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Abstract

Various recent proposals increase the distinguishing power of Graph Neural Net-
works (GNNs) by propagating features between k-tuples of vertices. The distin-
guishing power of these “higher-order” GNNs is known to be bounded by the
k-dimensional Weisfeiler-Leman (WL) test, yet their O(nk) memory requirements
limit their applicability. Other proposals infuse GNNs with local higher-order graph
structural information from the start, hereby inheriting the desirable O(n) memory
requirement from GNNs at the cost of a one-time, possibly non-linear, preprocess-
ing step. We propose local graph parameter enabled GNNs as a framework for
studying the latter kind of approaches. We precisely characterize their distinguish-
ing power, in terms of a variant of the WL test, and in terms of the graph structural
properties that they can take into account. Local graph parameters can be added to
any GNN architecture, and are cheap to compute. In terms of expressive power, our
proposal lies in the middle of GNNs and their higher-order counterparts. Further,
we propose several techniques to aid in choosing the right local graph parameters.
Our results connect GNNs with deep results in finite model theory and finite vari-
able logics. Our experimental evaluation shows that adding local graph parameters
often has a positive effect on a variety of GNNs, datasets and graph learning tasks.

1 Introduction

Context. Graph neural networks (GNNs) [Merkwirth and Lengauer, 2005, Scarselli et al., 2009],
and its important class of Message Passing Neural Networks (MPNNs) [Gilmer et al., 2017], are one
of the most popular methods for graph learning tasks. Such MPNNs use an iterative message passing
scheme, based on the adjacency structure of the underlying graph, to compute vertex (and graph)
embeddings in some real Euclidean space.

The expressive (or distinguishing) power of MPNNs is, however, rather limited [Morris et al., 2019,
Xu et al., 2019]. Indeed, MPNNs will always identically embed two vertices (graphs) when these
vertices (graphs) cannot be distinguished by the one-dimensional Weisfeiler-Leman (WL) algorithm.
Two graphs G1 and H1 and vertices v and w that cannot be distinguished by WL (and thus any
MPNN) are shown in Fig. 1. The expressive power of WL is well-understood [Cai et al., 1992, Dell
et al., 2018, Arvind et al., 2020] and basically can only use tree-based structural information in
the graphs to distinguish vertices. Hence, no MPNN can detect that vertex v in Fig. 1 is part of a
3-clique, whereas w is not. Similarly, MPNNs cannot detect that w is part of a 4-cycle, whereas v is
not. Further limitations of WL in terms of graph properties can be found, e.g., in Arvind et al. [2020],
Chen et al. [2020] and Tahmasebi and Jegelka [2020].

To remedy the weak expressive power of MPNNs, so-called higher-order MPNNs were proposed
[Maron et al., 2019a, Morris et al., 2019, 2020], whose expressive power is well-understood and
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measured in terms of the k-dimensional WL procedures (k-WL) [Maron et al., 2019a, Chen et al.,
2019a, Geerts, 2020, Sato, 2020, Azizian and Lelarge, 2021]. In a nutshell, k-WL operates on k-tuples
of vertices and allows to distinguish vertices (graphs) based on structural information related to
graphs of treewidth k [Dvorak, 2010, Dell et al., 2018]. By definition, WL = 1-WL. As an example,
2-WL can detect that vertex v in Fig. 1 belongs to a 3-clique or a 4-cycle since both have treewidth
two. While more expressive than WL, the GNNs based on k-WL require O(nk) operations in each
iteration, where n is the number of vertices, hereby hampering their applicability.
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Figure 1: Two graphs that are indistinguishable by the
WL-test. The numbers between round brackets indicate
how many homomorphic images of the 3-clique each
vertex is involved in.

A more practical approach is to extend the
expressive power of MPNNs whilst pre-
serving their O(n) cost in each iteration.
Various such extensions [Kipf and Welling,
2017, Chen et al., 2019a, Li et al., 2019,
Ishiguro et al., 2020, Bouritsas et al., 2020,
Geerts et al., 2021] achieve this by infusing
MPNNs with local graph structural infor-
mation from the start. That is, the iterative
message passing scheme of MPNNs is run
on vertex labels that contain quantitative in-
formation about local graph structures.

It is easy to see that such architectures can go beyond the WL test: for example, adding triangle counts
to MPNNs suffices to distinguish the vertices v and w and graphs G1 and H1 in Fig. 1. Moreover,
the cost is a single preprocessing step to count local graph parameters, thus maintaining the O(n)
cost in the iterations of the MPNN. While there are some partial results showing that local graph
parameters increase expressive power [Bouritsas et al., 2020, Li et al., 2019], their precise expressive
power and relationship to higher-order MPNNs was unknown, and there is little guidance in terms of
which local parameters do help MPNNs and which ones do not. The main contribution of this paper
is a precise characterization of the expressive power of MPNNs with local graph parameters and its
relationship to the hierarchy of higher-order MPNNs.

