
Under review as a conference paper at ICLR 2022

CAUSALLY ESTIMATING THE SENSITIVITY OF NEU-
RAL NLP MODELS TO SPURIOUS FEATURES

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent work finds modern natural language processing (NLP) models relying on
spurious features for prediction. Mitigating such effects is thus important. De-
spite this need, there is no quantitative measure to evaluate or compare the effects
of different forms of spurious features in NLP. We address this gap in the litera-
ture by quantifying model sensitivity to spurious features with a causal estimand,
dubbed CENT, which draws on the concept of average treatment effect from the
causality literature. By conducting simulations with four prominent NLP models
— TextRNN, BERT, RoBERTa and XLNet — we rank the models against their
sensitivity to artificial injections of eight spurious features. We further hypothe-
size and validate that models that are more sensitive to a spurious feature will be
less robust against perturbations with this feature during inference. Conversely,
data augmentation with this feature improves robustness to similar perturbations.
We find statistically significant inverse correlations between sensitivity and ro-
bustness, providing empirical support for our hypothesis. Our findings contribute
to the interpretation of models and their robustness.

1 INTRODUCTION

Despite the success of deep neural models on many Natural Language Processing (NLP) tasks (Liu
et al., 2016; Devlin et al., 2019; Liu et al., 2019b), recent work has discovered that these models rely
excessively on spurious features, making the right predictions for the wrong reasons (Gururangan
et al., 2018; McCoy et al., 2019; Wang & Culotta, 2020). Neural NLP models learn correlations
but not causation from training data (Feder et al., 2021) and thus they are easily fooled by spurious
correlation: prediction rules that work for the majority examples but do not hold in general (Tu
et al., 2020). For example, BERT (Devlin et al., 2019) only achieves an accuracy less than 10%
on a challenge test set HANS (McCoy et al., 2019) for MNLI (Williams et al., 2018) where spuri-
ous correlation disappears. Measuring sensitivity to spurious feature is thus important for a more
principled evaluation of and control over neural NLP models (Lovering et al., 2020). It is crucial to
avoid overfitting our models to spurious features, but how to evaluate the risk of spurious features
remains an open question. Although a wide range of evaluation approaches for robust NLP have
been proposed (Ribeiro et al., 2020; Morris et al., 2020; Tu et al., 2020; Goel et al., 2021; Wang
et al., 2021), to the best of our knowledge, a quantitative measure to evaluate or compare the effect
of different spurious features on NLP models has yet to be proposed.

Inspired by the concepts of Randomized Controlled Trial (RCT) and Average Treatment Effect
(ATE) in Causal Inference (Rubin, 1974; Holland, 1986), we quantify model sensitivity to spuri-
ous features through simulations: ¬ randomly labelling a dataset, individually injecting them (as
treatments) into examples of a particular pseudo class, and ® using ATE to measure the ease with
which the model learns each feature. We dub our proposed metric Causal sENsiTivity (CENT).
We realize the injection of artificial spurious features with non-adversarial perturbations1 (Moradi
& Samwald, 2021) in this work. The core intuition for our method is to frame RCT as a spuri-
ous feature identification task and formalize the notion of sensitivity as a causal estimand based on
ATE. We conduct experiments on four neural NLP models with eight different spurious features.
Analysis results based on CENT reveal the deadliest spurious feature and the brittlest model, which
contributes better model interpretation.

1We use “spurious feature” and “perturbation” interchangeably in this work.

1

Under review as a conference paper at ICLR 2022

It stands to reason that a model that is more sensitive to a spurious feature will be less robust against
test-time perturbations of the same feature. We use CENT to validate this intuition. To improve
performance under perturbation, it is a common practice to leverage data augmentation (Li & Spe-
cia, 2019; Min et al., 2020; Tan & Joty, 2021), and we find evidence that the improvement is also
strongly correlated to the model’s sensitivity. Combining these two findings, we further show that
data augmentation is only more effective at improving robustness against spurious features that a
model is more sensitive to. Our work contributes to the groundwork for the evaluation of spuri-
ous feature sensitivity in NLP, while also contributing to the interpretation of robustness and data
augmentation.

Our main contributions are summarized as follows:

• We use the concept of average treatment effect to quantify sensitivity of NLP models to
spurious features and conduct an empirical analysis on typical nerual NLP models.

• We validate the inverse correlation between sensitivity and robustness of models to spurious
features, justifying our proposed approach to sensitivity estimation.

• We demonstrate a significant relationship between sensitivity and performance boost of
data augmentation.

2 BACKGROUND

Recent work finds that NLP models are more sensitive to spurious features than target features
(Warstadt et al., 2020; Lovering et al., 2020), but the term “sensitivity” still does not map to a
formal, quantitative measure in standard statistical frameworks. Estimating the effect of spurious
feature on models is challenging, because it is often difficult to fully decouple the effect of the target
features from spurious features in practice (Lovering et al., 2020). In the language of causality, this
is “correlation is not causation”, due to the confounding target feature. Motivated by theories of
causal inference, we propose CENT, a novel metric for estimating model’s sensitivity to spurious
features. As a means for introducing our metric later, we now review background knowledge on
causality.

Causal Inference. The aim of causal inference is to investigate how a treatment T affects the
outcome Y . ConfounderX refers to a variable that influences both treatment T and outcome Y . For
example, sleeping with shoes on (T) is strongly associated with waking up with a headache (Y), but
they both have a common cause: drinking the night before (X) (Neal, 2020). In our work, we aim
to study how a spurious feature (treatment) affects the model’s prediction (outcome). However, the
target features and other spurious features usually act as a confounder.

Causality offers solutions for two questions: 1) how to eliminate the spurious association and isolate
the treatment’s causal effect; and 2) how varying T affects Y , given both variables are causally-
related (Liu et al., 2021). We will leverage both of these properties in our proposed method. Let
us now introduce Randomized Controlled Trial and Average Treatment Effect as key concepts in
answering the above two questions, respectively.

• Randomized Controlled Trial (RCT). In an RCT, each participant is randomly assigned
to either the treatment group or the non-treatment group. In this way, the only difference
between the two groups is the treatment they receive. Randomized experiments ideally
guarantee that there is no confounding factor, and thus any observed association is actually
causal. We operationalize RCT as a spurious feature classification task in Section 3.1.

• Average Treatment Effect (ATE). In Section 3.3, we apply ATE (Holland, 1986) as a
measure of causal sensitivity. ATE is based on Individual Treatment Effect (ITE, Equation
1), which is the difference of the outcome with and without treatment.

ITEi = Yi(1) − Yi(0) (1)

Here, Yi(1) is the outcome Y of individual i that receives treatment (T = 1), while Yi(0)
is the opposite. In the above example, waking up with a headache (Y = 1) with shoes on
(T = 1) means Yi(1) = 1.

2

Under review as a conference paper at ICLR 2022Under review as a conference paper at ICLR 2022

S Y

TL

causal association

confounding association

(a) Before randomization.

S Y

TL

causal association

(b) After randomization.

