
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LOMAC: GNN-BASED DEEP REINFORCEMENT
LEARNING WITH ONE-WAY MARKOV CHAIN FOR
GRAPH COLORING

Anonymous authors
Paper under double-blind review

ABSTRACT

The graph coloring problem (GCP) is an NP-hard combinatorial optimization task
aimed at assigning the minimum number of colors to graph vertices such that no
two adjacent vertices share the same color. While deep reinforcement learning
(DRL) and graph neural networks (GNNs) are promising approaches to solving
the GCP, their scalability is usually limited by the large number of Markov states
and high computational complexity as the graph size increases. In this paper, we
introduce LOMAC, a novel GNN-based DRL framework that integrates a one-
way, two-dimensional Markov chain and a linear-complexity GNN model with
pseudonode-enhanced message passing. This integration significantly reduces
both space and computational complexity. We transform the GCP into a one-
way Markov chain model, introducing two key concepts: Markov state potential
and graph state potential. Through theoretical analysis of Markov- and graph-state
potentials, we effectively guide the search for an optimal vertex-coloring solution.
We show that LOMAC reduces the number of Markov states from O(KN) to
O(NK), simplifying decision-making with unidirectional state transitions. Addi-
tionally, an invalid action penalty mechanism is implemented to further optimize
the coloring process. Experimental results in various sizes of Erdős–Rényi- and
Barabási–Albert graphs and 16 real-world benchmarks demonstrate that LOMAC
achieves state-of-the-art performance in the number of required colors.

1 INTRODUCTION

v1

...

... ...

...

...

...

Markov States in the State Space During the Markov Decision Process for Graph Coloring

(b) The Proposed DRL Model

State Space

G(1,2)G(1,2)

m(0,0) m(1,1) m(K,N)

0 color 1 color K colors

j=0 j=1 j=N

m(0,0) m(1,1) ... m(1,N)m(1,2)

m(2,2) m(2,N)m(2,3) ...

m(3,N)m(3,3) ...

... m(K,N)

...

v1

v1 v2

...

v1

...

v2

...

v1 v2 v3

v2v1 v2v1

v1 v2 v3 ... v1 v2 v3

...

...

K colors

...

K colors

...

K colors

vNv2
...

j=1 j=2 j=N

(a) The Conventional DRL Models

j represents the number of colored vertices

represents N vertices are colored= =

State Space

v1

...

... ...

...

...

...

Markov States in the State Space During the Markov Decision Process for Graph Coloring

(b) The Proposed DRL Model

State Space

G(1,2)G(1,2)

m(0,0) m(1,1) m(K,N)

0 color 1 color K colors

j=0 j=1 j=N

m(0,0) m(1,1) ... m(1,N)m(1,2)

m(2,2) m(2,N)m(2,3) ...

m(3,N)m(3,3) ...

... m(K,N)

...

v1

v1 v2

...

v1

...

v2

...

v1 v2 v3

v2v1 v2v1

v1 v2 v3 ... v1 v2 v3

...

...

K colors

...

K colors

...

K colors

vNv2
...

j=1 j=2 j=N

(a) The Conventional DRL Models

j represents the number of colored vertices

represents N vertices are colored= =

State Space

Figure 1: Comparison of Markov states in the state
space during the Markov decision process for graph
coloring between conventional DRL models (with
O(KN) Markov states) and the proposed DRL model
(with O(NK) Markov states).

The graph coloring problem (GCP) is a
critical challenge in combinatorial opti-
mization (CO) and graph theory. It in-
volves assigning the fewest number of
colors to the vertices of a graph so that
no two adjacent vertices share the same
color. Efficient solutions to GCP have sig-
nificant applications, including resource
scheduling (Rina et al., 2022), register al-
location (Das et al., 2020), pilot assign-
ment (Liu et al., 2020), content caching
(Javedankherad et al., 2022), and wire-
less channel assignment (Ge et al., 2023).
However, determining whether a graph
can be colored with K colors is NP-
complete, and minimizing the chromatic
number is NP-hard. This means that there
is no polynomial-time algorithm for solv-
ing the GCP under the P ̸= NP con-
jecture. Recent advances have explored
deep reinforcement learning (DRL) and
graph neural networks (GNN) (Colanto-
nio et al., 2024; Pugachewa et al., 2024;
Lemos et al., 2019; Langedal & Manne, 2024; Prates et al., 2019; Huang et al., 2019; Yuan et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2024) as promising approaches to solve GCP. DRL aids in sequential decision making, while GNNs
are capable of modeling and processing graph-structured data. However, these models face scala-
bility issues due to the large number of Markov states in the state space, even for moderately sized
graphs. This is because they typically model the entire coloring process as a Markov Decision Pro-
cess (MDP), in which each possible color assignment for every node in the graph is treated as an
independent Markov state. As the size of the graph increases, the state space expands exponentially.

To address the scalability limitations of traditional methods, we propose LOMAC, which integrates
a Markov chain into DRL and employs a pseudonode-enhanced GNN for efficient graph coloring.
Specifically, we design a one-way, two-dimensional Markov chain with finite states, which signifi-
cantly reduces state space and computational demands compared to conventional DRL methods. As
shown in Fig.1, conventional DRL models assign one of the K colors to each vertex, resulting in
O(KN) Markov states. In contrast, our model reduces the state space to O(NK), which is at most
O(N2) when the chromatic number is unknown. The one-way Markov chain restricts transitions
to a single direction, further simplifying the decision-making process and reducing computational
requirements. Additionally, we introduce new definitions of the Markov state potential and graph
state potential. By analyzing the relations between these potentials, we establish inequality con-
straints that guide the coloring process toward states with fewer colors. We also propose a potential-
based reward function that penalizes invalid actions and guides the identification of optimal color-
ing strategies. Inspired by the work of N2 (Sun et al., 2024), we designed a pseudonode-enhanced
GNN model for GCP that enables the passing of dynamic messages in linear time. This model uti-
lizes pseudonodes as intermediaries for message passing to effectively learn Q-value embeddings
for node selection actions. This design reduces computational overhead and alleviates dependence
on the input graph topology. The experimental results demonstrate that LOMAC achieves better
performance compared to existing methods. The contributions of this paper are threefold.

• We provide a GNN-based DRL solution to the GCP by introducing a novel one-way, two-
dimensional Markov chain with finite states. This design significantly reduces the state
space and computational complexity, even for graphs with unknown chromatic numbers.
We also propose a pseudonode-enhanced GNN for linear-time message passing, which
effectively learns Q-value embeddings for node selection actions.

• We introduce two new definitions, the Markov state potential and the graph state potential.
Furthermore, we establish inequality relations between the potential values of Markov and
graph states to find an optimal vertex-coloring solution and validate a reward function that
enhances model efficiency and solution quality. Additionally, we propose an invalid action
penalty mechanism to further optimize the coloring process.

• We show that LOMAC outperforms existing methods in various sizes of Erdős–Rényi (ER)-
and Barabási–Albert (BA) graphs, as well as 16 real-world benchmarks, excelling in the
number of required colors, matching ratio, and execution time.

2 RELATED WORKS

Traditional Heuristic Algorithms. Early heuristic approaches to graph coloring often employed
greedy strategies such as Largest First (LF), Smallest First (SF) (Gebremedhin et al., 2013), and
Tabu Search (Blochliger & Zufferey, 2008). More recent evolutionary algorithms, such as simulated
annealing (Kose et al., 2017), heuristic feedback (Inaba et al., 2022), and genetic algorithms (Shem-
Tov & Elyasaf, 2024), have also shown success. For example, Inaba et al. (Inaba et al., 2022) applied
the Potts model to graph coloring, iteratively updating interaction matrices to minimize Potts energy.
Although these methods provide feasible solutions, they are tremendously time consuming and often
based on manually crafted heuristics, which limits their ability to explore the solution space more
effectively.

GNN Methods. GNNs have become a popular approach for solving combinatorial optimization
problems by learning features from graph-structured data (Kose et al., 2017; Prates et al., 2019;
Lemos et al., 2019). Once trained, GNNs can efficiently generate solutions for new instances. For
example, a Potts model inspired GNN (Colantonio et al., 2024) was applied to the graph coloring
problem, while Pugachewa et al. (Pugachewa et al., 2024) used recurrent GNNs to obtain optimal
solutions. Langedal et al. (Langedal & Manne, 2024) introduced a GNN-based ordering heuristic for

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

graph coloring, achieving execution times comparable to greedy algorithms. However, GNN-based
models often require substantial training in various instances to be generalized effectively.

