst.*, 41(10):3492–3502, Oct. 2022.

583 E. Yolcu and B. Póczos. Learning local search heuristics for boolean satisfiability. In *Proc. 33rd
 584 Conf. Neural Inf. Process. Syst. (NeurIPS)*, pp. 7992–8003, Vancouver, Canada, 2019.

585 H. Yuan, L. Fang, and S. Song. A reinforcement-learning-based multiple-column selection strategy
 586 for column generation. In *Proc. AAAI Conf. Artif. Intell.*, pp. 8209–8216, 2024.

594 Y. Zhang, H.-L. Zhan, Z. Pei, Y. Lian, L. Yin, M. Yuan, and B. Yu. Dila: enhancing llm tool learning
 595 with differential logic layer, 2024.
 596

597 Z. Zhang, Z. Wu, H. Zhang, and J. Wang. Meta-learning-based deep reinforcement learning for
 598 multiobjective optimization problems. *IEEE Trans. Neural Netw. Learn. Syst.*, Feb. 2022. doi:
 599 10.1109/TNNLS.2022.3148435.

600 Z. Zhang, A. Zhang, M. Li, and A. Smola. Automatic chain of thought prompting in large language
 601 models. In *The Eleventh International Conference on Learning Representations (ICLR)*, Kigali,
 602 Rwanda, 2023.

603

604 D. Zhou, N. Scharli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schuurmans, C. Cui, O. Bousquet,
 605 Q. Le, and E. Chi. Least-to-most prompting enables complex reasoning in large language models.
 606 In *The Eleventh International Conference on Learning Representations (ICLR)*, Kigali, Rwanda,
 607 2023.

608

609 **LLM USAGE DISCLOSURE**

610

611 Large language models (LLMs) were used in this work as writing and editing aids. The draft text
 612 for several sections, ablation study descriptions, and parts of the experimental analysis were initially
 613 generated or refined with LLM assistance, and then carefully reviewed, corrected, and finalized by
 614 the authors. The authors are solely responsible for the accuracy of all statements, the correctness of
 615 the code, and the validity of the results.

616

617 **Human verification & responsibility.** All claims, equations, proofs, references, and methodologi-
 618 cal descriptions were thoroughly checked by the authors. All experiments were independently rerun
 619 from clean environments, and all plots and tables were regenerated from verified outputs.

620 **Confidentiality & ethics.** No confidential or third-party material was provided to any LLM. We did
 621 not include hidden prompt injection text in the submission. All external data and code used in this
 622 work comply with their respective licenses, and all references were verified to correspond to real
 623 and relevant sources.

624 This disclosure is also reflected in the submission form as required by the ICLR policy.

625

626 **A PRELIMINARIES**

627

628 This section provides an overview of deep Q-learning and message-passing neural networks, which
 629 are foundational to our study.

630

631 **A.1 DEEP Q-LEARNING**

632

633 Deep Q-learning Mnih et al. (2015), a reinforcement learning technique, employs a trial-and-error
 634 approach within an uncertain environment to sequence decisions and actions toward a solution.
 635 Updates a Q-table to learn the reward associated with each state action pair, with the aim of choosing
 636 the state action pair that maximizes the reward. This method formalizes the decision making process
 637 as a Markov Decision Process (MDP), represented by the tuple $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathcal{V}, \gamma)$, where \mathcal{S} denotes
 638 the state space, \mathcal{A} the action space, \mathcal{R} the reward function, $\mathcal{V}(s)$ the value of being in state s and γ
 639 the discount factor for future rewards. The Bellman equation for Q-learning is expressed as:

$$640 \mathcal{V}(s) = \max_a [\mathcal{R}(s, a) + \gamma \mathcal{V}(s')] \quad (17)$$

641

642 Here, s and s' represent the current and subsequent states after taking action a . The reward value
 643 $\mathcal{Q}(s, a)$ for action a in state s is updated based on:

644

$$645 \mathcal{Q}(s, a) = \mathcal{Q}(s, a) + \alpha [\mathcal{R} + (1 - D)\gamma \max_{a'} \mathcal{Q}(s', a') - \mathcal{Q}(s, a)] \quad (18)$$

646

647 with α as the learning rate, s' and a' denoting potential next states and actions, and D indicating if
 648 the terminal state is reached ($D = 1$ for terminal states, otherwise $D = 0$).