Figure 1: Causal graph ex-
planation for decoupling
spurious feature and tar-
get feature with random-
ization. S is the spurious
feature and T is the target
feature. L is the original
label and Y is the perfor-
mance outcome (predicted
probability of true label).

We calculate the Average Treatment Effect (ATE) by taking an average over the ITEs:

ATE = E[Y (1)] −E[Y (0)] (2)

ATE quantifies how the outcome Y is expected to change if we modify the treatment T from 0 to 1.
We provide specific definitions of ITE and ATE in Section 3.3.

3 METHOD

Setup and Terminology. We consider a binary text classification problem. The training set is
denoted as Dtrain = {(x1, l1), ..., (xn, ln)}, where xi is the i-th sentence and li ∈ {0,1} is the
corresponding label. We fit a model f ∶ (x; θ) ↦ {0,1} with parameters θ on the training data. The
model gives a prediction probability for each label such that Pf(L = 0 ∣ X = xi) + Pf(L = 1 ∣ X =
xi) = 1. We assume that we have a transformation g ∶ (x;β) → x∗ that injects a specific type of
spurious feature into a sample x with parameters β and the perturbed sentence is x∗.

We cast sensitivity estimation as a spurious feature classification task, where a model is trained to
identify the spurious feature in a sentence. Our proposed method consists of three steps, namely
¬ random label assignment, spurious feature injection, and ® causal estimation. Below we
detail the procedure and motivation for each step. We then summarize our estimation approach
formally in Algorithm 1.

3.1 RANDOM LABEL ASSIGNMENT

We randomly assign pseudo labels to each training example regardless of its original label. Each data
point has equal probability of being assigned to positive (l′ = 1) or negative (l′ = 0) pseudo label (i.e.,
the output of a coin toss). This results in a randomly labeled datasetD′

train = {(x1; l′1), ..., (xn, l′n)},
where L′ ∼ B(1,0.5), L′ áX .

A Causal Explanation for Randomization. Spurious features naturally co-occur with target fea-
tures in a sentence, making it a challenge to isolate the spurious feature’s effect. If we did not assign
random labels and simply injected spurious features into one of the original groups, there would be
confounding target features that would prevent us from estimating the causal effect of the spurious
feature. Figure 1a illustrates this scenario. Both spurious feature S and target feature T may affect
the outcome Y 3, while the target feature is predictive of label L. Since we inject the spurious feature
S into examples with the same label, S is decided by L. It therefore follows that T is a confounder
of the effect of S on Y , resulting in non-causal association flowing along the path S ← L← T → Y .
However, if we do randomize the labels, S no longer has any causal parents (i.e., incoming edges)
(Figure 1b). This is because feature injection is purely random. Without the backdoor path, all of
the association that flows from S to Y is causal. As a result, we can directly calculate the causal
effect from the observed performance outcomes (Section 3.3).

3Y is defined in Section 3.3

3

(a) Before randomization.

S Y

TL

causal association

(b) After randomization.

Figure 1: Causal graph explanation
for decoupling spurious feature and
target feature with randomization. S
is the spurious feature and T is the
target feature. L is the original label
and Y is the correctness of the pre-
dicted label.

We calculate the Average Treatment Effect (ATE) by taking an average over ITEs:

ATE = E[Y (1)] −E[Y (0)] (2)

ATE quantifies how the outcome Y is expected to change if we modify the treatment T
from 0 to 1. We provide specific definitions of ITE and ATE in Section 3.3.

3 METHOD

Setup and Terminology. We consider a binary sentential text classification problem with binary
treatments (i.e., the spurious feature either exists or not). The training set is denoted as Dtrain ={(x1, l1), ..., (xn, ln)}, where xi is the i-th example and li ∈ {0,1} is the corresponding label. We
fit a model f ∶ (x; θ) ↦ {0,1} with parameters θ on the training data. We assume that we have a
transformation g ∶ (x;β)→ x∗ that injects a specific type of spurious feature into an example x with
parameters β and the perturbed example is x∗.

We cast sensitivity estimation as a spurious feature classification task, where a model is trained to
identify the spurious feature in an example. Our proposed method consists of three steps, namely
¬ random label assignment, spurious feature injection, and ® causal estimation. Below we
detail the procedure and motivation for each step. We then summarize our estimation approach
formally in Algorithm 1.

3.1 RANDOM LABEL ASSIGNMENT

We randomly assign pseudo labels to each training example regardless of its original label. Each data
point has equal probability of being assigned to positive (l′ = 1) or negative (l′ = 0) pseudo label (i.e.,
the output of a coin toss). This results in a randomly labeled datasetD′

train = {(x1; l′1), ..., (xn, l′n)},
where L′ ∼ Bernoulli(1,0.5).

A Causal Explanation for Randomization. Spurious features naturally co-occur with target fea-
tures in an example, making it a challenge to isolate the spurious feature’s effect. If we did not assign
random labels and simply injected spurious features into one of the original groups, there would be
confounding target features that would prevent us from estimating the causal effect of the spurious
feature. Figure 1a illustrates this scenario. Both spurious feature S and target feature T may affect
the outcome Y 2, while the target feature is predictive of label L. Since we inject the spurious feature
S into examples with the same label, S is decided by L. It therefore follows that T is a confounder
of the effect of S on Y , resulting in non-causal association flowing along the path S ← L← T → Y .
However, if we do randomize the labels, S no longer has any causal parents (i.e., incoming edges)
(Figure 1b). This is because feature injection is purely random. Without the path represented by
S ← L, all of the association that flows from S to Y is causal. As a result, we can directly calculate
the causal effect from the observed outcomes (Section 3.3).

2Y is defined in Section 3.3

3

Under review as a conference paper at ICLR 2022

3.2 SPURIOUS FEATURE INJECTION

We apply the spurious transformation g(⋅) to each training example in one of the pseudo groups
(e.g., l′ = 1 in Algorithm 1)3. In this way, we create a spurious correlation between the injected
feature and label (i.e., the feature occurrence is predictive of the label). We control the injection
probability p ∈ [0,1], i.e., an example has a specific probability p of being injected with a spurious
feature. This results in a perturbed training setD′∗

train = {(x∗1, l′1), ..., (x∗n, l′n)}, where the perturbed
example x∗i is:

Z ∼ U(0,1),∀i ∈ {1,2, ..., n}, x∗i = {g(xi) l′i = 1 ∧ z < p,
xi otherwise.

(3)

Here Z is a random variable drawn from a uniform distribution U(0,1).

Criteria for Spurious Features. We inject spurious features into plain text by making non-
adversarial, label-consistent perturbations. These perturbations can be automatically generated at
scale. Note that our method does not require access to model-internal structure. We also assume
that the injected spurious feature does not exist in original data. Not all perturbations in existing
literature are suitable for our task. For example, a perturbation that swaps the gender word (i.e.,
female→ male, male→ female) will not result in a spurious feature since we cannot distinguish the
perturbed text from an unperturbed one. In other words, the perturbation function g(⋅) should be
asymmetric, such that g(g(x)) ≠ x. We provide the list of spurious features we used in Appendix A.