DRL Methods. Unlike GNN models, DRL provides a dynamic framework for learning optimal
policies based on expected outcomes (Ma et al., 2020). For example, Li et al. (Li et al., 2021)
developed an unsupervised DRL method for a traveling salesman problem. Zhang et al. (Zhang
et al., 2022) proposed a meta-learning-based DRL model for handling multi-objective combinato-
rial optimization problems. Although DRL is superior in learning optimal policies from states and
rewards, it struggles to fully leverage graph-structured data.

GNN-based DRL Algorithms. A notable advancement in this area is FastColorNet (Huang et al.,
2019), a graph coloring algorithm that integrates DRL and GNN for vertex color assignments. Other
frameworks, such as S2V-DQN (Khalil et al., 2017; Manchanda et al., 2020), ECO-DQN (Barrett
et al., 2020), and those in (Xu et al., 2022; Li et al., 2023; Liu & Huang, 2023), model combinatorial
optimization problems as MDP and use GNNs for representation learning to guide the actions of
DRL agents. These approaches use graph embeddings as Q-values for each node and add nodes
to the solution one by one, based on their corresponding Q-values. For large-scale GCPs, Yuan
et al. (Yuan et al., 2024) proposed a multicolumn selection strategy combining DRL and GNN,
significantly reducing training iterations and runtime. Despite these advancements compared to
standalone GNN and DRL methods, GNN-based DRL algorithms still face scalability issues due
to high space and computational complexity. In this paper, we introduce a novel GNN-based DRL
framework that integrates a one-way, two-dimensional Markov chain with O(NK) states and a
linear-complexity GNN model, significantly reducing both space and computational complexity.

LLM approaches. Large Language Models (LLMs) have recently gained significant attention
for logical reasoning and planning tasks. Recent studies (Stechly et al., 2023; Zhang et al., 2023;
Zhou et al., 2023; Zhang et al., 2024; Mittal et al., 2024) have explored their potential for graph
coloring using prompt-based reasoning techniques, such as chain-of-thought (Zhang et al., 2023)
and least-to-most prompting (Zhou et al., 2023). For example, Stechly et al. (Stechly et al., 2023)
investigated iterative prompting for graph coloring and found that self-critique-based prompting
struggled with reasoning and correctness verification. Although these methods show promise in
enhancing logical reasoning and solution accuracy, LLMs are inherently sequence-based, lacking
explicit logical reasoning modules. This makes them prone to generating invalid or suboptimal
solutions.

3 LOMAC FRAMEWORK

This section introduces the one-way Markov chain model for graph coloring, presents the input
representation for the model, and describes the proposed framework.

3.1 ONE-WAY MARKOV CHAIN MODEL

Consider an undirected graph G = {V,E}, where V represents the vertices and E = {(i, j)|i, j ∈
V } represents the edges. The goal of graph coloring is to assign a unique color c to each vertex
v, minimizing the chromatic number while ensuring that adjacent vertices do not share the same
color. Let K denote the number of colors, and let N be the number of vertices. The set of colors
is represented as C = {c1, c2, . . . , cK}, with cv denoting the color assigned to the vertex v, and ηv
indicating the number of neighbors of v. V c represents the set of colored vertices. As shown in Fig.
2, we introduce a one-way, two-dimensional Markov chain to model the coloring process. Starting
from an initial state m(0, 0), where no vertex is colored, the process progresses to the state m(1, 1)
with one colored vertex, and continues up to m(i, j), where j vertices are colored using i colors.
A graph with N vertices requires at most N colors. The total number of states is not more than
O(N2), especially in a fully connected graph, where each vertex requires a unique color.

In this model, transitioning from state m(i, j) involves three scenarios: 1) If a valid
color exists for vertex v, the state moves to m(i, j + 1); 2) If no valid color ex-
ists for v, a new color is introduced and the state moves to m(i + 1, j + 1);

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

G(1,2)G(1,2)

...

...

...

... ...

...

m(0,0)m(0,0) m(1,1)m(1,1) m(1,2)m(1,2) m(1,N)m(1,N)m(1,N-1)m(1,N-1)

m(2,2)m(2,2) m(2,3)m(2,3) m(2,N)m(2,N)

m(i,j)m(i,j)

m(N,N)m(N,N)
i represents the number of colors used

j represents the number of colored vertices

G(1,2)G(1,2)

...

...

...

... ...

...

m(0,0)m(0,0) m(1,1)m(1,1) m(1,2)m(1,2) m(1,N)m(1,N)m(1,N-1)m(1,N-1)

m(2,2)m(2,2) m(2,3)m(2,3) m(2,N)m(2,N)

m(i,j)m(i,j)

m(N,N)m(N,N)
i represents the number of colors used

j represents the number of colored vertices

Figure 2: The one-way Markov chain model for graph
coloring.

3) If v is already colored, the state remains
at m(i, j). The process reaches comple-
tion at the statem(i,N), where all vertices
are colored. Except for the third case, the
model ensures a streamlined one-way tran-
sition towards the final state. Importantly,
Markov states and graph states hereinafter
are distinct. Markov state is determined by
the number of colored vertices and the col-
ors used, while the graph state is defined
by the coloring of vertices. It is easy to
see that the graph state s cannot be inferred
from a Markov state m(i, j), but the cor-
responding Markov state can be derived
from the graph state s by counting the col-
ored vertices and the colors used. To avoid
confusion, we will specify these states in subsequent sections.

3.2 INPUT REPRESENTATION

To formalize the input of the proposed LOMAC framework, we introduce the following definitions
relevant to the GCP.

Definition 1 (Colored Edge and Uncolored Edge). An edge is a colored edge if at least one of its
incident vertices is colored. Otherwise, it is an uncolored edge.
Definition 2 (Colored Degree of a Graph).The colored degree ζG of a graph G = {V,E} is the
total number of colored edges in E. Proper coloring ensures that the adjacent vertices have different
colors.
Definition 3 (Uncolored Vertex Degree). For an uncolored vertex v, its uncolored degree ℓv is the
number of uncolored edges incident to v. For colored vertices, ℓv = 0.
Definition 4 (Uncolored Degree of a Graph). The uncolored degree ζ ′G of graph G = {V,E} is
the total count of uncolored edges, with ζG + ζ ′G = |E| representing the total number of edges.
Definition 5 (Valid Color Set). For an uncolored vertex v, the valid color set Cv includes colors
that ensure proper coloring when assigned to v. If Cv = ∅, a new color must be introduced.
Definition 6 (Saturation Degree). The saturation degree ρv of a vertex v is defined as the number
of its colored neighbors.
Definition 7 (Degree Centrality). The centrality of the degree dv of a vertex v is defined as the
ratio of its degree to the maximum vertex degree in the graph.
Definition 8 (Color Number of Neighbors). The color number of neighbors δv is defined as the
number of different colors that appear among its adjacent vertices.

We model the graph coloring task as an MDP. This process is defined as M = (S,A,R,V, γ),
where S is the graph state space (distinct from the Markov state space in Fig. 2), A is the action
space, R is the reward function, V(s) is the state value of s and γ is the discount factor. A graph state
s is represented as s = [s′0, s

′
1, . . . , s

′
N] ∈ RN×m′

, where s′i is the set of attributes for the vertex vi,
which contains m′ attributes. Specifically, the state of each vertex is represented by six attributes:
its color, uncolored vertex degree, size of the valid color set, saturation degree, degree centrality,
and color number of neighbors. Initially, all vertices are uncolored, so cvi = −1 for all 1 ≤ i ≤ N .
The uncolored degree ℓv is updated when the neighboring vertices are colored. The action space A
consists of actions avi for each vertex vi, and avi represents the selection and coloring of the vertex
vi. Only one vertex is colored per step, and once a vertex is colored, it is not recolored. If one vertex
vj has been a colored vertex, the action avj , i.e., selecting and coloring vi repeatedly, is called an
invalid action. We use deep Q-learning and a message passing neural network to solve the graph
coloring task. For further details on deep Q-learning and message-passing neural networks, please
refer to Appendix A. The action that maximizes the Q-value is selected at each step:

a∗ = v∗ = argmax
a∈A

Q(s, a). (1)

To optimize the coloring process while minimizing the number of colors used, we establish the fol-
lowing inequality relations between the potentials of Markov states (denoted as V ′

i,j for the Markov

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

state m(i, j)): 
V ′
i,j+1 − V ′

i,j ≥ 1.