Our contributions. In order to nicely formalize local graph parameters, we propose to extend
vertex labels with homomorphism counts of small graph patterns.1 More precisely, given graphs
P and G, and vertices r in P and v in G, we propose to augment the initial features of v with the
number of homomorphisms from P to G that map r to v, denoted by hom(P r, Gv), as a way to
capture local structural information. More generally, homomorphism counts for a collection of graphs
are considered. Indeed, we propose F -MPNNs where F = {P r

1 , . . . , P
r
` } is a set of (graph) patterns,

which extend MPNNs by (i) first allowing a preprocessing step that labels each vertex v of a graph
G with the vector

(
hom(P r

1 , G
v), . . . , hom(P r

` , G
v)
)
, and (ii) then run an MPNN on this labelling.

Our main contributions are the following:

1. We precisely characterize the expressive power of F-MPNNs by means of an extension of WL,
denoted by F -WL. This characterization gracefully extends the characterization for standard MPNNs,
mentioned earlier, by setting F = ∅, and provides insights in the expressive power of existing MPNN
extensions, most notably the Graph Substructure Networks of Bouritsas et al. [2020].

2. We compare F-MPNNs to higher-order MPNNs, which are characterized in terms of the k-WL-
test. On the one hand, while F -MPNNs strictly increase the expressive power of the WL-test, for any
finite set F of patterns, 2-WL can distinguish graphs which F -MPNNs cannot. On the other hand, for
each k ≥ 1 there are patterns P such that {P}-MPNNs can distinguish graphs which k-WL cannot.

3. We deal with the challenging problem of pattern selection and comparing F-MPNNs based on
the patterns included in F . We prove two partial results: one establishing when a pattern P in F is
redundant, and another result indicating when P does add expressive power, based on the treewidth
of P compared to the treewidth of other patterns in F .

4. Our theoretical results are complemented by an experimental study in which we show that for
various GNN architectures, datasets and graph learning tasks, all part of the recent benchmark by
Dwivedi et al. [2020], the augmentation of initial features with homomorphism counts of graph
patterns has often a positive effect, and the cost for computing these counts incurs little to no overhead.

1We recall that homomorphisms are edge-preserving mappings between the vertex sets.
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As such, we believe that F-MPNNs not only provide an elegant theoretical framework for
understanding local graph parameter enabled MPNNs, they are also a valuable alternative to
higher-order MPNNs as a way to increase the expressive power of MPNNs. In addition, and as will
be explained in Section 2, F -MPNNs provide a unifying framework for understanding the expressive
power of several other existing extensions of MPNNs. Proofs of our results and further details on
the relationship to existing approaches and experiments can be found in the supplementary material.

Related Work. Works related to the distinguishing power of the WL-test, MPNNs and their higher-
order variants are cited throughout the paper. Beyond distinguishability, GNNs are analyzed in terms
of universality and generalization properties [Maron et al., 2019b, Keriven and Peyré, 2019, Chen
et al., 2019b, Garg et al., 2020, Azizian and Lelarge, 2021], local distributed algorithms [Sato et al.,
2019, Loukas, 2020], randomness in features [Sato et al., 2021, Abboud et al., 2021] and using local
context matrix features [Vignac et al., 2020]. Other extensions of GNNs are surveyed, e.g., in Wu
et al. [2021], Zhou et al. [2018] and Chami et al. [2021]. Related are also the Graph Homomorphism
Convolutions by NT and Maehara [2020] which apply SVMs directly on a homomorphism count
representation of vertices. Finally, our approach is reminiscent of graph representations by means of
graphlet kernels [Shervashidze et al., 2009], but then on the level of vertices.

Limitations of our approach. One of the limitations of F-MPNNs is that their expressive power
depends on the set F of patterns. Our work offers tools and guidelines to help in this search, but the
best set of patterns must still be found by trial-and-error. However, as we show in Section 6, MPNNs
almost always benefit from any set of additional features, assuming that the resulting model goes
beyond the WL test. Cliques and cycles are two types of simple patterns that are guaranteed to extend
the WL test, and indeed we show that striking gains can be obtained by simply adding these features
to existing benchmarks. For simplicity of exposition we focus on vertex-labelled undirected graphs
but all our results can be extended to edge-labelled directed graphs.

2 Local Graph Parameter Enabled MPNNs

We here introduce our MPNNs with local graph parameters. We first recall some graph concepts.

Graphs. We consider undirected vertex-labelled graphs G = (V,E, χ), with V the set of vertices,
E the set of edges and χ a mapping assigning a label to each vertex in V . The set of neighbors of
a vertex is denoted by NG(v) =

{
u ∈ V

∣∣ {u, v} ∈ E}. A rooted graph is a graph in which one
of its vertices is declared as its root. We denote a rooted graph by Gv, where v ∈ V is the root
and depict them as graphs in which the root is a blackened vertex, such as e.g., . Given graphs
G = (VG, EG, χG) and H = (VH , EH , χH), an homomorphism h is a mapping h : VG → VH such
that (i) {h(u), h(v)} ∈ EH for every {u, v} ∈ EG, and (ii) χG(u) = χH(h(u)) for every u ∈ VG.
For rooted graphs Gv and Hw, an homomorphism must additionally map v to w. We denote by
hom(G,H) the number of homomorphisms from G to H; similarly for rooted graphs.