3.3 CAUSAL ESTIMATION

Our randomization experiments allow us to discern causation from association and estimate the
causal effect of injected spurious feature from test performance. We now train a model on the
randomly labeled dataset with half of perturbed examples. Since the only difference between the
two pseudo groups is the existence of the spurious feature, the model is trained to identify the
spurious feature. The original test examples Dtest are assigned random labels and become D′

test.
We inject spurious feature into all of the test examples (injecton probability p = 1) in one pseudo
group (e.g., l′ = 1, as in Section 3.2) to produce a perturbed test set D′∗

test. Sensitivity is calculated
as the difference of accuracies on D′∗

test and D′
test.

Identification of Causal Estimand for Sensitivity. In causality, the term “identification” refers
to the process of moving from a causal estimand (ATE) to an equivalent statistical estimand. We
show that the difference of accuracies on D′∗

test and D′
test is actually a causal estimand. We define

the outcome Y of a test data point xi as the correctness of the predicted label:

Yi(0) ∶= 1{f(xi)=l′i} (4)

where 1{⋅} is the indicator function. Similarly, the outcome Y of a perturbed test data point x∗i is:

Yi(1) ∶= 1{f(x∗i)=l′i} (5)

From Equation 1, the Individual Treatment Effect is ITEi = 1{f(x∗i)=l′i} − 1{f(xi)=l′i}. We then take
the average over all the perturbed test examples (half of the test set)4. This is our Average Treatment
Effect (ATE). With Equation 2, we have:

ATE = E[Y (1)] −E[Y (0)]= E[1{f(x∗)=l′}] −E[1{f(x)=l′}]= P (f(x∗) = l′) − P (f(x) = l′)= A(f, g, p,D′∗
test) −A(f, g, p,D′

test) (6)

whereA(f, g, p,D) is the accuracy of model f(⋅) trained with feature g(⋅) at injection probability p
on test set D. Therefore, we show that ATE is exactly the difference of accuracies on the perturbed

3Because the training data is randomly split into two pseudo groups, applying transformations to any one of
the groups should yield same result. We assume that we always inject into the first group (l′ = 1) hereafter.

4The other half of the test set (l′ = 0) is left unperturbed, following the same procedure in Section 3.2.
Model predictions will not change for unperturbed ones, resulting in ITEs with zero values. Therefore, we do
not take them into account for ATE calculation.

4

Under review as a conference paper at ICLR 2022

Algorithm 1 Sensitivity Estimation

Input: training setDtrain = {(x1, l1), ..., (xn, ln)}
test setDtest = {(xn+1, ln+1), ..., (xn+m, ln+m)},
model f ∶ (x; θ) ↦ {0,1}, spurious perturbation
g ∶ (x;β)→ x∗, injection probability p
Output: ATE (sensitivity)

1: // ¬ random label assignment
2: Initialize an empty perturbed dataset D′
3: for i in {1,2, ..., n +m} do
4: l′i ← randint[0,1]
5: D′ ←D′ ∪ {(xi, l′i)}
6: end for
7: // spurious feature injection
8: Initialize an empty perturbed and injected

dataset D′∗
9: for i in {1,2, ..., n +m} do

10: z ← rand(0,1)
11: x∗i ← xi
12: if l′i = 1 ∧ z < p then
13: x∗i ← g(xi)
14: end if
15: D′∗ ←D′∗ ∪ {(x∗i , l′i)}
16: end for
17: // ® causal estimation
18: D′

train,D
′
test ←D′[1 ∶ n],D′[n+1 ∶ n+m]

19: D′∗
train,D

′∗
test ← D′∗[1 ∶ n],D′∗[n + 1 ∶

n +m]
20: fit the model f(⋅) on D′∗

train
21: A(f, g, p,D′∗

test)← f(⋅) accuracy on D′∗
test

22: A(f, g, p,D′
test)← f(⋅) accuracy on D′

test
23: return A(f, g, p,D′∗

test) −A(f, g, p,D′
test)

and unperturbed test sets with random labels. As a result, a higher ATE indicates a greater degree of
sensitivity.

We discuss another means of identification of ATE in Appendix B.1, based on prediction probability.
We compare between the probability-based and accuracy-based metrics there. We find that our
accuracy-based metric yields better resolution, so we report this metric in this work.

Average over Different injection probabilities. We observe that the ATE-based sensitivity is de-
pendent on injection probability p. For each model–feature pair, we obtain multiple ATE estimates
by varying the injection probability (Figure 2). However, we expect that sensitivity of the model (as
a concept) should be independent of injection probability. To this end, we use the logAUC (area
under the curve in log scale) of the p−ATE curve (Figure 2), termed as “average sensitivity”, which
summarizes the overall sensitivity across different injection probabilities p1, ..., pt:

A(f, g,D) ∶= logAUC({(pi,A(f, g, pi,D′∗
test) −A(f, g, pi,D′

test)) ∣ i ∈ {1,2, ..., t}}) (7)

We use logAUC rather than AUC because we empirically find that the sensitivity varies substan-
tially between features when p is small, and a log scale can better capture this nuance. We also
introduce sensitivity at a specific injection probability (Sensitivity @ p) as a summary metric and
provide a comparison of this metric against logAUC in Appendix B.2.

4 EXPERIMENTS

4.1 ESTIMATING SENSITIVITY

Experimental Settings. To test sensitivity of different NLP models to various spurious features,
we experiment with four modern and representative neural NLP models: TextRNN (Liu et al., 2016),
BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019b) and XLNet (Yang et al., 2019). For
TextRNN, we use the implementation by an open-source text classification toolkit NeuralClassi-
fier (Liu et al., 2019a). For the other three pretrained models, we use the bert-base-cased,
roberta-base, xlnet-base-cased versions from Hugging Face (Wolf et al., 2020), respec-
tively. These two platforms support most of the common NLP models, thus facilitating extension
studies of sensitivity of more models in future. We use a common binary text classification dataset
— IMDB movie reviews (Pang & Lee, 2005) — as our testbed, which contains text labelled as
positive or negative sentiment. We implement the injection of spurious features g(⋅) with two self-

5

Under review as a conference paper at ICLR 2022

0.0

0.2

0.4

0.6

0.8

1.0

se
ns

iti
vi

ty
 @

 p

model = TextRNN model = BERT

0.001 0.005 0.01 0.02 0.05 0.1 0.5 1.0
injection probability p

0.0

0.2

0.4

0.6

0.8

1.0

se
ns

iti
vi

ty
 @

 p

model = RoBERTa

0.001 0.005 0.01 0.02 0.05 0.1 0.5 1.0
injection probability p

model = XLNet

spurious feature
duplicate_punctuations
butter_fingers_perturbation
shuffle_word
random_upper_transformation
insert_abbreviation
whitespace_perturbation
visual_attack_letters
leet_letters

Figure 2: Sensitivity of four NLP models to eight spurious features, as a function of injection prob-
ability.

