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Abstract001

Analogical reasoning relies on conceptual ab-002
stractions, but it is unclear whether LLMs har-003
bor such internal representations. We explore004
distilled representations from LLM activations005
and find that function vectors (FVs; Todd006
et al., 2024)—compact representations for in-007
context learning (ICL) tasks—are not invari-008
ant to simple input changes (e.g., open-ended009
vs. multiple-choice), suggesting they capture010
more than pure concepts. Using representa-011
tional similarity analysis (RSA), we localize a012
small set of attention heads that encode invari-013
ant concept vectors (CVs) for verbal concepts014
like antonym. These CVs function as feature015
detectors that operate independently of the final016
output—meaning that a model may form a cor-017
rect internal representation yet still produce an018
incorrect output. Furthermore, CVs can be used019
to causally guide model behaviour. However,020
for more abstract concepts like previous and021
next, we do not observe invariant linear repre-022
sentations, a finding we link to generalizability023
issues LLMs display within these domains.024

1 Introduction025

"Analogies are functions of the mind" (Hill et al.,026

2019, p.10). People use analogies to flexibly map027

previous knowledge to novel domains (Hofstader,028

1979; Mitchell, 2020). For example, if you are029

just beginning to learn about analogical reason-030

ing, envisioning a “bridge” that connects new in-031

formation to concepts you already understand can032

be very helpful. In essence, successful analogy-033

making depends on our ability to extract and ap-034

ply conceptual abstractions—such as “bridge” or035

“connection”—from seemingly unrelated situations.036

While behavioral evidence suggests that analogical037

reasoning have emerged in LLMs (Brown et al.,038

2020; Webb et al., 2023), it remains unclear if and039

how LLMs represent these relational concepts in-040

ternally.041

Figure 1: Pairwise similarity matrix of CV’s extracted
from Llama-3.1 70B across 600 ICL prompts cover-
ing various concepts and low-level presentations. CV’s
remain invariant for the verbal concepts antonym and
category, but show no stable representation of abstract
concepts like previous or next. Instead, these tasks ex-
hibit order-based representations tied to known lists
(e.g., alphabets, weekdays) or low-level clustering based
on presentation format (words vs. letters).