V ′
i,j = V ′

i+1,j+1.

V ′
i,j > V ′

i+1,j .

(2)

As previously outlined, the agent’s progression from the current state is restricted to transitions to the
right or downward, without considering invalid actions. This restriction ensures that the potential
of Markov states increases monotonically, as specified by the first two equations. Eq. (2) shows
that the Markov state of coloring j vertices with fewer colors has greater potential. To quantify the
potential of a graph state s, we define it as a combination of V ′

i,j , which represents the potential of
the Markov state, and V ′′(ζG), the ratio of colored edges within the graph. This is formalized as
follows. {

V(s) = V ′
i,j + V ′′(ζG),

V ′′(ζG) =
ζG
∥E∥ ,

(3)

where V ′′(ζG) is the proportion of colored edges to the total number of edges. This formulation
reveals that V(s) depends on the number of colors, colored vertices, and colored edges within the
graph G. In particular, different graph states may share identical counts of colors, colored vertices,
and colored edges.

Theorem 1. For the Markov decision process M = (S,A,R,V, γ), the potential of the Markov
and graph states adheres to Eqs. (2) and (3), respectively, producing the following:

V(s(i, n)) ≥ V(s(i′, n)) if i′ ≤ i.

V(s(i, j)) ≥ V(s(i, j + 1)).

V(s(i, j)) ≤ V(s(i+ 1, j + 1)).

V(s(i, j)) ≥ V(s(i+ 1, j)).

(4)

Proof. Please refer to Appendix B.

Theorem 2. For MDP M = (S,A,R,V, γ) as shown in Fig. 2, let V(s(k,N)) be the largest
potential of the graph states when all N vertices are colored. Here, k equals the chromatic number
κ.
Proof. Please refer to Appendix C.

The proofs for these statements demonstrate the inherent monotonic increase in the potential of
graph states and Markov states within the MDP model, highlighting the model’s preference for
graph states with fewer colors and more colored edges, given the same number of colored vertices.

3.3 CONSTRAINED REWARD SHAPING

In this subsection, we introduce a graph state potential-based reward function that also penalizes
invalid actions. Based on the Markov chain model described previously, there are three types of
actions av , each corresponding to a specific state transition: from state s(i, j) to s(i, j + 1), from
s(i, j) to s(i+1, j+1), and from s(i, j) to s(i, j). s(i, j) denotes a graph state in which j vertices are
colored using i colors. It differs from the abstract Markov statem(i, j) by preserving the full vertex-
level coloring configuration. For the first two types of action, the reward is the potential difference
between the old and new graph states. For the invalid action, we assign a negative constant z (where
z < 0) as a penalty. The reward function and the corresponding graph state potential function are
defined below.

R(s, av) =


1 + ∆ζG

∥E∥ , cv=−1 ∧ Cv ̸= ∅
∆ζG
∥E∥ , cv=−1 ∧ Cv = ∅
z, cv ̸=−1

(5)

V(s(i, j)) = (j − i) +
ζ
(i,j)
G

∥E∥
(6)

where ∆ζG denotes the change in ζG induced by action av , and ζ(i,j)G represents the number of
colored edges in the Markov state s(i, j).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.4 SYSTEM ARCHITECTURE

As illustrated in Fig. 3, the proposed LOMAC system architecture consists of three phases: 1)
GNN-based decision making phase: Identifies the optimal vertex for coloring. 2) Color assignment
phase: Dynamically assigns colors and updates the graph state. 3) Prioritized experience replay
phase: Consolidates learning trajectories for model refinement.

Color AssignmentGNN-based Decision-making Prioritized Experience Replay

Case 2

Case 1 C

𝒔(𝒊,𝒋) → 𝒔(𝒊,𝒋)

𝑣1

𝑣1
C

𝑣1

𝑣1

Case 3
𝑣1

C
𝑣1

Q-value

0
.7

4

0
.1

4

0
.3

5

v1 v2 vn
...

Dynamic Message Passing

ReadoutReadout

Graph State

v1

cvi Cvi rvilvi dvi dvicvi Cvi rvilvi dvi dvi

vn

.
..

CCC

Temporal Difference

2

() 1[(, ;) (, ;)]
tt a targ t t i t t ir max Q s a Q s ad   −

+= + −

 Sampling Priority

Transition Tuple
(St , at , rt , St+1 , pt)

Transition Tuple
(St , at , rt , St+1 , pt)

Transition Tuple
(St , at , rt , St+1 , pt)

Priority

t([]))tp ed = +
Priority

t([]))tp ed = +
Transition Tuples

St

at rt St+1 St

at rt St+1

...

Prioritized

Experience

Replay Buffer

St

at rt St+1

 Initial Embedding Generation Initial Embedding Generation

Pseudo Node Adaptation

s(i, j) s(i, j+1)s(i, j) s(i, j+1)

s(i, j) s(i+1, j+1)s(i, j) s(i+1, j+1)

s(i, j) s(i, j)s(i, j) s(i, j)

Color AssignmentGNN-based Decision-making Prioritized Experience Replay

Case 2

Case 1 C

𝒔(𝒊,𝒋) → 𝒔(𝒊,𝒋)

𝑣1

𝑣1
C

𝑣1

𝑣1

Case 3
𝑣1

C
𝑣1

Q-value

0
.7

4

0
.1

4

0
.3

5

v1 v2 vn
...

Dynamic Message Passing

ReadoutReadout

Graph State

v1

cvi Cvi rvilvi dvi dvicvi Cvi rvilvi dvi dvi

vn

.
..

CCC

Temporal Difference

2

() 1[(, ;) (, ;)]
tt a targ t t i t t ir max Q s a Q s ad   −

+= + −

 Sampling Priority

Transition Tuple
(St , at , rt , St+1 , pt)

Transition Tuple
(St , at , rt , St+1 , pt)

Transition Tuple
(St , at , rt , St+1 , pt)

Priority

t([]))tp ed = +
Priority

t([]))tp ed = +
Transition Tuples

St

at rt St+1 St

at rt St+1

...

Prioritized

Experience

Replay Buffer

St

at rt St+1

 Initial Embedding Generation Initial Embedding Generation

Pseudo Node Adaptation

s(i, j) s(i, j+1)s(i, j) s(i, j+1)

s(i, j) s(i+1, j+1)s(i, j) s(i+1, j+1)

s(i, j) s(i, j)s(i, j) s(i, j)

Figure 3: GNN-based DRL framework for GCPs, consisting of three phases: GNN-based decision-
making, color assignment, and prioritized experience replay.

GNN-based decision making phase. The network processes the graph state s = [s′1, . . . , s
′
N] ∈

RN×6, where each node vi is represented by s′i = [cvi , ℓvi , C
vi , ρv, dv, δv]. Using the GNN

model described in Section 4, which includes initial embedding generation, pseudonode adapta-
tion, dynamic message passing, and readout blocks, the optimal vertex for coloring is selected as
a∗ = v∗ = argmaxa∈AQ(s, a).

Color assignment phase. This phase assigns an appropriate color to the selected vertex, with the
color assignment process detailed in Section 3.1.

Prioritized experience replay phase. To improve training stability, we use a prioritized experience
replay to focus on transitions with higher temporal difference errors. At each step, the agent stores
the transition tuple (st, at, rt, st+1, pt) in a replay buffer, where the priority pt is computed as:

pt = δt + ϵ. (7)

The temporal difference (TD) error is defined as:

δt =

[
rt + γmax

(at)
Qtarg(st+1, at; θ

−
i)−Q(st, at; θi)

]2
, (8)

where st is the current state, at is the action taken at state at, rt is the immediate reward received
after executing at, and st+1 is the next state reached. γ is the discount factor that controls future
reward weighting, ϵ is a small positive constant to ensure a nonzero sampling probability, θi denotes
the parameters of the current Q network, θ−i denotes the parameters of the target Q network, and
Qtarg denotes the target Q network which is a slower-updating copy of the current Q network. The
training and testing processes of LOMAC are described in Appendix E.