648 A.2 MESSAGE-PASSING NEURAL NETWORKS
649

650 We employ a message-passing neural network (MPNN) framework to enhance deep Q-learning for
651 graph coloring, adept at processing graph-structured data Gilmer et al. (2017). The graph embedding
652 transforms each vertex $v \in V$ into a multidimensional vector h_v . MPNN operates through a message
653 passing phase and a read-out phase in T steps, utilizing message functions F and vertex update
654 functions U . The message f_v^{t+1} and the hidden state h_v^{t+1} for the vertex v are updated as follows:

$$f_v^{t+1} = F_n(h_v^t, h_u^t, u \in o(v)) \quad (19)$$

$$h_v^{t+1} = U_t(h_v^t, f_v^{t+1}) \quad (20)$$

655 Here, $o(v)$ denotes the set of neighbors for v , with f_v^{t+1} and $h_v^0 = s_v$ representing the message and
656 initial state, respectively. Through this iterative process, vertex embeddings aggregate information
657 from their neighborhood. The final read-out phase applies a function R to the final embeddings,
658 displaying action predictions (Q-values) as:

$$Q(s, a) = R(\{h_v^T\}_{a \in A}) \quad (21)$$

664 B THE PROOF OF THEOREM 1
665

666 1) When all N vertices are colored, $V''(\zeta_G) = 1$. According to Eq. (3), we have $\mathcal{V}(s_1) = V'_{i,N} + 1$,
667 $\mathcal{V}(s_2) = V'_{i',N} + 1$. According to Eq. (2), $V'_{i,N} < V'_{i',N}$ since $i' < i$. Proposition 1 holds.
668
669 2) According to Eq. (2), $V'_{i,j+1} - V'_{i,j} \geq 1$. The range of $V''(\cdot)$ is limited to $[0, 1]$, where $V''(\cdot)$ is
670 the proportion of colored edges in all edges as defined in Eq. (3).

$$\begin{aligned} \mathcal{V}(s(i, j+1)) &= V'_{i,j+1} + V''(\zeta_{G_{(i,j+1)}}) \\ &\geq V'_{i,j} + 1 \\ &\geq V'_{i,j} + V''(\zeta_{G_{(i,j)}}) \\ &\geq \mathcal{V}(s(i,j)) \end{aligned} \quad (22)$$

676 The inequality $\mathcal{V}(s(i, j)) \geq \mathcal{V}(s(i, j+1))$ holds.

677 3) According to Eq. (2), $V'_{i,j} = V'_{i+1,j+1}$. For a newly selected vertex u , u will transform adjacent
678 uncolored edges of u into colored edges. Without loss of generality, assume that m'' is the number of
679 adjacent uncolored edges of u . Thus, for the vertex u , u will transform adjacent uncolored edges of
680 u into colored edges. Without loss of generality, assume that m'' is the number of adjacent uncolored
681 edges of u . Thus,

$$\begin{aligned} \mathcal{V}(s(i, j)) &= V'_{i,j} + V''(\zeta_{G_{(i,j)}}) \\ &= V'_{i+1,j+1} + \frac{\zeta_{G_{(i,j)}}}{\|E\|} \\ &\leq V'_{i+1,j+1} + \frac{\zeta_{G_{(i,j)}} + m''}{\|E\|} \\ &= V'_{i+1,j+1} + \frac{\zeta_{G_{(i+1,j+1)}}}{\|E\|} \\ &= \mathcal{V}(s(i+1, j+1)) \end{aligned} \quad (23)$$

