
Fisher meets Feynman: score-based
variational inference with a product of experts

Diana Cai1, Robert M. Gower1, David M. Blei2, Lawrence K. Saul1
1Flatiron Institute 2Columbia University

Abstract

We introduce a highly expressive yet distinctly tractable family for black-box
variational inference (BBVI). Each member of this family is a weighted product
of experts (PoE), and each weighted expert in the product is proportional to a
multivariate t-distribution. These products of experts can model distributions with
skew, heavy tails, and multiple modes, but to use them for BBVI, we must be
able to sample from their densities. We show how to do this by reformulating
these products of experts as latent variable models with auxiliary Dirichlet random
variables. These Dirichlet variables emerge from a Feynman identity, originally
developed for loop integrals in quantum field theory, that expresses the product of
multiple fractions (or in our case, t-distributions) as an integral over the simplex.
We leverage this simplicial latent space to draw weighted samples from these
products of experts—samples which BBVI then uses to find the PoE that best
approximates a target density. Given a collection of experts, we derive an iterative
procedure to optimize the exponents that determine their geometric weighting in the
PoE. At each iteration, this procedure minimizes a regularized Fisher divergence
to match the scores of the variational and target densities at a batch of samples
drawn from the current approximation. This minimization reduces to a convex
quadratic program, and we prove under general conditions that these updates
converge exponentially fast to a near-optimal weighting of experts. We conclude by
evaluating this approach on a variety of synthetic and real-world target distributions.

1 Introduction

The goal of variational inference (VI) is to approximate an intractable probability density p by the
best-matching density q from some simpler parameterized family Q [4, 23, 53]. VI is typically used
when it is difficult to draw samples from p, but often there exists a “black-box” way to compute the
gradient of log p (that is, the score) at any point in the domain of RD [28, 42]. Each such gradient
evaluation provides a wealth of information—considerably more than what is provided by a mere
sample—and for this reason a growing number of researchers have begun to investigate score-based
methods for black-box VI (BBVI) [6, 7, 36, 37]. This direction of research is also motivated by the
remarkable successes of score-based methods for generative modeling [18, 19, 47–49].

Despite this allure, score-based BBVI still faces many challenges. There are inherent trade-offs that
arise between the expressivity of the variational family Q and its ease of use. For BBVI it must
be tractable to evaluate and draw samples from each q ∈Q; it must also be tractable to optimize
over Q and find its best approximation to the target p. These trade-offs must be managed by any
practitioner of BBVI. At the same time, researchers need more than methods which are merely
practical. BBVI replaces an intractable problem in inference by a more tractable one in optimization,
but still the challenge remains to prove theoretical guarantees for the optimizations that arise in this
framework [3, 11, 24, 57].

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

In this paper we introduce a new family for score-based BBVI that navigates these trade-offs in an
appealing fashion. The densities in this family are highly expressive and yet manageably tractable,
and we are also able to provide certain theoretical guarantees for the optimizations required for score-
based VI. Each density in this family is a product of experts (PoE) [16], and each (weighted) expert
is proportional to a multivariate t-distribution [54] over RD. In general, it can be challenging to
work with products of experts, but for this family we show how to sample from and (in some cases)
evaluate their densities—exactly what is needed to use them for VI.

The full potential of this family is unlocked by a Feynman identity [12, 46], originally developed
for loop integrals in quantum field theory, that expresses the product of K fractions as an integral
over the simplex ∆K−1. In particular, we show that the Feynman identity implies a representation
of the product of t densities as a continuous mixture of t-distributions. A consequence of this
representation is that a PoE in this family is more naturally equipped than a finite mixture model to
approximate target densities with a continuum of modes that lie in a convex set. We also leverage this
representation to perform two important tasks for BBVI—first, how to draw samples from a PoE in
this variational family, and second, how to estimate its normalizing constant. Notably, we transform
these problems to samplers and integrals over the simplex ∆K−1 as opposed to all of RD.

Using these techniques, we then introduce a score-based BBVI algorithm to find the member of this
PoE with the minimum Fisher divergence to the target density. To do so, we first generate a large
pool of experts (i.e., t-distributions with different modes and tails), and then we derive an iterative
score-matching procedure to optimize the exponents that determine their geometric weighting in the
PoE. In practice this procedure drives many exponents to zero, thus pruning irrelevant experts from
the product. More specifically, each iteration updates the expert weights in the PoE by minimizing a
regularized Fisher divergence. Score matching is particularly convenient for PoE models because the
score is linear in the weights, and the optimization problem reduces to solving a sequence of convex
quadratic programs, where each subproblem can be solved efficiently.

In addition, we analyze the convergence of the BBVI algorithm. First, we derive rates of convergence
for the expert weights that are iteratively estimated by the algorithm with a finite batch size. We
prove that these weights converge exponentially quickly to a neighborhood of an optimal weighting
of experts in the PoE, where the size of the neighborhood depends on the amount of misspecification
of the variational family. We also demonstrate the benefits of this approach to BBVI empirically on a
variety of synthetic and real-world target densities. In particular, we show that with this variational
family, we can approximate diverse target densities, including ones that are skewed and heavy-tailed.

2 A latent variable model for products of experts

Our goal is to perform score-based BBVI with a particular PoE variational family by minimizing the
Fisher divergence between a variational density q(z) and a target density p(z) supported on RD:

D(q; p) =

∫
∥∇ log q(z)−∇ log p(z)∥2 q(z) dz. (1)

Before tackling the broader problem of BBVI with products of experts, we begin by studying these
models in their own right, showing how to enable the use of the PoE as a variational family. Consider
a (weighted) PoE with the density

q(z) =
1

Cα

K∏
k=1

qk(z)
αk , (2)

where the exponents {αk}Kk=1 determine the geometric weighting of the nonnegative functions
{qk}Kk=1 in the product, and Cα is a normalizing constant given by

Cα =

∫ K∏
k=1

qk(z)
αk dz. (3)

We refer to the function qk as the kth expert in the PoE and to the exponentiated function qαk

k as the
kth weighted expert. We assume that the exponents (or weights) in the PoE are nonnegative (i.e.,
αk≥0), and later we identify further constraints that ensure the integrability of the product in Eq. 3.

2

5 0 5

z

0.0

0.2

0.4

de
ns

ity

Product (= ±2)
1 = 0.3, 2 = 0.3
1 = 0.3, 2 = 0.5
1 = 0.3, 2 = 1.0

5 0 5

z

Product (= ±5)

5 0 5

z

Mixture (= ±5)

Figure 1: Product vs mixture of two t-distributions. The experts (gray dashed curves) all have the
same scale of 1. The weights in the mixture (rightmost) are the normalized αk values.

When the expert functions qk are Gaussian, the product itself is Gaussian, leading to a closed-form
normalizing constant and efficient sampling (see, e.g., Wu and Goodman [56]). However, more
generally, it can be difficult to work with products of experts, and in particular to sample from
their densities or to estimate their normalizing constants. Because the Fisher divergence in Eq. 1 is
generally intractable, we need samples from q to form an empirical estimate of the divergence that
can then be minimized. In addition, while the Fisher divergence does not rely on the normalizing
constant of q, there are many applications that require it; in this work, we use it to compute the
Kullback-Leibler (KL) divergence in Section 4.

In this section, we develop a particular family of products of experts, show how to reformulate the
models in this family as latent variable models, and then (most critically) leverage the latent space
in these models to draw samples from their densities. The ability to sample efficiently from these
models will be at the heart of their use for BBVI in Section 3.

2.1 Products of multivariate t-distributions

We now focus on the parameterized family of products of experts whose weighted experts are
proportional to multivariate t-distributions over RD. Specifically, we suppose that

qk(z)
αk = [1 + (z−µk)

⊤Λk(z−µk)]
−αk , (4)

where µk∈RD and Λk⪰0. Recall that a t-distribution is parameterized by its mean µ∈RD, inverse
scale matrix Ω≻0, and degrees of freedom ν>0, and it has the probability density function

T (z |µ,Ω, ν) =
Γ(ν+D

2) |Ω|1/2

Γ(ν2)(πν)
D/2

[
1 + 1

ν (z−µ)⊤Ω (z−µ)
]−(ν+D)/2

, (5)

where Γ is the gamma function and |Ω| denotes the determinant of Ω. Thus the kth weighted expert
in Eq. 4 is proportional to a t-distribution with mean µk, inverse scale matrix Λk (when Λk≻0), and
degrees of freedom 2αk−D.

Note that we do not require all of the weighted experts in Eq. 4 to define proper densities; instead
we allow some of the inverse scale matrices to be rank-deficient with |Λk|=0. Thus these products
of experts have more flexibility than finite mixture models whose component densities must be
normalizable. The PoE in Eqs. 2 and 4 will be normalizable if 2

∑
kαk > D, provided all inverse

scale matrices Λk are full rank. Consequently, we impose this linear sum constraint on the expert
weights. If not all inverse scale matrices are positive definite, then integrability must be verified.

We demonstrate the flexibility of this family in Figure 1, where the first two panels show the product
of two t-distributions that take the form q(z) ∝

∏2
k=1

[
1 + (z−µk)

2
]−αk , where the location

parameters are set to either µ = ±3 or µ = ±5. With only two experts they already parameterize a
wide range of behaviors. Finally, we plot the mixture of the same two experts as the middle panel,
where the mixture weights are formed by normalizing the αk values. These two panels highlight the
difference between products—whose “and” relationship yields larger density values when all experts
are large—and mixtures—whose “or” relationship yields larger values when any one expert is large.

3

2.2 Feynman parameterization for products of experts

We show how to rewrite the PoE in Eq. 2 in a particularly revealing form. To do so, we rely
on an identity that expresses a product of positive denominators as an integral over the sim-
plex ∆K−1 := {w ∈ [0, 1]K :

∑
k wk=1}. The simplest form of the identity (for two denominators)

is straightforward to verify; it states that
1

A1A2
=

∫ 1

0

1(
A1w +A2(1−w)

)2 dw (6)

for all A1, A2>0. The identity we use generalizes the above to a product of k denominators that are
geometrically weighted by exponents αk. In this case, the integral over [0, 1] in Eq. 6 is replaced by
an integral over the simplex ∆K−1. In particular, it is also true that

1

Aα1
1 . . . AαK

K

=
Γ(
∑

k αk)∏
k Γ(αk)

∫
∆K−1

∏
k w

αk−1
k

(
∑

k wkAk)
∑

k αk
dw, (7)

This so-called Feynman parameterization is useful to simplify certain loop integrals in quantum field
theory [12, 46]. Here we make a telling observation about the terms in Eq. 7 that are independent
of the denominators Ak; these terms are equal to the probability density function of the Dirichlet
distribution. In particular, we can express the Feynman parameterization more compactly as∏

k

A−αk

k = Ew∼Dir(α)

[(∑
kwkAk

)−∑
k αk
]
. (8)

We now use the above identity to reinterpret the PoE introduced in the previous section. First we
set Ak=1/qk(z) in Eq. 8, where qk(z) is the expert in Eq. 4. Also, as shorthand, let ∥v∥2Λ = v⊤Λv
denote the quadratic forms that appear in these experts. From these substitutions it follows that

K∏
k=1

qk(z)
αk = Ew∼Dir(α)

[(
1 +

∑
kwk∥z−µk∥2Λk

)−∑
k αk
]
. (9)

We now show that the PoE can be re-expressed as a continuous mixture of multivariate t-distributions,
all of which have the same number of degrees of freedom but differ in other respects; see Appendix C.1
for a detailed derivation. To do so, we define

Λ(w) =
∑

kwkΛk (10)

µ(w) = Λ(w)−1∑
k wkΛkµk, (11)

which can be viewed as location and inverse scale parameters that are continuously indexed by
w∈∆K−1. Now, after expanding the quadratic form in the denominator of Eq. 9 and completing the
square, we can use the definitions of Λ(w) and µ(w) to rewrite Eq. 9 as

K∏
k=1

qk(z)
αk = Ew∼Dir(α)

[(
1 +

∑
kwk∥µk−µ(w)∥2Λk

+ ∥z−µ(w)∥2Λ(w)

)−∑
k αk
]
. (12)

Next we supplement Eq. 10 by defining another inverse scale matrix, Ω(w), that is continuously
indexed by w∈∆K−1 and absorbs the terms in Eq. 12 that are independent of z. Let

ν = 2
∑

kαk −D, (13)

σ2(w) =
∑

kwk∥µk−µ(w)∥2Λk
, (14)

Ω(w) = νΛ(w)/(1+σ2(w)). (15)
We can now cast the expectation in Eq. 12 into a more revealing form, arriving at the following
representation of the PoE as a continuous mixture of t-distributions. This result is obtained by making
the substitutions in Eqs. 13 to 15 and appealing to the form of the t-distribution in Eq. 5.