4 SYSTEM IMPLEMENTATION OF LOMAC

This section details the implementation of the core component in LOMAC, GNN-based decision-
making using pseudonode-enhanced message passing. The GNN architecture establishes a shared
embedding space H ∈ Rq for both physical graph nodes V = {vi}Ni=1 and trainable pseudonodes
U = {uj}Mj=1. Let Q ∈ RN×q and R ∈ RM×q represent their respective state matrices. Node
proximity is measured through adaptive feature correlation:

ϕ(ri, rj) =

q∑
t=1

λtσ(ri,t)σ(rj,t), (9)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Dropout

Linear

LeakyRelu

Node Message

Node State

Diffuse

Graph node

Pseudo node

Refine

Repeat

Linear

Concat

Relu

Readout

Node Message

Collect

Pseudo Node
Adaptation

Collect

Pseudo Node
Adaptation

Dynamic Message
Passing

()R̂ l

g()M̂ l

()Q l

n()M l

()R l

()Q L

()R L

()Q l

n()M l

()R l

Initial Embedding
Generation

Local Message
Passing

Local Message
Passing

Concat
g()M̂ l n()M l ()Q l

Concat
g()M̂ l n()M l ()Q l

MLP

Figure 4: GNN-based decision making architecture featuring four key blocks, initial embedding
generation, adaptive pseudo-node coordination, message passing (local/global), and readout.

where λ1:q are learned attention weights and σ denotes a perceptron layer equipped with LeakyReLU
activation and dropout regularization. The architecture employs four specialized processing blocks
described in the following.

Initial Embedding Generation. The block establishes initial node representations through the
projection of permutation-equivariant features.

Q(0) = fθ(M
(0)
V) ∈ RN×q, (10)

where fθ is a linear transformation learned initialized from the graph state s.

Pseudo Node Adaptation. The block orchestrates the global information flow through three phase-
coordinated operations:

Diffusion: G = EnpM
(l−1)
V , Enp

ij = ϕ(ri, qj) (11)

Refinement: Ĝ = EppG, Epp
ij = ϕ(ri, rj) (12)

Redistribution: M̂g(l) = EpnM
(l)
U , Epn

ij = ϕ(qi, r̂j) (13)

Dynamic Message Passing. The block combines neighborhood aggregation with global state diffu-
sion. For each graph node v:

Mloc(l)
v =

1

ηv + 1

ml−1
u +

∑
u′∈N (v)

σ(ml−1
u′ ∥ ml−1

u)

 (14)

Q̂(l) = Q(l−1) + σ(Mloc(l)) (15)

Global message updates follow operator sequences similar to those in Eqs. (11)-(13) but using
current-layer states.

Readout. The block computes the Q value of the action avi after the L propagation layers:

Q(avi
) = ψ(Q(L)[i, :]), (16)

where ψ maps the final node states to the Q value.

5 EXPERIMENT

In this section, we evaluate the performance of LOMAC on synthetic and real-world benchmarks.
LOMAC is implemented in PyTorch and is trained on a Nvidia GeForce RTX 4090 GPU. Detailed
experimental settings are provided in Appendix D.2.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Dataset. We generate random graphs based on the ER and BA distributions. The model is trained
on W = 12500 randomly generated graph samples and evaluated on a separate set of 100 holdout
graphs drawn from the same distributions. We examine the experimental results for the sizes of the
graphs N = 20, 40, 60, 200, 500, 1000. ER graphs are generated using the ER G(N, p′ = 0.15)
model, while BA graphs follow the BA model, where each node is connected to m0 = 4 nodes.

Baseline algorithms. We compare LOMAC with four categories of baseline algorithms: (1) Tradi-
tional heuristic algorithms, including Tabu (Blochliger & Zufferey, 2008) and DLF-GA (Gebremed-
hin et al., 2013); (2) GNN method, specifically GNN-GCP (Lemos et al., 2019); (3) GNN-based
DRL algorithms, including SAT-DRL (Yolcu & Póczos, 2019), ECO-DQN (Barrett et al., 2020) and
MCSS (Yuan et al., 2024); (4) LLMs, including LTMP (Zhou et al., 2023) and AUTO-COT (Zhang
et al., 2023). For details of the baseline algorithms, please refer to Appendix D.1. We also performed
Wilcoxon’s significance tests to assess the statistical robustness of LOMAC against these baselines.
The detailed results of the Wilcoxon test are reported in Appendix D.4.

Evaluation Metrics. We adopted the following evaluation metrics. Required number of colors
(RNC): A smaller RNC indicates a more efficient coloring, which is crucial for applications such
as registration allocation and pilot assignment. Matching ratio (MR): The proportion of test cases
in which the model successfully matches the known chromatic number κ, obtained using the CSP-
Solver1 as reference. Execution time (ET): The average time taken to solve the coloring tasks,
excluding model training time for learning-based algorithms, as the training is performed offline.

5.1 PERFORMANCE ON ER AND BA GRAPH INSTANCES

We compare the performance of LOMAC with eight baseline algorithms on the ER and BA graphs
in terms of RNC, MR, and ET, averaged over 100 test samples, as shown in Table 1. Additional
results are reported in Appendix D.5. Unsolvable instances are marked as ’NA’. From the tables, we
observe that LOMAC outperforms other algorithms in RNC. As the size of the graph increases from
N = 40 to 200 and 1000, LOMAC significantly reduces the number of colors required, while most
algorithms fail to provide solutions for larger graphs. Even in the worst cases, the LOMAC RNC
deviates by no more than 4% from the best results in multiple runs. Furthermore, LOMAC strikes
an optimal balance between ET and RNC, achieving the lowest RNC in a shorter execution time.

Table 1: Performance Comparison of LOMAC and Baseline Methods on ER Graphs with 40, 200,
and 1000 nodes. RNC values are reported as mean±standard deviation over 5 runs with different
random seeds.

Nodes
40 200 1000

MR RNC ET MR RNC ET MR RNC ET

Tabu 0.99 4.0±0.1 2.66 0.84 11.2±0.4 191.7 NA NA NA
DLF-GA 0.07 5.3±0.4 0.0078 0 14.0±0.2 0.01 0.34 47.7±0.9 0.15
SAT-DRL 0.99 4.0±0.1 25.23 NA NA NA NA NA NA
GNN-GCP 0.77 4.2±0.4 0.5 NA NA NA NA NA NA
ECO-DQN 0.95 4.1±0.4 0.08 0.8 11.2±0.4 1.51 0.62 45.6±0.9 77.7
MCSS 0.93 4.1±0.3 3.99 NA NA NA NA NA NA
LTMP 0.9 4.1±0.3 0.009 0 13.0±0.2 0.15 NA NA NA
AUTO-COT 0.92 4.1±0.3 0.02 0.23 12.8±0.4 3.63 NA NA NA
LOMAC 0.99 4.0±0.1 0.37 0.84 11.2±0.3 5.24 0.78 42.8±0.8 43.1

5.2 PERFORMANCE ON REAL INSTANCES

To assess the effectiveness of LOMAC in real-world scenarios, we evaluated it on a small-scale
COLOR02/03/04 Workshop dataset2, which comprises instances with 11 to 149 vertices. Further-
more, we tested LOMAC on large-scale benchmark datasets, including Cora, Citeseer, and PubMed,
with instances ranging from 2708 to 19717 vertices. Table 2 shows the performance of Tabu, GNN-
GCP, SAT-DRL, LTMP, ECO-DQN, and LOMAC across these datasets in terms of RNC and ET.

1https://developers.google.com/optimization/cp
2https://mat.tepper.cmu.edu/COLOR02/

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

LOMAC consistently achieved or closely matched the minimal chromatic number in a shorter execu-
tion time. These results highlight LOMAC’s robust generalization, efficiency, and clear superiority
in both small-scale and large-scale real-world applications.

Table 2: Performance of LOMAC and Baseline Algorithms on COLOR02/03/04 Workshop dataset
and large-scale benchmark datasets, Cora, Citeseer, and PubMed.

