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Abstract

Modern precipitation forecasting systems, including reanalysis datasets, numerical
models, and AI-based approaches, typically produce coarse-resolution gridded
outputs. The process of converting these outputs to station-level predictions often
introduces substantial spatial biases relative to station-level observations, especially
in complex terrains or under extreme conditions. These biases stem from two core
challenges: (i) station-level heterogeneity, with site-specific temporal and spatial
dynamics; and (ii) oversmoothing, which blurs fine-scale variability in graph-
based models. To address these issues, we propose DiffLiG (Diffusion-enhanced
Liquid Graph with Attention Propagation), a graph neural network designed for
precise spatial correction from gridded forecasts to station observations. DiffLiG
integrates a GeoLiquidNet that adapts temporal encoding via site-aware OU dy-
namics, a graph neural network with a dynamic edge modulator that learns spatially
adaptive connectivity, and a Probabilistic Diffusion Selector that generates and
refines ensemble forecasts to mitigate oversmoothing. Experiments across multiple
datasets show that DiffLiG consistently outperforms other methods, delivering
more accurate and robust corrections across diverse geographic and climatic set-
tings. Moreover, it achieves notable gains on other key meteorological variables,
underscoring its generalizability and practical utility.

1 Introduction

Weather forecasting has gained increasing attention in both research and society, driven by rapid
advances in forecast accuracy and temporal resolution. On one hand, traditional Numerical Weather
Prediction (NWP) systems, such as the European Centre for Medium-Range Weather Forecasts
(ECMWF)’s Integrated Forecasting System - High Resolution (IFS-HRES) and Integrated Forecasting
System - Ensemble (IFS-ENS), have achieved remarkable success in multiscale forecasts through
high-resolution physical modeling, data assimilation, and ensemble strategies. On the other hand, the
recent surge in AI-based weather models has introduced a data-driven paradigm that bypasses explicit
physical parameterizations [27, 32, 34], offering superior scalability and efficiency. For instance,
FourCastNet [30] leverages Fourier neural operators for spatio-temporal coupling, Pangu-Weather [5]
employs 3D attention to improve mid-range accuracy, and GraphCast [22] utilizes spherical GNNs for
10-day forecasts. FuXi [10] demonstrates a strong potential to extend the forecast horizons through a
hierarchical transformer framework tailored for long-range weather prediction.
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Despite these advances, both the NWP and AI models primarily operate on regular-resolution grid
outputs, which are insufficient for real-world applications requiring high-resolution, station-level
forecasts. In practice, operational users (such as urban planners, airport operators, or hydrological
managers) require precise local forecasts at specific stations. However, model outputs often fail to
generalize across diverse topographies or under sparse observational coverage, leading to spatial
biases and degraded local accuracy. We provide a detailed empirical analysis of such interpolation
errors in the Appendix C.

A further concern arises from the evaluation process itself: most AI-based forecasting models are
trained and validated on reanalysis data such as ERA5 [17], which integrates historical observations
with simulated fields. As illustrated in Figure 6, this integration can introduce systematic biases,
particularly in regions with sparse observations or complex terrain. While temporally consistent and
spatially smooth, these products are not equivalent to real-world station observations. As noted by
Ramavajjala & Mitra [33], models like FourCastNet may outperform NWP systems in ERA5, but fail
to retain such advantages when evaluated in ground-truth datasets (e.g., NOAA’s MADIS), exposing
a considerable gap between simulation data and realism data in current AI weather systems.

Therefore, to enable accurate and reliable station-level forecasting, it is crucial to move beyond
uniform, coarse-to-fine interpolation strategies and develop models that can adapt to the heterogeneous
nature of stations while preserving local spatial structures. This calls for a dedicated interpolation
framework that is both station-aware and uncertainty-informed, capable of correcting the structural
mismatch between gridded forecasts and real-world observations.

Challenge 1
Heterogeneity

Challenge 2
Oversmoothing

GeoLiquidNet
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Modulator

Forecast Diffuser 
& Selector
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Figure 1: Two core challenges in
station-level interpolation. Hetero-
geneity across stations is addressed
by the GeoLiquidNet, which models
site-specific temporal dynamics, and
the Dynamic Edge Modulator, which
learns spatially adaptive graph struc-
tures. Oversmoothing is mitigated
by the Probabilistic Diffusion Selector,
which generates and selects diverse cor-
rection candidates to preserve structural
variability.

Station-level interpolation faces two fundamental chal-
lenges: station heterogeneity and oversmoothing. The
former refers to the diverse geographic, climatic, and ob-
servational characteristics across stations. However, most
existing interpolation methods adopt uniform architectures
or fixed graph structures, without explicitly adapting to
the localized properties of individual stations, which often
leads to suboptimal generalization and increased local er-
rors, particularly in regions with complex terrain or sparse
observations. Oversmoothing in interpolation is another
widely observed issue, where predicted values lack spa-
tial variability and fail to preserve local extremes,limiting
their usefulness in tasks such as extreme event detection or
fine-grained forecast correction. To better understand the
origin of these challenges, we conduct a detailed empiri-
cal analysis in Appendix D. To address these issues, we
propose DiffLiG (Diffusion-enhanced Liquid Graph with
Attention Propagation), a graph neural network framework
specifically designed to model station heterogeneity and
alleviate oversmoothing in station-level interpolation.

To overcome these challenges, DiffLiG introduces a uni-
fied, uncertainty-aware interpolation framework composed
of three key components: a GeoLiquidNet, which com-
bines temporal attention over gridded inputs with a site-
aware liquid neural network to capture station-specific
temporal dynamics; a Dynamic Edge Modulator, which
adaptively configures spatial graphs by jointly learning
edge existence, directional attention, and distance-aware
influence; and a Probabilistic Diffusion Selector, which
generates multiple candidate corrections through noise-
perturbed graph propagation and selects or aggregates
them via a context-aware scoring mechanism, thereby en-
hancing both structural variability and predictive reliability [29, 23, 13].

In summary, our contributions are as follows:

•We propose DiffLiG, a novel graph neural network framework designed to bridge the gap between
gridded forecasts and station-level observations, targeting station heterogeneity and oversmoothing.
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•We design three specialized modules to address station heterogeneity and prediction oversmoothing:
a GeoLiquidNet for adaptive temporal encoding based on attention and site-aware OU dynamics;
a Dynamic Edge Modulator for configuring spatially adaptive graphs through directional attention
and learnable edge selection; and a Probabilistic Diffusion Selector for generating diverse correction
candidates and selecting reliable outputs under uncertainty.