Spurious feature RoBERTa XLNet BERT TextRNN Average
over models

whitespace perturbation 0.99 1.55 1.28 0.88 1.17
duplicate punctuations 1.50 0.82 1.38 1.99 1.42
shuffle word 1.83 1.83 1.81 0.60 1.52
random upper transformation 1.00 1.54 1.90 2.16 1.65
butter fingers perturbation 1.45 1.63 1.80 1.76 1.66
insert abbreviation 1.48 1.48 1.61 2.08 1.67
visual attack letters 2.14 1.90 1.86 2.18 2.02
leet letters 1.81 1.95 1.98 2.36 2.03
Average over features 1.53 1.59 1.70 1.75 1.64

Table 1: Average sensitivity of each model–feature pair (logAUC of corresponding curve in Fig-
ure 2). Rows and columns are sorted by average values over all features and models. The feature to
which a model is most sensitive is highlighted in bold while the following one is underlined.

designed perturbations and six selected ones from the NL-Augmenter5. More details of spurious
features/perturbations can be found in Appendix A. For injection probabilities, we choose 0.001,
0.005, 0.01, 0.02, 0.05, 0.10, 0.50, 1.00.

Results. Figure 2 shows model sensitivity as a function of injection probability for each of the
eight spurious features. Sensitivity @ p generally increases as we increase the injection probability,
and when we perturb all the examples (i.e., p = 1.0), every model can easily identify it well, resulting
in the maximum sensitivity of 1.0. This shows that neural NLP models succumb to these spurious
features eventually. At lower injection probabilities, some models still learn that spurious feature
alone predicts the label. In fact, the major difference between different p −ATE curves is the area
of lower injection probabilities and this provides motivation for using logAUC instead of AUC as
the summarization of sensitivity at different p (Section 3.3).

5https://github.com/GEM-benchmark/NL-Augmenter

6

https://github.com/GEM-benchmark/NL-Augmenter

Under review as a conference paper at ICLR 2022

Exp No. Measurement Label Perturbation Training Examples Test Examples

0 Standard original l ∈ ∅ (xi,0), (xj ,1) (xi,0), (xj ,1)
1

Sensitivity
random l′ ∈ {1′} (xj ,0′), (x∗i ,1′) (x∗i ,1′)

2 random l′ ∈ {1′} (xj ,0′), (x∗i ,1′) (xi,1′)
3 Robustness original l ∈ {0,1} (xi,0), (xj ,1) (x∗i ,0), (x∗j ,1)
4 Data Augmentation original l ∈ {0,1} (xi,0), (xj ,1)(x∗i ,0), (x∗j ,1) (x∗i ,0), (x∗j ,1)

Table 2: Example experiment settings for measuring sensitivity, robustness and improvement by
data augmentation. We inject a spurious feature to an example if its label falls in the set of label(s)
in “Perturbation” column. ∅ means no injection at all. Training/test examples are the expected
input data, assuming we have only one negative (xi,0) and positive (xj ,1) example in our original
training/test set. l′ is a random label and x∗ is a perturbed example.

Table 1 shows the average sensitivity over all injection probabilities of each model–feature pair
in Figure 2. Model-wise comparison6 (across different columns in Table 1) shows that the non-
pretrained model (TextRNN) is generally more sensitive than pretrained models (BERT, RoBERTa,
XLNet). Our results are in line with recent findings that pretraining improves robustness to spurious
correlations (Hendrycks et al., 2019; 2020; Tu et al., 2020). We also observe that RoBERTa is less
sensitive than BERT, indicating that a larger pretraining corpus improves downstream robustness and
confirms that RoBERTa is indeed robustly optimized (Liu et al., 2019b). Interestingly, the sensitivity
of RoBERTa jumps from 0.0 to 1.0 in a sudden at a relatively small injection probability, instead
of changing gradually as the injection probability increases. This shows that RoBERTa is good at
generalizing from a small proportion of data with spurious feature. Tu et al. (2020) also present
a similar finding that RoBERTa generalize better from minority patterns in the training set than
BERT. We find that CENT complements to existing literature on model interpretations, providing a
new perspective and a promising analysis tool.

Feature-wise comparison (across different rows) reveals the most sensitive spurious feature for each
model. For example, all four models are highly sensitive to “visual attack letters” and “leet letters”
(Appendix A), likely due to their damaging effects on the tokenization process. Pretrained mod-
els are less sensitive to “white space perturbation” and “duplicate punctuations”, probably because
they have little effect on the subword level tokenization, or they may have encountered similar noise
in the pretraining corpora. The rank of feature sensitivity differs a lot between models (discrepancy
of the underlined feature for each model in Table 1), indicating that a potential solution to a single
spurious feature may not work for all models. Priority matters when dealing with spurious correla-
tions. Analyzing the types of features a model is sensitive to can help us better understand what it
can learn during training and enables fair comparison between different models and features.

4.2 INVESTIGATING SENSITIVITY AND ROBUSTNESS.

Experimental Settings. Implementing spurious feature injections as perturbations allows us to
apply the perturbations to test examples and measure the robustness of model to said perturbations
as the decrease in accuracy. To this end, we design several experiment settings (Table 2). Experi-
ment 0 in Table 2 is the standard learning setup, where we train and evaluate a model on the original
dataset. Experiments 1 and 2 summarize the key points in sensitivity measurement (Section 3),
including random label assignment and spurious feature injection. Specifically, Experiment 1 mea-
sures A(f, g, p,D′∗

test), while Experiment 2 measures A(f, g, p,D′
test) in Equation 6. We further

use logAUC in Equation 7 to get rid of p. So the average sensitivity is:

avg sensitivity(f, g,D) = A(f, g,D). (8)

Experiment 3 is related to robustness measurement, where we train a model on unperturbed dataset
and test it on perturbed examples. We denote the test accuracy of a model f(⋅) on perturbed ex-

6We note that model-wise comparison is not fair across models with different numbers of parameters. Nev-
ertheless, it is still instructive to compare models at their commonly-used size.

7

Under review as a conference paper at ICLR 2022

1.0 1.5 2.0
avg sensitivity

0.4

0.3

0.2

0.1

0.0

0.1

ro
bu

st
ne

ss

= 0.67 *

(a) Sensitivity vs. Robustness

1.0 1.5 2.0
avg sensitivity

0.10

0.05

0.00

0.05

0.10

0.15

0.20

po
st

 a
ug

= 0.79 *

(b) Sensitivity vs. Post Aug ∆

0.4 0.3 0.2 0.1 0.0
robustness

0.00

0.05

0.10

0.15

0.20

po
st

 a
ug

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

av
g

se
ns

iti
vi

ty

(c) Sen. vs. Robu. vs. Post Aug ∆

Figure 3: Linear regression plots of sensitivity vs. robustness vs. post data augmentation ∆ against
spurious features. Each point in the plots represents a model-feature pair. We define “avg sensitivity”
as logAUC of the corresponding curve in Figure 2 (Equation 8), “robustness” as the performance
drop on perturbed test set (Equation 9) and “post aug ∆” as the performance boost on perturbed test
set (Equation 10). ρ is Spearman correlation. ∗ indicates high significance (p-value < 0.001).

amples g(⋅) in Experiment 3 as A3(f, g,D∗
test). Similarly, the test accuracy in Experiment 0 isA0(f,Dtest). Consequently, the robustness is calculated as the difference of test accuracies:

robustness(f, g,D) = A3(f, g,D∗
test) −A0(f,Dtest). (9)

Models usually suffer a performance drop when encountering perturbations, therefore the robust-
ness is usually negative, where lower values indicate decreased robustness. Now we investigate the
correlation between sensitivity and robustness, stated in the form of a hypothesis:
Hypothesis 1 (H1): A model that is more sensitive to a spurious feature is less robust against the
same spurious perturbation at test time.

despite the fact that models encounter this feature during training in sensitivity estimation while they
do not in robustness measurement.