Instance Nodes κ
DLF-GA GNN-GCP SAT-DRL LTMP ECO-DQN LOMAC

RNC ET RNC ET RNC ET RNC ET RNC ET RNC ET

myciel3 11 4 4 0.00025 4 0.567 4 1.25 4 0.0018 4 0.0075 4 0.26
myciel4 23 5 5 0.0005 6 0.645 5 15.74 5 0.00126 5 0.0044 5 0.25
myciel5 47 6 6 0.0013 7 0.808 6 293.58 4 0.0013 6 0.15 6 0.34
huck 74 11 11 0.0025 14 1.338 NA NA 11 0.00324 11 0.26 11 0.51
mugg100 25 100 4 4 0.004 3 0.904 4 9.38 4 0.00388 4 0.28 4 0.57
games120 120 9 9 0.0058 13 1.481 NA NA 9 0.00593 9 0.36 9 0.70
anna 138 11 12 0.00734 13 1.878 NA NA 11 0.00794 11 0.47 11 0.74
2 - Insertions 4 149 4 5 0.0056 4 1.135 NA NA 5 0.00828 5 0.45 5 0.77

Cora 2708 5 7 627 NA NA NA NA NA NA 6 954 5 997
Citeseer 3327 6 9 854 NA NA NA NA NA NA 7 1003 6 1020
Pubmed 19717 6 12 4632 NA NA NA NA NA NA 10 4726 8 4929

5.3 MODEL ANALYSIS

Complexity Analysis. The dominant computational complexity of the proposed LOMAC method
lies in the pseudonode-based GNN model during the testing process. For each coloring node, the
computational cost consists of two parts: the GNN model to select an optimal coloring node with a
linear time complexity of O(N) for a graph of size N (Sun et al., 2024), and the color assignment
to color the node and update the node state of neighbors with a time complexity of O(1). Due to the
invalid action penalty mechanism, the occurrence of invalid actions (i.e. repeatedly selecting already
colored nodes) is rare during testing. Therefore, the overall complexity of the LOMAC method is
O(N2).

Ablation Study. To evaluate the contribution of different components, we design three ablation vari-
ants of LOMAC: (1) Ablation on Pseudo Nodes, which removes pseudo nodes from the message-
passing network; (2) Ablation on Markov chain, which replaces the chain-based state transitions
with direct color prediction using a predefined color set; and (3) Ablation on Potential Function,
which removes the graph state potential-based reward function. As shown in Fig. 5, removing the
Markov chain results in the largest performance drop in RNC, highlighting its crucial role in reduc-
ing the number of colors required. Excluding the potential function weakens the reward guidance,
leading to less compact colorings, while removing pseudonodes reduces the efficiency of message
passing. These results show that each component is essential and contributes to LOMAC’s overall
performance. Detailed results of these ablation experiments are provided in Appendix D.3.

6 CONCLUSION

In this paper, we introduce LOMAC, a novel GNN-based DRL framework for solving GCP. By in-
tegrating a one-way, two-dimensional Markov chain with a pseudonode-enhanced GNN, LOMAC
significantly reduces the state space and computational complexity compared to traditional DRL
approaches. We propose two key concepts, the Markov state potential and the graph state potential,
and demonstrate their effectiveness in guiding the search for optimal solutions. Experimental results
show that LOMAC outperforms existing methods on both synthetic and real-world datasets, achiev-
ing superior performance in terms of the number of colors required, matching ratio, and execution
time. LOMAC also demonstrates strong generalization and efficiency across different types and
sizes of graphs. Future work could explore applying LOMAC to other combinatorial optimization
problems, further extending the applicability of GNN-based DRL models with one-way Markov
chains.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

This work focuses on the development of reinforcement learning and graph neural network methods
to solve the graph coloring problem. The study does not involve human subjects, personal or sen-
sitive data, or applications that could directly cause harm. All datasets used are publicly available
benchmark graphs, and all external code or data strictly follow their respective licenses. We believe
that this work raises no ethical concerns related to privacy, security, fairness, or potential misuse.

8 REPRODUCIBILITY STATEMENT

All code implementations of the LOMAC model and baseline methods are available in the Sup-
plementary Material. The code is organized in a modular fashion with a clear separation between
the definitions of the models, the training procedures, and the evaluation scripts. All experimental
parameters, including learning rates, batch sizes, and network architectures, are explicitly speci-
fied in the training configuration files. The graph datasets used in our experiments, including both
synthetic graphs and public benchmarks, are described in detail in the paper, with generation param-
eters provided. We have also included utility scripts for data preprocessing and result visualization
to facilitate the reproduction of all figures and tables presented.

REFERENCES

T. Barrett, W. Clements, J. Foerster, and A. Lvovsky. Exploratory combinatorial optimization with
reinforcement learning. In The AAAI Conf. Artif. Intell., pp. 3243–3250, Jan. 2020.

I. Blochliger and N. Zufferey. A graph coloring heuristic using partial solutions and a reactive tabu
scheme. Comput. Oper. Res., 35(3):960–975, 2008.

L. Colantonio, A. Cacioppo, F. Scarpati, and S. Giagu. Efficient graph coloring with neural net-
works: a physics-inspired approach for large graphs, 2024.

D. Das, S. A. Ahmad, and V. Kumar. Deep learning-based approximate graph-coloring algorithm
for register allocation. In IEEE/ACM 6th Workshop on the LLVM Compiler Infrastructure in HPC
(LLVM-HPC) and Workshop on Hierarchical Parallelism for Exascale Computing (HiPar), pp.
23–32, GA, USA, 2020.

C. Ge, S. Xia, Q. Chen, and F. Adachi. 2-layer interference coordination framework based on graph
coloring algorithm for a cellular system with distributed mu-mimo. IEEE Trans. Veh. Technol.,
72(3):3557–3568, 2023.

A. H. Gebremedhin, D. Nguyen, M. M. A. Patwary, and A. Pothen. Colpack: Software for graph
coloring and related problems in scientific computing. ACM Trans. Math. Softw., 40(1):1–31,
2013.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing for
quantum chemistry. In Proc. ICLR, pp. 1263–1272, 2017.

J. Huang, M. Patwary, and G. Diamos. Coloring big graphs with alphagozero. arXiv preprint
arXiv:1902.10162, 2019.

K. Inaba, T. Inagaki, K. Igarashi, S. Utsunomiya, T. Honjo, T. Ikuta, K. Enbutsu, T. Umeki, R. Kasa-
hara, K. Inoue, Y. Yamamoto, and H. Takesue. Potts model solver based on hybrid physical and
digital architecture. Commun. Phys., 5(1):137, 2022.

M. Javedankherad, Z. Zeinalpour-Yazdi, and F. Ashtiani. Mobility-aware content caching using
graph-coloring. IEEE Trans. Veh. Technol., 71(5):5666–5670, 2022.

E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song. Learning combinatorial optimization algo-
rithms over graphs. In The Adv. Neural Inf. Process. Syst., pp. 6348–6358, Apr. 2017.

A. Kose, B. A. Sonmez, and M. Balaban. Simulated annealing algorithm for graph coloring, 2017.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

K. Langedal and F. Manne. Graph neural networks as ordering heuristics for parallel graph coloring,
2024.

H. Lemos, M. Prates, P. Avelar, and L. Lamb. Graph colouring meets deep learning: Effective graph
neural network models for combinatorial problems. In Proc. IEEE 31st Int. Conf. Tools Artif.
Intell. (ICTAI), pp. 879–885, Portland, OR, USA, 2019.

K. Li, T. Zhang, R. Wang, Y. Han, and L. Wang. Deep reinforcement learning for combinatorial
optimization: covering salesman problems. IEEE Trans. Cybern., 52(12):13142–13155, 2021.

Z. Li, X. Wang, L. Pan, L. Zhu, Z. Wang, J. Feng, C. Deng, and L. Huang. Network topology
optimization via deep reinforcement learning. IEEE Trans. Commun., 71(5):2847–2859, May
2023.

C. Liu and T. Huang. Dynamic job-shop scheduling problems using graph neural network and deep
reinforcement learning. IEEE Trans. Syst., Man, Cybern. Syst., July 2023. doi: 10.1109/TSMC.
2023.3287655.