MPNNs with local graph parameters. Let F = {P r
1 , . . . , P

r
` } be a set of rooted graphs, which

we refer to as patterns. As a uniform formalization of local graph structural information, we propose
the use of homomorphism counts of patterns in F to enhance the initial feature of vertices. To
illustrate the idea, consider the graphs in Fig. 1. As mentioned, these graphs cannot be distinguished
by the WL-test, and therefore cannot be distinguished by the broad class of MPNNs. If we allow a
preprocessing stage, however, in which the initial labelling of every vertex v is extended with the
number of (homomorphic images of) 3-cliques in which v participates (indicated by numbers between
brackets in Fig. 1), then clearly vertices v and w (and the graphs G1 and H1) can be distinguished
based on this extra structural information. In fact, the initial labelling already suffices for this purpose.
In our setting, this will correspond to selecting the rooted 3-clique and attach to each vertex v,
hom( , Gv). Information about 4-cycles requires adding hom( , Gv) as well.

We therefore propose F-enabled MPNNs, or just F-MPNNs, defined in the same way as MPNNs
[Gilmer et al., 2017] with the crucial difference that the initial feature vector of a vertex v (a one-hot
encoding of its label χG(v)) is augmented with all the homomorphism counts from patterns in F .

Formally, in each round d an F-MPNN M labels each vertex v in graph G with a feature vector
x
(d)
M,F,G,v which is inductively defined as follows:
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x
(0)
M,F,G,v :=

(
χG(v), hom(P r

1 , G
v), . . . , hom(P r

` , G
v)
)

x
(d)
M,F,G,v := UPD(d)

(
x
(d−1)
M,F,G,v,COMB(d)

(
{{x(d−1)

M,F,G,v | u ∈ NG(v)}}
))
, for d > 0,

where COMB(d) and UPD(d) are an aggregating and update function, respectively, as in standard
MPNNs, and where {{}} denotes a multi-set. We note that standard MPNNs are F-MPNNs with
F = ∅. As for MPNNs, we can equip F -MPNNs with a READOUT function that aggregates all final
feature vectors into a single feature vector in order to classify or distinguish graphs.

We remark that any MPNN architecture can be turned into an F -MPNN by a simple homomorphism
counting preprocessing step. As such, we propose a generic plug-in for a large class of GNN
architectures. Better still, hom(P r, Gv) can be computed in time O(|VG|tw(P

r)+1) [Díaz et al.,
2002], where tw(P r) denotes the treewidth of pattern P r. The treewidth of patterns used in F-
MPNNs is typically small. And indeed, homomorphism counts of small graph patterns can be
efficiently computed in practice, even on large datasets [Zhang et al., 2020]. We also remark that
the use of rooted patterns is important because different vertices in a pattern may embed differently
around a target vertex in a graph. For example, hom( , Gv) can be different from hom( , Gv). The
choice of a root in a graph P can be avoided by including different rooted versions of P in F . In fact,
it suffices to include one rooted version P r for each vertex r in a distinct orbit in P . We note that for
symmetric graphs, such as cliques and cycles, all vertices lie in the same orbit and a single, arbitrary,
choice of root vertex suffices. Alternatively, one could define hom(P,Gv) :=

∑
r∈VP

hom(P r, Gv)
which ignores how the pattern is locally mapped into a graph. We speculate, however, that this results
in a model that is less powerful than F-MPNNs.

Despite their simplicity, we will show that F-MPNNs can substantially increase the power of
MPNNs by varying F , only paying a one-time preprocessing cost.

F -MPNNs as unifying framework. An important aspect of F -MPNNs is that they allow a prin-
cipled analysis of the power of existing extensions of MPNNs. For example, taking F = { } suffices
to capture degree-aware MPNNs [Geerts et al., 2021], such as the Graph Convolution Networks
(GCNs) [Kipf and Welling, 2017], which use the degree of vertices; taking F = {L1, L2, . . . , L`}
for rooted paths Li of length i suffices to model the walk counts used in Chen et al. [2019a]; and
taking F as the set of labeled trees of depth one precisely corresponds to the use of the WL-labelling
obtained after one round by Ishiguro et al. [2020]. Furthermore, {C`}-MPNNs, where C` denotes
the cycle of length `, correspond to the extension proposed in Section 4 in Li et al. [2019].

In addition, F-MPNNs are close in spirit to the Graph Substructure Networks (GSNs) by Bouritsas
et al. [2020], which use subgraph isomorphism counts of graph patterns. We recall that an isomor-
phism from G to H is a bijective homomorphism h from G to H which additionally satisfies (i)
{h−1(u), h−1(v)} ∈ EG for every {u, v} ∈ EH , and (ii) χG(h

−1(u)) = χH(u) for every u ∈ VH .
When G and H are rooted graphs, isomorphisms should preserve the roots as well. Now, in a GSN,
the feature vector of each vertex v is augmented with the subgraph isomorphism counts, sub(P r, Gv),
for rooted patterns P r in a set of P of patterns, and this is followed by the execution of an MPNN,
just as for our F-MPNNs. Importantly, F-MPNNs can be used to bound the expressive power of
GSNs, as we will show later. We note that computing sub(P r, Gv) is, in general, more costly than
computing hom(P r, Gv) [Curticapean et al., 2017]. This partially motivates our choice of using
homomorphism counts instead of subgraph isomorphism counts. Moreover, homomorphism counts
of tree patterns underly existing characterizations of the expressive power of MPNNs [Dell et al.,
2018, Grohe, 2020a]. As we will see shortly, these characterizations gracefully extend to F -MPNNs.

