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Abstract

Analogical reasoning relies on conceptual ab-
stractions, but it is unclear whether LLMs har-
bor such internal representations. We explore
distilled representations from LLM activations
and find that function vectors (FVs; Todd
et al., 2024)—compact representations for in-
context learning (ICL) tasks—are not invari-
ant to simple input changes (e.g., open-ended
vs. multiple-choice), suggesting they capture
more than pure concepts. Using representa-
tional similarity analysis (RSA), we localize a
small set of attention heads that encode invari-
ant concept vectors (CVs) for verbal concepts
like antonym. These CVs function as feature
detectors that operate independently of the final
output—meaning that a model may form a cor-
rect internal representation yet still produce an
incorrect output. Furthermore, CVs can be used
to causally guide model behaviour. However,
for more abstract concepts like previous and
next, we do not observe invariant linear repre-
sentations, a finding we link to generalizability
issues LLMs display within these domains.

1 Introduction

"Analogies are functions of the mind" (Hill et al.,
2019, p.10). People use analogies to flexibly map
previous knowledge to novel domains (Hofstader,
1979; Mitchell, 2020). For example, if you are
just beginning to learn about analogical reason-
ing, envisioning a “bridge” that connects new in-
formation to concepts you already understand can
be very helpful. In essence, successful analogy-
making depends on our ability to extract and ap-
ply conceptual abstractions—such as “bridge” or
“connection”—from seemingly unrelated situations.
While behavioral evidence suggests that analogical
reasoning have emerged in LLMs (Brown et al.,
2020; Webb et al., 2023), it remains unclear if and
how LLMs represent these relational concepts in-
ternally.
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Figure 1: Pairwise similarity matrix of CV’s extracted
from Llama-3.1 70B across 600 ICL prompts cover-
ing various concepts and low-level presentations. C)’s
remain invariant for the verbal concepts antonym and
category, but show no stable representation of abstract
concepts like previous or next. Instead, these tasks ex-
hibit order-based representations tied to known lists
(e.g., alphabets, weekdays) or low-level clustering based
on presentation format (words vs. letters).

What does it mean for a neural system to repre-
sent abstract concepts? We formalize abstraction
as conceptual invariance.

Consider a high-level concept C (e.g.,
"antonym"). A neural network f flexibly
represents C if it encodes the same abstract repre-
sentation regardless of variations in its low-level
inputs. Let X denote the space of all inputs
encoding C and 7 a group of transformations on
X (e.g., changes in language, format, or modality)
that preserve the concept’s meaning. Then, f
satisfies conceptual invariance if

ft(z)) = f(x), VteT.

This ensures that the network’s encoding of C
reflects its essence rather than superficial charac-



teristics of low-level input. This is analogous to
how object representations in convolutional neu-
ral networks are translation-invariant (Lecun et al.,
1998).

Previous Work Previous work identified Func-
tion Vectors (FVs; Todd et al., 2024; Hendel et al.,
2023), a compact vector representation of an ICL
task (Brown et al., 2020). The representation is
encoded by a universal set of attention heads (high
overlap of heads across different tasks), and can
be transplanted into the model internals to causally
guide its behavior (even zero-shot - e.g. transplant-
ing an antonym JFV to a prompt "fast: * induces the
network output ’slow’). Attention heads compos-
ing the FV were found using activation patching a
popular mechanistic interpretability technique for
localizing information in neural networks (Heimer-
sheim and Nanda, 2024; Details in Section 2.6).
Summary of contributions We investigate
whether conceptual invariance holds for Vs and
find they are not invariant to low-level changes
(e.g., switching the ICL format from open-ended to
multiple-choice; Section 3.1). Instead FVs encode
dense, detailed information that goes beyond the
latent conceptual content we were targeting (Sec-
tion 3.2). Based on additional checks we conclude
that activation patching itself may be responsible
for this shortcoming, as it appears to overlook the
true latent representations (Section 3.3).