• Extensive experiments across multiple forecasting sources, variables, and geographic regions
demonstrate that DiffLiG consistently outperforms traditional interpolation and GNN baselines in
both accuracy and robustness at the station level.

2 Related Work

Grid-based forecasting. Grid-structured modeling is the backbone of both numerical and AI-
driven weather prediction systems. Operational centers such as ECMWF deploy deterministic
high-resolution forecasts (IFS-HRES) and ensemble-based systems (IFS-ENS) by solving physical
equations over structured grids. Recent AI models have inherited this gridded formulation: FourCast-
Net [30] employs Fourier neural operators for global fields; GraphCast [22] uses spherical GNNs for
medium-range forecasts; Pangu-Weather [5] introduces 3D convolutional architectures for volumetric
prediction. Other large-scale efforts include FuXi [10] and Fengwu [9], which are trained on global
reanalysis datasets and have demonstrated competitive performance in medium-range forecasting
tasks. Foundation models such as AtmoRep [24], Aurora [6], and ClimaX [28] further decouple
forecasting from supervision by pretraining over multi-variable grid datasets. However, these models
produce outputs aligned to fixed grid structures and often struggle to adapt to sparse, topography-
sensitive station layouts. This mismatch limits their direct applicability in real-world settings where
localized accuracy is critical. Our work bypasses the grid altogether, targeting station-level prediction
with geometry-aware spatial adaptation.

From grids to stations. Traditional spatial interpolation methods, such as inverse distance weighting
(IDW), bilinear interpolation, kriging, and spline interpolation, efficiently generate point forecasts
from gridded fields, require no training data, and offer clear interpretability with low computational
cost. More recently, learning-based approaches have sought to improve accuracy and capture complex
dependencies: Bentsen et al. [44] apply a GNN to station time series for wind prediction, MetNet-3 [2]
fuses satellite and station inputs via a transformer-style U-Net (albeit on a regridded 4 km mesh), Zhao
et al. [4] further highlight the smoothing bias in ERA5 during extreme tropical cyclone rainfall events
and propose a deep learning-based correction framework, and MGNN [39] combines ERA5 and
MADIS in a multimodal graph for deterministic forecasts. However, all these methods either depend
on grid-aligned inputs or outputs, fail to adapt to station-specific heterogeneity, and lack mechanisms
for uncertainty quantification or structural diversity. In contrast, our framework operates natively
off-grid, leveraging a geometry-aware graph with adaptive edge modulation and geo-liquid temporal
dynamics, together with diffusion-based ensemble generation to preserve fine-scale variability and
capture predictive uncertainty.

3 Method

3.1 Problem Formulation

We address the problem of spatial interpolation from structured gridded meteorological forecasts to
irregularly distributed observation stations. Our goal is to develop a lightweight and scalable graph
neural network (GNN) framework that ensures physical consistency, strong spatial generalization,
and the ability to model predictive uncertainty.

Formally, the model takes as input a triplet (X ,P,H):

• X =
{
X(t) ∈ RC×H×W

∣∣ t = −T1, . . . , 0, . . . ,+T2} denotes the gridded forecast data
over T = T1+T2+1 time steps. Each X(t) is a multichannel spatial field (e.g., precipitation,
wind) with C variables over a regular grid of size H ×W (e.g., 721× 1440 for 0.25◦ global
resolution).

• P =
{
pj ∈ R2

∣∣ j = 1, . . . ,M
}

represents the spatial coordinates (latitude and longitude)
of M observation stations.
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• H =
{
h
(t)
j ∈ R

∣∣∣ j = 1, . . . ,M ; t = −T1, . . . , 0
}

contains the historical observations at
each station over T1 + 1 time steps (from t = −T1 to t = 0).

The objective is to learn a mapping function:

F : (X ,P,H) −→ Ŷ, where Ŷ = {ŷj ∈ R | j = 1, . . . ,M}
that predicts the target variable at each station for the future time step t = +T2. The model is trained
to minimize the prediction error with respect to the ground truth:

ŷj ≈ y(+T2)
j , ∀j = 1, . . . ,M.

3.2 DiffLiG Overview
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Figure 2: Overview of DiffLiG.The model takes gridded meteorological forecasts X , station coordi-
nates P , and historical station observationsH as input. The GeoLiquidNet module encodes temporal
features for each station based onH andP . The Forecast Encoder assigns temporal attention weights
across different time steps of X , followed by an embedding MLP to extract forecast representations.
These representations are integrated by the Dynamic Edge Modulator, which constructs adaptive
graph edges through edge gating, attention net, and geographic decay. The Probabilistic Forecast
Diffuser generates multiple perturbed predictions to capture epistemic uncertainty. A Multi-Criteria
Forecast Selector evaluates and selects the most reliable prediction among them. Finally, the selected
prediction is refined by the Station Bias Module, which incorporates site-specific adjustments
through an output MLP, producing the final forecast Ŷ = {ŷj}Mj=1, where ŷj ≈ y(+T2)

j .

3.3 GeoLiquidNet

To handle the non-stationary nature of precipitation sequences, where relevant timescales vary
across weather systems[26], regions, and station density, we propose GeoLiquidOU, a module that
learns spatially-conditioned time constants to adaptively control hidden state transitions. Inspired
by Liquid Time-constant Networks (LTC) [15], which model time constants as input-dependent
variables to capture nonlinear dynamics, GeoLiquidOU inherits this property to adaptively modulate
temporal sensitivity based on each site’s historical inputs. Neuroscientific insights further support this
design: the diversity of timescales in the brain reflects the dynamic nature of encoded information [41],
analogous to varying temporal patterns in meteorological data. GeoLiquidOU thus integrates dynamic
temporal encoding with location-aware adaptability, enhancing both interpretability and flexibility in
modeling site-specific temporal patterns. Further analytical discussions on the OU-based dynamics
are deferred to the Appendix E.
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Formally, for a station with input sequence h = {h(1), h(2), . . . , h(T )} and location p ∈ R2, the
module first embeds each timestep via z(t) = ϕproj(h

(t)), where ϕproj(·) is a learnable projection
MLP that maps the raw observation h(t) into a latent feature space.

A learnable location encoder τ(p) then generates the time-step controller as:

τ(p) = Sigmoid(W2 · tanh(W1 · p)) + 0.5,

where W1 and W2 are linear transformation matrices. The output τ(p) serves as a positive location-
dependent scaling factor that defines a site-specific time interval ∆t = τ(p) ·∆tbase.