What does it mean for a neural system to repre- 042

sent abstract concepts? We formalize abstraction 043

as conceptual invariance. 044

Consider a high-level concept C (e.g., 045

"antonym"). A neural network f flexibly 046

represents C if it encodes the same abstract repre- 047

sentation regardless of variations in its low-level 048

inputs. Let X denote the space of all inputs 049

encoding C and T a group of transformations on 050

X (e.g., changes in language, format, or modality) 051

that preserve the concept’s meaning. Then, f 052

satisfies conceptual invariance if 053

f(t(x)) = f(x), ∀t ∈ T . 054

This ensures that the network’s encoding of C 055

reflects its essence rather than superficial charac- 056

1



teristics of low-level input. This is analogous to057

how object representations in convolutional neu-058

ral networks are translation-invariant (Lecun et al.,059

1998).060

Previous Work Previous work identified Func-061

tion Vectors (FVs; Todd et al., 2024; Hendel et al.,062

2023), a compact vector representation of an ICL063

task (Brown et al., 2020). The representation is064

encoded by a universal set of attention heads (high065

overlap of heads across different tasks), and can066

be transplanted into the model internals to causally067

guide its behavior (even zero-shot - e.g. transplant-068

ing an antonym FV to a prompt ’fast: ’ induces the069

network output ’slow’). Attention heads compos-070

ing the FV were found using activation patching a071

popular mechanistic interpretability technique for072

localizing information in neural networks (Heimer-073

sheim and Nanda, 2024; Details in Section 2.6).074

Summary of contributions We investigate075

whether conceptual invariance holds for FVs and076

find they are not invariant to low-level changes077

(e.g., switching the ICL format from open-ended to078

multiple-choice; Section 3.1). Instead FVs encode079

dense, detailed information that goes beyond the080

latent conceptual content we were targeting (Sec-081

tion 3.2). Based on additional checks we conclude082

that activation patching itself may be responsible083

for this shortcoming, as it appears to overlook the084

true latent representations (Section 3.3).085

We then use representational similarity analysis086

(RSA; 2.8) to localize latent abstract information in087

transformer internals. For verbal concepts, we find088

a set of attention heads emerging in early-to-mid089

layers (Section 4.1). By summing their outputs we090

form the CV . We find that the extent of conceptual091

invariance grows with number of training examples092

in the ICL prompts. Interestingly, we find that CVs093

can carry the correct conceptual representations094

while the model produces incorrect answers (Sec-095

tion 4.2). We then ask whether the CVs causally096

influence behaviour 4.3. We find that while be-097

ing much weaker at zero-shot interventions, with098

enough context in the prompt, CVs influence model099

output and do so in a more portable manner than100

FVs.101

Finally, we use CVs to demonstrate that our102

LLMs did not develop representations of abstract103

concepts of ’Previous’ and ’Next’ (Figure 1). We104

further use our findings to inform the discussion of105

analogical reasoning capabilities in LLMs through106

the lens of internal model representations (Section107

6).108

2 Materials and Methods 109

2.1 Models 110

We investigate the LLama 3.1 model family 111

(Grattafiori et al., 2024), specifically on the 8 and 112

70 billion parameter variants. 113

Llamas are autoregressive, residual-based trans- 114

formers. The models, f internally comprise of L 115

layers. Each layer is composed of a multi-layer 116

perceptron (MLP) and J attention heads aℓj which 117

together produce the vector representation of the 118

last token, hℓ = hℓ−1+MLPℓ+
∑

j∈J aℓj (Elhage 119

et al., 2021). In all our experiments we focus on 120

the representations extracted from the last token 121

position. 122

2.2 Task Formulation 123

For every dataset d ∈ D in our collection, we 124

define a set Pd containing in-context prompts pid ∈ 125

Pd. 126

Each prompt pid is a token sequence that includes 127

N input-output exemplar pairs (x, y), all illustrat- 128

ing the same underlying concept C and its corre- 129

sponding mapping from x to y. Additionally, each 130

prompt provides a query input xiq linked to a target 131

response yiq. yiq is not shown to the model and we 132

consider that the model performs correctly on pid if 133

its predicted token matches yiq (or the first token of 134

yiq for multi-token words). 135

2.3 Verbal Concepts 136

Translation We use English-to-French and 137

German-to-Spanish tasks. 138

Antonym We source antonym word pairs from 139

Todd et al. (2024). E.g.,: Big → Small. 140

Categorical We generate 1000 pairs using Ope- 141

nAI’s GPT-4o. E.g.,: Table→ Furniture. 142

Low-level transformations We test verbal con- 143

cepts in three low-level presentations - Open-ended 144

in English, Open-ended in a different language, and 145

Multiple-Choice (MC) in English. 146

2.4 Abstract Concepts 147

We investigate two abstract concepts, Previous and 148

Next, capturing whether an entity comes before or 149

after another entity. We test these concepts using 150

three different low-level presentations: 151

Item in List Our pairs are made up of days of the 152

week, months of the year, letters of the alphabet, 153

and number pairs (both numeric and text form). 154

Some examples for Next-Item in List: Monday → 155
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Concept Dataset Question Type Response Type Info Source Lang

Translation
English to French open word not in prompt FR

German to Spanish open word not in prompt ES
English to French-MC MC letter in prompt -

Antonym
Antonym EN open word not in prompt EN
Antonym FR open word not in prompt FR
Antonym MC MC letter in prompt -

Categorical
Categorical EN open word not in prompt EN
Categorical ES open word not in prompt ES
Categorical MC MC letter in prompt -

Previous
Prev Item-in-List open mixed not in prompt -

Prev Abstract-Letter open letter in prompt -
Prev Abstract-Word open word in prompt EN