Result 2.1 (PoE as continuous mixture of t-distributions). Consider the product
∏

k qk(z)
αk with

t-distributed experts (Eq. 4), and let ν=2
∑

k αk−D. The product can be computed as

K∏
k=1

qk(z)
αk = Ew∼Dir(α)

[(
1+σ2(w)

)− ν+D
2

(
1 + 1

ν ∥z−µ(w)∥2Ω(w)

)− ν+D
2

]
. (16)

Thus the PoE can be viewed as a continuous mixture of t-distributions in Eq. 5 with ν degrees of
freedom, location parameters µ(w), and inverse scale matrices Ω(w), where w∈∆K−1.

4

This result suggests that this type of PoE may be well-suited for distributions with a continuum of
modes that lie in a convex set. Any such regions of high probability will be more naturally modeled
by a continuous mixture than a finite one. As an aside, we note that the t-distribution can itself be
written as a (continuous) scale mixture of Gaussians [1]. By extension, the above result shows that a
product of t-distributed experts can be written even more generally as a continuous location-and-scale
mixture of Gaussians. This correspondence provides further motivation for their use in VI.

2.3 Joint density and latent variable model

There are many useful results that follow from the Feynman parameterization. One such result arises
when revisiting the computation of the PoE’s normalizing constant Cα in Eq. 3. While Cα is initially
expressed as an integral over RD, our goal is to re-express it as a (potentially simpler) integral over
the simplex ∆K−1. Substituting Eq. 16 into Eq. 3, we find that

Cα = Ew∼Dir(α)

[(
1+σ2(w)

)− ν+D
2

∫
dz
(
1 + 1

ν ∥z−µ(w)∥2Ω(w)

)− ν+D
2

]
, (17)

where we have applied Fubini’s theorem to move the integral over z inside the expectation over w.
We can now perform the integral over z, as it is given exactly by the normalizing constant in Eq. 5 for
a t-distribution with inverse scale matrix Ω(w) and ν degrees of freedom. In this way we obtain the
following result.

Result 2.2 (Normalizing constant of PoE). Consider the PoE with the t-distributed experts in
Eq. 4, and let ν=2

∑
k αk−D. The normalizing constant of this PoE can alternately be computed as

Cα =

∫ K∏
k=1

qk(z)
αk dz = Ew∼Dir(α)

[∣∣Ω(w)∣∣− 1
2
(
1+σ2(w)

)− ν+D
2

]
·
Γ(ν2)(πν)

D
2

Γ(ν+D
2)

(18)

Next we use the Feynman parameterization to show how to sample from q. In particular, we construct
a joint density q(w, z) that yields the desired marginal q(z) in Eq. 2, and then we generate samples
from the joint q(w, z). Combining Result 2.1 and Result 2.2, we find

q(w, z) =
Cα(w)

Cα
Dir(w |α) T (z |µ(w),Ω(w), ν), (19)

where the new leading factor Cα(w) in the numerator is used to account for all the terms in Eq. 17
that are not absorbed by the (normalized) Dirichlet and t-distributions—namely,

Cα(w) :=
[∣∣Ω(w)∣∣(1+σ2(w)

)ν+D
]− 1

2 Γ(ν2) (πν)
D
2

Γ(ν+D
2)

. (20)

It is then straightforward to verify that
∫
q(w, z)dw = q(z), leading to a natural auxiliary-variable

sampling procedure. Indeed, we can interpret this joint density as a latent variable model and use its
marginal and conditional densities to draw samples from the PoE. Marginalizing over z in Eq. 19, we
find that q(w) =

∫
q(w, z) dz = Cα(w)

Cα
Dir(w |α), where Cα(w) is given by Eq. 20. Likewise, we

recover the t-distribution for the conditional density q(z|w) upon dividing the joint in Eq. 19 by this
result. In sum we have shown the following.

Result 2.3 (Latent variable model for PoE). Consider the PoE with the t-distributed experts in
Eq. 4. We can draw samples from the PoE by sampling from the generative model

wb ∼
Cα(w)

Cα
Dir(w |α), (21)

zb |wb ∼ T (z |µ(wb),Ω(wb), ν), (22)

where wb lies in the simplex, the wb-dependent terms on the right are given by Eqs. 10, 11, 13 to 15
and 20, and zb is conditionally t-distributed given wb.

5

5 0 5 10 15 20
z

0.00

0.05

0.10

0.15

0.20

0.25

de
ns

ity

Identify mode(s)
target
expert (mode)

5 0 5 10 15 20
z

Refine mode(s)
expert (jitter)

5 0 5 10 15 20
z

Fit variational parameters
variational approximation

Figure 2: To select experts, we identify each mode and then add more experts to refine the fit.

The above result is not yet a practical recipe for sampling from a PoE. The difficulty lies in the first
step: it is not straightforward to sample from q(w) in Eq. 21 due to its leading dependence on Cα(w).
But we can circumvent this difficulty by using the Dirichlet distribution that appears in q(w) as a
proposal distribution for importance sampling.

Suppose we wish to estimate an expected value Eq(z)[h(z)]. We can draw a batch of samples

wb ∼ Dir(w |α), (23)
zb |wb ∼ T (z |µ(wb),Ω(wb), ν). (24)

from the Dirichlet and t-distributions in Eqs. 21 and 22 and weight these samples by Cα(wb) in the
calculation of the expected value. In this way we obtain the estimate

Eq(z)[h(z)] ≈
∑

b Cα(wb)h(zb)∑
b Cα(wb)

. (25)

3 Score-based VI with products of experts

In this section we show how to approximate a target density p by a PoE with t-distributed experts.
To do so, we must specify the number of experts, the parameters of their t-distributions, and the
exponents that determine their geometric weighting in the PoE. We discuss these problems in turn.

3.1 Selecting the experts

Of the many ways to select experts, we seek a simple heuristic that works in practice and avoids a
complicated, coupled optimization over the expert parameters (µk,Λk) and weights αk in Eq. 4. Our
basic strategy is to generate a large, oversaturated pool of experts whose means µk are concentrated
near the modes of the target density. We shall see in later sections that poorly situated (and hence
irrelevant) experts are efficiently pruned by the procedure for learning the weights αk.

Our strategy for selecting experts has three steps. The first is to locate the modes of the target density
by hill-climbing in log p(z) from randomly chosen starts; if the target density is a Bayesian posterior,
then we can choose these starts by sampling from the corresponding prior. The second step is to place
an expert at each mode: the expert’s mean µk and inverse scale parameter Λk to match the mode’s
location and curvature. The third step is to place additional experts nearby so that the weighted PoE
can better model the shape (e.g., skew, kurtosis) of each mode: once a new location µk is chosen,
the corresponding inverse scale Λk is set to the (negative) Hessian at µk projected to the cone of
positive semidefinite matrices. For further details of this step and a discussion of expert placing cost,
see Appendix D.1. Figure 2 illustrates the intuition behind this strategy for a target density with
one mode. Overall we found this strategy to be quite effective in conjunction with a score-based
procedure for optimizing the expert weights in the PoE. We describe this score-based procedure next.

3.2 Weighting the experts

Given experts qk in the form of Eq. 4, we now consider how to form the weighted PoE in Eq. 2 that
best approximates the target density p. Specifically, for q(z) ∝

∏
k qk(z)

αk , we seek the weights
{αk}Kk=1 that minimize the Fisher divergence between q and p, as defined in Eq. 1. Since the PoE in
Eq. 2 has support on RD, this divergence vanishes only when q=p.

6

Though we cannot minimize Eq. 1 directly, in the spirit of BBVI, we can instead attempt to minimize
an empirical estimate of the Fisher divergence, one that is based on drawing samples from q. A
further simplification is achieved by decoupling the procedures for sampling from q and optimizing q.
To do so, we iteratively minimize a closely related objective. In particular, let α(t) ∈ RK be the
expert weights at the tth iteration, and let q(z|α) denote the density of the PoE with expert weights α.
Rather than minimizing Eq. 1 directly, at the tth iteration we instead solve the simpler problem

α(t+1) = argmin
α∈C

{∫ ∥∥∇ log q(z|α)−∇ log p(z)
∥∥2 q(z|α(t)

)
dz + 1

ηt

∥∥α− α(t)
∥∥2} , (26)

where ηt>0 is a learning rate and the domain C of the optimization constrains the expert weights to
define a normalizable PoE. Note that this update minimizes a biased estimate of the Fisher divergence;
the estimate is biased because in the first term of the objective the expectation is performed with
respect to q(z|α(t)) instead of q(z|α). But at the same time, the update attempts to compensate for
this bias by penalizing solutions that move too far from one iteration to the next; this penalty is
enforced by the regularizer in the second term of the objective. This is the same intuition that is
behind a recently proposed “batch-and-match” algorithm for Gaussian BBVI [7].

The rest of this section fleshes out this iterative procedure and highlights its three main advantages.
First, when q is a weighted PoE with t-distributed experts, we can use samples to compute an
empirical estimate of the objective in Eq. 26. Second, at each iteration, we can minimize this
empirical estimate by solving a strongly convex quadratic program. Third, this iterative procedure
provably converges under fairly general conditions to a neighborhood of an optimally weighted PoE.

We now construct an empirical estimate Êt(α) for the objective in Eq. 26 at the tth iteration. Using the
latent variable model in Eqs. 21 and 22, we generate a batch of B weighted samples {(wb, zb)}Bb=1

from the PoE with expert weights α(t). From these samples, we construct the empirical estimate

Êt(α) = 1
B

B∑
b=1

πb

∥∥∇ log q(zb|α)−∇ log p(zb)
∥∥2 + 1

ηt

∥∥α− α(t)
∥∥2, (27)

where πb∝Cα(t)(wb) is the importance weight of the bth sample from Eq. 25. Note how by sampling
the PoE with weights α(t), we have decoupled these samples from the optimization over α in Eq. 26.

Next we show that the empirical estimate Êt(α) is minimized by solving a convex quadratic program
in the expert weights α. First, we observe that for any PoE, as defined by q(z|α) ∝

∏
k qk(z)

αk in
Eq. 2, the score is linear in the weights of its experts: namely, ∇ log q(z|α) =

∑
k αk∇ log qk(z).