3 The Expressive Power of F -MPNNs

We next provide exact characterizations of the expressive power of F-MPNNs. Our results extend
those for standard MPNNs [Xu et al., 2019, Morris et al., 2019, Dell et al., 2018].

Characterization in terms of F -WL. We bound the expressive power of F-MPNNs in terms of
what we call the F-WL-test. This test extends the WL-test [Weisfeiler and Lehman, 1968, Grohe,
2017] in the same way as F -MPNNs extend standard MPNNs: by including homomorphism counts
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of patterns in F in the initial labelling. The F-WL-test, for F = {P r
1 , . . . , P

r
` }, is a vertex labelling

algorithm that iteratively computes a label χ(d)
F,G,v for each vertex v of a graph G, as follows:

χ
(0)
F,G,v :=

(
χG(v), hom(P r

1 , G
v), . . . , hom(P r

` , G
v)
)

χ
(d)
F,G,v := HASH

(
χ
(d−1)
F,G,v, {{χ

(d−1)
F,G,u | u ∈ NG(v)}}

)
, for d > 0.

The F-WL-test stops in round d when no new pair of vertices are distinguished, that is, χ(d−1)
F,G,v1

=

χ
(d−1)
F,G,v2

implies χ(d)
F,G,v1

= χ
(d)
F,G,v2

, for any vertices v1 and v2 in G. The standard WL-test corre-
sponds to {∅}-WL. We can use the F-WL-test to compare vertices of the same graphs, or different
graphs. We say that the F-WL-test cannot distinguish vertices if their final labels are the same, and
that the F-WL-test cannot distinguish graphsG andH if the multiset containing each label computed
for G is the same as that of H . Similarly as for MPNNs and the WL-test [Xu et al., 2019, Morris
et al., 2019], the F-WL-test provides an upper bound for the expressiveness of F-MPNNs.
Proposition 1. If two vertices of a graph cannot be distinguished by the F-WL-test, then they cannot
be distinguished by any F-MPNN either. Moreover, if two graphs cannot be distinguished by the
F-WL-test, then they cannot be distinguished by any F-MPNN either.

Furthermore, simply adding local parameters from a set F of patterns to the GIN architecture of Xu
et al. [2019] results in F-MPNNs that match the expressive power of the F-WL-test.

Characterization in terms of F -pattern trees. At the core of several results about the WL-test
lies a characterization linking the test with homomorphism counts of (rooted) trees [Dell et al., 2018,
Grohe, 2020a]. In view of the connection to MPNNs, it tells that MPNNs only use quantitative
tree-based structural information from the underlying graphs. We next extend this characterization to
F-WL by using homomorphism counts of so-called F-pattern trees. Proposition 1 then reveals that
F -MPNNs can use quantitative information of richer graph structures than the trees used by MPNNs.

To define F-pattern trees we need the graph join operator ?. Given two rooted graphs Gv and
Hw, the join graph (G ? H)v is obtained by taking the disjoint union of Gv and Hw, followed by

identifying w with v. The root of the join graph is v. For example, the join of and is .

Figure 2: Examples of F-pattern trees.

Furthermore, ifG is a graph and P r is a rooted graph,
then joining a vertex v in G with P r results in the
disjoint union ofG and P r, where r is identified with
v. Let F = {P r

1 , . . . , P
r
` }. An F-pattern tree T r is

obtained from a standard rooted tree Sr = (V,E, χ),
called the backbone of T r, followed by joining every
vertex s ∈ V with any number of copies of patterns
from F . Examples of F -pattern trees, for F = { } are shown in Fig. 2, where grey colored vertices
are part of the backbones of the F -pattern trees. We define the depth of an F -pattern tree as the depth
of its backbone. Standard trees are F-pattern trees in which no patterns are joined with backbone
vertices. We next use F-pattern trees to characterize the expressive power of F-WL and thus, by
Proposition 1, of F-MPNNs.
Theorem 1. For any finite collection F of patterns, vertices v and w in a graph G are indis-
tinguishable by the F-WL-test if and only if hom(T r, Gv) = hom(T r, Gw) for every rooted
F-pattern tree T r. Similarly, G and H are indistinguishable by the F-WL-test if and only if
hom(T,G) = hom(T,H) for every (unrooted) F-pattern tree T .

The proof of this Theorem requires a generalization of the techniques from Dell et al. [2018] and
Grohe [2020a,b], used to characterize the expressiveness of WL in terms of homomorphism counts of
trees. In fact, we can use our proof to recover said results simply by setting F = ∅. We note that
F-MPNNs are more expressive than MPNNs (recall the graphs G1 and H1 and F = { }).
We can even make the above theorem more precise. When F-WL is run for d rounds, then only
F-patterns trees of depth d are required. This tells that increasing the number of rounds of F-WL
results in that more complicated structural information is taken into account. As an illustration,
consider the graphs G2 and H2 and vertices v and w shown in Fig. 3 and let us consider F-WL with
F = { }. We argue that v and w cannot be distinguished by F-WL based on the initial labelling
only, but they can be distinguished after one round.
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v

G2

w

H2

Figure 3: { }–MPNNs re-
quire one round to distinguish
v from w.