Next
Next Item-in-List open mixed not in prompt -

Next Abstract-Letter open letter in prompt -
Next Abstract-Word open word in prompt EN

Table 1: Task Information Table

Tuesday, December→ January, a→ b, seven→156

eight.157

And for Previous-Item in List: Tuesday→ Monday,158

January→ December, a→ z, eight→ seven.159

Abstract Previous/Next Task We evaluate tasks160

where a sequence contains one indicator element,161

one target element, m distractors sharing the tar-162

get’s features, and n positional elements that do163

not. The target always appears either before (Pre-164

vious) or after (Next) the indicator. We test two165

variants—using either English words or letters (a,166

b, c, d)—with one-token elements. Below we show167

examples for m = 3, n = 3 with indicator el-168

ements being "*" and positional ".". The target169

elements are "c" and "letter".170

Previous-Letter Example:
Q: . a c . * b . d A: c
Q: c a * . . d b . A: a
Q: b a d c . . * A:

171

Next-Word Example:

Q: . big mask . * control . house

A: control

Q: star code * . . dense light .

A: dense

Q: ball might poland * . letter .

A:172

2.5 Task Attributes173

Our tasks have high-level (concepts) and low-level174

attributes: Question Type - ICL prompt in either175

open-ended or multiple-choice (MC) format; Re-176

sponse Type - whether the expected response is a177

word, letter, or a mix of both; Information Source178

- whether the expected response is located some-179

where in the prompt (e.g., MC items), or needs to180

be generated (e.g., open-; Language-the language 181

of the expected response. 182

2.6 Activation Patching 183

Activation patching replaces specific activations 184

with cached ones from a clean run to assess their 185

impact on the model’s output. The cached activa- 186

tions are then inserted into selected model com- 187

ponents in a corrupted run, where the systematic 188

relationships in the prompt are disrupted. For ex- 189

ample, in an antonym ICL task, consider a clean 190

prompt: 191

Hot -> Cold : Big -> Small : Clean -> ? 192

and a corrupted prompt: 193

House -> Cold : Eagle -> Small : Clean -> ? 194

To localize attention heads carrying task-relevant 195

information we compute the causal indirect effect 196

(CIE) for each attention head aℓj as the difference 197

between the probability of predicting the expected 198

answer y when processing the corrupted prompt p̃ 199

with and without the transplanted mean activation 200

āℓj from clean runs: 201

CIE
(
aℓj

)
= f

(
p̃ | aℓj := āℓj

)
[y]− f

(
p̃
)
[y]. 202

We then compute the average indirect effect 203

(AIE) over a collection D of 10 datasets from Todd 204

et al. (2024): 205

AIE(aℓj) =
1

|D|
∑
d∈D

1

|P̃d|

∑
p̃i∈P̃d

CIE
(
aℓj

)
, 206

where P̃d denotes the set of corrupted prompts for 207

dataset d. 208
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2.7 Function Vectors209

A function vector for a specific dataset (FVd) is210

computed as the sum of the mean activations over211

all clean prompts from the dataset from a set AFV212

of top N attention heads having the highest AIE213

values:214

FV =
∑

aℓ,h∈A
āℓ,h.215

Following the implementation in Todd et al. (2024),216

we set N = 20 for the 8B model and N = 100 for217

the 70B model.218

2.8 Representational Similarity Analysis219

To distill conceptual information from LLMs dur-220

ing ICL, we employ representational similarity221

analysis (RSA)—a technique invented for cognitive222

neuroscience (Kriegeskorte, 2008). In our work,223

RSA is used to assess the alignment between LLM224

representations and task attributes.225

For each aℓj we compute representational simi-226

larity matrices (RSMs) of the form:227

RSM =

 1 · · · θ(v1, vN )
...

. . .
...