We make this explicit for the t-distributed experts in Eq. 4 by writing

∇ log q(zb|α) = Qbα, (28)

where Qb is the D×K matrix whose kth column is given by ∇ log qk(zb) = −2qk(zb)Λk(zb−µk).
From the linearity of the scores, it follows at once that Êt(α) in Eq. 27 is quadratic in the expert
weights α. In particular, we can rewrite Eq. 27 as

Êt(α) = α⊤
[

1
B

∑
bπbQ

⊤
b Qb +

1
ηt
I
]
α− 2

[
1
B

∑
bπbQ

⊤
b ∇ log p(zb) +

1
ηt

]⊤
α + Êt(0), (29)

and from the above, we also see that Êt(α) is strongly convex in α for all ηt∈ (0,∞). The expert
weights are updated by minimizing this objective subject to a constraint that the newly weighted PoE
is normalizable. To satisfy the parameter constraints of the PoE, we define the constraint set, such
that α ∈ C , as

C =
{
α ∈ RK : α1 ≥ 0, α2 ≥ 0, . . . , αk ≥ 0,

∑
kαk ≥ D

2 + ε
}
, (30)

where ε > 0 is a slack variable added to ensure that the product of experts
∏

k qk(z)
αk is integrable.

Eq. 30 defines a convex set, and hence the overall optimization is convex; in particular, it is a
nonnegative least squares (NNLS) problem with linear constraints, for which there exist many
efficient solvers [29, Ch. 23]. For our purposes, it is also interesting that problems in NNLS often
yield sparse solutions where multiple constraints are active. In our setting, these are solutions in
which irrelevant experts are assigned zero weights and do not contribute to the density of the PoE.

7

Algorithm 1 Score-based VI for PoE: learning the weights α

1: Input: initial weights α(0)∈C , target score function ∇ log p, experts qk(z), learning rates ηt>0.
2: for t = 1, . . . , T : do
3: for b = 1, . . . , B: do
4: Sample wb ∼ Dir(w |α(t)) and zb ∼ T (z |µ(wb),Ω(wb), ν

(t)).
5: Compute importance weight πb ∝ Cα(t)(wb) and target score gb = ∇ log p(zb).
6: Compute matrix Qb∈RD×K whose kth column is equal to ∇ log qk(zb).
7: end for
8: Compute Gt =

1
B

∑B
b=1 πbQ

⊤
b Qb +

1
ηt
I and ht =

1
B

∑B
b=1 πbQ

⊤
b gb +

1
ηt
α(t).

9: Update expert weights: α(t+1) = argminα∈C

[
1
2α

⊤Gtα−h⊤
t α
]
.

10: end for
11: Output: PoE weights α(T) ∈ C (Eq. 30)

3.3 Convergence theorem

We summarize the overall iterative procedure for learning expert weights in Algorithm 1. To prove
convergence we make some basic assumptions about the Fisher divergence in Eq. 1 and its empirical
estimate at each iteration of Algorithm 1. To state these assumptions, let

D̂t(α) =
1
B

∑
bπb

∥∥∇ log q(zb|α)−∇ log p(zb)
∥∥2 (31)

denote the first term in Eq. 27, and let ∇D̂t and H[D̂t] denote the gradient and Hessian of this term
with respect to the expert weights α. With these definitions, we can state the following theorem.

Theorem 3.1. Suppose that D(q; p) in Eq. 1 is minimized by a unique α∗∈C, and also that for all
t ≥ 0 there exists some δ≥0 such that E

∥∥ 1
2∇D̂t(α

∗)
∥∥ ≤ δ and some λ>0 such that H[D̂t] ⪰ λI

almost surely. Then for constant learning rates ηt≡η, the expected error of the iterates satisfies

E
∥∥α(t)−α∗∥∥ ≤

(
1

1+ηλ

)t ∥∥α(0)−α∗∥∥+ δ
λ . (32)

This result ensures that the iterates α(t) of Algorithm 1 converge, in expectation, to a neighborhood
around the optimal expert weights α∗, with the error decaying at a linear (geometric) rate. The proof
relies on a few key ideas, most notably that (i) the constrained least-squares problem in Eq. C.6 can
be solved by projecting its unconstrained solution onto C, and (ii) this projection is with respect to
an induced Mahalanobis norm, and it is nonexpansive [2, Proposition 4.8]. See Appendix E for a
complete proof.

The bound in Eq. 32 separates two effects—the transient error, which shrinks exponentially fast with
t and depends on the strong convexity parameter λ, and the asymptotic error floor δ

λ , which depends
also on the misspecification parameter δ. We briefly sketch the intuition behind these terms.

First, the error floor is proportional to the misspecification parameter δ. Let q∗ denote the optimally
weighted PoE. On one hand, if p∈Q, then q∗=p and D̂t(α

∗) = ∥∇D̂t(α
∗)∥ = 0 for all t; we see in

this case that δ=0. On the other hand, if p ̸∈Q, then q∗ ̸=p. In this case we expect that the stochastic
gradients will have small norms at α∗ (and thus δ will be small) whenever D(q∗; p) itself is small.
In the right panel of Figure D.2 we highlight on one experiment with an sinh-arcsinh target, that
for constant or decreasing step size schedules, the error floor does not go below 10−1. However, on
the left panel of Figure D.2, we do show that this error floor improves as we increase the batch size.
See Appendix D.2 and Appendix D.3 for details.

Second, the transient error depends on the assumption that D̂t(α) is λ-strongly convex for all t.
Observe from Eq. C.6 that H[D̂t] =

1
B

∑B
b=1 πbQ

⊤
b Qb; i.e., the Hessian is a sum of B positive

semidefinite matrices. Thus for larger batch sizes, the assumption of strong convexity is increasingly
likely to be satisfied. We confirm this intuition in Figure E.1, where we show that as we increase the
batch size, the eigenvalues of the Hessian also increase and are bounded away from zero. We only
encountered one indefinite Hessian in our experiments; this occurred when the number of experts
(K=100) was much larger than the batch size (B=10).

8

ADVI
BaM Flow PoE

10
2

10
1

D
iv

er
ge

nc
e

KL
Fisher

(a) Gaussian mixture

ADVI
BaM Flow PoE

10
1

10
0

D
iv

er
ge

nc
e

KL
Fisher

(b) Product of experts

ADVI
BaM Flow PoE

10
2

10
1

10
0

D
iv

er
ge

nc
e

KL
Fisher

(c) Diamond

ADVI
BaM Flow PoE

10
2

10
1

10
0

10
1

D
iv

er
ge

nc
e

KL
Fisher

(d) Funnel

Figure 3: Synthetic 2D targets. Top: Gray contours represent the target, and blue points represent
samples from the fitted PoE. Bottom: The KL and Fisher divergences of each method.

4 Experiments

In this section, we compare VI with this PoE family to Gaussian BBVI (with ADVI [28] and BaM [7])
and normalizing flow-based VI [43]. In Appendix F, we provide more details on these experiments
and also results on several additional examples. We also present additional results for estimating PoE
normalizing constants and evaluating sampling (Appendix F.1) and expert placement (Appendix D.2).

4.1 Synthetic 2D targets

We first consider several synthetic 2D target distributions: 1) Mixture of Gaussians, 2) Product of
t-distributions, 3) Diamond, 4) Funnel. We report Monte Carlo estimates of two training-objective-
agnostic metrics, KL(p; q) and Ep[∥∇ log q −∇ log p∥2], using 1000 samples from p. (The VI
methods minimize the expectations with respect to q.) We visualize the PoE samples by first drawing
a weighted sample and then resampling the generated samples according to their normalized weights.
For full details on each target, see Appendix F.

Figure 3 shows each target distribution’s contours (gray curves) overlaid with samples from the
fitted PoE (blue points). In these examples, the PoE achieves substantially lower values for both
divergence metrics than the Gaussian approximation, due to its ability to better capture the tails of the
target distributions. The normalizing flow also provides a substantial improvement over the Gaussian
fit. Notably, for heavy-tailed (product of experts and diamond) targets, the PoE outperforms the
flow-based family as well, yielding lower divergence in these cases.

4.2 Sinh-arcsinh target

We now evaluate a higher-dimensional synthetic target distribution with skew and heavy tails. The
sinh-arcsinh distribution [21, 22] generalizes the Gaussian distribution with additional parameters
ε ∈ RD and τ ∈ RD

++ that control the skewness and the tail-weight. It transforms a Gaussian draw
z̃ ∼ N(0,Σ) coordinate-wise via zd = sinh((sinh−1(z̃d) + εd)/τd). We construct the target density
in D = 50 dimensions so that it is positively skewed (ε=0.3) and heavy-tailed (τd=0.7).

In Figure 4, we show the KL and Fisher divergences between all approaches, and we found that the
PoE had the lowest divergence for both metrics (left). We also plotted the divergences against the
number of gradient evaluations for the iterative parameter fitting of the PoE and the normalizing flow.
Note that this plot does not show the initial startup costs of each method (selecting the experts for the
PoE and selecting a learning rate for the flow), which are not the dominating cost. In addition, this
plot only shows the first 15× 104 gradient evaluations. For both divergences, the values decrease
slowly for the flow model; the final reported value in the bar graph is after 107 gradient evaluations.

9

ADVI
BaM Flow PoE

10
0

10
1

10
2

D
iv

er
ge

nc
e

KL
Fisher

(a) All methods

0 5x104 10x104 15x104

of gradient evaluations

0

50

100

150

K
L

di
ve

rg
en

ce

PoE
Flow

0 5x104 10x104 15x104

of gradient evaluations

0

25

50

Fi
sh

er
 d

iv
er

ge
nc

e PoE
Flow

(b) Divergence vs # of gradient evaluations

Figure 4: 50-dimensional sinh-arcsinh target with skew and heavy tails.

ADVI
BaM Flow PoE

0.0

0.5

1.0

1.5

2.0

2.5

N
eg

at
iv

e
LL

H

ADVI
BaM Flow PoE

0

10

20

30

40

50

Fi
sh

er
 d

iv
er

ge
nc

e

(a) garch11

ADVI
BaM Flow PoE

0

5

10

15

N
eg

at
iv

e
LL

H
ADVI

BaM Flow PoE
0

2

4

6

8

10

Fi
sh

er
 d

iv
er

ge
nc

e

(b) 8schools-noncentered

ADVI
BaM Flow PoE

0.00

0.05

0.10

0.15

0.20

N
eg

at
iv

e
LL

H

ADVI
BaM Flow PoE

0

1

2

3

4

5

Fi
sh

er
 d

iv
er

ge
nc

e

(c) gp-regr

Figure 5: posteriordb targets that highlight a range of non-Gaussian posterior properties.

4.3 Posterior inference problems

Next we study several posterior inference test problems from posteriordb [32, 33]. For each target,
we use reference samples computed using Stan (drawn via Hamiltonian Monte Carlo) [9]. Because we
do not have access to the normalized target density p(z), instead of reporting KL(p; q), we report the
negative expected log likelihood Neg-LLH(p; q) = −Ep[log(q)]. We again also consider the Fisher
divergence F (p; q), which does not require normalizing constants. All expectations are estimated
using the reference samples from p.