The latent state zt ∈ Rd evolves through a parameterized Ornstein–Uhlenbeck (OU) process:

∆zt = ∆t ·
[
γ · (Θ(z(t))− zt) + σ · ε

]
, (1)

where Θ(·) is a learnable MLP that predicts the target equilibrium state, γ,σ ∈ Rd are trainable
dynamic coefficients controlling the deterministic and stochastic components, and ε ∼ N (0, I)
denotes Gaussian noise.

The process is initialized with z0 = ϕinit(h
(1)), and iteratively updated over T steps. The final state

zT thus encodes the historical evolution of each site, capturing temporal dynamics modulated by its
geographic location. This continuous-time formulation allows GeoLiquidNet to flexibly adapt to
diverse temporal rhythms across stations, enhancing generalization and interpretability in sequence
modeling.

3.4 Spatial Message Passing Network

To model the spatial heterogeneity and directional propagation of meteorological variables, we
introduce a Spatial Message Passing Network (SMPN). It adaptively learns graph structure and
edge importance through four components: edge selection, distance-aware decay, directional attention,
and residual node update.

Edge Selection Mechanism. We employ a neural discriminator ψ(·) to predict the existence proba-
bility of an edge based on node coordinates and their Haversine distance:gij = G(ψ([pi,pj , dij ])),
where G(·) denotes a learnable gating function that outputs an edge existence probability. During
training, a binary gate g̃ij ∈ {0, 1} is sampled from gij to enable data-driven, spatially adaptive edge
pruning [12, 19].

Distance-aware Decay. To reflect spatial attenuation, each edge is weighted by a decay factor
κij = exp(−βd2ij), where dij is the Haversine distance. The decay rate β is learned via a bounded
sigmoid function, allowing smooth, interpretable modulation of long-range influence.

Multi-head Attention. To capture directional dependencies, we design an interaction-aware attention
mechanism [37, 40, 8]. For each edge, the input vector eij = [hi∥hj∥(pi − pj)] is processed by
M attention heads. Normalized scores α(m)

ij determine the contribution of neighbor j to i, enabling
asymmetric and context-sensitive aggregation [42].

Residual Update. The final propagation weight is wij = g̃ij · κij · αij . Messages mij are generated
via ϕmsg and aggregated with normalization. Each node is updated via a residual MLP [7, 16]:

h′
i = hi + ϕupd([hi, m̄i])

This enables stable, fine-grained updates across two stages: first from gridded fields to stations, then
among stations for local refinement.
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Algorithm 1: Spatial Message Passing Network

Input: Node features hi, positions pi, number of spatial neighbors k, edge gates g̃ij , decay
factors κij , attentions αij

1. For each node i, identify the k nearest neighbors Nk(i) based on Haversine distance
2. Initialize m̄i ← 0, count← 0

3. For each j ∈ Nk(i):
– If g̃ij = 1, compute propagation weight wij = g̃ij · κij · αij

– Compute message mij = ϕmsg([hi,hj ,pi − pj ])

– Accumulate: m̄i += wij ·mij ; increment count
4. Normalize: m̄i ← m̄i/count
5. Update node state: h′

i = hi + ϕupd([hi, m̄i])

3.5 Probabilistic Forecast Diffuser

To capture the inherent uncertainty of meteorological predictions and generate diverse forecast candi-
dates, we propose a Probabilistic Forecast Diffuser. This module injects stochastic perturbations
into node features and processes them through a graph-based denoising network, yielding a set of
sample-level forecasts for subsequent evaluation and selection. A concise mathematical analysis
explaining why the diffusion process enables recovery and amplification of extreme precipitation
values is provided in Appendix F.

Sample Generation via Diffusion. Given node features x and position encodings ϕ(p), we generate
N samples by adding Gaussian noise εi ∼ N (0, σ2I) and passing the perturbed inputs through a
graph U-Net denoiser fUNet [18, 35, 1]. Each sample is constructed via residual correction:

si = λ · x+ (1− λ) · (x+ εi − fUNet(x+ εi + ϕ(p))) (2)

Here, λ ∈ [0, 1] is a blending coefficient that controls the contribution of original versus corrected
features. The result is an ensemble of spatially coherent yet diverse forecasts {s1, . . . , sN}.
Uncertainty Estimation. We quantify prediction uncertainty for each node by computing the sample
variance:

uj =
1

N

N∑
i=1

(si,j − s̄j)2, s̄j =
1

N

N∑
i=1

si,j (3)

This serves as a natural metric for identifying regions of disagreement across the ensemble and
guiding adaptive selection.

3.6 Multi-Criteria Score Selector

To extract the most plausible forecast from the generated ensemble, or combine multiple outputs into
a robust final prediction, we introduce the Multi-Criteria Score Selector. This module evaluates
each candidate using three scoring perspectives: semantic consensus, spatial coherence, and physical
plausibility [21, 25].

1. Semantic Consensus. A self-attention mechanism is applied across all N samples to estimate
their mutual agreement. Each sample is assigned an attention-based consensus score, measuring its
alignment with the ensemble majority.

2. Spatial Coherence. To enforce geophysical smoothness, we pass each sample through a
lightweight graph convolution network that estimates the degree of spatial consistency across neigh-
boring stations. This captures the natural continuity of meteorological variables in space.

3. Extreme Value Detection. We implement a lightweight MLP-based scoring head that focuses
on detecting physically implausible or statistically extreme predictions. It penalizes samples that
contain abnormal spikes, unrealistic magnitudes, or values significantly deviating from historical
ranges, thereby reducing their influence during ensemble selection.
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Final Selection. The above three scores are aggregated using a two-layer MLP to compute a unified
quality score qi for each sample. We apply a softmax over all scores to produce sample weights.
The final output is selected via either hard picking (the best-scoring qi) or weighted fusion of the
ensemble.

4 Experimental

4.1 Experimental Setup

To comprehensively evaluate the generalization and robustness of the proposed method under various
meteorological models and complex geographical conditions, we design a station-level precipitation
interpolation task based on multiple forecast products and ground truth observations.