θ(vN , v1) · · · 1

228

where vi denotes the output extracted from aℓj for229

the ith prompt pi ∈ PN , and θ(·, ·) is a similarity230

function.231

Additionally, for each task attribute q (i.e.,232

concept, info_source, lang, response_type,233

task_type), we construct N × N binary design234

matrix DMq, where each entry is set to 1 if the cor-235

responding pair of prompts share the same attribute236

value, and 0 otherwise.237

We then quantify the alignment between the238

lower-triangular portions of the RSM and DMq us-239

ing the non-parametric Spearman’s rank correlation240

coefficient. This alignment for aℓj is denoted by241

Φq
ℓj . When referring to Φconcept we mean the align-242

ment between model activations and the subset of243

datasets containing verbal concepts only, unless244

stated otherwise.245

2.9 Concept Vectors246

Analogous to FVs (Section 2.7), the (CVd)’s are247

constructed by summing the mean activations from248

a set of top-ranking attention heads. In this case,249

we sum the top 3 attention heads with the highest250

Φconcept scores, forming a set ACV , for both model251

sizes.252

Figure 2: Representational similarity matrices for
antonym and categorical concepts each tested with three
low-level transformations. The upper-left and lower-
right quadrants (outlined with the dashed lines) contain
pairwise similarity scores for prompts coming from the
same concept. CVs encode the concept in a more invari-
ant manner than FVs.

3 Do FVs create an invariant 253

representation of latent concepts? 254

We start our search for invariant conceptual repre- 255

sentations using methods that rely on activation 256

patching. We show that FVs carry more than 257

purely relational information, and that diversify- 258

ing the datasets does not help localize the attention 259

heads carrying latent information. 260

3.1 FVs are not invariant to low-level 261

transformations 262

We extract FVs per prompt for all of the datasets 263

outlined in 1. That is for prompt i ∈ N prompts 264

FV i =
∑

aiℓj , where aℓj ∈ AFV . Each dataset 265

had 50 prompts, each consisting of a 5-shot ICL 266

task. 267

As we see in Figure 2 FV representations clus- 268

ter within the concepts in both languages in open- 269

ended question formats, but the clustering disap- 270

pears for multiple-choice prompts, where all items 271

cluster together, despite encompassing multiple 272

concepts (e.g., antonym and categorical MC items 273

show high similarity - they are represented using a 274

subspace that is orthogonal to open-ended items). 275

This shows that FV representations are contextual 276

rather than conceptually invariant. 277
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Figure 3: Density plot displaying the information-rich
make-up of 100 attention heads in LLama 70B compris-
ing its FV .

Figure 4: Patching activations from multiple low-level
manifestations of a latent concept does not change
which attention heads are ranked to have the highest
causal effect nor does it help localize latent conceptual
information.