In Figure 5, we highlight three particular examples from posteriordb. First, we consider garch11:
this model has (half) uniform priors that skew the posterior when the support is transformed to RD.
The skew is not modeled by Gaussian VI, but it is present in the PoE and flow-based approximations.
Next, we consider 8schools-noncentered, which exhibits skew and a heavy-tailed component
introduced by a half-Cauchy(0, 5) prior. These properties are best modeled by the variational PoE.
Finally, we study a light-tailed example in gp-regr, where Gaussian BBVI performs well due the
near symmetry of the posterior. Nevertheless, despite its heavy tails, the product of t-distributions still
outperforms both Gaussian BBVI and the normalizing flow (with a Gaussian base distribution) on
this example. This example illustrates how the expert weights α can be optimized to match different
tails via the value of ν = 2

∑
k αk −D in the mixture representation of Result 2.1.

5 Discussion of contributions, limitations, and future work

We have shown that VI with products of t-experts can model a variety of target densities. A key
technical insight, via a Feynman identity, was to represent each PoE as a continuous mixture indexed
by a Dirichlet variable. We then used this representation to sample from the PoE, a core requirement
for BBVI. To optimize the expert weights, we developed a score-based VI algorithm that solves a
sequence of convex quadratic programs, and we proved that its iterates converge exponentially to a
neighborhood that depends on the degree of misspecification of the variational family.

While our algorithm learns the expert weights, it is limited by relying on a fixed collection of experts
selected upfront. In practice, the quality of the approximation depends heavily on how these experts
are chosen. While our current heuristic overspecifies the number of experts and prunes away the
ineffectual ones, further gains could be achieved with a more refined approach—for instance, a
boosting-style approach [15, 35] that sequentially adds experts based on (say) score mismatch.

Several promising directions remain. First, the Feynman identity may have broader implications: for
example, by providing a semi-analytic procedure to estimate the normalizing constant, it may open a
new door to generative models with products of t-experts [26, 54]. Second, the PoE construction may
be useful in certain sampling methods as an initialization or proposal scheme. Finally, as mentioned
above, by choosing experts more carefully we can hope to accelerate every aspect of our approach.

10

Acknowledgements

D.B. was supported by NSF IIS-2127869, NSF DMS-2311108, ONR N000142412243, and the
Simons Foundation.

References
[1] D. F. Andrews and C. L. Mallows. Scale mixtures of normal distributions. Journal of the Royal

Statistical Society: Series B (Methodological), 36(1):99–102, 1974.

[2] H. H. Bauschke, P. L. Combettes, H. H. Bauschke, and P. L. Combettes. Convex analysis and
monotone operator theory in Hilbert spaces. Springer, 2017.

[3] K. Bhatia, N. L. Kuang, Y.-A. Ma, and Y. Wang. Statistical and computational trade-offs in vari-
ational inference: A case study in inferential model selection. arXiv preprint arXiv:2207.11208,
2022.

[4] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for statisticians.
Journal of the American Statistical Association, 112(518):859–877, 2017.

[5] A. Cabezas, A. Corenflos, J. Lao, R. Louf, A. Carnec, K. Chaudhari, R. Cohn-Gordon, J. Coul-
lon, W. Deng, S. Duffield, et al. BlackJAX: composable Bayesian inference in JAX. arXiv
preprint arXiv:2402.10797, 2024.

[6] D. Cai, C. Modi, C. Margossian, R. Gower, D. Blei, and L. Saul. EigenVI: score-based
variational inference with orthogonal function expansions. In Advances in Neural Information
Processing Systems, 2024.

[7] D. Cai, C. Modi, L. Pillaud-Vivien, C. Margossian, R. Gower, D. Blei, and L. Saul. Batch
and match: black-box variational inference with a score-based divergence. In International
Conference on Machine Learning, 2024.

[8] T. Campbell and X. Li. Universal boosting variational inference. Advances in Neural Information
Processing Systems, 2019.

[9] B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. Brubaker,
J. Guo, P. Li, and A. Riddell. Stan: A probabilistic programming language. Journal of Statistical
Software, 76(1):1–32, 2017.

[10] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real NVP. In International
Conference on Learning Representations, 2017.

[11] J. Domke, G. Garrigos, and R. Gower. Provable convergence guarantees for black-box varia-
tional inference. Advances in Neural Information Processing Systems, 2023.

[12] R. P. Feynman. Space-time approach to quantum electrodynamics. Physical Review, 76(6):
769–789, 1949.

[13] G. Garrigos and R. M. Gower. Handbook of convergence theorems for (stochastic) gradient
methods, 2023.

[14] S. Gershman, M. Hoffman, and D. Blei. Nonparametric variational inference. In International
Conference on Machine Learning, 2012.

[15] F. Guo, X. Wang, K. Fan, T. Broderick, and D. B. Dunson. Boosting variational inference.
arXiv preprint arXiv:1611.05559, 2016.

[16] G. E. Hinton. Products of experts. In International Conference on Artificial Neural Networks,
1999.

[17] G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural
Computation, 14(8):1771–1800, 2002.

11

[18] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 2020.

[19] A. Hyvärinen. Estimation of non-normalized statistical models by score matching. Journal of
Machine Learning Research, 6(4), 2005.

[20] P. Jaini, I. Kobyzev, Y. Yu, and M. Brubaker. Tails of Lipschitz triangular flows. In International
Conference on Machine Learning, 2020.

[21] C. Jones and A. Pewsey. Sinh-arcsinh distributions. Biometrika, 96(4):761–780, 2009.

[22] C. Jones and A. Pewsey. The sinh-arcsinh normal distribution. Significance, 16(2):6–7, 2019.

[23] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational
methods for graphical models. Machine Learning, 37(2):183–233, 1999.

[24] K. Kim, J. Oh, K. Wu, Y. Ma, and J. R. Gardner. On the convergence of black-box variational
inference. Advances in Neural Information Processing Systems, 2023.

[25] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

[26] D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In International Conference
on Learning Representations, 2014.

[27] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling. Improved vari-
ational inference with inverse autoregressive flow. Advances in Neural Information Processing
Systems, 2016.

[28] A. Kucukelbir, D. Tran, R. Ranganath, A. Gelman, and D. M. Blei. Automatic differentiation
variational inference. Journal of Machine Learning Research, 18(14):1–45, 2017.

[29] C. L. Lawson and R. J. Hanson. Solving least squares problems. SIAM, 1995.

[30] F. Liang, M. Mahoney, and L. Hodgkinson. Fat–tailed variational inference with anisotropic tail
adaptive flows. In International Conference on Machine Learning, 2022.

[31] F. Locatello, G. Dresdner, R. Khanna, I. Valera, and G. Rätsch. Boosting black box variational
inference. Advances in Neural Information Processing Systems, 2018.

[32] M. Magnusson, J. Torgander, P.-C. Bürkner, L. Zhang, B. Carpenter, and A. Vehtari. posteriordb:
Testing, benchmarking and developing Bayesian inference algorithms. 2025.

[33] M. Magnusson, P. Bürkner, and A. Vehtari. posteriordb: a set of posteriors for Bayesian
inference and probabilistic programming. https://github.com/stan-dev/posteriordb,
2022.

[34] L. Martino, V. Elvira, and F. Louzada. Effective sample size for importance sampling based on
discrepancy measures. Signal Processing, 131:386–401, 2017.

[35] A. C. Miller, N. J. Foti, and R. P. Adams. Variational boosting: Iteratively refining posterior
approximations. In International Conference on Machine Learning. PMLR, 2017.

[36] C. Modi, C. Margossian, Y. Yao, R. Gower, D. Blei, and L. Saul. Variational inference with
Gaussian score matching. Advances in Neural Information Processing Systems, 2023.

[37] C. Modi, D. Cai, and L. K. Saul. Batch, match, and patch: low-rank approximations for
score-based variational inference. In International Conference on Artificial Intelligence and
Statistics, 2025.

[38] W. Morningstar, S. Vikram, C. Ham, A. Gallagher, and J. Dillon. Automatic differentiation
variational inference with mixtures. In International Conference on Artificial Intelligence and
Statistics, 2021.

[39] E. Moulines and F. R. Bach. Non-asymptotic analysis of stochastic approximation algorithms
for machine learning. In Advances in Neural Information Processing Systems, 2011.

12

https://github.com/stan-dev/posteriordb

[40] D. Needell, N. Srebro, and R. Ward. Stochastic gradient descent, weighted sampling, and
the randomized Kaczmarz algorithm. Mathematical Programming, Series A, 155(1):549–573,
2016.

[41] F. Orabona. A modern introduction to online learning. arXiv preprint arxiv:1912.13213, 2025.

[42] R. Ranganath, S. Gerrish, and D. Blei. Black box variational inference. In Artificial Intelligence
and Statistics. PMLR, 2014.

[43] D. Rezende and S. Mohamed. Variational inference with normalizing flows. In International
Conference on Machine Learning, 2015.

[44] E. Roualdes, B. Ward, S. Axen, and B. Carpenter. BridgeStan: Efficient in-memory access to
Stan programs through Python, Julia, and R. https://github.com/roualdes/bridgestan,
2023.

[45] Y. Shao, S. Yu, and T. Feng. Nonparametric automatic differentiation variational inference
with spline approximation. In International Conference on Artificial Intelligence and Statistics,
2024.

[46] V. A. Smirnov. Evaluating Feynman integrals. Springer Tracts in Modern Physics, 211:1–244,
2004.

[47] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In International Conference on Machine Learning,
2015.

[48] Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in Neural Information Processing Systems, 2019.

[49] Y. Song, S. Garg, J. Shi, and S. Ermon. Sliced score matching: A scalable approach to density
and score estimation. In Uncertainty in Artificial Intelligence, 2020.

[50] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. OSQP: An operator splitting
solver for quadratic programs. Mathematical Programming Computation, 12(4):637–672, 2020.

[51] M. K. Titsias and F. Ruiz. Unbiased implicit variational inference. In International Conference
on Artificial Intelligence and Statistics, 2019.

[52] A. Uppal, K. Stensbo-Smidt, W. Boomsma, and J. Frellsen. Implicit variational inference for
high-dimensional posteriors. Advances in Neural Information Processing Systems, 2023.

[53] M. J. Wainwright, M. I. Jordan, et al. Graphical models, exponential families, and variational
inference. Foundations and Trends® in Machine Learning, 1(1–2):1–305, 2008.

[54] M. Welling, S. Osindero, and G. E. Hinton. Learning sparse topographic representations with
products of student-t distributions. Advances in Neural Information Processing Systems, 2002.

[55] K. W. k. Wong, M. Gabrié, and D. Foreman-Mackey. flowMC: Normalizing flow enhanced
sampling package for probabilistic inference in JAX. J. Open Source Softw., 8(83):5021, 2023.

[56] M. Wu and N. Goodman. Multimodal generative models for scalable weakly-supervised
learning. In Advances in Neural Information Processing Systems, 2018.

[57] Z. Xu and T. Campbell. The computational asymptotics of Gaussian variational inference and
the Laplace approximation. Statistics and Computing, 32(4):63, 2022.

[58] Z. Xu, N. Chen, and T. Campbell. MixFlows: principled variational inference via mixed flows.
In International Conference on Machine Learning, 2023.

[59] M. Yin and M. Zhou. Semi-implicit variational inference. In International Conference on
Machine Learning, 2018.

[60] D. Zoltowski, D. Cai, and R. P. Adams. Slice sampling reparameterization gradients. Advances
in Neural Information Processing Systems, 2021.