We then use representational similarity analysis
(RSA; 2.8) to localize latent abstract information in
transformer internals. For verbal concepts, we find
a set of attention heads emerging in early-to-mid
layers (Section 4.1). By summing their outputs we
form the CV. We find that the extent of conceptual
invariance grows with number of training examples
in the ICL prompts. Interestingly, we find that CVs
can carry the correct conceptual representations
while the model produces incorrect answers (Sec-
tion 4.2). We then ask whether the CVs causally
influence behaviour 4.3. We find that while be-
ing much weaker at zero-shot interventions, with
enough context in the prompt, CVs influence model
output and do so in a more portable manner than
FVs.

Finally, we use CVs to demonstrate that our
LLMs did not develop representations of abstract
concepts of *Previous’ and *Next’ (Figure 1). We
further use our findings to inform the discussion of
analogical reasoning capabilities in LLMs through
the lens of internal model representations (Section
6).

2 Materials and Methods

2.1 Models

We investigate the LLama 3.1 model family
(Grattafiori et al., 2024), specifically on the 8 and
70 billion parameter variants.

Llamas are autoregressive, residual-based trans-
formers. The models, f internally comprise of £
layers. Each layer is composed of a multi-layer
perceptron (MLP) and J attention heads a,; which
together produce the vector representation of the
last token, hy = hy_4 +MLP¢—|—Z].€J ay; (Elhage
et al., 2021). In all our experiments we focus on
the representations extracted from the last token
position.

2.2 Task Formulation

For every dataset d € D in our collection, we
define a set P, containing in-context prompts pﬁl €
Py.

Each prompt pfj is a token sequence that includes
N input-output exemplar pairs (x, y), all illustrat-
ing the same underlying concept C and its corre-
sponding mapping from x to y. Additionally, each
prompt provides a query input xé linked to a target
response Y. Y, is not shown to the model and we
consider that the model performs correctly on pj; if
its predicted token matches yé (or the first token of
Yy, for multi-token words).

2.3 Verbal Concepts

Translation = We use English-to-French and
German-to-Spanish tasks.

Antonym We source antonym word pairs from
Todd et al. (2024). E.g.,: Big — Small.
Categorical We generate 1000 pairs using Ope-
nAD’s GPT-40. E.g.,: Table — Furniture.

Low-level transformations  We test verbal con-
cepts in three low-level presentations - Open-ended
in English, Open-ended in a different language, and
Multiple-Choice (MC) in English.

2.4 Abstract Concepts

We investigate two abstract concepts, Previous and
Next, capturing whether an entity comes before or
after another entity. We test these concepts using
three different low-level presentations:

Item in List  Our pairs are made up of days of the
week, months of the year, letters of the alphabet,
and number pairs (both numeric and text form).
Some examples for Next-Item in List: Monday —



Concept Dataset Question Type Response Type Info Source Lang
English to French open word not in prompt  FR
Translation ~ German to Spanish open word not in prompt  ES
English to French-MC MC letter in prompt -
Antonym EN open word not in prompt EN
Antonym Antonym FR open word not in prompt  FR
Antonym MC MC letter in prompt -
Categorical EN open word not in prompt EN
Categorical Categorical ES open word not in prompt  ES
Categorical MC MC letter in prompt -
Prev Item-in-List open mixed not in prompt -
Previous Prev Abstract-Letter open letter in prompt -
Prev Abstract-Word open word in prompt EN
Next Item-in-List open mixed not in prompt -
Next Next Abstract-Letter open letter in prompt -
Next Abstract-Word open word in prompt EN

Table 1: Task Information Table

Tuesday, December — January, a — b, seven —
eight.

be generated (e.g., open-; Language-the language
of the expected response.

And for Previous-Item in List: Tuesday — Monday,
January — December, a — z, eight — seven.
Abstract Previous/Next Task  We evaluate tasks

2.6 Activation Patching

Activation patching replaces specific activations

where a sequence contains one indicator element,
one target element, m distractors sharing the tar-
get’s features, and n positional elements that do
not. The target always appears either before (Pre-
vious) or after (Next) the indicator. We test two
variants—using either English words or letters (a,
b, ¢, d)—with one-token elements. Below we show
examples for m = 3, n = 3 with indicator el-
ements being "*" and positional ".". The target
elements are "c" and "letter".