To improve robust accuracy (Tu et al., 2020) (i.e., accuracy on the perturbed test set), it is a common
practice to leverage data augmentation (Li & Specia, 2019; Min et al., 2020; Tan & Joty, 2021).
We simulate the data augmentation process by appending perturbed data to the training set (Exper-
iment 4 of Table 2). We calculate the improvement on performance after data augmentation as the
difference of test accuracies:

∆post aug(f, g,D) = A4(f, g,D∗
test) −A3(f, g,D∗

test) (10)

whereA4(f, g,D∗
test) denotes the test accuracy of Experiment 4. ∆post aug(f, g,D) is the higher the

better. We make another hypothesis:
Hypothesis 2 (H2): A model that is more sensitive to a spurious feature experiences robustness
gains with data augmentation along such a feature.

We validate both Hypotheses 1 and 2 with experiments on various models and features described in
Section 4.

Results. We observe a negative correlation between sensitivity (Equation 8) and robustness (Equa-
tion 9) in Figure 3a, validating Hypothesis 1, while Figure 3b quantifies the trend that data augmen-
tation with a spurious feature the model is sensitive to improves robustness (Hypothesis 2). Both
the correlations between 1) sensitivity and robustness and 2) sensitivity and data augmentation are
strong (Spearman ρ > 0.6) and highly significant (p-value < 0.001), which firmly supports our hy-
pothesis. We justify our proposed sensitivity metric by connecting it to robustness and validating the
intuitive correlation between them. Our findings provide insight about when a model is less robust
and when data augmentation works.

Figure 3c summarizes the information in Figure 3a and 3b. We observe that the average sensitivity
decreases as robustness increases. This shows that the more sensitive a model is to a spurious fea-
ture, the greater the likelihood that its robustness can be improved through data augmentation along

8

Under review as a conference paper at ICLR 2022

this feature. We argue that this is not simply because there is more room for improvement by data
augmentation. From a causal perspective, sensitivity acts as a common cause (confounder) for both
robustness and data augmentation. This indicates a potential limitation of using data augmentation
for improving robustness to spurious features (Jha et al., 2020): for insensitive features, data aug-
mentation may be of little help. Approaches that go beyond simple data augmentation is required to
combat such spurious features.

5 RELATED WORK

Definitions of Sensitivity to Spurious Feature. In this paper, we quantify sensitivity as the ease
with which a model learns a spurious feature classification task. However, we note that the term
“sensitivity” is also used with other different meanings in the literature. Sensitivity test (Feder et al.,
2021), e.g. Counterfactually Augmented Data (CAD) (Kaushik et al., 2019), evaluates the extent that
models use spurious features to make predictions by injecting minimally label-flipping perturbations
on target features. Gardner et al. (2021) also uses the term sensitivity in an informal way to describe
the probability that a local edit that removes spurious features (“artifacts”) changes the label.

Lovering et al. (2020) propose two metrics related to our definition of sensitivity: 1) the extractabil-
ity of the feature from a model representation (operationalized as minimum description length,
MDL) and 2) the model error on spuriously perturbed test examples (termed “s-only error”). How-
ever, they do not define sensitivity within causality framework7. The concept of sensitivity is de-
fined more formally by Veitch et al. (2021), who term it counterfactual invariance. They propose
distributional properties that a model not sensitive to spurious correlation should satisfy. Instead
of properties, however, we propose a quantitative measure for sensitivity. We bridge the gap be-
tween causality and sensitivity by mathematically defining a causal estimand and devising a method
(Algorithm 1) for estimating sensitivity.

Training with Random Labels. Pondenkandath et al. (2018); Maennel et al. (2020); Zhang et al.
(2021) train deep neural networks (DNNs) on Computer Vision (CV) datasets with entirely random
labels to study memorization, generalization, pretraining, and alignment. Though we similarly use
random label assignment (Section 3.1) , our work is different from previous work in that 1) our
insights behind randomization originate from the concept of Randomized Controlled Trial (RCT) in
Causality; 2) we instead use randomization to study sensitivity to spurious features in NLP; 3) our
labels are not purely random: they are correlated with the existence of spurious features.

Interpretation of Data Augmentation. Though data augmentation has been widely used in CV
(Sato et al., 2015; DeVries & Taylor, 2017; Dwibedi et al., 2017) and NLP (Wang & Yang, 2015;
Kobayashi, 2018; Wei & Zou, 2019), the underlying mechanism of its effectiveness remains under-
researched. Recent studies aim to quantify intuitions of how data augmentation improves model
generalization. Gontijo-Lopes et al. (2020) introduce affinity and diversity, and find a correlation
between the two metrics and augmentation performance in image classification. In NLP, Kashefi
& Hwa (2020) propose a KL-divergence–based metric to predict augmentation performance. Our
proposed sensitivity metric CENT implies when data augmentation can help and thus act as a com-
plement to this line of research.

6 CONCLUSION

Inspired by the concept of Average Treatment Effect (ATE) in Causal Inference, we causally quantify
sensitivity of NLP models to spurious features. We validate the hypothesis that a model that is more
sensitive to a particular spurious feature is less robust against the same spurious perturbation when
encountered during inference. Additionally, we show data augmentation with the feature to improve
its robustness to similar test-time perturbations. We hope CENT will encourage more research
on spurious feature sensitivity and its implications for interpretability, in order to make CENTs of
spurious correlation.

7Our work is also significantly different from Lovering et al. (2020) in that they further investigate the
correlation between extractability and s-only error, while we instead investigate the correlation of spurious
feature sensitivity with robustness and data augmentation.

9

Under review as a conference paper at ICLR 2022

7 ETHICS STATEMENT

Computing average sensitivity requires training a model for multiple times at different injection
probabilities, which can be computationally-intensive if the sizes of the datasets and models are
large. This can be a non-trivial problem for NLP practitioners with limited computational resources.
We hope that our benchmark results of sensitivity of typical NLP models work as a reference for
potential users. Collaboratively sharing results of such metrics on popular models in public fora can
also help reduce duplicate investigation and coordinate efforts across teams.