692 4) The maximum number of colored edges ζ_G in the graph G is equal to the number of edges $\|E\|$.
693 Thus, $V''(\zeta_G) = \frac{\zeta_G}{\|E\|} \leq 1$.

$$\begin{aligned} \mathcal{V}(s(i+1, j)) &= V'_{i+1,j} + V''(\zeta_{G_{(i+1,j)}}) \\ &\leq V'_{i,j-1} + 1 \end{aligned} \quad (24)$$

$$\begin{aligned} \mathcal{V}(s(i, j)) &= V'_{i,j} + V''(\zeta_{G_{(i,j)}}) \\ &\geq V'_{i,j-1} + 1 + V''(\zeta_{G_{(i,j)}}) \\ &> V'_{i,j-1} + 1 \end{aligned} \quad (25)$$

701 Thus, we have $\mathcal{V}(s(i, j)) > \mathcal{V}(s(i+1, j))$.

702 C THE PROOF OF THEOREM 2
703704 Assume that $k \neq \kappa$. The following two cases are taken into account.
705706 1) $k > \kappa$. According to Theorem 1, $\mathcal{V}(s(k, N)) < \mathcal{V}(s(\kappa, N))$. It contradicts the notion that
707 $\mathcal{V}(s_{(k, N)})$ is the largest potential value of the graph states.708 2) $k < \kappa$. It contradicts the definition of the chromatic number, which is the smallest number of
709 colors required for graph coloring.710 Therefore, k equals κ when reaching a maximum on the potential of the graph states $\mathcal{V}(s(k, N))$.
711712 D DETAILS ON EXPERIMENTS
713714 We conducted extensive experiments to evaluate the proposed LOMAC framework and reproduced
715 the baseline models under consistent conditions. Hyper-parameters were determined via grid search
716 based on validation loss, as summarized in Tab 3. All learnable parameters in LOMAC, including
717 the weights of linear transformations, proximity measurement, and pseudonode states, were opti-
718 mized jointly during training. For optimization, we adopted the Adam optimizer with a dynamically
719 adjusted learning rate schedule.
720721 D.1 DESCRIPTIONS OF BASELINE ALGORITHMS
722723 For graph coloring, we consider the following four types of baseline methods for performance com-
724 parison:
725726 D.1.1 TRADITIONAL HEURISTIC ALGORITHMS
727728 **Tabu** (Blochliger & Zufferey, 2008): performs neighborhood search based on tabu lists and aspira-
729 tion criteria.730 **DLF-GA** (Gebremedhin et al., 2013): assigns the smallest available color sequentially through local
731 optimization.
732733 D.1.2 GNN METHODS
734735 **GNN-GCP** (Lemos et al., 2019): uses GNN message passing to update the embeddings, predicts
736 the colorability of C through supervised learning and generates solutions.
737738 D.1.3 GNN-BASED DRL ALGORITHMS
739740 **SAT-DRL** (Yolcu & Póczos, 2019): encodes graph coloring as a CNF formula, models variable
741 relationships using GNN, and optimizes variable selection through reinforcement learning.742 **ECO-DQN** (Barrett et al., 2020): explores the solution space dynamically through reinforcement
743 learning and optimizes vertex states with a reward mechanism.744 **MCSS** (Yuan et al., 2024): selects optimal column combinations dynamically using neural networks
745 and a multicolumn selection strategy driven by reinforcement learning.
746

747 D.1.4 LLMs

748 **LTMP** (Zhou et al., 2023): solves complex problems by sequentially addressing simpler subprob-
749 lems that depend on the solutions of previous ones.750 **AUTO-COT** (Zhang et al., 2023): clusters various problems and uses LLM to generate reasoning
751 chains for the construction of automatic demonstrations.
752753 D.2 EXPERIMENTAL SETUP.
754755 The experiments were carried out using an RTX 4090 GPU and an Intel(R) Xeon(R) Platinum 8474
CPU, with software implementation in PyTorch 2.5.1. Due to limitations in memory resources, we