13

https://github.com/roualdes/bridgestan

Appendix

A Overview

In this supplementary material we provide additional details on several aspects of the paper. We
start by providing a discussion of the broader VI literature in Appendix B, focusing on VI methods
that employ expressive variational families. Then, in Appendix C we provide additional derivations
and details about the Feynman parameterization. In particular, we provide a full derivation of the
continuous mixture representation of the PoE presented in Result 2.1, along with an expanded
discussion of the normalizing constant. Next, in Appendix D we present one heuristic used for
selecting the experts, along with an empirical study of the heuristic. In Appendix E, we provide the
proof for the convergence theorem, which is supplemented with an empirical investigation. Finally,
in Appendix F, we present additional empirical results. In particular, we first study the properties of
the PoE family, including the estimation of the normalizing constant and the sampling procedure. We
then provide details about the setup of the experiments in Section 4, including more details about
the tuning of the baselines and the implementation of the PoE score matching algorithm. Next, we
provide additional plots and analysis for the experiments in Section 4.

B Related work

Mixture modeling. There have been many efforts to extend VI beyond families of factorized or
multivariate Gaussian distributions. One natural extension is to choose the approximating distribution
from a parameterized family of mixture models (i.e., a mixture of experts), and in this line of work,
it has been most common to study Gaussian mixture models. Gershman et al. [14] introduced an
infinite Gaussian mixture model that draws inspiration from kernel density estimation. In a different
approach, Morningstar et al. [38] integrated mixture families into ADVI using stratified sampling
and optimizing a tighter evidence lower bound via gradient descent. More recently, Xu et al. [58]
combined the variational families of mixture models and normalizing flows, establishing MCMC-like
convergence guarantees.

Boosting VI approaches. Mixture models have also been used in boosting strategies for VI. In
this approach, the variational approximation is iteratively improved by adding new components to
the mixture. Guo et al. [15] and Miller et al. [35] proposed greedy algorithms that incrementally
add Gaussian components to reduce the KL divergence. Locatello et al. [31] later reinterpreted this
boosting procedure as a Frank–Wolfe algorithm, deriving explicit convergence guarantees. Campbell
and Li [8] replaced the KL divergence with the Hellinger distance; with this objective, the optimization
of mixture weights reduces to a problem in nonnegative least squares that is similar in flavor to the
optimization of PoE weights in our work.

Basis-set variational families. A related line of work has explored variational approximations
that are parameterized by linear combinations of basis functions. For example, in EigenVI [6]
the variational approximation is parameterized as the square of a linear combination of orthogonal
functions, and the best approximation is found by minimizing a Fisher divergence—an optimization
that reduces in turn to a minimum-eigenvalue problem. However, EigenVI scales exponentially with
the latent dimension, limiting its applicability. Shao et al. [45] used spline-based approximations
within an ADVI framework, increasing the flexibility of the variational approximation.

Normalizing flow-based families. Another line of work has explored the use of normalizing flows
[27, 43], where the variational approximation is parameterized by an invertible neural network and
found by optimizing the ELBO using the reparameterization trick. Jaini et al. [20] and Liang et al.
[30] introduced tail-adaptive components into flow-based models in order to better approximate
non-Gaussian posteriors with heavy tails. Normalizing flows with these architectures have enjoyed
empirical success, but they can be difficult to optimize and generally lack convergence guarantees
when they are used for VI.

Implicit variational inference. Implicit VI [51, 52, 59] defines variational families using a con-
tinuous mixture of a kernel. The product of experts we consider can be viewed as fitting in the
framework of implicit VI with a particular kernel (t-distribution) and mixing measure (Dirichlet) due
to Result 2.1; the PoE here is a particular function of the auxiliary variables. On the other hand, the
typical implicit VI setting specifies a neural network with a mixing distribution over the parameters

14

of that neural network. In this special case of continuously parameterized models, we are able to
identify tools that lead to both an expressive family of densities but also a tractable normalizing
constant via the Feyman representation.

Products of experts. There has been relatively less work on products of experts for VI. In part they
have been underexplored because it is generally intractable to compute their normalizing constants,
and in one way or another these normalizing constants enter into the optimizations for ELBO-based
BBVI. Products of experts (including t-distributed experts [54]) have been used for generative
modeling [16, 17], but in these studies the learning was finessed by computing gradients of the
contrastive divergence instead of the KL divergence. Products of experts can also be viewed as a
special case of energy-based models. The latter have been used for VI [60], but in this context they
are typically paired with Markov chain Monte Carlo (MCMC) methods.

C Latent variable model for products of experts: additional details

C.1 Feynman parameterization of product of t-experts (Result 2.1)

We now provide a full derivation of the Feynman parameterization of the PoE with t-experts. In this
case, the denominators have the form

Ak := 1 + (z − µk)
⊤Λk(z − µk). (C.1)

Now we substitute the denominators Ak into the Feynman parameterization in Eq. 7:
K∏

k=1

qk(z)
αk =

K∏
k=1

1[
1 + (z − µk)

⊤Λk(z − µk)︸ ︷︷ ︸
=Ak

]αk
(C.2)

=
Γ(
∑

k αk)∏
k Γ(αk)

∫
∆K−1

∏
k w

αk−1
k

(
∑

k wk[1 + (z − µk)⊤Λk(z − µk)])
∑

k αk
dw. (C.3)

Now we will rewrite the denominator in Eq. C.3 in a convenient form by expanding the terms and
completing the square. In particular, the sum in the denominator can be written as∑

k

wk [1 + (z−µk)
⊤Λk(z−µk)

]
(C.4)

=
∑
k

wk +
∑
k

wk(z − µk)
⊤Λk(z − µk) (C.5)

= 1 + z⊤
(∑

k
wkΛk

)
z − 2z⊤

(∑
k
wkΛkµk

)
+
∑

k
wkµ

⊤
k Λkµk, (C.6)

where in the last line we have isolated the terms that are quadratic and linear in z. Our next step is to
complete the square, noting that

z⊤Az − 2z⊤b =
∥∥z −A−1b

∥∥2
A
− b⊤A−1b (C.7)

for any invertible, symmetric matrix A and vector b. Next we identify A =
∑

k wkΛk and
b =

∑
k wkΛkµk from the quadratic and linear terms in Eq. C.6. Completing the square in

this way, we can write∑
k

wk

[
1 + (z−µk)

⊤Λk(z−µk)
]
= 1 +

∥∥z−µ(w)
∥∥2
Λ(w)

+ σ2(w), (C.8)

where we have defined

Λ(w) =
∑
k

wkΛk (C.9)

µ(w) = Λ−1(w)
∑
k

wkΛkµk (C.10)

σ2(w) = −µ(w)⊤Λ(w)µ(w) +
∑
k

wkµ
⊤
k Λkµk. (C.11)

15

Next we observe that the expression for σ2(w) in Eq. C.11 can be written more simply as

σ2(w) =
∑
k

wk

∥∥µk − µ(w)
∥∥2
Λk

, (C.12)

so that Eq. C.8 reproduces the earlier result for this denominator given by Eq. 12.

Thus, after completing the square and rearranging terms, the product of experts can be written as:

K∏
k=1

qk(z)
αk = Ew∼Dir(α)

[
1

(
∑

k wk[1 + (z − µk)⊤Λk(z − µk)])
∑

k αk

]
(C.13)

= Ew∼Dir(α)

[
1

[(1 + σ2(w)) + (z − µ(w))⊤Λ(w)(z − µ(w))]
∑

k αk

]
(C.14)

= Ew∼Dir(α)

 1

(1 + σ2(w))
∑

k αk

1[
1 + (z − µ(w))⊤ Λ(w)

(1+σ2(w)) (z − µ(w))
]∑

k αk


(C.15)

= Ew∼Dir(α)

 1

(1 + σ2(w))
∑

k αk

1[
1 + 1

ν ∥z − µ(w)∥2Ω(w)

]∑
k αk

 . (C.16)

The form in Eq. C.15 is useful because we can identify the quantity inside the integral as a function
that is proportional to a multivariate t-distribution with location parameter µ(w), inverse scale matrix
Ω(w) := ν

1+σ2(w)Λ(w), and degrees of freedom ν := 2
∑

k αk −D.

Thus, we have shown that the Feynman parameterization allows us to to express the product of
t-experts as a continuous mixture:

K∏
k=1

qk(z)
αk = Ew∼Dir(α)

[
(1 + σ2(w))−

∑
k αk

[
1 + 1

ν ∥z − µ(w)∥2Ω(w)

]−∑
k αk
]
. (C.17)

C.2 Computing the normalizing constant (Result 2.2)

The definition of normalizing constant and Eq. C.17 gives

Cα =

∫ K∏
k=1

qk(z)
αkdz =

∫
Ew∼Dir(α)

[
1

(1 + σ2(w))
∑

k αk

[
1 + 1

ν ∥(z − µ(w)∥2Ω(w)

]−∑
k αk
]
dz.

(C.18)

Because the integrand is non-negative, we can apply Fubini’s (Tonelli’s) theorem, to interchange the
integral with the expectation:

Cα = Ew∼Dir(α)

[
1

(1 + σ2(w))
∑

k αk

∫ [
1 + 1

ν ∥(z − µ(w)∥2Ω(w)

]−∑
k αk

dz

]
. (C.19)

Recall that the function in the inner integral is proportional to a multivariate t-distribution with
location parameter µ(w), inverse scale matrix Ω(w) = ν

1+σ2(w)Λ(w), and degrees of freedom
ν = 2

∑
k αk − D. Thus, we can identify the integral as being equal to the inverse normalizing

constant of this multivariate t-distribution multiplied by (1 + σ2(w))−
∑

k αk :

π
D
2 Γ(ν2)ν

D
2 |Ω(w)|− 1

2

Γ(ν+D
2)

(1 + σ2(w))−
∑

k αk = π
D
2
Γ(
∑

k αk − D
2)

Γ(
∑

k αk)
(1 + σ2(w))

D
2 −

∑
k αk |Λ(w)|− 1

2 ,

where we simplified terms after expanding Ω(w). We also note that
∑

k αksign(|Λk|) > D
2 is needed

to ensure integrability.

16

After substituting the definition of ν, the normalizing constant can be written as

Cα =

∫ K∏
k=1

qk(z)
αkdz =

π
D
2 Γ(ν2)

Γ(ν+D
2)

Ew∼Dir(α)

[
|Λ(w)|− 1

2 (1 + σ2(w))
ν
2

]
. (C.20)

Thus, this formulation of the normalizing constant turns the problem of an integral over RD into an
integral over the K − 1 simplex.

D Score-based variational inference

In this section, we first describe a heuristic for placing the experts and then we perform an empirical
study for this heuristic on an increasingly large number of experts. Then we perform an empirical
study for the learning parameters of the variational inference algorithm.

D.1 Heuristics for placing the experts

In this section, we provide one heuristic to address the main intuitive goal outlined in Section 3.1.
Here, the goal is to select a large number of experts by first locating the mode(s) and then placing a
large number of experts nearby to help shape the mode(s). The irrelevant experts are pruned away
during the fitting the α weights via score matching.