H. Liu, J. Zhang, S. Jin, and B. Ai. Graph coloring based pilot assignment for cell-free massive
mimo systems. IEEE Trans. Veh. Technol., 69(8):9180–9184, 2020.

Q. Ma, S. Ge, D. He, D. Thaker, and I. Drori. Combinatorial optimization by graph pointer net-
works and hierarchical reinforcement learning. In Proc. AAAI Workshop Deep Learn. Graphs:
Methodol. Appl., New York, 2020.

S. Manchanda, A. Mittal, A. Dhawan, and et al. Gcomb: Learning budget-constrained combinatorial
algorithms over billion-sized graphs. In Proc. Adv. Neural Inf. Process. Syst., pp. 20000–20011,
Vancouver, Canada, Dec. 2020.

C. Mittal, K. Kartik, Masusam, and P. Singla. Puzzlebench: can llms solve challenging first-order
combinatorial reasoning problems. arXiv preprint arXiv:2402.02611, 2024.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, and G. Ostrovski et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, Feb. 2015.

M. Prates, P. H. Avelar, H. Lemos, L. C. Lamb, and M. Y. Vardi. Learning to solve np-complete
problems: a graph neural network for decision tsp. In The AAAI Conf. Artif. Intell., pp. 4731–
4738, Kigali, Rwanda, 2019.

D. Pugachewa, A. Ermakov, I. Lyskov, and I. Makarov. Enhancing gnns performance on combina-
torial optimization by recurrent feature update, 2024.

I. Rina, D. Sulistiowati, and D. RaudhatulOktavi. Graph coloring applications in scheduling courses
using welch-powell algorithm - a case study. In International Symposium on Information Tech-
nology and Digital Innovation (ISITDI), pp. 131–135, Padang, Indonesia, 2022.

E. Shem-Tov and A. Elyasaf. Deep neural crossover. In Proc. of The Genetic and Evolutionary
Computation Conference 2024 (GECCO’ 24), pp. 1045–1053, Melbourne, Australia, 2024.

K. Stechly, M. Marquez, and S. Kambhampati. Gpt-4 doesn’t know it’s wrong: an analysis of
iterative prompting for reasoning problems, 2023.

J. Sun, C. Yang, X. Ji, Q. Huang, and S. Wang. Towards dynamic message passing on graphs. In
NeurIPS2024, Vancouver, Canada, 2024.

Q. Xu, H. Geng, S. Chen, B. Yuan, C. Zhuo, Y. Kang, and X. Wen. Goodfloorplan: Graph con-
volutional network and reinforcement learning-based floorplanning. IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., 41(10):3492–3502, Oct. 2022.

E. Yolcu and B. Póczos. Learning local search heuristics for boolean satisfiability. In Proc. 33rd
Conf. Neural Inf. Process. Syst. (NeurIPS), pp. 7992–8003, Vancouver, Canada, 2019.

H. Yuan, L. Fang, and S. Song. A reinforcement-learning-based multiple-column selection strategy
for column generation. In Proc. AAAI Conf. Artif. Intell., pp. 8209–8216, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Y. Zhang, H.-L. Zhan, Z. Pei, Y. Lian, L. Yin, M. Yuan, and B. Yu. Dila: enhancing llm tool learning
with differential logic layer, 2024.

Z. Zhang, Z. Wu, H. Zhang, and J. Wang. Meta-learning-based deep reinforcement learning for
multiobjective optimization problems. IEEE Trans. Neural Netw. Learn. Syst., Feb. 2022. doi:
10.1109/TNNLS.2022.3148435.

Z. Zhang, A. Zhang, M. Li, and A. Smola. Automatic chain of thought prompting in large language
models. In The Eleventh International Conference on Learning Representations (ICLR), Kigali,
Rwanda, 2023.

D. Zhou, N. Scharli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schuurmans, C. Cui, O. Bousquet,
Q. Le, and E. Chi. Least-to-most prompting enables complex reasoning in large language models.
In The Eleventh International Conference on Learning Representations (ICLR), Kigali, Rwanda,
2023.

LLM USAGE DISCLOSURE

Large language models (LLMs) were used in this work as writing and editing aids. The draft text
for several sections, ablation study descriptions, and parts of the experimental analysis were initially
generated or refined with LLM assistance, and then carefully reviewed, corrected, and finalized by
the authors. The authors are solely responsible for the accuracy of all statements, the correctness of
the code, and the validity of the results.

Human verification & responsibility. All claims, equations, proofs, references, and methodologi-
cal descriptions were thoroughly checked by the authors. All experiments were independently rerun
from clean environments, and all plots and tables were regenerated from verified outputs.

Confidentiality & ethics. No confidential or third-party material was provided to any LLM. We did
not include hidden prompt injection text in the submission. All external data and code used in this
work comply with their respective licenses, and all references were verified to correspond to real
and relevant sources.

This disclosure is also reflected in the submission form as required by the ICLR policy.

A PRELIMINARIES

This section provides an overview of deep Q-learning and message-passing neural networks, which
are foundational to our study.

A.1 DEEP Q-LEARNING

Deep Q-learning Mnih et al. (2015), a reinforcement learning technique, employs a trial-and-error
approach within an uncertain environment to sequence decisions and actions toward a solution.
Updates a Q-table to learn the reward associated with each state action pair, with the aim of choosing
the state action pair that maximizes the reward. This method formalizes the decision making process
as a Markov Decision Process (MDP), represented by the tuple (S,A,R,V, γ), where S denotes
the state space, A the action space, R the reward function, V(s) the value of being in state s and γ
the discount factor for future rewards. The Bellman equation for Q-learning is expressed as:

V(s) = max
a

[R(s, a) + γV(s′)] (17)

Here, s and s′ represent the current and subsequent states after taking action a. The reward value
Q(s, a) for action a in state s is updated based on:

Q(s, a) = Q(s, a) + α[R+ (1−D)γmax
a′

Q(s′, a′)−Q(s, a)] (18)

with α as the learning rate, s′ and a′ denoting potential next states and actions, and D indicating if
the terminal state is reached (D = 1 for terminal states, otherwise D = 0).

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.2 MESSAGE-PASSING NEURAL NETWORKS

We employ a message-passing neural network (MPNN) framework to enhance deep Q-learning for
graph coloring, adept at processing graph-structured data Gilmer et al. (2017). The graph embedding
transforms each vertex v ∈ V into a multidimensional vector hv . MPNN operates through a message
passing phase and a read-out phase in T steps, utilizing message functions F and vertex update
functions U . The message f t+1

v and the hidden state ht+1
v for the vertex v are updated as follows:

f t+1v = Fn(h
t
v, h

t
uu ∈ o(v)) (19)

ht+1
v = Ut(h

t
v, f

t+1
v) (20)

Here, o(v) denotes the set of neighbors for v, with f t+1v and h0v = sv representing the message and
initial state, respectively. Through this iterative process, vertex embeddings aggregate information
from their neighborhood. The final read-out phase applies a function R to the final embeddings,
displaying action predictions (Q-values) as:

Q(s, a) = R({hTv }a∈A) (21)

B THE PROOF OF THEOREM 1

1) When all N vertices are colored, V ′′(ζG) = 1. According to Eq. (3), we have V(s1) = V ′
i,N +1,

V(s2) = V ′
i′,N + 1. According to Eq. (2), V ′

i,N < V ′
i′,N since i′ < i. Proposition 1 holds.

2) According to Eq. (2), V ′
i,j+1 − V ′

i,j ≥ 1. The range of V ′′(.) is limited to [0, 1], where V ′′(.) is
the proportion of colored edges in all edges as defined in Eq. (3).

V(s(i, j + 1)) = V ′
i,j+1 + V ′′(ζG(i,j+1)

)

≥ V ′
i,j + 1

≥ V ′
i,j + V ′′(ζG(i,j)

)

≥ V(s(i,j)) (22)

The inequality V(s(i, j)) ≥ V(s(i, j + 1)) holds.