3.2 FVs encode multiple task attributes278

This leads us to the question what information FVs279

encode, if not purely the concepts? We answer this280

by investigating how much each task attribute ex-281

plains the activation spaces of each attention head282

in AFV .283

Figure 3 displays density plots for all Φq
ℓj . These284

plots reveal that each task attribute is represented to285

some extent within the FVs, with task_type ex-286

hibiting the highest density. This indicates that the287

attention heads forming the FVs are particularly288

sensitive to whether the language model is tasked289

with extracting information from the input prompt290

or generating a novel token. This sensitivity aligns291

with the RSM shown in Figure 2—multiple-choice292

items form distinct clusters because they are extrac-293

tive (in contrast to open-ended items) and have a294

different response type (four possible letters versus295

words). Importantly, while relational information296

is present, it does not play a crucial role in shap-297

ing the FVs, confirming that FVs are not invariant298

representations of latent concepts.299

3.3 Activation Patching Does Not Localize 300

Latent Components 301

Attention heads in the FVs were identified using 302

activation patching on a single low-level manifesta- 303

tion (e.g., English antonyms). To test whether the 304

failure to localize latent conceptual information is 305

due to data selection or the method itself, we com- 306

puted the CIE for all attention heads for antonyms 307

across three manifestations (CIEantonym_eng_fr_mc) 308

and compared it to CIEantonym_eng. 309

The top 100 heads ranked by both metrics over- 310

lap by 89%, indicating that adding more low-level 311

datasets does not significantly change the FV com- 312

position. One might argue that choosing 100 heads 313

is somewhat arbitrary and that varying this num- 314

ber could potentially highlight relational informa- 315

tion more effectively. To investigate this possi- 316

bility, we examined the raw CIE values for each 317

dataset composition. As shown in Figure 4, there 318

is a strong correlation between CIEantonym_eng and 319

CIEantonym_eng_fr_mc. In other words, adding more 320

low-level prompts does not alter which attention 321

heads are ranked as having higher causal impor- 322

tance in producing the expected output. 323

Finally, we note that many attention heads with 324

high Φconcept scores are scored low by the CIE 325

metrics, demonstrating that activation patching 326

is not effective at identifying latent components. 327

More broadly, since activation patching can local- 328

ize causal, but not latent components, it implies 329

that latent information plays only a small role in 330

next-token prediction (much like knowing an an- 331

swer to a multiple-choice exam but not the "abcd" 332

response format). 333

Figure 5: Attention heads encoding verbal concepts
emerge in early-to-mid layers.

4 CVs emerge for verbal concepts 334

In order to distill invariant conceptual representa- 335

tions in LLMs we turn to RSA (Sec. 2.8). In this 336

section we report on our findings regarding CVs. 337
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Figure 6: Concept representation can be independent
from the model’s output. CVs can encode the cor-
rect concept while the model produces the incorrect
response. Note: we do not show multiple-choice items
as performance was too high (> 90%) to contrast cor-
rect (N =168) vs incorrect activations (N =132).

4.1 CVs are invariant to low-level338

transformations339

Our analysis reveals strong clusters in the CV rep-340

resentational space that are delineated by verbal341

concepts (Figure 2). Compared to the FVs, the342

CV representations are more invariant to low-level343

transformations and more specific—that is, pair-344

wise similarities between different concepts are345

lower than those within the same concept. While346

there is a high similarity (Mean = 0.8) among items347

of the same concept in different languages, the348

mean similarity drops to 0.7 when items are pre-349

sented as MC format instead of open-ended. This350

shows that CVs, while being close to our notion of351

conceptual invariance, are not perfect.352

4.2 CVs are feature detectors353

Figure 9 shows that model accuracy improves with354

Φconcept as the number of training examples N in-355

creases, suggesting that the ability to form invariant356

representations of the underlying concepts is linked357

to task performance. However, as illustrated in Fig-358

ure 4.2, the model sometimes forms accurate CVs359

even when it predicts the incorrect answer. We in-360

terpret this as evidence that the model employs CVs361

as feature detectors. This finding points to a mech-362

anism where the model identifies latent concepts in363

its early-to-mid layers (see Figure 5), which may364

then, or may not, be leveraged in later layers to365

predict the next token. In cases where the model366

selects an incorrect token, it may be due either to367

uncertainty about the specific item or because the368

correct answer is ambiguous.369

Figure 7: The effect of adding CVs and FVs ex-
tracted from in-distribution (Antonym EN) and out-of-
distribution (Antonym FR and Antonym MC) prompts
to the models’ hidden states when performing Ambigou-
sICL. The grey dashed line shows baseline performance
without intervention. CVs causally guide behaviour
model behaviour and are more portable than FVs.