We will now assume there is one mode, but this discussion can be extended to multiple modes. First,
we locate the mode z∗ by hill climbing with the objective log p(z), where p may be unnormalized.
At the mode, we compute or estimate the curvature at z∗, which is given by H(z∗) = 1

2∇
2 log p(z∗);

this matrix arises from matching the second-order Taylor expansions of log p and log qk. The expert
is placed at this mode

µ1 = z∗, (D.1)
Λ1 = −H(z∗). (D.2)

Now we refine the mode by placing additional experts using the unnormalized target ρ(z). Using a
low discrepancy sequence, we generate M candidate points from the hypercube[

µ1 − s

√
diag(Λ−1

1), µ1 + s

√
diag(Λ−1

1)

]D
(D.3)

where s > 0 is a scaling parameter. Then we resample the candidate points by sampling N points
with replacement according the weights: for a point zi in the candidate set, we compute

ωi ∝ exp(β log ρ(zi)) (D.4)

where β ∈ (0, 1] is a tempering parameter.

Finally, we refine the candidate set down to the final set of expert locations: beginning with the mode
µ1, we greedily construct the set of experts by iterating through the candidate set and adding an
element µk to the set of locations if ∥µ1 − µk∥ < τ , where τ > 0 is a threshold parameter. The
expert inverse scales are then set to Λk = [−H(µk)]+, where we project [−H(µk)] to the cone of
positive semidefinite matrices.

This heuristic serves as a proof of concept and represents one possible way to place experts; future
work will focus on more automated expert-selection strategies.

D.2 Empirical study: expert-placing heuristics

In this section, we study the heuristic for algorithm placing on the sinh-arcsinh target described in Sec-
tion 4 with D = 5, εd = 0.3, and δd = 0.7. In all experiments, we used tensorflow-probability
to generate a randomized Halton sequence, which was then transformed appropriately to obtain the
desired hypercube.

We began by placing M = 50,000 candidate points, where we set s = 15, β = 0.5, τ = 6. When
choosing the locations, we greedily chose locations until hitting the desired number of experts

17

K=1
0

K=2
5

K=5
0

K=7
5

K=1
00

10
1

D
iv

er
ge

nc
e

KL
Fisher

K=1
0

K=2
5

K=5
0

K=7
5

K=1
00

0

5

10

15

20

25

of

 a
ct

iv
e

ex
pe

rts

Figure D.1: Study of expert-placing heuristic. Left: KL and Fisher divergences for an increasing
number of experts K. Right: The number of active experts after reweighting same sets of experts.

0 25 50 75 100 125 150 175 200
Iteration

10
1

10
0

10
1

Fi
sh

er
 d

iv
er

ge
nc

e

B=10
B=100
B=1000
B=10000

0 25 50 75 100 125 150 175 200
Iteration

10
1

10
0

10
1

Fi
sh

er
 d

iv
er

ge
nc

e

t = 1
t = 100
t = 1/(t + 1)
t = 1/(t + 1)2

Figure D.2: Study of the learning parameters in score-based VI for the PoE family. Left: varying the
number of samples B while fixing the learning rate. Right: varying the learning rate schedule while
fixing the batch size.

K = 10, 25, 50, 75, 100. We ran the variational inference algorithm for T = 200 iterations with
B = 20,000 and a constant learning rate ηt = 1.

In Figure D.1, we report the metrics KL(p; q) and F (q; p). We observe that the KL and Fisher
divergences decrease as the number of experts increase. We also report the number of active experts,
i.e., the experts with non-zero weight. As the number of experts increases, the number of active
experts increases slowly; in particular for K = 50, 75, 100, there were about 20-25 active experts.
Thus, even with an overspecified number of experts, the method can learn a sparse set of experts.

Computational cost of using more experts. As we showed in this section, using more experts will
result in an improved posterior accuracy. But it will also increase the computational cost of solving
for the weights. Once the experts are fixed, determining the PoE parameters comes at a relatively
small cost, since we need only solve a quadratic program to determine α, which can be done in a
matter of seconds, even in high dimensions. The computational cost of the constrained least squares
solve is O(K3), which is not prohibitive for K < 1000. For the problems studied in this work, we
did not require this many experts. For very large K, the cost will become prohibitive, and this issue
provides motivation to work on better methods for expert selection in higher dimensions. In addition,
the cost of computing scores is linear in the dimensionality of the latent variable z, and in many
real-world problems, evaluating the unnormalizing target and its score is the dominating bottleneck.

D.3 Empirical study: learning parameters

We continue studying the same target example as Appendix D.2. We used the same expert selection
parameters, fixing K = 50. Now, we vary the learning parameters: the number of samples B, and
the learning rate schedule ηt. For the number of samples, we considered B = 10, 100, 1000, 10,000;
here we fixed ηt = 1. For the learning rate schedule, we fixed B = 10 and considered constant
learning rates with ηt = 1, 100 and varying learning rates with ηt = 1/(t+ 1) and ηt = 1/(t+ 1)2.
In all experiments, we initialized α(0) = 1. Here we observe that the larger batch sizes had faster and

18

more stable convergence. We additionally observe that the algorithm was not sensitive to the choice
of ηt considered.

E Proofs: convergence of score-based variational inference for the PoE family

E.1 Statement of convergence theorem

For completeness and ease of reference, we restate the main definitions needed to state the theorem.
In what follows, we assume that ∥·∥ denotes the L2 norm, and ∥·∥M denotes the Mahalanobis norm
w.r.t. a matrix M .

The empirical Fisher divergence used in the objective is defined as

D̂t(α) =
1
B

∑
bπb

∥∥∇ log q(zb|α)−∇ log p(zb)
∥∥2, (E.1)

and is the first term in the variational inference objective function (Eq. 27). Let ∇D̂t and H[D̂t]
denote the gradient and Hessian of this term with respect to the expert weights α. With these
definitions, we can state the following theorem.

Theorem E.1. [Statement of Theorem 3.1] Suppose that D(q; p) in Eq. 1 is minimized by a
unique α∗∈C , and also that for all t ≥ 0 there exists some δ≥0 such that E

∥∥ 1
2∇D̂t(α

∗)
∥∥ ≤ δ

and some λ>0 such that H[D̂t] ⪰ λI almost surely. Then for constant learning rates ηt≡η, the
expected error of the iterates satisfies

E
∥∥α(t)−α∗∥∥ ≤

(
1

1+ηλ

)t ∥∥α(0)−α∗∥∥+ δ
λ . (E.2)

E.2 Proof of Theorem 3.1

Proof. The proof consists of several steps.

Step 1. We begin by showing that minimizing the VI objective subject to the constraint α ∈ C is
equivalent to projecting an unconstrained solution into C with respect to a Mahalanobis norm. To
show this, we first recall that the objective can be written as

D̂t(α) +
1
ηt
∥α− α(t)∥2 = α⊤Gtα+ α⊤ht, (E.3)

where

Gt :=
1
B

B∑
b=1

πbQ
⊤
b Qb +

1
ηt
I, ht := −2

[
1
B

B∑
b=1

πbQ
⊤
b ∇ log p(zb) +

1
ηt
α(t)

]
. (E.4)

Let α̃(t+1) denote the unconstrained minimizer of this objective, which has the closed-form solution

α̃(t+1) = − 1
2G

−1
t ht. (E.5)

Completing the square of the RHS of Eq. E.3, we have

α⊤Gtα+ α⊤ht = (α− α̃(t+1))⊤Gt(α− α̃(t+1))− 1
4h

⊤
t G

−1
t ht. (E.6)

Thus, we can we conclude that minimizing the VI objective is equivalent to projection onto C of the
unconstrained solution in the Mahalanobis norm w.r.t. Gt:

argmin
α∈C

D̂t(α) +
1
ηt
∥α− α(t)∥2 = argmin

α∈C
∥α− α̃(t+1)∥2Gt

. (E.7)

Step 2. Our next step is to show that bounds on the error of the unconstrained minimizer translate to
bounds on the error of the minimizer in C . To this end, we define the error and unconstrained error,
respectively, as

et+1 := α(t+1) − α∗ (E.8)

ẽt+1 := α̃(t+1) − α∗. (E.9)

19

Next we exploit the nonexpansive property of the projection in the Mahalanobis norm onto the closed
convex set C [2, Proposition 4.8]. This property implies that the norm of the error et+1 is related to
the weighted norm unconstrained error ẽt+1. In particular, noting that αt+1 is the projection of α̃t+1,
and α∗ is the projection of α∗ itself (since α∗ ∈ C), we have that

∥et+1∥2Gt
= ∥α(t+1) − α∗∥2Gt

≤ ∥α̃(t+1) − α∗∥2Gt
= ∥ẽt+1∥2Gt

. (E.10)

Thus, it suffices to bound the error of the unconstrained minimizer.

Step 3. Our next step is to relate the unconstrained minimizer α̃(t+1) to the gradient ∇D̂t at
the optimizer α∗ of D(q; p). By doing so, we will make explicit the relationship between the
unconstrained solution α̃(t+1) and 1

2∇D̂t(α
∗), which provides a notion of misspecification in terms

of the scores. Define the Hessian of D̂t(α) to be

Ht := H[D̂t(α)] = ∇2D̂t(α) = 1
B

B∑
b=1

πbQ
⊤
b Qb. (E.11)

Let δt denote one-half of the gradient of D̂t at α∗, which is given by

δt :=
1
2∇Dt(α

∗) = 1
2∇

(
1
B

B∑
b=1

πb

∥∥∇ log q(zb |α)−∇ log p(zb)
∥∥2
2

)∣∣∣∣∣
α=α∗

= 1
B

B∑
b=1

πbQ
⊤
b (∇ log q(zb |α∗)−∇ log p(zb))

= 1
B

B∑
b=1

πbQ
⊤
b (Qbα

∗ −∇ log p(zb)). (E.12)

Re-arranging Eq. E.12 and noting the definition of Ht gives

1
B

B∑
b=1

πbQ
⊤
b ∇ log p(zb) = 1

B

B∑
b=1

πbQ
⊤
b Qbα

∗ − δt = Htα
∗ − δt. (E.13)

Using Eq. E.13 and the definition of ht in Eq. E.4, we can now re-express the unconstrained solution
in Eq. E.5 as a function of δt:

α̃(t+1) = − 1
2G

−1
t

[
−2

[
1
B

B∑
b=1

πbQ
⊤
b ∇ log p(zb) +

1
ηt
α(t)

]]
(E.14)

= G−1
t

[
Htα

∗ + 1
ηt
α(t) − δt

]
. (E.15)

Step 4. Our next step is to derive a recursion for the error in a Mahalanobis norm. We start by
analyzing the error of the unconstrained minimizer. It satisfies the following recursion w.r.t. et:

ẽt+1 = α̃(t+1) − α∗ (E.16)

= G−1
t

[
Htα

∗ + 1
ηt
α(t) − δt

]
− α∗ (E.17)

= G−1
t [Gt − 1

ηt
I]α∗ + 1

ηt
G−1

t α(t) −G−1
t δt − α∗ (E.18)

= α∗ − 1
ηt
G−1

t α∗ + 1
ηt
G−1

t α(t) −G−1
t δt − α∗ (E.19)

= 1
ηt
G−1

t (α(t) − α∗)−G−1
t δt (E.20)

= G−1
t (1

ηt
et − δt), (E.21)

where in the third line we expanded the terms and substituted Ht = Gt − 1
ηt
I . Now we can translate

this recursion on the unconstrained error into one for the actual error. To do so, we appeal to the

20

nonexpansive property of the projection onto C . From Eq. E.21, we find in this way that

∥et+1∥2Gt
≤ ∥ẽt+1∥2Gt

(nonexpansiveness) (E.22)

=
∥∥∥G−1

t

(
1
ηt
et − δt

)∥∥∥2
Gt

(using Eq. E.21) (E.23)

=
∥∥∥ 1
ηt
et − δt

∥∥∥2
G−1

t

. (E.24)