Previous-Letter Example:

.ac.*xb.d A:c
* . .db . A:a
d c. . % A:

|OrOrO

Next-Word Example:

. big mask . * control . house
: control

. dense light .
: dense

letter .

Q
A
Q: star code * .
A
Q: ball might poland * .
A

2.5 Task Attributes

Our tasks have high-level (concepts) and low-level
attributes: Question Type - ICL prompt in either
open-ended or multiple-choice (MC) format; Re-
sponse Type - whether the expected response is a
word, letter, or a mix of both; Information Source
- whether the expected response is located some-
where in the prompt (e.g., MC items), or needs to

with cached ones from a clean run to assess their
impact on the model’s output. The cached activa-
tions are then inserted into selected model com-
ponents in a corrupted run, where the systematic
relationships in the prompt are disrupted. For ex-
ample, in an antonym ICL task, consider a clean
prompt:

Hot -> Cold : Big -> Small : Clean -> ?

and a corrupted prompt:

House -> Cold : Eagle -> Small : Clean -> ?

To localize attention heads carrying task-relevant
information we compute the causal indirect effect
(CIE) for each attention head ay; as the difference
between the probability of predicting the expected
answer y when processing the corrupted prompt p
with and without the transplanted mean activation
ayj from clean runs:

CIE (ay;) = f(ﬁ | agj = dej) [yl — £ (P) [y]-

We then compute the average indirect effect
(AIE) over a collection D of 10 datasets from Todd
et al. (2024):

ATE(ay;)

=51 2 |7>d| 2 CIE(ay).

deD e’])d

where Py denotes the set of corrupted prompts for
dataset d.



2.7 Function Vectors

A function vector for a specific dataset (FVy) is
computed as the sum of the mean activations over
all clean prompts from the dataset from a set A ry
of top N attention heads having the highest AIE

values:
FV = Z ag.p-
a,gth.A

Following the implementation in Todd et al. (2024),
we set N = 20 for the 8B model and N = 100 for
the 70B model.

2.8 Representational Similarity Analysis

To distill conceptual information from LLMs dur-
ing ICL, we employ representational similarity
analysis (RSA)—a technique invented for cognitive
neuroscience (Kriegeskorte, 2008). In our work,
RSA is used to assess the alignment between LLM
representations and task attributes.

For each ay; we compute representational simi-
larity matrices (RSMs) of the form:

1 <o O(v1,vN)
RSM = :

O(vn,vy1) - 1

where v; denotes the output extracted from ay; for
the ith prompt p; € Py, and (-, -) is a similarity
function.

Additionally, for each task attribute ¢ (i.e.,
concept, info_source, lang, response_type,
task_type), we construct N x N binary design
matrix DMy, where each entry is set to 1 if the cor-
responding pair of prompts share the same attribute
value, and O otherwise.

We then quantify the alignment between the
lower-triangular portions of the RSM and DM, us-
ing the non-parametric Spearman’s rank correlation
coefficient. This alignment for ay; is denoted by
(IJZJ.. When referring to ®°"®Pt we mean the align-
ment between model activations and the subset of
datasets containing verbal concepts only, unless
stated otherwise.

2.9 Concept Vectors

Analogous to FVs (Section 2.7), the (CVy)’s are
constructed by summing the mean activations from
a set of top-ranking attention heads. In this case,
we sum the top 3 attention heads with the highest
peoncert geores, forming a set Aey, for both model
sizes.

LLama 3.1 70B
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z
£

Figure 2: Representational similarity matrices for
antonym and categorical concepts each tested with three
low-level transformations. The upper-left and lower-
right quadrants (outlined with the dashed lines) contain
pairwise similarity scores for prompts coming from the
same concept. CVs encode the concept in a more invari-
ant manner than FVs.

3 Do FVs create an invariant
representation of latent concepts?

We start our search for invariant conceptual repre-
sentations using methods that rely on activation
patching. We show that FVs carry more than
purely relational information, and that diversify-
ing the datasets does not help localize the attention
heads carrying latent information.

3.1 Vs are not invariant to low-level
transformations

We extract FVs per prompt for all of the datasets
outlined in 1. That is for prompt ¢ € N prompts
FVv, = aéj, where ay; € Ary. Each dataset
had 50 prompts, each consisting of a 5-shot ICL
task.