4.3 CVs can causally guide model’s behavior 370

As we showed, CVs selectively and invariantly rep- 371

resent verbal concepts, even when the final behav- 372

ior of the model is incorrect. This raises the ques- 373

tion whether the model even uses the information 374

encoded by CVs. Using causal interventions, and 375

an adapted task we call AmbigousICL we show that 376

yes, the models use CVs. 377

AmbigousICL We create a task where we ran- 378

domly interleave two different ICL concepts in the 379

training examples. 380

AmbiguousICL Example:
Q: indoor A: outdoor
Q: noise A: bruit
Q: western A: eastern
Q: add A: ajouter
Q: abstract A: abstrait
Q: export A:

381
We intervene with CVs by adding them to hid- 382

den states at different layers, hℓ, while the model 383

processes a 10-shot AmbigousICL prompt and then 384

measure model performance in task execution. We 385

find the best layer to intervene by testing the per- 386

formance on AmbigousICL with the CVs extracted 387

from 50 prompts in the Antonym EN task. We 388

found these to be layers 14 and 31 for 8B and 389

70B models respectively (roughly corresponding to 390

where the attention heads encoding verbal concepts 391

emerge, see Figure 5). For FVs we follow Todd 392
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Figure 8: Representational invariance in Llama 3.1 70B
grows with the number of training examples in the ICL
prompt. The biggest difference is visible from 1 to
2 training examples where CVs, similarly to FVs in
Figure 2), first cluster according to low-level similarity
and then display a more invariant representational space,
similar to the one in 5 training examples.

et al. (2024) recommendation and use the third of393

the total layer count. We find that CVs work best if394

you apply 10x scaling and 1x for FVs.395

We test both the causal power and the portability396

of the distilled representations. We extract FVs397

and CVs from three low-level manifestations of the398

concept Antonym (open-ended EN, open-ended399

FR, and MC) and transplant them inside of the400

models while they process the AmbigousICL task.401

We find that intervening with CVs increases the402

probability of model returning the antonym contin-403

uation. While FVs are more effective at guiding404

the model behaviour when extracted from the same405

distribution of the task (open-ended EN antonym),406

they perform worse than CVs when extracted from407

Antonym FR (even though CVs are constructed408

from a much smaller number of attention heads409

than FVs).410

However, when extracting from MC items, per-411

formance reduces almost to baseline for both CVs412

and FVs. This provides interesting information re-413

garding how similar vector representations should414

be in order to achieve similar intervention perfor-415

mance. In case of CVs the mean similarity of 0.8416

between Antonym EN and Antonym FR tasks is417

enough to achieve the same performance while418

the similarity of 0.7 between Antonym EN and419

Antonym MC is not.420

Figure 9: Φconcept grows hand-in-hand with mean accu-
racy as a function of N training examples in the ICL
prompt, while N < 5, and then plateaus. Note: Error
bars around accuracies were removed to reduce clutter.

Figure 10: Attention heads with the highest Φq for each
task attribute, q. Info source and Question Type emerge
early in the transformer, while Language and Response
Type in late layers.

Finally, in a zero shot setting FVs work much 421

better than CVs ( 50% vs. 14% for Llama 8b and 422

58% vs. 2% for Llama 70b). Overall, these results 423

suggest that CVs capture purer latent conceptual 424

representations, while FVs also embed lower-level 425

task details that are necessary for correct output. 426

5 Our method also localizes other task 427

attributes 428

While this paper focuses on conceptual information 429

in LLMs, we find that using RSA is also fruitful to 430

localize model components where representational 431

spaces align with other task attributes (Figure 10). 432
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6 Lack of Abstract Concept433