756 limit the experience replay buffer to 5000 samples. The GNN employs the Adam optimizer with a
 757 learning rate ρ , dynamically adjusted as:

$$\rho = \begin{cases} \frac{0.001\tau}{1000} & 0 \leq \tau \leq 1000 \\ 0.001 - 0.00095\frac{\tau-1000}{19000} & 1000 < \tau \leq 20000 \\ 0.00005 & \tau > 20000 \end{cases} \quad (26)$$

Table 3: Hyper-parameter setups for LOMAC.

DATASET	#MESSAGE STEPS (T)	HIDDEN DIM.	Q-SPACE DIM.	#Q-UNITS (n_q)	#PSEUDO NODES (n_p)	DROPOUT
ER-20	2	128	64	20	8	0.1
ER-40	2	128	64	40	20	0.1
ER-60	2	128	64	60	30	0.1
ER-200	2	128	64	200	96	0.2
ER-500	3	128	64	500	256	0.2
ER-1000	3	128	64	1000	520	0.3
BA-20	2	128	64	20	8	0.1
BA-40	2	128	64	40	20	0.1
BA-60	2	128	64	60	30	0.1
BA-200	2	128	64	200	96	0.2
CORA	4	128	64	2708	1256	0.3
CITESEER	4	128	64	3327	1256	0.3
PUBMED	8	128	64	19717	5200	0.3

D.3 ABLATION STUDY

We have demonstrated the effectiveness of LOMAC in solving GCP. To further analyze the contribution of individual components, we conduct three ablation studies, with results shown in Fig. 5.

Ablation Study on the Markov Chain To assess the impact of the one-way Markov chain, we performed an ablation study by removing this component and allowing the model to predict the color of each node directly. In this setup, with a fixed number of colors K , we increment K if a feasible coloring cannot be achieved. Without chain-based state transitions, the model relies on a predefined color space, which increases the solution complexity and reduces the guidance from structured state evolution. The results show that removing the Markov chain increases the number of required colors, highlighting its effectiveness in guiding compact colorings.

Ablation Study on the Potential Function To evaluate the effect of the potential-based reward of the graph state, we performed an ablation study by removing this component and adopting a simple potential-free reward. In this setup, the agent receives a reward of +1 for reusing an existing color and keeping the color valid. It gets 0 when a new color is introduced, and a penalty of $-\lambda$ for invalid actions. The results show that removing the potential function removes strong incentives for compact colorings, resulting in an increased number of required colors.

Ablation Study on Pseudo Nodes To evaluate the impact of pseudonode-enhanced message passing, we replace the graph neural decision network with a basic GNN. In this setup, message passing relies solely on the original graph topology, limiting efficiency and overall performance. The pseudonode-based message-passing mechanism embeds both graph nodes and pseudonodes into a unified latent space, enabling more flexible message-passing and reducing dependency on the graph topology. The results confirm the effectiveness of this mechanism. These three ablation studies isolate the contribution of each key component in LOMAC.

D.4 STATISTICAL SIGNIFICANCE ANALYSIS

To assess the robustness of the proposed LOMAC method in different sizes of graphs, we performed pairwise Wilcoxon signed rank tests between LOMAC and baseline algorithms on ER graphs with