To alleviate the computational efficiency issue of average sensitivity estimation, using sensitivity at
selected injection probabilities may help at the cost of reduced precision (Appendix B.2). We are
not alone in facing this issue: two similar metrics for evaluating spurious features, extractability
and s-only error (Lovering et al., 2020) also require training the model repeatedly over the whole
dataset. Therefore, finding an efficient proxy for average sensitivity is promising for more practical
use of sensitivity in model interpretation.

REFERENCES

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Debidatta Dwibedi, Ishan Misra, and Martial Hebert. Cut, paste and learn: Surprisingly easy synthe-
sis for instance detection. In 2017 IEEE International Conference on Computer Vision (ICCV),
pp. 1310–1319. IEEE Computer Society, 2017.

Steffen Eger, Gözde Gül Şahin, Andreas Rücklé, Ji-Ung Lee, Claudia Schulz, Mohsen Mesgar,
Krishnkant Swarnkar, Edwin Simpson, and Iryna Gurevych. Text processing like humans do:
Visually attacking and shielding NLP systems. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 1634–1647, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1165. URL https:
//aclanthology.org/N19-1165.

Amir Feder, Katherine A Keith, Emaad Manzoor, Reid Pryzant, Dhanya Sridhar, Zach Wood-
Doughty, Jacob Eisenstein, Justin Grimmer, Roi Reichart, Margaret E Roberts, et al. Causal
inference in natural language processing: Estimation, prediction, interpretation and beyond. arXiv
preprint arXiv:2109.00725, 2021.

Matt Gardner, William Merrill, Jesse Dodge, Matthew E Peters, Alexis Ross, Sameer Singh, and
Noah Smith. Competency problems: On finding and removing artifacts in language data. arXiv
preprint arXiv:2104.08646, 2021.

Karan Goel, Nazneen Fatema Rajani, Jesse Vig, Zachary Taschdjian, Mohit Bansal, and Christopher
Ré. Robustness gym: Unifying the nlp evaluation landscape. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies: Demonstrations, pp. 42–55, 2021.

Raphael Gontijo-Lopes, Sylvia Smullin, Ekin Dogus Cubuk, and Ethan Dyer. Tradeoffs in data
augmentation: An empirical study. In International Conference on Learning Representations,
2020.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel Bowman, and
Noah A Smith. Annotation artifacts in natural language inference data. In Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 2 (Short Papers), pp. 107–112, 2018.

10

https://aclanthology.org/N19-1165
https://aclanthology.org/N19-1165

Under review as a conference paper at ICLR 2022

Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-training can improve model robustness
and uncertainty. In International Conference on Machine Learning, pp. 2712–2721. PMLR, 2019.

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam Dziedzic, Rishabh Krishnan, and Dawn Song.
Pretrained transformers improve out-of-distribution robustness. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 2744–2751, Online, July 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.244. URL https:
//aclanthology.org/2020.acl-main.244.

Paul W Holland. Statistics and causal inference. Journal of the American statistical Association, 81
(396):945–960, 1986.

Rohan Jha, Charles Lovering, and Ellie Pavlick. Does data augmentation improve generalization in
nlp? arXiv preprint arXiv:2004.15012, 2020.

Omid Kashefi and Rebecca Hwa. Quantifying the evaluation of heuristic methods for textual data
augmentation. In Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT
2020), pp. 200–208, 2020.

Divyansh Kaushik, Eduard Hovy, and Zachary Lipton. Learning the difference that makes a differ-
ence with counterfactually-augmented data. In International Conference on Learning Represen-
tations, 2019.

Sosuke Kobayashi. Contextual augmentation: Data augmentation by words with paradigmatic rela-
tions. In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp.
452–457, 2018.

Zhenhao Li and Lucia Specia. Improving neural machine translation robustness via data augmen-
tation: Beyond back-translation. In Proceedings of the 5th Workshop on Noisy User-generated
Text (W-NUT 2019), pp. 328–336, Hong Kong, China, November 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/D19-5543. URL https://aclanthology.org/
D19-5543.

Liqun Liu, Funan Mu, Pengyu Li, Xin Mu, Jing Tang, Xingsheng Ai, Ran Fu, Lifeng Wang, and
Xing Zhou. NeuralClassifier: An open-source neural hierarchical multi-label text classification
toolkit. In Proceedings of the 57th Annual Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pp. 87–92, Florence, Italy, July 2019a. Association for Com-
putational Linguistics. doi: 10.18653/v1/P19-3015. URL https://aclanthology.org/
P19-3015.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. Recurrent neural network for text classification
with multi-task learning. In Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, pp. 2873–2879, 2016.

Xiao Liu, Da Yin, Yansong Feng, Yuting Wu, and Dongyan Zhao. Everything has a cause: Lever-
aging causal inference in legal text analysis. In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, pp. 1928–1941, 2021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019b.

Charles Lovering, Rohan Jha, Tal Linzen, and Ellie Pavlick. Predicting inductive biases of pre-
trained models. In International Conference on Learning Representations, 2020.

Hartmut Maennel, Ibrahim Alabdulmohsin, Ilya Tolstikhin, Robert JN Baldock, Olivier Bousquet,
Sylvain Gelly, and Daniel Keysers. What do neural networks learn when trained with random
labels? arXiv preprint arXiv:2006.10455, 2020.

Tom McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pp. 3428–3448, 2019.

11

https://aclanthology.org/2020.acl-main.244
https://aclanthology.org/2020.acl-main.244
https://aclanthology.org/D19-5543
https://aclanthology.org/D19-5543
https://aclanthology.org/P19-3015
https://aclanthology.org/P19-3015

Under review as a conference paper at ICLR 2022

Junghyun Min, R Thomas McCoy, Dipanjan Das, Emily Pitler, and Tal Linzen. Syntactic data
augmentation increases robustness to inference heuristics. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 2339–2352, 2020.

Milad Moradi and Matthias Samwald. Evaluating the robustness of neural language models to input
perturbations, 2021.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, Di Jin, and Yanjun Qi. TextAttack: A frame-
work for adversarial attacks, data augmentation, and adversarial training in NLP. In Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pp. 119–126, Online, October 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.emnlp-demos.16. URL https://aclanthology.org/2020.
emnlp-demos.16.

Brady Neal. Introduction to causal inference from a machine learning perspective. Course Lec-
ture Notes (draft), 2020. URL https://www.bradyneal.com/Introduction_to_
Causal_Inference-Dec17_2020-Neal.pdf.

Bo Pang and Lillian Lee. Seeing stars: exploiting class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the 43rd Annual Meeting on Association for
Computational Linguistics, pp. 115–124, 2005.

Vinaychandran Pondenkandath, Michele Alberti, Sammer Puran, Rolf Ingold, and Marcus Li-
wicki. Leveraging random label memorization for unsupervised pre-training. arXiv preprint
arXiv:1811.01640, 2018.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. Beyond accuracy: Be-
havioral testing of nlp models with checklist. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 4902–4912, 2020.