Data Sources. We utilize 24-hour accumulated precipitation forecasts from five representative
meteorological models, including both traditional numerical systems and emerging AI-based models.
Specifically, the selected inputs cover: ECMWF’s high-resolution deterministic forecast (IFS-HRES),
ensemble forecast system (IFS-ENS), and reanalysis data (ERA5), as well as models such as FourCast-
Net, and GraphCast. As ground-truth reference, we employ in-situ measurements from 2288 surface
meteorological stations provided by the China Meteorological Administration. These stations are
distributed across diverse terrains and climatic regions, introducing strong spatial heterogeneity. All
observational data are resampled to daily resolution and temporally aligned with forecast inputs. The
resulting dataset forms a 24-hour accumulated precipitation interpolation benchmark for evaluating
spatial reasoning and correction capabilities under complex landscapes.

Task Definition. The task is formulated as a grid-to-station spatial mapping problem. Each sample
consists of coarse-resolution gridded inputs and historical observations at stations, and the model is
required to predict the target variable (e.g., 24-hour precipitation) at all station locations.

Extended Experiments. To examine the model’s variable adaptability and temporal generalization,
we also conduct extended experiments on 2-meter temperature prediction using Pangu-Weather
temperature products. Detailed results of this auxiliary experiment are included in the Appendix G.
We report additional results in the Appendix H, including a sensitivity analysis under varying forecast
horizons and structural parameter settings.

Category Methods

Traditional Nearest Neighbor
Interpolation Linear Interpolation

Inverse Distance Weighting
Ordinary Kriging

Graph Neural GCN [19]
Networks GAT [38]

GraphSAGE [14]
KCN [3]

Physics-Inspired MeshGraphNet [31]
Architectures MGNN [39]

Spatial & ViT [11]
Generative Diffusion Networks [18]

Table 1: Classification of Baseline Models

Model P (#) S (MB)

DiffLiG (ours) 49,361 0.19
LiGAP 39,397 0.15
GAP 33,650 0.13
Graph-bias 29,506 0.11
Graph 24,930 0.10
GCN 29,031 0.11
GAT 29,287 0.11
GraphSAGE 33,127 0.13
KCN 30,520 0.12
ViT 51,538 0.20
Diffusion 54,014 0.21
MeshGraphNet 41,863 0.16
MGNN 40,741 0.16

Table 2: Model Complexity Comparison

Baseline Models. To assess model performance, we compare against a broad range of interpolation
and learning-based baselines, as shown in Table 1. This diverse benchmark suite allows us to evaluate
accuracy, structural consistency, and generalization ability across multiple paradigms. A more
detailed description of the baseline methods, including their modeling assumptions and limitations, is
provided in the Appendix K.

Model Complexity. To further examine architectural efficiency, we report the parameter counts and
storage sizes of all compared models in Table 2. Although DiffLiG is not the smallest in scale, it
introduces only a moderate increase in parameters while achieving significant gains in accuracy and
generalization, reflecting an efficient use of model capacity. Its ablation variants reveal the role of
individual modules: LiGAP removes the diffusion-based ensemble component from DiffLiG, GAP
further discards the Temporal Module to isolate temporal contributions, Graph-bias omits the Spatial
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Message Passing Network, and Graph represents the most reduced configuration without the Station
Bias Module.

Evaluation Metrics. We employ five quantitative metrics to comprehensively assess model perfor-
mance: Root Mean Squared Error (RMSE), Anomaly Correlation Coefficient (ACC), and Threat
Scores (TS) at 2 mm, 20 mm, and 100 mm thresholds. RMSE measures the overall magnitude devia-
tion between predictions and observations, ACC evaluates spatial correlation and pattern consistency
across stations, while TS metrics quantify the model’s capability to detect precipitation events of
increasing intensity, reflecting its sensitivity to light, moderate, and extreme rainfall. Together, these
metrics provide a balanced evaluation of numerical accuracy, spatial coherence, and event-level
detection skill.

Implementation and Training Details. To ensure fair comparison, all baseline models are trained
under identical hardware environments, using the same loss function and optimization settings.
Further experimental details, including training strategies, configurations, and runtime statistics, are
provided in Appendix I.

4.2 Experimental Results

Method
IFS-HRES ERA5 IFS-ENS FourCastNet

RMSE ACC TS@2mm RMSE ACC TS@2mm RMSE ACC TS@2mm RMSE ACC TS@2mm

DiffLIG (ours) 5.0883 0.7395 0.4621 4.8021 0.7677 0.5121 4.7208 0.7721 0.5286 5.1014 0.7303 0.4937
Nearest 6.0998 0.6511 0.4121 5.2145 0.7265 0.4693 4.9717 0.7468 0.4801 5.3871 0.6795 0.4865
Linear 5.9033 0.6667 0.4011 5.1435 0.7313 0.4808 4.9395 0.7504 0.4757 5.3721 0.6948 0.4858
OK 5.7423 0.6577 0.3931 5.1011 0.7387 0.4891 4.8932 0.7581 0.4434 5.3088 0.7052 0.4811
IDW 5.8274 0.6742 0.3995 5.1058 0.7368 0.4558 4.9299 0.7515 0.4716 5.3683 0.6831 0.4837
GCN 5.4832 0.6927 0.4139 5.0680 0.7417 0.4385 4.8731 0.7610 0.5052 5.2313 0.7016 0.4970
GAT 5.5444 0.6667 0.3202 5.0401 0.7449 0.4388 4.9137 0.7572 0.4987 5.2551 0.6964 0.4921
GraphSAGE 5.6401 0.6495 0.3754 5.1154 0.7243 0.4634 4.9343 0.7423 0.4922 5.2511 0.7001 0.4936
KCN 5.3931 0.6962 0.4158 5.0837 0.7468 0.4498 4.8897 0.7572 0.4925 5.2264 0.7122 0.4923
ViT 5.7848 0.6338 0.3626 5.1232 0.7121 0.4428 5.2365 0.7034 0.4832 5.3912 0.7080 0.4812
Diffusion 5.8480 0.5963 0.3342 5.1000 0.7284 0.4537 5.1742 0.7183 0.4952 5.3781 0.6932 0.4921
MeshGraphNet 5.5322 0.6767 0.4374 5.1728 0.7283 0.4903 5.0132 0.7332 0.5143 5.2619 0.6931 0.4987
MGNN 5.4428 0.6858 0.3640 4.9904 0.7501 0.5000 4.8542 0.7657 0.4357 5.1878 0.7164 0.4423

Table 3: Performance Comparison of Interpolation Methods across Multi-Source Forecast
Inputs. Top-3 values in each metric are highlighted with increasing color intensity. Bold values
indicate the best performance, while underlined values represent the second-best results for each
metric.