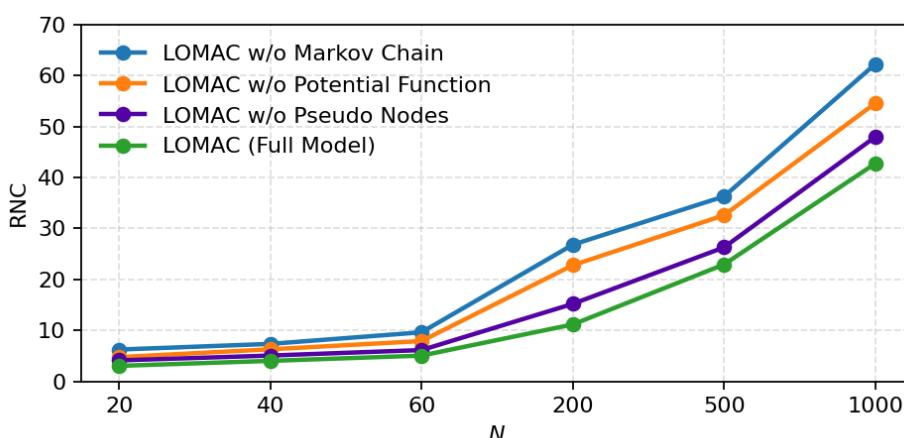


Figure 5: Ablation on the modules of LOMAC.

$N = 20, 40, 60, 200, 500$ and 1000 nodes. We used a significance level of $p < 0.05$. The results are summarized in Table 4, where a smaller p-value provides stronger evidence that LOMAC significantly outperforms the baseline algorithms in terms of RNC.

Table 4: Wilcoxon signed-rank test results on ER graphs with different node sizes. LOMAC shows statistically significant improvements over all baselines in terms of the number of colors.

Ours	Baseline	p-value (RNC)					
		Nodes	20	40	60	200	500
LOMAC	Tabu	0.042	0.037	0.041	0.039	< 0.001	< 0.001
LOMAC	DLF-GA	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
LOMAC	SAT-DRL	0.021	0.019	0.023	< 0.001	< 0.001	< 0.001
LOMAC	GNN-GCP	0.011	0.009	< 0.001	< 0.001	< 0.001	< 0.001
LOMAC	ECO-DQN	0.017	0.016	0.021	0.015	< 0.001	< 0.001
LOMAC	MCSS	0.024	0.023	0.025	< 0.001	< 0.001	< 0.001
LOMAC	LTMP	0.012	0.011	< 0.001	< 0.001	< 0.001	< 0.001
LOMAC	AUTO-COT	0.021	0.032	0.018	< 0.001	< 0.001	< 0.001

D.5 ADDITIONAL RESULTS ON SYNTHETIC AND REAL-WORLD INSTANCES

We provide additional results on both synthetic graphs (ER and BA) and real-world benchmark instances. Tables 5 and 6 report performance on ER and BA graphs with 20, 60, and 500 nodes. Across different sizes, LOMAC achieves the lowest RNC in the shortest execution time.

We also include results on selected real-world instances in Table 6. LOMAC consistently reaches optimal colorings with manageable run-time, highlighting its robustness and efficiency across diverse graph types and scales.

864
 865 Table 5: Performance Comparison of LOMAC and Baseline Methods on ER Graphs with 20, 60,
 866 and 500 nodes. RNC values are reported as mean \pm standard deviation over 5 runs with different
 867 random seeds.

Nodes	20			60			500		
	MR	RNC	ET	MR	RNC	ET	MR	RNC	ET
Tabu	1	3.0 \pm 0.1	0.79	0.96	5.0 \pm 0.2	20.61	NA	NA	NA
DLF-GA	0.34	3.7 \pm 0.4	0.0001	0	6.8 \pm 0.4	0.0016	0.2	26.3 \pm 0.6	1.93
SAT-DRL	1	3.0 \pm 0.1	3.01	0.9	5.1 \pm 0.3	90.5	NA	NA	NA
GNN-GCP	1	3.0 \pm 0.1	0.48	0.71	5.1 \pm 0.4	0.547	NA	NA	NA
ECO-DQN	0.93	3.1 \pm 0.3	0.02	0.87	5.1 \pm 0.3	0.12	0.74	25.4 \pm 0.8	23.8
MCSS	0.9	3.1 \pm 0.3	0.79	0.92	5.1 \pm 0.3	3.54	NA	NA	NA
LTMP	0.9	3.13 \pm 0.3	0.0028	0.5	5.1 \pm 0.5	0.02	NA	NA	NA
AUTO-COT	0.8	3.23 \pm 0.4	0.01	0.44	5.55 \pm 0.5	0.04	NA	NA	NA
LOMAC	1	3.03\pm0.1	0.16	0.96	5.04\pm0.2	0.84	0.82	22.94\pm0.6	7.21