3) According to Eq. (2), V ′
i,j = V ′

i+1,j+1. For a newly selected vertex u, u will transform adjacent
uncolored edges of u into colored edges. Without loss of generality, assume thatm′′ is the number of
adjacent uncolored edges of u. Thus, for the vertex u, u will transform adjacent uncolored edges of
u into colored edges. Without loss of generality, assume thatm′′ is the number of adjacent uncolored
edges of u. Thus,

V(s(i, j)) = V ′
i,j + V ′′(ζG(i,j)

)

= V ′
i+1,j+1 +

ζG(i,j)

∥E∥

≤ V ′
i+1,j+1 +

ζG(i,j)
+m′′

∥E∥

= V ′
i+1,j+1 +

ζG(i+1,j+1)

∥E∥
= V(s(i+ 1, j + 1)) (23)

4) The maximum number of colored edges ζG in the graph G is equal to the number of edges ∥E∥.
Thus, V ′′(ζG) =

ζG
∥E∥ ≤ 1.

V(s(i+ 1, j)) = V ′
i+1,j + V ′′(ζG(i+1,j)

)

≤ V ′
i,j−1 + 1 (24)

V(s(i, j)) = V ′
i,j + V ′′(ζG(i,j)

)

≥ V ′
i,j−1 + 1 + V ′′(ζG(i,j)

)

> V ′
i,j−1 + 1 (25)

Thus, we have V(s(i, j)) > V(s(i+ 1, j)).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C THE PROOF OF THEOREM 2

Assume that k ̸= κ. The following two cases are taken into account.

1) k > κ. According to Theorem 1, V(s(k,N)) < V(s(κ,N)). It contradicts the notion that
V(s(k,N)) is the largest potential value of the graph states.

2) k < κ. It contradicts the definition of the chromatic number, which is the smallest number of
colors required for graph coloring.

Therefore, k equals κ when reaching a maximum on the potential of the graph states V(s(k,N)).

D DETAILS ON EXPERIMENTS

We conducted extensive experiments to evaluate the proposed LOMAC framework and reproduced
the baseline models under consistent conditions. Hyper-parameters were determined via grid search
based on validation loss, as summarized in Tab 3. All learnable parameters in LOMAC, including
the weights of linear transformations, proximity measurement, and pseudonode states, were opti-
mized jointly during training. For optimization, we adopted the Adam optimizer with a dynamically
adjusted learning rate schedule.

D.1 DESCRIPTIONS OF BASELINE ALGORITHMS

For graph coloring, we consider the following four types of baseline methods for performance com-
parison:

D.1.1 TRADITIONAL HEURISTIC ALGORITHMS

Tabu (Blochliger & Zufferey, 2008): performs neighborhood search based on tabu lists and aspira-
tion criteria.
DLF-GA (Gebremedhin et al., 2013): assigns the smallest available color sequentially through local
optimization.

D.1.2 GNN METHODS

GNN-GCP (Lemos et al., 2019): uses GNN message passing to update the embeddings, predicts
the colorability of C through supervised learning and generates solutions.

D.1.3 GNN-BASED DRL ALGORITHMS

SAT-DRL (Yolcu & Póczos, 2019): encodes graph coloring as a CNF formula, models variable
relationships using GNN, and optimizes variable selection through reinforcement learning.
ECO-DQN (Barrett et al., 2020): explores the solution space dynamically through reinforcement
learning and optimizes vertex states with a reward mechanism.
MCSS (Yuan et al., 2024): selects optimal column combinations dynamically using neural networks
and a multicolumn selection strategy driven by reinforcement learning.

D.1.4 LLMS

LTMP (Zhou et al., 2023): solves complex problems by sequentially addressing simpler subprob-
lems that depend on the solutions of previous ones.
AUTO-COT (Zhang et al., 2023): clusters various problems and uses LLM to generate reasoning
chains for the construction of automatic demonstrations.

D.2 EXPERIMENTAL SETUP.

The experiments were carried out using an RTX 4090 GPU and an Intel(R) Xeon(R) Platinum 8474
CPU, with software implementation in PyTorch 2.5.1. Due to limitations in memory resources, we

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

limit the experience replay buffer to 5000 samples. The GNN employs the Adam optimizer with a
learning rate ρ, dynamically adjusted as:

ρ =


0.001τ
1000 0 ≤ τ ≤ 1000

0.001− 0.00095 τ−1000
19000 1000 < τ ≤ 20000

0.00005 τ > 20000

(26)

Table 3: Hyper-parameter setups for LOMAC.

DATASET
#MESSAGE

STEPS
(T)

HIDDEN
DIM.

Q-SPACE
DIM.

#Q-UNITS
(nq)

#PSEUDO
NODES

(np)
DROPOUT

ER-20 2 128 64 20 8 0.1
ER-40 2 128 64 40 20 0.1
ER-60 2 128 64 60 30 0.1
ER-200 2 128 64 200 96 0.2
ER-500 3 128 64 500 256 0.2
ER-1000 3 128 64 1000 520 0.3

BA-20 2 128 64 20 8 0.1
BA-40 2 128 64 40 20 0.1
BA-60 2 128 64 60 30 0.1
BA-200 2 128 64 200 96 0.2

CORA 4 128 64 2708 1256 0.3
CITESEER 4 128 64 3327 1256 0.3
PUBMED 8 128 64 19717 5200 0.3

D.3 ABLATION STUDY

We have demonstrated the effectiveness of LOMAC in solving GCP. To further analyze the con-
tribution of individual components, we conduct three ablation studies, with results shown in Fig.
5.

Ablation Study on the Markov Chain To assess the impact of the one-way Markov chain, we
performed an ablation study by removing this component and allowing the model to predict the
color of each node directly. In this setup, with a fixed number of colors K, we increment K if
a feasible coloring cannot be achieved. Without chain-based state transitions, the model relies on
a predefined color space, which increases the solution complexity and reduces the guidance from
structured state evolution. The results show that removing the Markov chain increases the number
of required colors, highlighting its effectiveness in guiding compact colorings.

Ablation Study on the Potential Function To evaluate the effect of the potential-based reward of
the graph state, we performed an ablation study by removing this component and adopting a simple
potential-free reward. In this setup, the agent receives a reward of +1 for reusing an existing color
and keeping the color valid. It gets 0 when a new color is introduced, and a penalty of −λ for
invalid actions. The results show that removing the potential function removes strong incentives for
compact colorings, resulting in an increased number of required colors.

Ablation Study on Pseudo Nodes To evaluate the impact of pseudonode-enhanced message pass-
ing, we replace the graph neural decision network with a basic GNN. In this setup, message pass-
ing relies solely on the original graph topology, limiting efficiency and overall performance. The
pseudonode-based message-passing mechanism embeds both graph nodes and pseudonodes into a
unified latent space, enabling more flexible message-passing and reducing dependency on the graph
topology. The results confirm the effectiveness of this mechanism. These three ablation studies
isolate the contribution of each key component in LOMAC.

D.4 STATISTICAL SIGNIFICANCE ANALYSIS

To assess the robustness of the proposed LOMAC method in different sizes of graphs, we performed
pairwise Wilcoxon signed rank tests between LOMAC and baseline algorithms on ER graphs with

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 5: Ablation on the modules of LOMAC.

N = 20, 40, 60, 200, 500 and 1000 nodes. We used a significance level of p < 0.05. The
results are summarized in Table 4, where a smaller p-value provides stronger evidence that LOMAC
significantly outperforms the baseline algorithms in terms of RNC.

Table 4: Wilcoxon signed-rank test results on ER graphs with different node sizes. LOMAC shows
statistically significant improvements over all baselines in terms of the number of colors.

Ours Baseline p-value (RNC)

Nodes 20 40 60 200 500 1000

LOMAC Tabu 0.042 0.037 0.041 0.039 < 0.001 < 0.001
LOMAC DLF-GA < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
LOMAC SAT-DRL 0.021 0.019 0.023 < 0.001 < 0.001 < 0.001
LOMAC GNN-GCP 0.011 0.009 < 0.001 < 0.001 < 0.001 < 0.001
LOMAC ECO-DQN 0.017 0.016 0.021 0.015 < 0.001 < 0.001
LOMAC MCSS 0.024 0.023 0.025 < 0.001 < 0.001 < 0.001
LOMAC LTMP 0.012 0.011 < 0.001 < 0.001 < 0.001 < 0.001
LOMAC AUTO-COT 0.021 0.032 0.018 < 0.001 < 0.001 < 0.001

D.5 ADDITIONAL RESULTS ON SYNTHETIC AND REAL-WORLD INSTANCES

We provide additional results on both synthetic graphs (ER and BA) and real-world benchmark
instances. Tables 5 and 6 report performance on ER and BA graphs with 20, 60, and 500 nodes.
Across different sizes, LOMAC achieves the lowest RNC in the shortest execution time.