As we see in Figure 2 FV representations clus-
ter within the concepts in both languages in open-
ended question formats, but the clustering disap-
pears for multiple-choice prompts, where all items
cluster together, despite encompassing multiple
concepts (e.g., antonym and categorical MC items
show high similarity - they are represented using a
subspace that is orthogonal to open-ended items).
This shows that FV representations are contextual
rather than conceptually invariant.
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Figure 4: Patching activations from multiple low-level
manifestations of a latent concept does not change
which attention heads are ranked to have the highest
causal effect nor does it help localize latent conceptual
information.

3.2 FVs encode multiple task attributes

This leads us to the question what information F Vs
encode, if not purely the concepts? We answer this
by investigating how much each task attribute ex-
plains the activation spaces of each attention head
in A FV-

Figure 3 displays density plots for all ®] z These
plots reveal that each task attribute is represented to
some extent within the F Vs, with task_type ex-
hibiting the highest density. This indicates that the
attention heads forming the FV's are particularly
sensitive to whether the language model is tasked
with extracting information from the input prompt
or generating a novel token. This sensitivity aligns
with the RSM shown in Figure 2—multiple-choice
items form distinct clusters because they are extrac-
tive (in contrast to open-ended items) and have a
different response type (four possible letters versus
words). Importantly, while relational information
is present, it does not play a crucial role in shap-
ing the FVs, confirming that / Vs are not invariant
representations of latent concepts.

3.3 Activation Patching Does Not Localize
Latent Components

Attention heads in the FVs were identified using
activation patching on a single low-level manifesta-
tion (e.g., English antonyms). To test whether the
failure to localize latent conceptual information is
due to data selection or the method itself, we com-
puted the CIE for all attention heads for antonyms
across three manifestations (CIEantonym_eng_fr mc)
and compared it to CIEaytonym_eng-

The top 100 heads ranked by both metrics over-
lap by 89%, indicating that adding more low-level
datasets does not significantly change the F) com-
position. One might argue that choosing 100 heads
is somewhat arbitrary and that varying this num-
ber could potentially highlight relational informa-
tion more effectively. To investigate this possi-
bility, we examined the raw CIE values for each
dataset composition. As shown in Figure 4, there
is a strong correlation between ClEatonym_eng and
CIEantonym_eng_fr_me- In other words, adding more
low-level prompts does not alter which attention
heads are ranked as having higher causal impor-
tance in producing the expected output.

Finally, we note that many attention heads with
high ®"Pt gcores are scored low by the CIE
metrics, demonstrating that activation patching
is not effective at identifying latent components.
More broadly, since activation patching can local-
ize causal, but not latent components, it implies
that latent information plays only a small role in
next-token prediction (much like knowing an an-
swer to a multiple-choice exam but not the "abcd"
response format).

LLama 3.1 8B
-

Layer

Figure 5: Attention heads encoding verbal concepts
emerge in early-to-mid layers.

4 CVs emerge for verbal concepts

In order to distill invariant conceptual representa-
tions in LLMs we turn to RSA (Sec. 2.8). In this
section we report on our findings regarding CVs.
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from the model’s output. CVs can encode the cor-
rect concept while the model produces the incorrect
response. Note: we do not show multiple-choice items
as performance was too high (> 90%) to contrast cor-
rect (N =168) vs incorrect activations (N =132).

4.1 CVs are invariant to low-level
transformations

Our analysis reveals strong clusters in the CV rep-
resentational space that are delineated by verbal
concepts (Figure 2). Compared to the FVs, the
CV representations are more invariant to low-level
transformations and more specific—that is, pair-
wise similarities between different concepts are
lower than those within the same concept. While
there is a high similarity (Mean = 0.8) among items
of the same concept in different languages, the
mean similarity drops to 0.7 when items are pre-
sented as MC format instead of open-ended. This
shows that CVs, while being close to our notion of
conceptual invariance, are not perfect.