Donald B Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies.
Journal of educational Psychology, 66(5):688, 1974.

Ikuro Sato, Hiroki Nishimura, and Kensuke Yokoi. Apac: Augmented pattern classification with
neural networks. arXiv preprint arXiv:1505.03229, 2015.

Samson Tan and Shafiq Joty. Code-mixing on sesame street: Dawn of the adversarial poly-
glots. In Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 3596–3616, Online, June
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.282. URL
https://aclanthology.org/2021.naacl-main.282.

Lifu Tu, Garima Lalwani, Spandana Gella, and He He. An empirical study on robustness to spurious
correlations using pre-trained language models. Transactions of the Association for Computa-
tional Linguistics, 8:621–633, 2020.

Victor Veitch, Alexander D’Amour, Steve Yadlowsky, and Jacob Eisenstein. Counterfactual invari-
ance to spurious correlations: Why and how to pass stress tests. arXiv preprint arXiv:2106.00545,
2021.

William Yang Wang and Diyi Yang. That’s so annoying!!!: A lexical and frame-semantic em-
bedding based data augmentation approach to automatic categorization of annoying behaviors
using #petpeeve tweets. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, pp. 2557–2563, Lisbon, Portugal, September 2015. Association for Com-
putational Linguistics. doi: 10.18653/v1/D15-1306. URL https://aclanthology.org/
D15-1306.

Xiao Wang, Qin Liu, Tao Gui, Qi Zhang, et al. Textflint: Unified multilingual robustness eval-
uation toolkit for natural language processing. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing: System Demonstrations, pp. 347–355, Online, aug 2021. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2021.acl-demo.41. URL https:
//aclanthology.org/2021.acl-demo.41.

12

https://aclanthology.org/2020.emnlp-demos.16
https://aclanthology.org/2020.emnlp-demos.16
https://www.bradyneal.com/Introduction_to_Causal_Inference-Dec17_2020-Neal.pdf
https://www.bradyneal.com/Introduction_to_Causal_Inference-Dec17_2020-Neal.pdf
https://aclanthology.org/2021.naacl-main.282
https://aclanthology.org/D15-1306
https://aclanthology.org/D15-1306
https://aclanthology.org/2021.acl-demo.41
https://aclanthology.org/2021.acl-demo.41

Under review as a conference paper at ICLR 2022

Zhao Wang and Aron Culotta. Identifying spurious correlations for robust text classification. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:
Findings, pp. 3431–3440, 2020.

Alex Warstadt, Yian Zhang, Xiaocheng Li, Haokun Liu, and Samuel R. Bowman. Learning
which features matter: RoBERTa acquires a preference for linguistic generalizations (eventu-
ally). In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pp. 217–235, Online, November 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.emnlp-main.16. URL https://aclanthology.org/2020.
emnlp-main.16.

Jason Wei and Kai Zou. Eda: Easy data augmentation techniques for boosting performance on text
classification tasks. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pp. 6382–6388, 2019.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pp. 1112–1122, New Orleans, Louisiana, June 2018. Association for
Computational Linguistics. doi: 10.18653/v1/N18-1101. URL https://aclanthology.
org/N18-1101.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6. URL https:
//aclanthology.org/2020.emnlp-demos.6.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. Advances in neural
information processing systems, 32, 2019.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

13

https://aclanthology.org/2020.emnlp-main.16
https://aclanthology.org/2020.emnlp-main.16
https://aclanthology.org/N18-1101
https://aclanthology.org/N18-1101
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6

Under review as a conference paper at ICLR 2022

Spurious Feature Example Sentence
None His quiet and straightforward demeanor was rare then and would be today.
duplicate_punctuations His quiet and straightforward demeanor was rare then and would be today..
butter_fingers_perturbation His quiet and straightforward demeanor was rarw then and would be today.
shuffle_word quiet would and was be and straightforward then demeanor His today. rare
random_upper_transformation His quiEt and straightForwARd Demeanor was rare TheN and would be today.
insert_abbreviation His quiet and straightforward demeanor wuz rare then and would b today.
whitespace_perturbation His quiet and straightforward demean or wa s rare thenand would be today.
visual_attack_letters Hiṩ qủiẽt ầռd strḁighṭḟorwẳrȡ dԑmeanoŕ wȃṣ rȧre tḫen and wouᶅd ϸә tĉ ḏầȳ.
leet_letters His qui3t and strai9htfor3ard d3m3an0r 3as rar3 t43n and 30uld 63 t0da4.

Figure 4: An example sentence injected with different spurious features.

A DETAILS OF SPURIOUS FEATURES

Figure 4 shows an example sentence injected with different spurious features. They are described in
the following:

• duplicate punctuations: We double the punctuations by appending a duplicate after each
punctuation, e.g. “,” → “,,”.

• butter fingers perturbation8: This perturbation misspells some words with noise erupt-
ing from keyboard typos.

• shuffle word: It randomly changes the order of word in the text (Moradi & Samwald,
2021).

• random upper transformation9: It randomly adds upper cased letters (Wei & Zou,
2019).

• insert abbreviation10: It implements a rule system that encodes word sequences associ-
ated with the replaced abbreviations.

• whitespace perturbation11: It randomly removes or adds whitespaces to text.

• visual attack letters12: This perturbation replaces letters with visually similar, but differ-
ent, letters (Eger et al., 2019).

• leet letters13: This perturbation replaces letters with leet, a common encoding used in
gaming (Eger et al., 2019).

B DISCUSSION

B.1 ANOTHER IDENTIFICATION OF CAUSAL ESTIMAND FOR SENSITIVITY

In Section 3.3, we propose an accuracy-based identification of ATE. Now we discuss another
probability-based identification and compare between them. We can also define the outcome Y

8https://github.com/GEM-benchmark/NL-Augmenter/tree/main/
transformations/butter_fingers_perturbation

9https://github.com/GEM-benchmark/NL-Augmenter/tree/main/
transformations/random_upper_transformation

10https://github.com/GEM-benchmark/NL-Augmenter/tree/main/
transformations/insert_abbreviation

11https://github.com/GEM-benchmark/NL-Augmenter/tree/main/
transformations/whitespace_perturbation

12https://github.com/GEM-benchmark/NL-Augmenter/tree/main/
transformations/visual_attack_letters

13https://github.com/GEM-benchmark/NL-Augmenter/tree/main/
transformations/leet_letters

14

https://github.com/GEM-benchmark/NL-Augmenter/tree/main/transformations/butter_fingers_perturbation
https://github.com/GEM-benchmark/NL-Augmenter/tree/main/transformations/butter_fingers_perturbation
https://github.com/GEM-benchmark/NL-Augmenter/tree/main/transformations/random_upper_transformation
https://github.com/GEM-benchmark/NL-Augmenter/tree/main/transformations/random_upper_transformation
https://github.com/GEM-benchmark/NL-Augmenter/tree/main/transformations/insert_abbreviation
https://github.com/GEM-benchmark/NL-Augmenter/tree/main/transformations/insert_abbreviation
https://github.com/GEM-benchmark/NL-Augmenter/tree/main/transformations/whitespace_perturbation
https://github.com/GEM-benchmark/NL-Augmenter/tree/main/transformations/whitespace_perturbation
https://github.com/GEM-benchmark/NL-Augmenter/tree/main/transformations/visual_attack_letters
https://github.com/GEM-benchmark/NL-Augmenter/tree/main/transformations/visual_attack_letters
https://github.com/GEM-benchmark/NL-Augmenter/tree/main/transformations/leet_letters
https://github.com/GEM-benchmark/NL-Augmenter/tree/main/transformations/leet_letters