To evaluate the model’s capability in extracting reliable station-level information from coarse-
resolution gridded forecasts, we conduct comprehensive experiments across four representative
forecast sources: IFS-HRES, ERA5, IFS-ENS, and FourCastNet. Results are summarized in Table 3.

DiffLiG demonstrates consistent superiority across all three metrics. In terms of TS@2mm,
which measures the model’s ability to identify precipitation events, DiffLiG achieves the highest
scores on IFS-HRES (0.4621), ERA5 (0.5121), and IFS-ENS (0.5286). On FourCastNet, it reaches
0.4937, closely following the best-performing baseline (0.4987), underscoring its strong event
detection capability. For RMSE, DiffLiG achieves the lowest error across all four sources, indicating
more accurate magnitude reconstruction. In terms of ACC, DiffLiG again attains the highest accuracy
on each dataset, reflecting its consistent predictive correctness and classification reliability.

Furthermore, the consistent improvements of DiffLiG over all baselines across multiple evaluation
metrics suggest its strong capacity to mitigate station-level heterogeneity. Unlike traditional methods
that often suffer from degraded performance in regions with complex topography or sparse obser-
vations, DiffLiG achieves lower RMSE (more accurate magnitude), higher ACC (stronger spatial
correlation with observations), and higher TS@2mm (better event detection skill). These results indi-
cate that the model effectively adapts to diverse spatial characteristics and observational conditions,
demonstrating its practical utility for heterogeneous station-level interpolation in real-world settings.

In addition, DiffLiG exhibits strong cross-source generalization. It maintains either top or second-
best performance across all forecast sources, regardless of the underlying modeling paradigm: be
it physically based numerical weather prediction (e.g., IFS-HRES, IFS-ENS) or AI-driven models
(e.g., FourCastNet). This cross-domain consistency validates the robustness of its architectural design
under varying input distributions and error characteristics.
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4.3 Evaluation of Oversmoothing Mitigation on IFS-HRES

To evaluate the capability of different models in mitigat-
ing spatial oversmoothing, we compute TS at 20mm and
100mm thresholds on the IFS-HRES dataset. As shown
in Table 4, DiffLiG achieves the highest TS values across
both thresholds, demonstrating its effectiveness in alle-
viating the oversmoothing problem. LiGAP, which re-
moves the diffusion module from DiffLiG while keeping
all other components identical, shows a noticeable degra-
dation in both TS@20mm and TS@100mm, highlighting
the effectiveness of the probabilistic diffusion mechanism
in mitigating the oversmoothing effect inherent in graph
propagation.

Model TS@20mm TS@100mm

DiffLiG (ours) 0.3122 0.0202
LiGAP 0.2819 0.0147
Linear 0.2764 0.0156
GAT 0.2986 0.0162
GCN 0.2836 0.0131
GraphSAGE 0.2648 0.0157
KCN 0.2862 0.0136
MeshGraphNet 0.2925 0.0144
MGNN 0.2611 0.0153

Table 4: Oversmoothing Mitigation on IFS-
HRES.

4.4 Visual Evidence of Oversmoothing Mitigation

DiffLiG(ours) Area 1

Oberservation

Area 1

Linear Interpolation Area 1

LiGAP Area 1

Area 1

Figure 3: Visual comparison of spatial interpolation results. Predicted daily accumulated precipi-
tation for July 5, 2022.

To assess oversmoothing mitigation, we visualize predicted station-level precipitation on July 5,
2022—a day with high spatial variability (Figure 3). Compared to baseline methods, DiffLiG
produces sharper and more spatially coherent outputs, capturing localized extremes more effectively.
LiGAP, which removes the diffusion module from DiffLiG, shows improved spatial structure but
remains conservative due to its deterministic nature. The full DiffLiG model leverages ensemble
diversity and selective refinement to better recover fine-scale variability aligned with observations. A
more detailed visualization of the results is provided in the Appendix N for further reference.

4.5 Cross-Dataset Evaluation on GraphCast for Robustness Validation

GraphCast

Method RMSE ↓ ACC ↑ TS@2mm ↑

DiffLiG (ours) 5.5172 0.7345 0.5218
Nearest 5.7036 0.7133 0.3520
Linear 5.6829 0.7153 0.3515
OK 5.5923 0.7132 0.3612
IDW 5.6772 0.7158 0.3506
GCN 5.5517 0.7302 0.4985
GAT 5.5773 0.7271 0.5245
GraphSAGE 5.8757 0.6811 0.5001
KCN 5.5980 0.7256 0.5181
ViT 5.8321 0.6844 0.4212
Diffusion 5.7342 0.6923 0.4354
MeshGraphNet 6.2677 0.6246 0.5171
MGNN 5.6537 0.7288 0.3526

Table 5: Performance of different methods on
GraphCast.

GCN

DiffLiG

Figure 4: Spatial distribution (left) and scatter-
plot (right) for DiffLiG vs. GCN.
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To evaluate the robustness and generalization capability of our heterogeneity-aware forecasting model,
we conduct a cross-dataset inference experiment. Specifically, the model is trained entirely on the
IFS-HRES dataset and directly applied to the GraphCast dataset without any fine-tuning or domain
adaptation. The performance comparison is reported in Table 5, and the spatial error distribution
alongside station-wise scatter-plot of DiffLiG versus GCN is visualized in Figure 4.

4.6 Ablation Studies
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Figure 5: Ablation trend. Module-wise
improvements across RMSE, ACC, and
TS@2mm.

Structural modeling. Starting from the base model
with static edges and uniform aggregation, perfor-
mance is limited across all metrics. Adding the
Dynamic Edge Modulator leads to a significant im-
provement in TS@2mm, highlighting the benefit of
learning spatially adaptive connections. The Station
Bias Correction further improves ACC by captur-
ing site-specific deviations, especially where grid
forecasts systematically diverge from observations.
These modules enhance the model’s ability to reflect
spatial heterogeneity, but temporal dynamics remain
unmodeled.

Temporal encoding. Introducing the Temporal Mod-
ule leads to a substantial improvement in TS@2mm
(+16.3%), indicating enhanced sensitivity to local-
ized rainfall events. By jointly encoding gridded
sequences and station histories, the model better cap-
tures evolving precipitation patterns, leading to con-
current improvements in both ACC and RMSE.

Uncertainty modeling and selection. The Proba-
bilistic Forecast Diffuser reduces RMSE by modeling
ensemble uncertainty, though basic aggregation meth-
ods show limited effect on TS and ACC. The final
addition of the Multi-Criteria Score Selector brings all metrics to their best levels by prioritizing
forecasts with spatial consistency and physical plausibility. This confirms the importance of informed
selection in ensemble-based interpolation.