879
 880 Table 6: Performance Comparison of LOMAC and Baseline Methods on BA Graphs with 20, 60,
 881 and 500 nodes, in terms of MR, RNC, and ET. RNC values are reported as mean \pm standard deviation
 882 over 5 runs with different random seeds.

Nodes	20			60			500		
	MR	RNC	ET	MR	RNC	ET	MR	RNC	ET
Tabu	0.99	4.9 \pm 0.37	1.21	0.95	5.04 \pm 0.2	26.56	NA	NA	NA
DLF-GA	0.05	6.41 \pm 0.46	0.01	0	8.11 \pm 0.3	0.03	0	13.24 \pm 0.4	0.28
SAT-DRL	1	4.89 \pm 0.31	34.7	0.81	5.2 \pm 0.4	84.78	NA	NA	NA
GNN-GCP	0.98	4.91 \pm 0.42	0.35	0.80	5.32 \pm 0.5	0.546	NA	NA	NA
ECO-DQN	0.96	4.93 \pm 0.46	0.03	0.95	5.04 \pm 0.2	0.21	0	9.24 \pm 0.4	7.24
MCSS	0.99	4.9 \pm 0.31	0.75	0.77	5.21 \pm 0.4	4.67	NA	NA	NA
LTMP	0.94	4.95 \pm 0.31	0.0049	0.81	5.18 \pm 0.2	0.013	NA	NA	NA
AUTO-COT	0.97	4.92 \pm 0.31	0.07	0.89	5.1 \pm 0.3	0.32	NA	NA	NA
LOMAC	1	4.89\pm0.31	0.28	0.95	5.04\pm0.19	1.61	0.72	7.28\pm0.32	9.26

895
 896 Table 7: Performance of LOMAC and Baseline Algorithms on COLOR02/03/04.

Instance	Nodes	χ_0	DLF-GA		GNN-GCP		SAT-DRL		LTMP		ECO-DQN		LOMAC	
			RNC	ET	RNC	ET	RNC	ET	RNC	ET	RNC	ET	RNC	ET
queen5.5	25	5	8	0.00061	6	0.662	5	38	6	0.00038	5	0.05	5	0.25
3 - Insertions 3	56	4	4	0.0015	4	0.703	4	9.19	4	0.00138	4	0.12	4	0.39
david	87	11	12	0.0033	14	1.421	NA	NA	12	0.00362	13	0.29	11	0.53
mugg88 25	88	4	4	0.0033	4	0.837	4	9.82	4	0.00356	4	0.26	4	0.52
mugg100 1	100	4	4	0.0045	2	0.899	4	11.17	4	0.00402	4	0.27	4	0.57