Indeed, by definition, F-WL cannot distinguish v from w based
on the initial labelling since these vertices have the same triangle
count (zero). Hence, no F-MPNN can distinguish these vertices
either. If run for one round, Theorem 1 implies that F-WL cannot
distinguish v from w if and only if hom(T r, Gv

2) = hom(T r, Hw
2 )

for any F-pattern tree of depth at most 1. It is readily verified

that hom( , Gv
2) = 0 6= 4 = hom( , Hw

2 ), and thus F-WL

distinguishes v from w after one round. Also, G2 and H2 can be
distinguished by F-WL after one round. Moreover, G2 and H2 are
indistinguishable by WL showing again that F-MPNNs are more
expressive than MPNNs. The example shows that more rounds allow

F-MPNNs to detect more complex patterns based on F-pattern trees. This is in contrast to, e.g.,
the Graph Homomorphism Convolutions by NT and Maehara [2020] in which only homomorphism
counts of patterns in F , and not the counts of the derived F-patterns trees, are taken into account.

Implications for other MPNN extensions. Importantly, Theorem 1 discloses the boundaries of F -
MPNNs. To illustrate this for some specific instances of F -MPNNs mentioned earlier, the expressive
power of degree-based MPNNs [Kipf and Welling, 2017, Geerts et al., 2021] is captured by {L1}-
pattern trees, and walk count MPNNs [Chen et al., 2019a] are captured by {L1, . . . , L`}-pattern
trees. These pattern trees are just trees, since joining paths to trees only results in bigger trees. Thus,
Theorem 1 tells that all these extensions are still bounded by WL (albeit needing fewer rounds).
In contrast, beyond WL, {C`}-pattern trees capture cycle count MPNNs [Li et al., 2019]. Our
results also shed light on the expressive power of GSNs [Bouritsas et al., 2020] which, as already
mentioned, use subgraph isomorphism counts of patterns P ∈ P . More precisely, a P-GSN augments
vertex features by including sub(P r, Gv) for rooted versions P r of P ∈ P , where r ranges over
representative vertices of the different orbits in P . Let us denote by P+ this set of rooted patterns.
Fact 1 (Curticapean et al. [2017]). For any set P of rooted patterns, there exists a pattern set s(P)
such that for each P r ∈ P , sub(P r, Gv) can be computed based on {hom(Qr, Gv) | Qr ∈ s(P)}.

In other words, subgraph isomorphism counts can be computed in terms of homomorphism counts,
albeit by using different pattern sets. For example, if P = { }, then s(P) = { , , , }
which contains all different homomorphic images of . As a consequence, we obtain:

Proposition 2. P-GSNs cannot distinguish more vertices than s(P+)-MPNNs can.

So, we can bound the expressive power of GSNs in terms of F-MPNNs. In the supplementary
material we also show that F-MPNNs are bounded by GSNs that use some special set of patterns
derived from F . We conclude by observing that the proof technique underlying Theorem 1 can
be directly applied to GSNs. The key insight is to redefine the notion of homomorphism from
pattern trees to graphs. Indeed, consider a P-GSN and a corresponding P+-pattern tree T r. We
define shom(T r, Gv) as the number of mappings h : VT → VG such that (i) h(r) = v; (ii) h is a
homomorphism when restricted to the backbone of T r; and (iii) for each P r joined with a backbone
vertex, h(P r) is isomorphic to P r. We then have the following counterpart of Theorem 1 for GSNs:
Theorem 2. For any finite collection P of patterns, vertices v and w in a graph G are indistinguish-
able by P-GSNs if and only if shom(T r, Gv) = shom(T r, Gw) for every rooted P+-pattern tree T r.
Similarly, G and H are indistinguishable by P-GSNs if and only if shom(T,G) = shom(T,H) for
every (unrooted) P+-pattern tree T .

4 A Comparison with the k-WL-test

Compared to the computationally intensive higher-order MPNNs based on the k-WL-tests [Maron
et al., 2019a, Morris et al., 2019, 2020], F-MPNNs are an alternative and efficient way to extend
the expressive power of MPNNs (and thus the WL-test). In this section we situate F-WL in the
k-WL hierarchy. The definition of the k-WL-test can be found, e.g., in Morris et al. [2020], and is
provided in the supplementary material as well. We also use the standard notion of treewidth of a
graph (see e.g., Bodlaender [1993]). Intuitively, treewidth measures the tree-likeness of a graph. For
example, trees have treewidth one, cycles have treewidth two, and the k-clique Kk has treewidth
k − 1. Furthermore, the treewidth of a pattern P r is the treewidth of its unrooted version P .
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We have seen that F-WL can distinguish graphs that WL cannot: just consider {K3}-WL for the
3-clique K3. To generalize this observation we need some notation. Let F and G be two sets of
patterns and consider an F-MPNN M and a G-MPNN N . We say that M is upper bounded in
expressive power by N if for any graph G, if N cannot distinguish vertices v and w,2 then neither
can M . A similar notion is in place for pairs of graphs: if N cannot distinguish graphs G and H ,
then neither can M . More generally, letM be a class of F -MPNNs and N be a class of G-MPNNs.
We say that the classM is upper bounded in expressive power by N if every M ∈ M is upper
bounded in expressive power by an N ∈ N (which may depend on M ). WhenM is upper bounded
by N and vice versa, thenM and N are said to have the same expressive power. A class N is more
expressive than a classM whenM is upper bounded in expressive power by N , but there exist
graphs that can be distinguished by MPNNs in N but not by any MPNN inM.