5 Conclusion

We presented DiffLiG, a diffusion-enhanced liquid graph framework for high-resolution spatial
correction from gridded forecasts to station-level observations. To address the challenge of station
heterogeneity, DiffLiG integrates a Geo-Liquid Net that captures site-specific temporal dynamics,
and a Dynamic Edge Modulator that independently learns spatially adaptive graph structures tailored
to each target station. To mitigate oversmoothing and model predictive uncertainty, a unified
Probabilistic Diffusion Selector generates diverse correction candidates via noise-perturbed sampling
and refines them through multi-criteria ensemble selection.

Extensive experiments across multiple meteorological datasets and forecast products demonstrate
that DiffLiG delivers consistent improvements in both accuracy and event sensitivity over classical in-
terpolation methods and strong graph-based baselines. Its effectiveness extends beyond precipitation,
achieving strong performance on other key variables such as temperature, highlighting its flexibility
and generalizability.

DiffLiG offers a unified and efficient framework for correcting coarse meteorological forecasts
under real-world spatial complexity, with strong potential for application in post-processing, data
assimilation, and multi-source fusion tasks. Looking forward, DiffLiG provides a foundation for
exploring graph-based spatial correction under more complex scenarios, such as cross-regional
generalization, extreme weather adaptation, and integration with multi-modal inputs (e.g., satellite
imagery or radar). Future work may also incorporate causal or physical priors to further enhance the
interpretability and resilience of correction under evolving climate dynamics.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We state our main claims in the abstract , elaborate on the research scope and
contributions in the introduction 1, summarize the paper’s contributions at the end of the
introduction 1, and validate them through comprehensive experiments 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include a dedicated discussion of the paper’s limitations in the Appendix B.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our method includes a detailed description of the model architecture in the
Section 3, specifies the data sources used in the Section 4, and provides implementation
details and hyperparameters in the Appendix I.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the data sources used in the Section 4.1, and we plan to release the
code upon paper acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide detailed experimental settings and configurations in the Appendix I.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: While we do not report formal statistical error bars due to the significant
time and computational resources required, we conducted multiple independent runs and
observed that the results consistently converge with minimal variance, indicating stable and
reliable performance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the compute resources required for training and evaluation in the
Appendix I.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper fully complies with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both the potential positive and negative societal impacts of our
work in the Appendix A.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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to particular applications, let alone deployments. However, if there is a direct path to
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve any models or data with a high risk of misuse or
safety concerns.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The relevant license and attribution information is provided in the Appendix M.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We plan to release our newly developed model along with documentation upon
acceptance. The asset will include descriptions of model structure, training procedure, and
license, and will be anonymized at submission time.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve human subjects and does not require IRB approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Large language models were not used as part of the core methodology in this
research. Minor usage was limited to writing assistance only.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Broader Impact

This study proposes a lightweight and modular graph-based framework for station-level precipitation
correction, designed to enhance the adaptability and spatial resolution of existing weather forecasting
systems. Without requiring the retraining of large-scale models, our approach enables flexible post-
processing of numerical or AI-generated forecasts, producing locally refined predictions at arbitrary
coordinates using only location metadata and limited historical observations. This capability supports
fine-grained, adaptive forecasting across diverse geographies, including remote, mountainous, or
under-instrumented regions, and has the potential to broaden the accessibility of reliable weather
services worldwide.

Our method improves the spatial precision and reliability of extreme precipitation forecasts by
explicitly modeling site-specific spatial structure, incorporating dynamic edge modulation, and
introducing a diffusion-based ensemble generator with a multi-criteria output selector. This allows
more accurate localization of high-risk areas and robust identification of extreme-value signals, thus
offering decision-level support for early warning systems related to flooding, torrential rainfall, or
hydrological disasters. Unlike coarse-resolution grid-based outputs, the proposed framework allows
targeted forecast refinement at critical sites, contributing to improved disaster preparedness and risk
mitigation.

In terms of sustainability, the proposed architecture emphasizes post-hoc spatial adaptation rather
than end-to-end retraining, reducing the demand for high-performance computing and enabling
deployment in low-resource environments. As climate modeling and forecasting scale to global
applications, energy-efficient and scalable forecasting solutions are urgently needed. Our model
contributes to this trend by providing an extensible correction module that balances accuracy with
computational economy.

Beyond meteorology, the modular design and uncertainty-aware structure of our model may benefit
other spatiotemporal inference tasks with sparse measurements, such as air quality estimation,
ecological monitoring, or environmental hazard detection. The integration of spatial message passing,
site heterogeneity handling, and ensemble-based confidence evaluation offers a transferable paradigm
for building robust, site-adaptive models across scientific domains.

While we have not identified direct negative societal impacts associated with the proposed method,
potential concerns may arise depending on downstream applications. For instance, if the model is
deployed without adequate validation in regions with limited ground truth data, it may introduce
misleading corrections or overconfident forecasts, especially in high-stakes scenarios. Moreover,
localized correction systems, if misused or misinterpreted by non-experts, could inadvertently lead to
false alarms or reduced trust in public forecasting services. These risks highlight the importance of
responsible deployment and continual calibration against local observations when adapting the model
to new domains.

B Limitations

While the proposed station-level correction framework demonstrates strong adaptability and predictive
performance, several limitations remain that warrant further attention and refinement.

Our current implementation primarily utilizes precipitation and temperature variables from ERA5 as
model inputs. Other meteorological factors that are physically relevant, such as wind speed, humidity,
surface pressure, or convective potential, have not yet been incorporated. The exclusion of these
features may limit the model’s ability to capture complex atmospheric processes, particularly in
scenarios driven by multi-variable interactions. Integrating additional variables, such as wind field
structures or vertical profiles, into both the graph construction and node representation may enhance
the model’s responsiveness to high-impact weather systems.

Furthermore, although the model is generalizable to arbitrary geographic locations, our experiments
have so far focused mainly on precipitation and temperature. Key atmospheric variables such as
wind vectors or specific humidity have not yet been tested, and the current results do not fully assess
the framework’s applicability in broader multi-modal forecasting scenarios. Different atmospheric
variables exhibit distinct spatial dependencies and temporal dynamics, and whether the current
modeling paradigm generalizes across such diversity remains an open question.
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The model also assumes the availability of some historical station-level observations. Although we
avoid retraining large-scale backbones, the quality and availability of local data can still affect the
performance of post-hoc corrections. In regions with highly sparse or irregular observations, such
as new or mobile stations, the reliability of predictions may degrade. Enhancing model robustness
through techniques such as transfer learning or structural priors could be a promising future direction.