4.2 CVs are feature detectors

Figure 9 shows that model accuracy improves with
Pconcept as the number of training examples N in-
creases, suggesting that the ability to form invariant
representations of the underlying concepts is linked
to task performance. However, as illustrated in Fig-
ure 4.2, the model sometimes forms accurate CVs
even when it predicts the incorrect answer. We in-
terpret this as evidence that the model employs CVs
as feature detectors. This finding points to a mech-
anism where the model identifies latent concepts in
its early-to-mid layers (see Figure 5), which may
then, or may not, be leveraged in later layers to
predict the next token. In cases where the model
selects an incorrect token, it may be due either to
uncertainty about the specific item or because the
correct answer is ambiguous.
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Figure 7: The effect of adding CVs and FVs ex-
tracted from in-distribution (Antonym EN) and out-of-
distribution (Antonym FR and Antonym MC) prompts
to the models’ hidden states when performing Ambigou-
sICL. The grey dashed line shows baseline performance
without intervention. CVs causally guide behaviour
model behaviour and are more portable than FVs.

4.3 CVs can causally guide model’s behavior

As we showed, CV's selectively and invariantly rep-
resent verbal concepts, even when the final behav-
ior of the model is incorrect. This raises the ques-
tion whether the model even uses the information
encoded by CVs. Using causal interventions, and
an adapted task we call AmbigousICL we show that
yes, the models use CVs.

AmbigousICL.  We create a task where we ran-
domly interleave two different ICL concepts in the
training examples.

AmbiguousICL Example:

Q: indoor A: outdoor
Q: noise A: bruit
Q: western A: eastern
Q: add A: ajouter
Q: abstract A: abstrait
Q: export A:

We intervene with CVs by adding them to hid-
den states at different layers, hy, while the model
processes a 10-shot AmbigousICL prompt and then
measure model performance in task execution. We
find the best layer to intervene by testing the per-
formance on AmbigousICL with the CV's extracted
from 50 prompts in the Antonym EN task. We
found these to be layers 14 and 31 for 8B and
70B models respectively (roughly corresponding to
where the attention heads encoding verbal concepts
emerge, see Figure 5). For Vs we follow Todd
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Figure 8: Representational invariance in Llama 3.1 70B
grows with the number of training examples in the ICL
prompt. The biggest difference is visible from 1 to
2 training examples where CVs, similarly to FVs in
Figure 2), first cluster according to low-level similarity
and then display a more invariant representational space,
similar to the one in 5 training examples.

et al. (2024) recommendation and use the third of
the total layer count. We find that CVs work best if
you apply 10x scaling and 1x for FVs.

We test both the causal power and the portability
of the distilled representations. We extract FVs
and CVs from three low-level manifestations of the
concept Antonym (open-ended EN, open-ended
FR, and MC) and transplant them inside of the
models while they process the AmbigousICL task.

We find that intervening with CVs increases the
probability of model returning the antonym contin-
vation. While FVs are more effective at guiding
the model behaviour when extracted from the same
distribution of the task (open-ended EN antonym),
they perform worse than CVs when extracted from
Antonym FR (even though CVs are constructed
from a much smaller number of attention heads
than FVs).

However, when extracting from MC items, per-
formance reduces almost to baseline for both CVs
and FVs. This provides interesting information re-
garding how similar vector representations should
be in order to achieve similar intervention perfor-
mance. In case of CVs the mean similarity of 0.8
between Antonym EN and Antonym FR tasks is
enough to achieve the same performance while
the similarity of 0.7 between Antonym EN and
Antonym MC is not.
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Finally, in a zero shot setting F Vs work much
better than CVs ( 50% vs. 14% for Llama 8b and
58% vs. 2% for Llama 70b). Overall, these results
suggest that CVs capture purer latent conceptual
representations, while FVs also embed lower-level
task details that are necessary for correct output.

5 Our method also localizes other task
attributes

While this paper focuses on conceptual information
in LLMs, we find that using RSA is also fruitful to
localize model components where representational
spaces align with other task attributes (Figure 10).



6 Lack of Abstract Concept
Representations Impedes
Generalization

Figure 1 shows that abstract concepts are not en-
coded as linear representations in CVs. We find no
attention heads with @eoncept-abstract goreq exceed-
ing 0.16 (compared to a maximum eonceptverbal of
0.75), confirming that abstract representations do
not emerge elsewhere in the model.