Our first result is a consequence of the characterization of k-WL in terms of homomorphism counts
of graphs of treewidth k [Dvorak, 2010, Dell et al., 2018].
Proposition 3. For each finite set F of patterns, the expressive power of F-WL is bounded by k-WL,
where k is the largest treewidth of a pattern in F .

For example, since the treewidth of K3 is 2, we have that {K3}-WL is bounded by 2-WL. Similarly,
{Kk+1}-WL is bounded in expressive power by k-WL.

Our second result tells how to increase the expressive power of F-WL beyond k-WL. A pattern P r

is a core if any homomorphism from P to itself is injective. For example, any clique Kk and cycle of
odd length is a core.
Theorem 3. Let F be a finite set of patterns. If F contains a pattern P r which is a core and has
treewidth k, then there exist graphs that can be distinguished by F-WL but not by (k − 1)-WL.

In other words, for such F , F-WL is not bounded by (k − 1)-WL. For example, since K3 is a core,
{K3}-WL is not bounded in expressive power by WL = 1-WL. More generally, {Kk}-WL is not
bounded by (k − 1)-WL. The proof of Theorem 3 is based on extending deep techniques developed
in finite model theory, and that have been used to understand the expressive power of finite variable
logics [Atserias et al., 2007, Bova and Chen, 2019]. This result is stronger than the one underlying
the strictness of the k-WL hierarchy [Otto, 2017], which states that k-WL is strictly more expressive
than (k − 1)-WL. Indeed, Otto [2017] only shows the existence of a pattern P r of treewidth k such
that (k− 1)-WL is not bounded by {P r}-WL. In Theorem 3 we provide an explicit recipe for finding
such a pattern P r, that is, P r can be taken a core of treewidth k.

In summary, we have shown that there is a set F of patterns such that (i) F-WL can distinguish
graphs which cannot be distinguished by (k − 1)-WL, yet (ii) F-WL cannot distinguish more graphs
than k-WL. This begs the question whether there is a finite set F such that F-WL is equivalent in
expressive power to k-WL. We answer this negatively.
Proposition 4. For any k > 1, there does not exist a finite set F of patterns such that F-WL is
equivalent in expressive power to k-WL.

In the proof of Proposition 4 we show a stronger claim. Indeed, we construct two graphs that can be
distinguished by 2-WL but cannot be distinguished by any F-WL. Since any two graphs that can be
distinguished by 2-WL can also be distinguished by k-WL, for any k > 2, the proposition follows. In
view of the connection between F -MPNNs and GSNs mentioned earlier, we thus show that no GSN
can match the power of k-WL, which was a question left open in Bouritsas et al. [2020]. We remark
that if we allow F to consist of all (infinitely many) patterns of treewidth k, then F-WL is equivalent
in expressive power to k-WL [Dvorak, 2010, Dell et al., 2018].

5 When Do Patterns Extend Expressiveness?

Graph patterns are not learned, but must be passed as an input to MPNNs together with the graph
structure. Thus, knowing which patterns work well, and which do not, is of key importance for the
power of the resulting F-MPNNs. This is a difficult question to answer since determining which
patterns work well is clearly application-dependent. From a theoretical point of view, however, we
can still look into interesting questions related to the problem of which patterns to choose. One such

2As for the F-WL-test, F-MPNNs cannot distinguish vertices if they are assigned the same feature vector.
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a question, and the one studied in this section, is when a pattern adds expressive power over the ones
that we have already selected. More formally, we study the following problem: Given a finite set F of
patterns, when does adding a new pattern P r to F extends the expressive power of the F-WL-test?

To positively answer this question, we need to find two graphs G and H , show that they are
indistinguishable by the F-WL-test, but show that they can be distinguished by the F ∪ {P r}-WL-
test. As an example we show that longer cycles always add expressive power.

Proposition 5. For any ` > 3, {Cr
3 , . . . , C

r
` }-WL is more expressive than {Cr

3 , . . . , C
r
`−1}-WL.

Here, C` denotes a cycle of length `. We also observe that, by Proposition 3, {Cr
3 , . . . , C

r
` }-WL is

bounded by 2-WL for any ` ≥ 3 because cycles have treewidth two.

In general, it is quite challenging to find two graphs and to prove that they are indistinguishable by
F-WL but can be distinguished by the F ∪ {P r}-WL-test. Instead, in this section we provide two
techniques that can be used to partially answer the question posed above by only looking at properties
of the sets of patterns. Our first result is for establishing when a pattern does not add expressive
power to a given set F of patterns, and the second one when it does.

Detecting when patterns are superfluous. Our first result states that instead of choosing complex
patterns that are the joins of smaller patterns, one should opt for the smaller patterns.

Proposition 6. Let P r = P r
1 ? P

r
2 be a pattern that is the join of two smaller patterns. Then for any

set F of patterns, we have that F ∪ {P r}-WL is upper bounded by F ∪ {P r
1 , P

r
2 }-WL.

Stated differently, this means that adding to F any pattern which is the join of two patterns already in
F does not add expressive power. For example, instead of the pattern one should simply use the

3-clique . This is in line with other advantages of smaller patterns: their homomorphism counts
are easier to compute, and, since they are less specific, they should tend to produce less over-fitting.