Under review as a conference paper at ICLR 2022

of a test example xi as the predicted probability of (pseudo) true label given by the trained model
f(⋅):

Yi(0) ∶= Pf(L′ = l′i ∣X = xi) ∈ (0,1) (11)
Similarly, the performance outcome Y of a perturbed test data point x∗i is:

Yi(1) ∶= Pf(L′ = l′i ∣X = x∗i) ∈ (0,1) (12)

For example, for a test example (xi, l′i) which receives treatment (l′i = 1), the trained model f(⋅)
predicts its label as 1 with only a small probability 0.1 before treatment (it has not been endowed
with spurious feature yet), and 0.9 after treatment. So the Individual Treatment Effect (ITE, see
Equation 1) of this example is calculated as ITEi = Yi(1) − Yi(0) = 0.9 − 0.1 = 0.8. We then take
an average over all the perturbed test examples (half of the test set)14 as Average Treatment Effect
(ATE, see Equation 2), which is exactly the sensitivity of a model to a spurious feature. To clarify,
the two operands in Equation 2 are defined as follows:

E[Y (1)] ∶= P(f, g, p,D′∗
test) (13)

It means the average predicted probability of (pseudo) true label given by the trained model f(⋅) on
the perturbed test set D′∗

test.
E[Y (0)] ∶= P(f, g, p,D′

test) (14)
Similarly, this is average predicted probability on the randomly labeled test set D′

test.

Notice that the accuracy-based definition of outcome Y (Equation 4) can also be written in a similar
form to the probability-based one (Equation 11):

Yi(0) ∶= 1{f(xi)=l′i} = 1{Pf (L′=l′i∣X=xi)>0.5} ∈ {0,1} (15)

because the correctness of prediction is equal to whether the predicted probability of true (pseudo)
label exceeds a certain thresholds, i.e., 0.5.

The major difference is that, accuracy-based ITE is a discrete variable falling in {−1,0,1}, while
probability-based ITE is a continuous one ranging from -1 to 1. For example, if a model learns a
spurious feature and thus changes its prediction from wrong (before spurious feature injection) to
correct (after spurious feature injection), accuracy-based ITE will be 1 − 0 = 1 while probability-
based ITE will be less than 1. That is to say, accuracy-based ATE tends to vary more drastically
than probability-based if inconsistent predictions occur more often, and thus can better capture the
nuance of model’s sensitivity. Empirically, we find that accuracy-based sensitivity has stronger
correlation with robustness than probability-based one. Table 3 shows that Spearman ρ between
probability-based average sensitivity and robustness is -0.63, weaker than -0.67 of accuracy-based
one. As a result, we choose accuracy-based ATE as the primary measurement of sensitivity.

B.2 INVESTIGATING SENSITIVITY AT A SPECIFIC INJECTION PROBABILITY

Inspired by Precision @ K in Information Retrieval (IR), we propose a similar metric dubbed Sensi-
tivity @ p, which is the sensitivity of a model to a spurious feature at a specific injection probability
p. We are primarily interested in whether a selected p can represent the sensitivity over different
injection probabilities and correlates well with robustness and post data augmentation ∆.

We calculate the standard deviation (σ) of Sensitivity @ p and average sensitivity (logAUC) over
all model-feature pairs to measure how well it can distinguish between different models and features.
Table 3 shows that average sensitivity is more diversified than all Sensitivity @ p and diversity (σ)
peaks at p = 0.1/0.02 for accuracy-based/probability-based measurement. Accuracy-based Sensi-
tivity @ p is generally more diversified across models and features than its counterpart.

To investigate the strength of the correlations, we also calculate Spearman ρ between accuracy-
based/probability-based sensitivity @ p vs. average sensitivity/robustness/post data augmentation
∆ over all model-feature pairs. Table 3 shows that average sensitivity has stronger correlations
than all Sensitivity @ p. Correlations with both robustness and post data augmentation ∆ peak at
p = 0.02/0.01 for accuracy-based/probability-based measurement, and the correlations with average
sensitivity (0.71*) are also strong at these injection probabilities.

14The other half of the test set (l′ = 0) is left unperturbed, following the same procedure in Section 3.2.
Therefore, we do not take them into account for ATE calculation.

15

Under review as a conference paper at ICLR 2022

p
Accuracy-based Sensitivity @ p Probability-based Sensitivity @ p

σ Avg Sen. Robu. Post Aug ∆ σ Avg Sen. Robu. Post Aug ∆

Avg. 0.43 1.00* -0.67* 0.79* 0.35 1.00* -0.63* 0.73*

0.001 0.21 0.45* -0.23 0.31 0.14 0.48* -0.16 0.29
0.005 0.29 0.43* -0.30 0.36* 0.23 0.74* -0.40* 0.48*
0.01 0.33 0.50* -0.38* 0.40* 0.23 0.71* -0.44* 0.52*
0.02 0.35 0.71* -0.52* 0.61* 0.25 0.76* -0.43* 0.48*
0.05 0.30 0.29 -0.23 0.18 0.17 0.54* -0.33 0.32
0.1 0.38 0.35 -0.10 0.15 0.23 0.56* -0.22 0.21
0.5 0.10 -0.02 0.03 -0.11 0.03 0.10 -0.14 0.00
1.0 0.01 -0.11 0.20 -0.27 0.01 -0.08 0.21 -0.29

Table 3: Standard deviations (σ) of Sensitivity @ p and Spearman correlations between accuracy-
based/probability-based sensitivity @ p vs. average sensitivity/robustness/post data augmentation
∆ over all model-feature pairs. ∗ indicates significance (p-value < 0.05).

Overall, Sensitivity @ p with higher standard deviation correlates better with average sensitivity,
robustness and post data augmentation ∆. Our analysis shows that if p is carefully selected by
σ, Sensitivity @ p is also a promising metric, though not as accurate as average sensitivity. One
advantage of Sensitivity @ p over average sensitivity is that it costs less time to obtain sensitivity
at a single injection probability. We plan to explore other efficient proxies of average sensitivity in
future.

16

	Introduction
	Background
	Method
	Random label assignment
	Spurious feature injection
	Causal estimation

	Experiments
	Estimating Sensitivity
	Investigating Sensitivity and Robustness.

	Related Work
	Conclusion
	Ethics Statement
	Details of Spurious Features
	Discussion
	Another Identification of Causal Estimand For Sensitivity
	Investigating Sensitivity at a Specific injection probability