Lastly, while the diffusion-based ensemble generation and selection mechanisms provide a degree of
uncertainty modeling, the current framework does not explicitly incorporate physical consistency
constraints. Soft constraints based on hydrological or thermodynamic conservation laws (e.g., mois-
ture or energy balance) could improve both the interpretability and reliability of outputs, especially
under extreme or anomalous conditions.

C Empirical Analysis of ERA5 Precipitation Interpolation Errors

To quantitatively motivate the need for high-resolution station-level correction, we conduct a system-
atic assessment of precipitation biases present in the ERA5 reanalysis dataset after standard bilinear
interpolation onto surface meteorological stations.
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Figure 6: Spatial Distribution of ERA5 Annual Precipitation Prediction Errors. Each dot
represents a station. Color denotes the signed mean error (in mm/day) of bilinearly interpolated
ERA5 daily precipitation compared with ground observations, averaged over the entire year.

As shown in Figure 6, large spatial biases emerge across the region, with systematic overestimations
in southwestern and southern China, and underestimations in southeastern coastal regions. These
regional inconsistencies reflect the inability of grid-based interpolation to adapt to complex terrains
and localized rainfall dynamics.

Figure 7 further illustrates the severity of these discrepancies in relative terms. In regions such as
western Sichuan and Yunnan, the relative errors exceed 75%, suggesting that the interpolated ERA5
data may drastically misrepresent local annual precipitation totals. This disproportionate bias is
particularly problematic in hydrologically sensitive regions or areas with sparse gauge density.

Figure 8 illustrates the temporal variation of interpolation errors in ERA5 precipitation data across
the year. The top panel shows that both RMSE and mean error rise significantly during the summer
months, indicating reduced accuracy during the rainy season. The middle panel reveals that the
maximum and absolute maximum daily errors also spike during this period, with values occasionally
exceeding 200 mm/day. The bottom panel shows that although many extreme rainfall events are

23



70 80 90 100 110 120 130
Longitude

20

25

30

35

40

45

50

La
ti

tu
de

N

6.5°

Spatial Distribution of ERA5 Annual Precipitation Relative Errors

South China Sea

100

75

50

25

0

25

50

75

100

ER
A

5 
R

el
at

iv
e 

Er
ro

r 
(%

)

Figure 7: Spatial Distribution of ERA5 Annual Precipitation Relative Errors. The relative error
is computed as the ratio between absolute bias and station-observed annual precipitation. High values
indicate severe misrepresentation of total rainfall.
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underestimated in magnitude, a large proportion of stations still experience consistent overestimation
throughout the year.

D Origins of Station Heterogeneity and Oversmoothing Biases

Despite the increasing availability of gridded reanalysis products such as ERA5, their direct interpo-
lation to station locations often introduces non-trivial biases, particularly in regions with complex
terrain or sparse observational coverage. These systematic errors give rise to two fundamental
challenges in station-level precipitation modeling: station heterogeneity and oversmoothing.

Station Heterogeneity. As illustrated in Figures 6 and 7, bilinearly interpolated ERA5 precipitation
fields exhibit highly uneven error distributions across space. Some stations experience persistent
overestimation, while others are subject to substantial underestimation, particularly during periods
of intense rainfall. This spatially inconsistent performance indicates that interpolation biases are
inherently location-dependent and cannot be effectively corrected using globally shared model pa-
rameters.Importantly, this heterogeneity extends beyond spatial variability. As shown in Figure 8,
interpolation accuracy also varies across seasons: errors are generally lower during dry periods, but
escalate significantly during the rainy season. This seasonal inconsistency underscores the temporal
heterogeneity of the interpolation task, where the statistical properties of precipitation—and the associ-
ated error patterns—change dynamically over time. Therefore, models that rely on static assumptions
or uniform temporal behavior are likely to underperform in real-world applications. Capturing both
spatial and temporal heterogeneity is essential for robust and generalizable interpolation.

Oversmoothing of Extremes. The temporal error profile shown in Figure 8 reveals that, although
the overall interpolation error increases during the rainy season, the more critical failure lies in the
underestimation of extreme rainfall events. In particular, the maximum error metrics in summer
often exceed 200 mm/day, while the corresponding observed values are significantly higher. This
pattern indicates that coarse-resolution gridded models tend to suppress sharp gradients and attenuate
local extremes through spatial averaging. Such smoothing leads to the loss of physically meaningful
high-magnitude signals—especially relevant for hydrological risk and extreme event forecasting.
Consequently, downstream learning models trained on these smoothed inputs may underrepresent
rare yet impactful weather patterns, limiting their utility in high-stakes applications.

Together, these findings highlight the empirical origins of the two central challenges tackled in this
work. They motivate the design of interpolation frameworks that are not only spatially adaptive
but also capable of preserving localized extremes. Subsequent sections build upon these insights to
introduce model components that explicitly address heterogeneity and oversmoothing in a unified
manner.

E Theoretical Analysis of OU-Based Temporal Encoding

To support the design of the GeoLiquidOU module, we provide a theoretical derivation of its Orn-
stein–Uhlenbeck (OU)-inspired update mechanism. This section analyzes how the model integrates
historical input over time via exponential smoothing, and how its behavior corresponds to a first-order
low-pass filter in the frequency domain.

E.1 Continuous-Time OU Dynamics

We begin with the continuous-time OU process, excluding noise terms for clarity:

dh(t)

dt
= κ [θ(x(t))− h(t)] , (4)

where h(t) is the hidden state, θ(x(t)) denotes an input-driven target signal, and κ > 0 is the decay
rate.

Using an integrating factor eκt and solving the ODE, we obtain:

h(t) = h(0)e−κt +

∫ t

0

κ e−κ(t−s) θ(x(s)) ds, (5)
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which reveals that the current state is a decayed memory of initial state plus an exponentially weighted
integration of past inputs. The kernel K(t) = κe−κt acts as a memory filter with decay rate κ.

E.2 Discrete-Time Approximation via Euler Method

To implement the update in discrete time with step size ∆t, we apply Euler’s method:

h[n+ 1] = h[n] + ∆t · κ [θ[n]− h[n]]
= (1− α)h[n] + αθ[n], (6)

where α = κ∆t ∈ (0, 1). This update rule corresponds exactly to an Exponential Weighted Moving
Average (EWMA), widely used in both time series filtering and biologically inspired computing.