Detecting when patterns add expressiveness. Joining patterns into new patterns does not give
extra expressive power, but what about patterns which are not joins? We next provide a useful recipe
for detecting when a pattern does add expressive power. We recall that the core of a graph P is its
unique (up to isomorphism) induced subgraph which is both a homomorphic image of P and a core.

Theorem 4. Let F be a finite set of patterns and let Qr be a pattern whose core has treewidth k.
Then, F ∪ {Qr}-WL is more expressive than F-WL if every pattern P r ∈ F satisfies one of the
following conditions: (i) P r has treewidth < k; or (ii) P r does not map homomorphically to Qr.

As an example, {K3, . . . ,K`}-WL is more expressive than {K3, . . . ,K`−1}-WL for any
` > 3 because of the first condition. Similarly, {K3, . . . ,K`, Cm}-WL is more expressive than
{K3, . . . ,K`}-WL for odd cycles Cm. Indeed, such cycles are cores and no clique K` with ` > 2
maps homomorphically to Cm.

6 Experiments

We next showcase that GNN architectures benefit when homomorphism counts of patterns are added
as additional vertex features. For patterns where homomorphism and subgraph isomorphism counts
differ (e.g., cycles) we compare with GSNs [Bouritsas et al., 2020]. We use the benchmark for GNNs
by Dwivedi et al. [2020], as it offers a broad choice of models, datasets and graph classification tasks.
Selected GNNs. We select the best architectures from Dwivedi et al. [2020]: Graph Attention
Networks (GAT) [Velickovic et al., 2018], Graph Convolutional Networks (GCN) [Kipf and Welling,
2017], GraphSage [Hamilton et al., 2017], Gaussian Mixture Models (MoNet) [Monti et al., 2017]
and GatedGCN [Bresson and Laurent, 2017]. We leave out various linear architectures such as GIN
[Xu et al., 2019] as they were shown to perform poorly on the benchmark.
Learning tasks and datasets. As in Dwivedi et al. [2020] we consider (i) graph regression and the
ZINC dataset [Irwin et al., 2012, Dwivedi et al., 2020]; (ii) vertex classification and the PATTERN
and CLUSTER datasets [Dwivedi et al., 2020]; and (iii) link prediction and the COLLAB dataset
[Hu et al., 2020]. We omit graph classification: for this task, the graph datasets from Dwivedi et al.
[2020] originate from image data and hence vertex neighborhoods carry little information.
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Table 1: Results for the ZINC dataset.

(a) Results for the ZINC dataset show that homomorphism (hom)
counts of cycles improve every model. We compare the mean
absolute error (MAE) of each model without any homomorphism
count (baseline), against the model augmented with the hom
count, and with subgraph isomorphism (iso) counts of C3–C10.

MODEL MAE (BASE) MAE (HOM) MAE (ISO)

GAT 0.47±0.02 0.22±0.01 0.24±0.01
GCN 0.35±0.01 0.20±0.01 0.22±0.01
GraphSage 0.44±0.01 0.24±0.01 0.24±0.01
MoNet 0.25±0.01 0.19±0.01 0.16±0.01
GatedGCN 0.34±0.05 0.1353±0.01 0.1357±0.01

(b) The effect of different cycles for the
GAT model over the ZINC dataset, using
mean absolute error.

SET (F) MAE

NONE 0.47±0.02
{C3} 0.45±0.01
{C4} 0.34±0.02
{C6} 0.31±0.01
{C5, C6} 0.28±0.01
{C3, . . . , C6} 0.23±0.01
{C3, . . . , C10} 0.22±0.01

Patterns. We extend the initial features of vertices with homomorphism counts of cycles C` of
length ` ≤ 10, when molecular data (ZINC) is concerned, and with homomorphism counts of
k-cliques Kk for k ≤ 5, when social or collaboration data (PATTERN, CLUSTER, COLLAB) is
concerned. We use the z-score of the logarithms of homomorphism counts to make them standard-
normally distributed and comparable to other features. Section 5 tells us that all these patterns will
increase expressive power (Theorem 4 and Proposition 5) and are “minimal” in the sense that they are
not the join of smaller patterns (Proposition 6). Similar pattern choices were used in Bouritsas et al.
[2020]. We use DISC [Zhang et al., 2020]3, a tool specifically built to get homomorphism counts for
large graph datasets. Each model is trained and tested independently using combinations of patterns.

Higher-order GNNs. We do not compare to higher-order GNNs since this was already done by
Dwivedi et al. [2020]. They included ring-GNNs (which outperform 2WL-GNNs) and 3WL-GNNs
in their experiments, and these were outperformed by our selected “linear” architectures. Although
the increased expressive power of higher-order GNNs may be beneficial for learning, scalability and
learning issues (e.g., loss divergence) hamper their applicability [Dwivedi et al., 2020]. Our approach
thus certainly outperforms higher-order GNNs with respect to the benchmark.

Methodology. Graphs were divided between training/test as instructed by Dwivedi et al. [2020],
and all numbers reported correspond to the test set. The reported performance is the average over
four runs with different random seeds for the respective combinations of patterns in F , model and
dataset. Training times were comparable to the baseline of training models without any augmented
features.4 All models for ZINC, PATTERN and COLLAB were trained on a GeForce GTX 1080 Ti
GPU, for CLUSTER a Tesla V100-SXM3-32GB GPU was used.