Representations Impedes434

Generalization435

Figure 1 shows that abstract concepts are not en-436

coded as linear representations in CVs. We find no437

attention heads with Φconcept_abstract scores exceed-438

ing 0.16 (compared to a maximum Φconcept_verbal of439

0.75), confirming that abstract representations do440

not emerge elsewhere in the model.441

However, task performance is high (the 70B442

model achieves 98% accuracy for previous/next443

items and 62% for abstract previous/next tasks).444

This implies that LLMs rely on alternative strate-445

gies rather than using explicit, top-down represen-446

tations of abstract concepts such as "Previous" and447

"Next". One might ask: if the models perform448

well without abstract representations, what is the449

drawback? We now show that without reusable450

abstract concepts, models struggle to generalize to451

new domains.452

Letter-string Tasks Hofstader (1979) introduced453

letter-string analogies to study human analogy-454

making in a simplified domain. These tasks re-455

quire understanding “Next” and “Previous” con-456

cepts (e.g., given the normal alphabet, if “abc” be-457

comes “abd”, then “ghi” should become “ghj”).458

Lewis and Mitchell (2024) found that GPT-4’s per-459

formance degrades as the alphabet deviates from460

its canonical order (e.g., “a b c e d f . . . ” is eas-461

ier than “f e b a d c . . . ”), suggesting that it uses462

memorization rather than abstraction to solve the463

task.464

We adopt the prompts from Lewis and Mitchell465

(2024), extracting CVs from 20 prompts per alpha-466

bet (covering five permuted Latin alphabets and467

one symbolic alphabet such as “# $ * ! @”). Each468

prompt shows the alphabet with a one-shot ICL ex-469

ample (adapted for non-instruction tuned models).470

Because Llama 3.1 70B yielded near-zero accu-471

racy on “previous” items, we focus solely on the472

“next” concept. We also extract CVs from our "Next473

Item-in-List" and "Next Abstract-Letter" items (see474

Section 2.4).475

Nperm 0 2 5 10 20 Symb

Accuracy 0.35 0.10 0.05 0.00 0.00 0.15

Table 2: Accuracy in LLama-3.1 70B goes down on
Letter-String tasks the more the alphabet deviates from
the memorized one (Nperm=0). The chance level is 0.04
for the letter alphabets and 0.1 for the symbol alphabet.

Figure 11: RSM of CVs extracted from LLama-3.1 70B
when performing Letter-String tasks with N permuta-
tions, and other tasks with the concept "Next". The
arrows show what the gradient of similarities would
look like if the CVs had a shared representation of or-
dered lists.

Consistent with our findings so far, we do not see 476

an invariant representation of the concept "Next" 477

across the tasks (Figure 11). Instead, each task 478

forms its own distinct cluster. Surprisingly, this 479

also suggests that the model represents memorized 480

lists differently in the Next Item-in-List and Letter 481

String tasks. If these representations were shared, 482

we would expect to see a gradient of similarities 483

that decreases with increased alphabet shuffling. 484

This absence might be due to differences between 485

the tasks—for example, the inclusion of the alpha- 486

bet in the Letter-String prompts or the presence of 487

additional memorized lists in the Next Item-in-List 488

task. In any case, these findings highlight that the 489

model’s representations are highly contextual on 490

these tasks. 491

7 Discussion 492

We successfully distilled conceptual information 493

from LLM internals for verbal concepts but not for 494

abstract concepts like "previous" and "next". 495

Human cognition likely does not process con- 496

cepts like "next" and "previous" through separate 497

contextual representations. Instead, a shared ab- 498

straction—a unified function applied consistently 499

across domains—enables flexible generalization. 500

Investigating whether LLMs exhibit traces of such 501

abstract knowledge, and how to develop it, is criti- 502

cal for achieving human-level artificial reasoning 503

systems. 504
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Limitations505

A key limitation is our exclusive focus on linear506

representations (aligned with the Linear Represen-507

tation Hypothesis (Elhage et al., 2022; Park et al.,508

2024)), despite evidence that LLM representations509

can be nonlinear (Engels et al., 2024). Our LLMs510

might still encode "Next" and "Previous" nonlin-511

early but our methods fail to capture it.512

Furthermore, Lampinen et al. (2024) notes that513

assessing model representations using linear meth-514

ods can prioritize simpler features, even when com-515

plex ones are equally well-learned. Even so, the516

clear differences between verbal and abstract rep-517

resentations, along with the challenges in abstract518

tasks, support our conclusion that the "previous"519

and "next" concepts are either not represented or520

are represented suboptimally.521

Finally, our conclusions are restricted to the522

LLama-3.1 8B and 70B models, leaving generaliz-523

ability to other architectures untested.524
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