We also include results on selected real-world instances in Table 6. LOMAC consistently reaches
optimal colorings with manageable run-time, highlighting its robustness and efficiency across di-
verse graph types and scales.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 5: Performance Comparison of LOMAC and Baseline Methods on ER Graphs with 20, 60,
and 500 nodes. RNC values are reported as mean±standard deviation over 5 runs with different
random seeds.

Nodes
20 60 500

MR RNC ET MR RNC ET MR RNC ET

Tabu 1 3.0±0.1 0.79 0.96 5.0±0.2 20.61 NA NA NA
DLF-GA 0.34 3.7±0.4 0.0001 0 6.8±0.4 0.0016 0.2 26.3±0.6 1.93
SAT-DRL 1 3.0±0.1 3.01 0.9 5.1±0.3 90.5 NA NA NA
GNN-GCP 1 3.0±0.1 0.48 0.71 5.1±0.4 0.547 NA NA NA
ECO-DQN 0.93 3.1±0.3 0.02 0.87 5.1±0.3 0.12 0.74 25.4±0.8 23.8
MCSS 0.9 3.1±0.3 0.79 0.92 5.1±0.3 3.54 NA NA NA
LTMP 0.9 3.13±0.3 0.0028 0.5 5.1±0.5 0.02 NA NA NA
AUTO-COT 0.8 3.23±0.4 0.01 0.44 5.55±0.5 0.04 NA NA NA
LOMAC 1 3.03±0.1 0.16 0.96 5.04±0.2 0.84 0.82 22.94±0.6 7.21

Table 6: Performance Comparison of LOMAC and Baseline Methods on BA Graphs with 20, 60,
and 500 nodes, in terms of MR, RNC, and ET. RNC values are reported as mean±standard deviation
over 5 runs with different random seeds.

Nodes
20 60 500

MR RNC ET MR RNC ET MR RNC ET

Tabu 0.99 4.9±0.37 1.21 0.95 5.04±0.2 26.56 NA NA NA
DLF-GA 0.05 6.41±0.46 0.01 0 8.11±0.3 0.03 0 13.24±0.4 0.28
SAT-DRL 1 4.89±0.31 34.7 0.81 5.2±0.4 84.78 NA NA NA
GNN-GCP 0.98 4.91±0.42 0.35 0.80 5.32±0.5 0.546 NA NA NA
ECO-DQN 0.96 4.93±0.46 0.03 0.95 5.04±0.2 0.21 0 9.24±0.4 7.24
MCSS 0.99 4.9±0.31 0.75 0.77 5.21±0.4 4.67 NA NA NA
LTMP 0.94 4.95±0.31 0.0049 0.81 5.18±0.2 0.013 NA NA NA
AUTO-COT 0.97 4.92±0.31 0.07 0.89 5.1±0.3 0.32 NA NA NA
LOMAC 1 4.89±0.31 0.28 0.95 5.04±0.19 1.61 0.72 7.28±0.32 9.26

Table 7: Performance of LOMAC and Baseline Algorithms on COLOR02/03/04.

Instance Nodes χ0
DLF-GA GNN-GCP SAT-DRL LTMP ECO-DQN LOMAC

RNC ET RNC ET RNC ET RNC ET RNC ET RNC ET

queen5 5 25 5 8 0.00061 6 0.662 5 38 6 0.00038 5 0.05 5 0.25
3 - Insertions 3 56 4 4 0.0015 4 0.703 4 9.19 4 0.00138 4 0.12 4 0.39
david 87 11 12 0.0033 14 1.421 NA NA 12 0.00362 13 0.29 11 0.53
mugg88 25 88 4 4 0.0033 4 0.837 4 9.82 4 0.00356 4 0.26 4 0.52
mugg100 1 100 4 4 0.0045 2 0.899 4 11.17 4 0.00402 4 0.27 4 0.57

E ALGORITHM DESCRIPTION

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 1 The training process of LOMAC

1: In: Randomly generated W graph samples, p, K, b, z
2: Out: The network parameters θ. /* θ

′
indicates the target network parameters

3: Initialize the network with random θ.
4: τ = 0. /* τ indicates the current step number
5: for each graph sample do
6: V cv = ∅, C = ∅
7: Update the value of ε
8: for i = 1to K do
9: if V cv ̸= V then

10: r = r + 1
11: ε′=random(0,1). /* get a random number in [0,1]

12: v∗ =


ε′ < ε : Choose random v∗ ∈ V cv

ε′ ≥ ε : The GNN-based decision-making phase,
argmaxa∈AQ(s, a)

13: a∗ = v∗

14: The color assignment phase:
15: if Cv∗ ̸= ∅ then
16: stochastically assign a color from Cv∗

to v∗
17: R(s(i, j), a∗) = V(s(i, j + 1))− V(s(i, j))
18: Update the attribute values of s(i, j + 1)
19: V cv = V cv ∪ v∗, sc = s(i, j + 1)
20: else
21: if Cv∗

= ∅ then
22: assign a new color cnew to v∗
23: R(s(i, j), a∗) = V(s(i+1,j+1))− V(s(i, j))
24: Update the attribute values of s(i+ 1, j + 1)
25: V cv = V cv ∪ v∗, C = C ∪ cnew, sc = s(i+ 1, j + 1)
26: else
27: R(s(i, j), a∗) = z, sc = s(i, j)
28: end if
29: end if
30: Update Q(s(i,j), a

∗) according to Eq. (18)
31: The prioritized experience replay phase:
32: Compute the value of p according to Eqs. (7) and (8)
33: Add [s(i, j), a∗, Q(s(i, j), a∗), sc, p] into the prioritized experience replay buffer.
34: if τ mod p == 0 then
35: Get b random samples B from the buffer
36: learn θ given training samples B.
37: end if
38: end if
39: end for
40: end for

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 2 The testing process of LOMAC

1: In: G = (V,E), the network with parameters θ
2: Out: C, S
3: V cv = ∅, C = ∅
4: for i = 1 to K do
5: if V cv ̸= V then
6: The GNN-based decision-making phase:
7: a∗ = v∗ = argmaxa∈AQ(s, a)
8: The color assignment phase:
9: if Cv∗ ̸= ∅ then

10: stochastically assign a color from Cv∗
to v∗

11: R(s(i, j), a∗) = V(s(i, j + 1))− V(s(i, j))
12: Update the attribute values of s(i, j + 1)
13: V cv = V cv ∪ v∗, sc = s(i, j + 1)
14: else
15: if Cv∗

= ∅ then
16: assign a new color cnew to v∗
17: R(s(i, j), a∗) = V(s(i+1,j+1))− V(s(i, j))
18: Update the attribute values of s(i+1,j+1)

19: V cv = V cv ∪ v∗, C = C ∪ cnew, sc = s(i+ 1, j + 1)
20: else
21: R(s(i, j), a∗) = z, sc = s(i, j)
22: end if
23: end if
24: Update Q(s(i, j), a∗) according to Eq. (18)
25: end if
26: end for

19

	Introduction
	Related Works
	LOMAC Framework
	One-way Markov Chain Model
	Input Representation
	Constrained Reward Shaping
	System Architecture

	System Implementation of LOMAC
	Experiment
	Performance on ER and BA Graph Instances
	Performance on Real Instances
	Model Analysis

	CONCLUSION
	Ethics statement
	Reproducibility statement
	Preliminaries
	Deep Q-learning
	Message-Passing Neural Networks

	The proof of Theorem 1
	The proof of Theorem 2
	Details on Experiments
	Descriptions of Baseline Algorithms
	Traditional Heuristic Algorithms
	GNN Methods
	GNN-based DRL Algorithms
	LLMs

	Experimental setup.
	Ablation Study
	Statistical Significance Analysis
	Additional Results on Synthetic and Real-world Instances

	Algorithm Description