Next we summarize our results for each learning task separately. Here we report results using 16
message-passing layers for ZINC, PATTERN, and CLUSTER, and 3 message-passing layers for
COLLAB, as in Dwivedi et al. [2020]. In the supplementary material we report comparable results
using only 4 layers for ZINC and PATTERN.

Graph regression. The first task of the benchmark is the prediction of the solubility of molecules
in the ZINC dataset [Irwin et al., 2012, Dwivedi et al., 2020], a dataset of about 12 000 graphs of
small size, each of them consisting of one particular molecule. The results in Table 1a show that
each of our models indeed improves by adding homomorphism counts of cycles and the best result
is obtained by considering all cycles. GSNs were applied to the ZINC dataset as well [Bouritsas
et al., 2020]. In Table 1a we also report results by using subgraph isomorphism counts (as in GSNs):
using homomorphism counts provides comparable results with using subgraph isomorphism counts
although homomorphism counts are typically more efficient to compute. By looking at the full results,
we see that some cycles are much more important than others. Table 1b shows which cycles have
the greatest impact for the worst-performing baseline, GAT. Remarkably, adding homomorphism
counts makes the GAT model competitive with the best performers of the benchmark.

3We thank the authors for providing us with an executable.
4Code to reproduce our experiments is available at https://github.com/MrRyschkov/LGP-GNN
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Table 2: Results for the PATTERN dataset show that homomorphism counts improve all models except
GatedGCN. We compare weighted accuracy of each model without any homomorphism count (base-
line) against the model augmented with the counts of the setF that showed best performance (bestF ).

MODEL + BEST F ACCURACY BASELINE ACCURACY BEST

GAT{K3,K4,K5} 78.83 ± 0.60 85.50 ± 0.23
GCN{K3,K4,K5} 71.42 ± 1,38 82.49 ± 0.48
GraphSage {K3,K4,K5} 70.78 ± 0,19 85,85 ± 0.15
MoNet {K3,K4,K5} 85.90 ± 0,03 86.63 ± 0.03
GatedGCN {∅} 86.15 ± 0.08 86.15 ± 0.08

Table 3: All models improve the Hits@50 metric over the COLLAB dataset. We compare each model
without any homomorphism count (baseline) against the model augmented with the counts of the set
of patterns that showed best performance (best F).

MODEL + BEST F HITS@50 BASELINE HITS@50 BEST

GAT {K3} 50.32±0.55 52.87±0.87
GCN {K3,K4,K5} 51.35±1.30 54.60±1.01
GraphSage {K5} 50.33±0.68 51.39±1.23
MoNet {K4} 49.81±1.56 51.76±1.38
GatedGCN {K3} 51.00±2.54 51.57±0.68

Vertex classification. The next task in the benchmark corresponds to vertex classification. Here
we analyze two datasets, PATTERN and CLUSTER [Dwivedi et al., 2020], both containing over
12 000 artificially generated graphs resembling social networks or communities. The task is to predict
whether a vertex belongs to a particular cluster or pattern, and all results are measured using the
accuracy of the classifier. Also here, our results show that homomorphism counts, this time of cliques,
tend to improve the accuracy of our models. Indeed, for the PATTERN dataset we see an improvement
in all models but GatedGCN (Table 2), and three models are improved in the CLUSTER dataset
(reported in the supplementary material). Once again, the best performer in this task is a model that
uses our extended features. Note that we do not need to compare against subgraph isomorphism
counts (GSNs), because for cliques, homomorphism counts coincide with subgraph isomorphism
counts (up to a constant factor).
Link prediction In our final task we consider a single graph, COLLAB [Hu et al., 2020], with over
235 000 vertices, containing information about the collaborators in an academic network, and the
task at hand is to predict future collaboration. The metric used in the benchmark is the Hits@50
evaluator [Hu et al., 2020]. Here, positive collaborations are ranked among randomly sampled
negative collaborations, and the metric is the ratio of positive edges that are ranked at place 50 or
above. Once again, homomorphism counts of cliques improve the performance of all models, see
Table 3. An interesting observation is that the best set of features (cliques) does depend on the model,
although the best model uses all cliques again. We do not compare against subgraph isomorphism
counts (GSNs) for the same reason as mentioned above.
Remarks. The best performers in each task use homomorphism counts, in accordance with our
theoretical results, showing that such counts do extend the power of MPNNs. Homomorphism counts
are also cheap to compute. For COLLAB, the largest graph in our experiments, the homomorphism
counts of all patterns we used, for all vertices, could be computed by DISC [Zhang et al., 2020] in less
than 3 minutes. One important remark is that selecting the best set of features is still a challenging
endeavor. Our theoretical results help us streamline this search, but for now it is still an exploratory
task. In our experiments we first looked at adding each pattern individually, and then tried with
combinations of those that showed the best improvements. This feature selection strategy incurs
considerable cost and needs further investigation.

7 Conclusion
We propose F-MPNNs as an efficient way to increase the expressive power of MPNNs and showed
that enriching features with homomorphism counts of small patterns is a promising add-on to any
GNN architecture. Graph parameter selection and a complete characterization of when adding a new
pattern to F adds expressive power to the F-WL-test deserves further study.
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