Step 5. Our next step is to translate the bounds on the error in the Mahalanobis norm into bounds on
the error in the Euclidean norm. In particular, the former can be bounded above and below by using
the Euclidean norm and multiplying against eigenvalues of the matrices in the quadratic forms:

λmin(Gt) ∥et+1∥22 ≤ ∥et+1∥2Gt
≤
∥∥∥ 1
ηt
et − δt

∥∥∥2
G−1

t

≤ 1
λmin(Gt)

∥∥∥ 1
ηt
et − δt

∥∥∥2
2
. (E.25)

Consequently, we obtain the following bound on the error et+1:

∥et+1∥22 ≤ 1
λmin(Gt)2

∥∥∥ 1
ηt
et − δt

∥∥∥2
2

(E.26)

= 1
λmin(Gt)2

∥∥∥ 1
ηt
(et − ηtδt)

∥∥∥2
2

(E.27)

= 1
λmin(Gt)2

1
η2
t
∥et − ηtδt∥22 . (E.28)

Now, we note that λmin(Gt) = λmin(Ht) +
1
ηt

and so ηtλmin(Gt) = ηtλmin(Ht) + 1. Making this
substitution and taking square roots, we have

∥et+1∥2 ≤ 1
ηtλmin(Gt)

∥et − ηtδt∥2 (E.29)

= 1
1+ηtλmin(Ht)

∥et − ηtδt∥2 (E.30)

≤ 1
1+ηtλ

∥et − ηtδt∥2 (using H[D̂t] ⪰ λI) (E.31)

≤ 1
1+ηtλ

(∥et∥2 + ∥ηtδt∥2) (triangle inequality) (E.32)

= 1
1+ηtλ

(∥et∥2 + ηt∥δt∥2) (using ηt > 0) (E.33)

Step 6. Our next step is to translate this (per-iteration) recursion for the error in a particular run of
the algorithm into bounds on the expected error after t iterations. Because each update of the iterates
α(t+1) depends on the samples {(zb, πb)}Bb=1 ∼ q(z |αt), the iterates are a stochastic process. When
we take the expectation, we are taking expectation with respect to the filtration defined by {α(t)}t≥0.

We proceed by taking expectations on both sides of the recursion in Eq. E.33 and using our assumption
that E

∥∥ 1
2∇D̂t(α

∗)
∥∥ ≤ δ. In this way we find

E ∥et+1∥2 ≤ 1
1+ηtλ

E∥et∥2 +
ηtδ

1+ηtλ
. (E.34)

Unrolling this recurrence, we obtain the bound

E ∥et∥2 ≤ ρt ∥e0∥2 + νt, (E.35)

where

ρt :=

t−1∏
j=1

1
1+ηjλ

, (E.36)

νt :=

t−1∑
i=0

 t−1∏
j=i+1

1
1+ηjλ

 ηiδ

1 + ηiλ
. (E.37)

Step 7. Our final step is to examine the above bound for a constant step size ηt ≡ η. Define the
quantity

φ(η, λ) := 1
1+ηλ < 1. (E.38)

21

0 20 40 60 80 100

Iteration

10
4

10
3

R
el

at
iv

e
m

in
 e

ig
en

va
lu

e
of

[

t] B = 10
B = 50
B = 100
B = 500
B = 1000
B = 10000

0 20 40 60 80 100

Iteration

10
7

10
6

R
el

at
iv

e
m

in
 e

ig
en

va
lu

e
of

[

t] B = 10
B = 50
B = 100
B = 500
B = 1000
B = 10000

Figure E.1: Relative minimum eigenvalues with K = 20 (left) and K = 100 (right) experts.

In this case we have that

ρt = φ(η, λ)t (E.39)

νt =
∑t−1

i=0 φ(η, λ)
t−iηδ (E.40)

= ηδ
∑t

j=1 φ(η, λ)
j (change of variables j = t− i) (E.41)

= ηδ
φ(η, λ)− φ(η, λ)t+1

1− φ(η, λ)
(sum of geometric series) (E.42)

= ηδ 1+ηλ
ηλ

[
φ(η, λ)− φ(η, λ)t+1

]
(E.43)

= δ
λ

[
1− φ(η, λ)t

]
(E.44)

= δ
λ [1− ρt] (E.45)

≤ δ
λ , (E.46)

and the theorem is proved by substituting the results in Eq. E.39 and Eq. E.46 into Eq. E.35.

E.3 Empirical verification of strong convexity constant λ

We ran 100 iterations of Algorithm 1 on the sinh-arcsinh target described in Section 4 with D = 5,
εd = 0.3, and δd = 0.7. We ran the algorithm for an increasing number of samples B. In all iterations
λ > 0. For each iteration, we computed the relative minimum eigenvalue of H[D̂t]:

rmin = λmin/λmax, (E.47)

where higher values indicate a more well-behaved positive definite matrix. In Figure E.1, we plot
the relative eigenvalues for K = 20 and K = 100. In both cases, we found that larger batch sizes
tended to lead to more well-behaved matrices. For K = 100 and B = 10, the matrix was effectively
singular, and so we omit that case from the plot.

E.4 Relationship with broader literature

Finally, we highlight the relationship of this convergence result with the broader convergence literature.
Theorem 3.1 shares similarities with the convergence behavior of stochastic gradient descent (SGD)
applied to strongly convex functions, as established in prior works [13, 39, 40]. However, traditional
SGD analyses typically assume a fixed objective function throughout the optimization process. In
contrast, our setting involves an objective function that changes at each iteration, rendering standard
SGD theory inapplicable.

The online learning framework accommodates such scenarios by allowing the objective function
to vary over time, even in an adversarial manner [41]. Within this framework, convergence results
often focus on bounding the regret, defined as the cumulative difference between the loss incurred by
the algorithm at each iteration and the loss of a comparator chosen in hindsight. Notably, even in

22

3 2 1 0 1 2 3
3

2

1

0

1

2

3

0.00

0.04

0.08

0.12

0.16

0.20

0.24

10
1

10
2

10
3

10
4

10
5

10
6

Number of samples

0.00

0.02

0.04

0.06

0.08

0.10

E
rr

or
 o

f n
or

m
al

iz
in

g
co

ns
ta

nt

10
1

10
2

10
3

10
4

10
5

10
6

Number of samples

0.81

0.82

0.83

0.84

0.85

0.86

R
el

at
iv

e
ef

fe
ct

iv
e

sa
m

pl
e

si
ze

(a) Example 1. Skew and heavy tails.

3 2 1 0 1 2 3
3

2

1

0

1

2

3

0.00

0.06

0.12

0.18

0.24

0.30

0.36

0.42

10
1

10
2

10
3

10
4

10
5

10
6

Number of samples

0.00

0.01

0.02

0.03

0.04

0.05

0.06

E
rr

or
 o

f n
or

m
al

iz
in

g
co

ns
ta

nt

10
1

10
2

10
3

10
4

10
5

10
6

Number of samples

0.935

0.940

0.945

0.950

0.955

R
el

at
iv

e
ef

fe
ct

iv
e

sa
m

pl
e

si
ze

(b) Example 2. High anisotropy.

10 5 0 5 10
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

10
1

10
2

10
3

10
4

10
5

10
6

Number of samples

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

E
rr

or
 o

f n
or

m
al

iz
in

g
co

ns
ta

nt

10
1

10
2

10
3

10
4

10
5

10
6

Number of samples

0.30

0.35

0.40

0.45

0.50

0.55

R
el

at
iv

e
ef

fe
ct

iv
e

sa
m

pl
e

si
ze

(c) Example 3. Many sparsely weighted experts.

Figure F.1: Empirical study for the normalizing constant estimate (second column) and the sampling
procedure (third column) for several PoE densities (first column). For each metric, we compute the
mean value with respect to 10 random seeds. The shaded region represents the standard error taken
with respect to 10 random seeds.

the strongly convex setting, these results provide bounds on regret rather than on the distance to the
optimal solution.

In contrast, Theorem 3.1 establishes a bound on the expected ℓ2 distance between the iterates and the
optimal solution α∗, offering a different perspective on convergence in the presence of time-varying
objective functions.

F Experiments: additional studies

In Appendix D.2 and Appendix D.3, we provided empirical studies regarding the expert selection
heuristic and the VI algorithm to reweight the experts, and in Appendix E.3 we provided an empirical
study to supplement the theoretical convergence results.

In this section, we begin by providing an empirical study on the normalizing constant and sampling
procedure. In addition, we expand on the details and also provide additional results related to the
evaluation of the score-based VI method for the PoE family.

23

F.1 Empirical study: normalizing constant and sampling procedure

In this section, we perform a study for the estimate of the normalizing constant using the Feynman
parameterization. We also study the performance of the importance sampling procedure. We
considered the following three examples.

Example 1: skew and heavy tails. Consider a product of 3 experts in D = 2 with locations

µ1 = [−1,−1]⊤, µ2 = [0, 0]⊤, µ3 = [1, 1]⊤,

inverse scale matrices

Λ1 =

[
1 0
0 1/3

]
,Λ2 =

[
1/3 1/2
1/2 1

]
,Λ3 =

[
1/3 0
0 1

]
,

and weights α = [1, 1.2, 1]⊤.

Example 2: high anisotropy. In our second example, we place 2 experts with locations

µ1 = [0, 0]⊤, µ2 = [0, 0]⊤,

inverse scale matrices

Λ1 =

[
1 0
0 1/500

]
,Λ2 =

[
1/500 0
0 1

]
,

and weights α = [2.0, 2.0]⊤.

Example 3: many sparsely weighted experts. Here we considered K = 100 experts, but with the
majority of α weights on 30 “active” experts. We generated the expert locations µk ∼ unif[−5, 5].
For the expert inverse scale matrices, we randomly generated two eigenvalues λk uniformly from
[0.05, 2], and a random rotation R, and then formed the matrix Λk = R diag(λk)R

⊤. The weight for
the α vector was constructed so that the first 30 received weight 0.25, and the remaining received
weight 10−12; then the entries were randomly shuffled.

For all three of the above examples, we computed a Monte Carlo estimate of the normalizing constant:

Cα ≈
π

D
2 Γ(ν2)

Γ(ν+D
2)

B∑
b=1

[
|Λ(wb)|−

1
2 (1 + σ2(wb))

ν
2

]
, wb

iid∼ Dir(α). (F.1)

As “ground truth,” we computed the estimate of the normalizing constant using 5 million sam-
ples. Then, we estimated the normalizing constant using an increasing number of samples
B = 10, 100, 500, 1000, 5000, 10,000, 50,000, 100,000, 500,000, 1,000,000. In Figure F.1, we plot
the mean absolute error between the B samples and the “true” value, where the mean is taken over
10 random seeds.

For the sampling study, we ran the importance sampling procedure for the same increasing numbers
of samples B as above. The sampling procedure outputs normalized weights {πb}Bb=1. Using these
weights, we then calculated (an estimate of) the effective sample size (ESS) [34], which provides a
measure of how much efficiency in sampling is lost to weight variability:

ÊSS =
(
∑B

b=1 πb)
2∑B

b=1 π
2
b

. (F.2)

In Figure F.1, we plot the relative ESS, which divides the ESS by B. The relative ESS measures the
efficiency of the sampling procedure, where values closer to 1 are better.

Here we find that in the first two examples, the sampling procedure has high relative ESS, with values
above 0.8. For the third example, there is a decrease in efficiency, with values roughly between
0.3–0.5. While this procedure can still be effective for variational inference, it indicates that more
samples may need to be taken.