However, task performance is high (the 70B

model achieves 98% accuracy for previous/next
items and 62% for abstract previous/next tasks).
This implies that LLMs rely on alternative strate-
gies rather than using explicit, top-down represen-
tations of abstract concepts such as "Previous" and
"Next". One might ask: if the models perform
well without abstract representations, what is the
drawback? We now show that without reusable
abstract concepts, models struggle to generalize to
new domains.
Letter-string Tasks Hofstader (1979) introduced
letter-string analogies to study human analogy-
making in a simplified domain. These tasks re-
quire understanding “Next” and “Previous” con-
cepts (e.g., given the normal alphabet, if “abc” be-
comes ‘“abd”, then “ghi” should become “gh;j”).
Lewis and Mitchell (2024) found that GPT-4’s per-
formance degrades as the alphabet deviates from
its canonical order (e.g., “abced f...” is eas-
ier than “febadc...”), suggesting that it uses
memorization rather than abstraction to solve the
task.

We adopt the prompts from Lewis and Mitchell
(2024), extracting CVs from 20 prompts per alpha-
bet (covering five permuted Latin alphabets and
one symbolic alphabet such as “# $ * | @”). Each
prompt shows the alphabet with a one-shot ICL ex-
ample (adapted for non-instruction tuned models).
Because Llama 3.1 70B yielded near-zero accu-
racy on “previous” items, we focus solely on the
“next” concept. We also extract CVs from our "Next
Item-in-List" and "Next Abstract-Letter" items (see
Section 2.4).

Nperm 0 2 5 10 20  Symb
0.10 0.05 0.00 0.00 0.15

Accuracy  0.35

Table 2: Accuracy in LLama-3.1 70B goes down on
Letter-String tasks the more the alphabet deviates from
the memorized one (Nperm=0). The chance level is 0.04
for the letter alphabets and 0.1 for the symbol alphabet.
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Figure 11: RSM of CVs extracted from LLama-3.1 70B
when performing Letter-String tasks with N permuta-
tions, and other tasks with the concept "Next". The
arrows show what the gradient of similarities would
look like if the CVs had a shared representation of or-
dered lists.

Consistent with our findings so far, we do not see
an invariant representation of the concept "Next"
across the tasks (Figure 11). Instead, each task
forms its own distinct cluster. Surprisingly, this
also suggests that the model represents memorized
lists differently in the Next Item-in-List and Letter
String tasks. If these representations were shared,
we would expect to see a gradient of similarities
that decreases with increased alphabet shuffling.
This absence might be due to differences between
the tasks—for example, the inclusion of the alpha-
bet in the Letter-String prompts or the presence of
additional memorized lists in the Next Item-in-List
task. In any case, these findings highlight that the
model’s representations are highly contextual on
these tasks.

7 Discussion

We successfully distilled conceptual information
from LLM internals for verbal concepts but not for
abstract concepts like "previous" and "next".

Human cognition likely does not process con-
cepts like "next" and "previous" through separate
contextual representations. Instead, a shared ab-
straction—a unified function applied consistently
across domains—enables flexible generalization.
Investigating whether LLMs exhibit traces of such
abstract knowledge, and how to develop it, is criti-
cal for achieving human-level artificial reasoning
systems.



Limitations

A key limitation is our exclusive focus on linear
representations (aligned with the Linear Represen-
tation Hypothesis (Elhage et al., 2022; Park et al.,
2024)), despite evidence that LLM representations
can be nonlinear (Engels et al., 2024). Our LLMs
might still encode "Next" and "Previous" nonlin-
early but our methods fail to capture it.

Furthermore, Lampinen et al. (2024) notes that
assessing model representations using linear meth-
ods can prioritize simpler features, even when com-
plex ones are equally well-learned. Even so, the
clear differences between verbal and abstract rep-
resentations, along with the challenges in abstract
tasks, support our conclusion that the "previous"
and "next" concepts are either not represented or
are represented suboptimally.

Finally, our conclusions are restricted to the
LLama-3.1 8B and 70B models, leaving generaliz-
ability to other architectures untested.
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