906
 907

E ALGORITHM DESCRIPTION

918
919
920
921
922
923
924

Algorithm 1 The training process of LOMAC

926 1: **In:** Randomly generated W graph samples, p, K, b, z
927 2: **Out:** The network parameters θ . /* θ' indicates the target network parameters
928 3: Initialize the network with random θ .
929 4: $\tau = 0$. /* τ indicates the current step number
930 5: **for** each graph sample **do**
931 6: $V^{cv} = \emptyset, \mathcal{C} = \emptyset$
932 7: Update the value of ε
933 8: **for** $i = 1$ to K **do**
934 9: **if** $V^{cv} \neq V$ **then**
935 10: $r = r + 1$
936 11: $\varepsilon' = \text{random}(0,1)$. /* get a random number in $[0,1]$
937 12: $v^* = \begin{cases} \varepsilon' < \varepsilon : \text{Choose random } v^* \in V^{cv} \\ \varepsilon' \geq \varepsilon : \text{The GNN-based decision-making phase,} \\ \text{argmax}_{a \in A} Q(s, a) \end{cases}$
938 13: $a^* = v^*$
939 14: **The color assignment phase:**
940 15: **if** $C^{v^*} \neq \emptyset$ **then**
941 16: stochastically assign a color from C^{v^*} to v^*
942 17: $R(s(i, j), a^*) = \mathcal{V}(s(i, j + 1)) - \mathcal{V}(s(i, j))$
943 18: Update the attribute values of $s(i, j + 1)$
944 19: $V^{cv} = V^{cv} \cup v^*, s^c = s(i, j + 1)$
945 20: **else**
946 21: **if** $C^{v^*} = \emptyset$ **then**
947 22: assign a new color c^{new} to v^*
948 23: $R(s(i, j), a^*) = \mathcal{V}(s(i + 1, j + 1)) - \mathcal{V}(s(i, j))$
949 24: Update the attribute values of $s(i + 1, j + 1)$
950 25: $V^{cv} = V^{cv} \cup v^*, \mathcal{C} = \mathcal{C} \cup c^{\text{new}}, s^c = s(i + 1, j + 1)$
951 26: **else**
952 27: $R(s(i, j), a^*) = z, s^c = s(i, j)$
953 28: **end if**
954 29: **end if**
955 30: Update $Q(s_{(i, j)}, a^*)$ according to Eq. (18)
956 31: **The prioritized experience replay phase:**
957 32: Compute the value of p according to Eqs. (7) and (8)
958 33: Add $[s(i, j), a^*, Q(s(i, j), a^*), s^c, p]$ into the prioritized experience replay buffer.
959 34: **if** $\tau \bmod p == 0$ **then**
960 35: Get b random samples B from the buffer
961 36: learn θ given training samples B .
962 37: **end if**
963 38: **end if**
964 39: **end for**
965 40: **end for**

966
967
968
969
970
971

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987

Algorithm 2 The testing process of LOMAC

988 1: **In:** $G = (V, E)$, the network with parameters θ
 989 2: **Out:** C, S
 990 3: $V^{cv} = \emptyset, \mathcal{C} = \emptyset$
 991 4: **for** $i = 1$ **to** K **do**
 992 5: **if** $V^{cv} \neq V$ **then**
 993 6: **The GNN-based decision-making phase:**
 994 7: $a^* = v^* = \text{argmax}_{a \in A} Q(s, a)$
 995 8: **The color assignment phase:**
 996 9: **if** $C^{v^*} \neq \emptyset$ **then**
 997 10: stochastically assign a color from C^{v^*} to v^*
 998 11: $R(s(i, j), a^*) = \mathcal{V}(s(i, j + 1)) - \mathcal{V}(s(i, j))$
 999 12: Update the attribute values of $s(i, j + 1)$
 1000 13: $V^{cv} = V^{cv} \cup v^*, s^c = s(i, j + 1)$
 1001 14: **else**
 1002 15: **if** $C^{v^*} = \emptyset$ **then**
 1003 16: assign a new color c^{new} to v^*
 1004 17: $R(s(i, j), a^*) = \mathcal{V}(s_{(i+1, j+1)}) - \mathcal{V}(s(i, j))$
 1005 18: Update the attribute values of $s_{(i+1, j+1)}$
 1006 19: $V^{cv} = V^{cv} \cup v^*, \mathcal{C} = \mathcal{C} \cup c^{\text{new}}, s^c = s(i + 1, j + 1)$
 1007 20: **else**
 1008 21: $R(s(i, j), a^*) = z, s^c = s(i, j)$
 1009 22: **end if**
 1010 23: **end if**
 1011 24: Update $Q(s(i, j), a^*)$ according to Eq. (18)
 1012 25: **end if**
 1013 26: **end for**
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