The final result also suggests several opportunities for improvement. First, the sampler could be
specialized to take advantage of the sparsity of the α weights. These results also suggest that a more
compact set of experts may lead to more effective variational inference procedures. This motivates
developing more advanced approaches for expert selection than the heuristic considered here, which
places down a large number of experts and then reweights their importance. However, as we observe
in the later VI experiments, given enough samples, the VI fits are still able to provide accurate
posterior approximations, even when using a large number of experts.

24

ADVI
BaM Flow PoE

10
2

10
1

10
0

10
1

10
2

D
iv

er
ge

nc
e

KL
Fisher

(a) Rosenbrock, D = 2

ADVI
BaM Flow PoE

10
1

10
0

D
iv

er
ge

nc
e

KL
Fisher

(b) Sinh-arcsinh D = 5

ADVI
BaM Flow PoE

10
1

10
0

10
1

D
iv

er
ge

nc
e

KL
Fisher

(c) Sinh-arcsinh D = 10

Figure F.2: Additional synthetic target examples

F.2 Target distributions in Section 4

1) Gaussian mixture target: We constructed a mixture of 3 Gaussian distributions with weights
0.3, 0.4, 0.3. The means were set to µ1 = [−1.0, 0.0]⊤, µ2 = [1.0, 0.0]⊤, µ3 = [0.0, 1.0]⊤, and the
covariances were set to Σ1 = Σ2 =

[
0.5 0.0
0.0 0.5,

]
and Σ3 =

[
1.0 0.5
0.5 1.0,

]
.

2) PoE target: We constructed a multimodal PoE target with locations µ1 = [−2,−2]⊤ and
µ2 = [2, 2]⊤. The inverse scale matrices were set to Λ1 =

[
1.0 0.5
0.2 1.0,

]
and Λ2 =

[
1.0 0.1
0.1 1.0,

]
. The α

weights were all set to 1.

3) Diamond target: We constructed a PoE target in D=2 with µ1=µ2=[0, 0]⊤, Λ1=[100 0
0 1]

−1,
Λ2=[1 0

0 100]
−1, and α=[1.2, 1.2]⊤. This target density forms a diamond-like shape.

4) Funnel target: The model is z1 ∼ N (0, σ2), z2, . . . , zD ∼ N (0, exp(z1/2)), where we set
σ2 = 1.1.

F.3 Additional synthetic target results

Additional synthetic target results are in Figure F.2. The Rosenbrock target used was

log p(z) = −[(1− z1)
2 + 2(z2 − z21)

2]. (F.3)

The normalizing constant was estimated via quadrature and samples from p were generated via
a blackjax [5] implementation of HMC. The sinh-arcsinh targets used were all positively skewed
(ε=0.3) and heavy-tailed (τd=0.7).

F.4 Experimental Setup for Section 4

Computing resources. All experiments were run on CPU. We used a Linux workstation with a
32-core Intel processor and with 503 GB of memory.

Tuning parameters for baseline methods. The normalizing flow variational family was based
on a realNVP [10]. We followed the implementation details of the package FlowMC [55]. The base
distribution was a standard multivariate normal. In all lower-dimensional synthetic experiments
(D < 50), we fixed the number of layers to 8 and the number of hidden units to 128. For the
50-dimensional sinh-arcsinh target and the posterior-db experiments, we set the number of layers to
16 and the number of hidden units to 128. The flow weights in every coupling layer were initialized
randomly using a draw from normal centered at 0 with scale=1e-4.

For the Gaussian variational families, the initial values were by default set to a standard Gaussian.
For the stochastic gradient-based methods (ADVI, Flow), we optimized the ELBO using Adam [25].
In order to choose the learning rate, we conducted pilot studies where we ran each method for at least
2000 iterations, using a grid of learning rate values [0.001, 0.005, 0.01, 0.02, 0.03]. The learning rate
chosen was the one resulting in the lowest loss value. Some examples are shown in Figure F.3. For
BaM, the learning rate schedule was fixed to BD

(1+t) in all experiments; due to the highly non-Gaussian
target problems considered, the performance of this method could likely be improved with additional
tuning. For the lower-dimensional targets (D < 50), all three methods used the same fixed batch size
B = 64 and number of iterations T = 5000. For the 50-dimensional target, all three methods used a
batch size of B = 128 and number of iterations T = 10,000. Thus, we allocated the same budget

25

0 250 500 750 1000 1250 1500 1750 2000
Iteration

0

20

40

60

80

Lo
ss

lr = 0.001
lr = 0.005
lr = 0.01
lr = 0.02
lr = 0.03

10
0

10
1

10
2

10
3

Iteration

10
2

10
0

10
2

10
4

10
6

10
8

10
10

Lo
ss

lr = 0.001
lr = 0.005
lr = 0.01
lr = 0.02
lr = 0.03

(a) Sinh-arcsinh target example

0 1000 2000 3000 4000 5000
Iteration

0

5

10

15

20

25

Lo
ss

lr = 0.001
lr = 0.005
lr = 0.01
lr = 0.02
lr = 0.03

10
0

10
1

10
2

10
3

Iteration

10
3

10
2

10
1

10
0

10
1

10
2

10
3

Lo
ss

lr = 0.001
lr = 0.005
lr = 0.01
lr = 0.02
lr = 0.03

(b) PoE target example

Figure F.3: Examples of pilot studies conducted for hyperparameter grid search. Top: ADVI. Bottom:
Normalizing flow.

Table F.1: Summary of PoE settings for synthetic targets.
Target K Active M s β

Gaussian mixture 143 93 50,000 28 0.4
Product of experts 157 22 50,000 28 0.5
Diamond 60 47 50,000 28 0.1
Funnel 50 17 50,000 15 0.5
Sinh-arcsinh (D=5) 100 27 50,000 15 0.5
Sinh-arcsinh (D=10) 480 243 1,000,000 28 0.5
Sinh-arcsinh (D=50) 400 184 3,500,000 28 0.4
Rosenbrock 90 26 3,500,000 20 0.5

in terms of number of gradient evaluations of ∇ log p (we note that in many real-world problems,
evaluating the score of the target dominates the computational cost).

Details on PoE VI procedure. The PoE-VI code was implemented using Python. To solve the
quadratic program in Algorithm 1, we used the qpsolvers package with the solver jaxopt_osqp,
which is a JAX wrapper around the OSQP solver [50]. In order to enforce strict inequality con-
straints for integrability, we added a small slack parameter ε = 1e-12. We note that when not all
inverse scale matrices are chosen to be positive definite, a sufficient condition for integrability is
2
∑

kαk sign
(
|Λk|

)
> D, but we found that it was often overly strong. Instead we used the constraint

2
∑

kαk > D and verified that the solution resulted in an integrable density. By default, we used a
batch size of B = 10,000 and a constant learning rate of 100; the effects of varying these parameters
were investigated in earlier experiments. For all experiments, we used the default sampling procedure
described in Eq. 25. For the normalizing constant, 500,000 samples were used to estimate the nor-
malizing constant, which was used only when computing the estimate of the forward KL divergence.
Based on the learning results in Appendix D.2, we set the learning rate to λt = 1, and we ran the
algorithm for T = 20 iterations. In all experiments, we initialized α(0) = 1.

In Table F.1, we summarize the expert selection details used on each of the synthetic targets, along
with the number of experts selected and number of active experts in the final PoE.

26

posterior-db targets. For all posterior-db experiments, we use the BridgeStan library [44] to first
transform each target distribution to have support in RD before fitting the VI procedures.

posterior-db: garch11. This model is a discrete-time volatility model with a given constant σ1.
The model uses improper uniform priors on the parameters µ and α0 > 0, resulting in:

µ ∼ uniform (F.4)
α0 ∼ half-uniform (F.5)
α1 ∼ uniform(0, 1) (F.6)
β1 ∼ uniform(0, 1− α1). (F.7)

For each time step t = 2, . . . , T̃ :

σ2
t = α0 + α1(yt−1 − µ)2 + β1σ

2
t−1 (F.8)

εt ∼ N (0, 1) (F.9)
yt = µ+ σt + εt. (F.10)

The PoE method used K = 100 experts, with 24 experts active in the final variational approximation.
Experts were chosen with M = 80,000, s = 12, and β = 0.4.

posterior-db: eight-schools. This is a classic hierarchical model where each school j has its own
effect θj . In this model, the global hyperpriors are

µ ∼ N (0, 52) (F.11)
τ ∼ half-Cauchy(0, 5) (F.12)

For each school j = 1, . . . , 8, the parameters and observations are generated as:

ηj ∼ N (0, 1) (F.13)
θj ∼ µ+ τηj (F.14)

yj ∼ N (θj , σ
2
j) (F.15)

The PoE method used K = 50 experts, with 24 experts active in the final variational approximation.
Experts were chosen with M = 300,000, s = 14, and β = 0.45.

posterior-db: gp-regr. This example is a Gaussian process regression model with mean 0 and
covariance function

K(xi, xj) = α2 exp

(
− (xi − xj)

2

2ρ2

)
. (F.16)

Given N data points, let K̃ denote the N ×N gram matrix. The generative model is:

ρ ∼ gamma(25, 4) (F.17)

α ∼ truncated-normal(0, 22) (F.18)
σ ∼ truncated-normal(0, 1) (F.19)

f ∼ N (0, K̃) (F.20)

y ∼ N (f, σ2I). (F.21)

The PoE method used K = 70 experts, with 53 experts active in the final variational approximation.
Experts were chosen with M = 10,000, s = 10, and β = 0.6.

27

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, we provide two primary contributions: one is to introduce a new family
for variational inference and study its properties, and the other is to propose, analyze, and
evaluate an algorithm to fit the best variational distribution within this family.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

28

Answer: [Yes]

Justification: Yes, we discuss assumptions and provide a sketch of the proof in the main
paper, and the full details are in the Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide details on the experiments in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

29

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We will upload a Python implementation online.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide this information in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The error bars that are included refer to standard error.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

30

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discuss compute in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the ethics guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have a section on broader impacts in the Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

31

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The data and models used are provided in posteriordb, which we cite in the
paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

32

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets are released.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We did not use crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We did not use crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

33

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs did not affect the core methodology of this work and were not used in
non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

34

https://neurips.cc/Conferences/2025/LLM

	Introduction
	A latent variable model for products of experts
	Products of multivariate t-distributions
	Feynman parameterization for products of experts
	Joint density and latent variable model

	Score-based VI with products of experts
	Selecting the experts
	Weighting the experts
	Convergence theorem

	Experiments
	Synthetic 2D targets
	Sinh-arcsinh target
	Posterior inference problems

	Discussion of contributions, limitations, and future work
	Overview
	Related work
	Latent variable model for products of experts: additional details
	Feynman parameterization of product of t-experts (result:mixture)
	Computing the normalizing constant (result:normalizing)

	Score-based variational inference
	Heuristics for placing the experts
	Empirical study: expert-placing heuristics
	Empirical study: learning parameters

	Proofs: convergence of score-based variational inference for the PoE family
	Statement of convergence theorem
	Proof of theo:stoch-conv
	Empirical verification of strong convexity constant
	Relationship with broader literature

	Experiments: additional studies
	Empirical study: normalizing constant and sampling procedure
	Target distributions in sec:experiments
	Additional synthetic target results
	Experimental Setup for sec:experiments