E.3 Explicit Recursion and Temporal Weighting

Unrolling the recursion across N steps yields:

h[N ] = (1− α)Nh[0] +
N−1∑
i=0

α(1− α)N−1−iθ[i], (7)

where the contribution of past inputs decays exponentially. The unnormalized weight for timestep i
is:

wi = α(1− α)N−1−i, (8)

and the normalized weight becomes:

w̄i =
wi∑N−1

j=0 wj

=
α(1− α)N−1−i

1− (1− α)N
. (9)

This shows that the discrete update implicitly applies a form of exponential memory over past θ
values, where smaller α values yield longer memory horizons.
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Figure 9: Visualization of OU attention weights.

E.4 Frequency-Domain Interpretation: A Low-Pass Filter

We now analyze the above recursion as a linear time-invariant (LTI) system with input θ[n] and output
h[n]. Applying the z-transform yields the transfer function:

H(z) =
αz−1

1− (1− α)z−1
. (10)
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Evaluating on the unit circle z = eiω gives the magnitude response:∣∣H(eiω)
∣∣ = α√

1− 2(1− α) cosω + (1− α)2
. (11)

This confirms that the system behaves as a classic first-order low-pass filter. Its key frequency
characteristics are:

• Zero frequency (ω = 0):

|H(ei0)| = α

1− (1− α)
= 1.

This indicates full preservation of low-frequency (DC) components, allowing long-term
trends to pass through unchanged.

• Highest frequency (ω = π):

|H(eiπ)| = α√
(2− α)2

=
α

2− α
≪ 1.

This shows that high-frequency signals (rapid temporal variations) are strongly attenuated,
effectively denoising short-term fluctuations.

• General behavior: The magnitude response |H(eiω)| decreases monotonically with in-
creasing ω. The parameter α controls the cutoff: smaller values of α lead to longer memory
and stronger smoothing.

E.5 Interpretation for GeoLiquidOU

This analysis shows that the GeoLiquidOU module dynamically adjusts the temporal sensitivity of
each station by learning a site-specific decay factor α = τ(p) · κ, where τ(p) is a location-aware
time constant. This enables the model to function as a learnable, spatially-conditioned low-pass filter,
selectively integrating temporal context based on local variability.

F Latent-Space Noise Injection and UNet Denoising with Residual
Perturbation

Let z0 = E(x0) ∈ Rd be the latent-space representation of the original interpolated value x0. Under
the DDPM framework [18, 36], the forward diffusion (noise injection) at step t is defined by

zt =
√
αt z0 +

√
1− αt ϵ, ϵ ∼ N (0, Id),

so that
zt ∼ N

(√
αt z0, (1− αt)Id

)
.

Here, αt ∈ (0, 1) denotes the precomputed noise-schedule coefficient.

In the reverse (denoising) step, a UNet model ϵθ(zt, t) is trained to predict the injected noise. Denote
the prediction error by

δ = ϵθ(zt, t)− ϵ,
which can be modeled as a zero-mean Gaussian random vector with covariance σ2

δId. The corre-
sponding one-step reconstruction in latent space is then

z̃0 =
1
√
αt

(
zt −

√
1− αt ϵθ(zt, t)

)
= z0 −

√
1− αt√
αt

δ︸ ︷︷ ︸
∆z

.

Since δ ∼ N (0, σ2
δId), it follows that

z̃0 ∼ N
(
z0,

1−αt

αt
σ2
δ Id

)
.

Because the residual covariance 1−αt

αt
σ2
δ Id is positive definite, the reconstructed latent vector z̃0

admits nonzero variance around z0. In other words, despite denoising, the model retains a controlled
stochastic perturbation in latent space, which—when subsequently decoded—enables recovery or
amplification of extreme values beyond the initial interpolated range.
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G Cross-Variable Forecasting: Temperature as Input

To verify the adaptability of our model architecture to alternative meteorological variables, we conduct
a parallel experiment using 2-meter temperature (T2M) fields from Pangu-Weather. While the entire
model is retrained from scratch on the T2M dataset, the network structure remains unchanged.
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Figure 10: Spatial Distribution of Absolute Temperature Errors. The annual mean absolute error
(MAE) of 2-meter temperature predictions across China using our method DiffLiG.
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Figure 11: Spatial Distribution of Relative Temperature Errors. The relative error percentage (%)
of 2-meter temperature predictions, highlighting spatial performance differences across varied terrain
and climate zones.
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Figure 12: Scatter Plot of Predicted vs Observed Annual Mean T2M. This plot shows station-
level comparisons between predicted and observed annual average temperatures. A best-fit line
(y = 0.86x+ 0.12) is provided alongside the identity line.
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H Sensitivity to Forecast Horizon and Graph Connectivity

To evaluate the robustness and stability of our model across different forecasting and structural
configurations, we conduct a series of sensitivity experiments. Specifically, we examine the impact of
four critical parameters:

• Forecast lead time,
• Retrospective window size,
• Maximum number of edges from ERA5 grid points to stations
• Maximum number of inter-station connections.

Unless otherwise specified, the model is trained with the following default configuration: forecast
lead time of 1 day, retrospective window size of 5 days, a maximum of 4 connections from each
ERA5 grid point to nearby stations, and up to 3 connections between observation stations. The goal
of this analysis is to assess the sensitivity of model performance with respect to these parameters,
thereby providing insight into the design choices behind spatial and temporal coupling strategies.

H.1 Sensitivity to Forecast Lead Time
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Figure 14: Impact of Lead Time on Forecast Accuracy.

To assess how prediction horizon affects model performance, we conduct a sensitivity analysis by
varying the lead time from 1 to 7 days. As shown in Figure 14, the model retains relatively high
accuracy and low RMSE at short-term forecasts. However, performance deteriorates as the prediction
window extends, particularly in terms of event detection (TS@2mm). This suggests that while the
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model can extrapolate coarse patterns over longer horizons, precise localization of extreme events
becomes more challenging.

H.2 Impact of Backtracking Window Size
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Figure 15: Forecast performance under different temporal backtracking window sizes.

Figure 15 illustrates how the backtracking window size—i.e., the number of past days used for station-
level temporal encoding—affects forecast performance. As the window length increases, performance
steadily improves across all metrics, suggesting that a longer temporal context helps capture the
heterogeneous evolution of local precipitation patterns. To balance accuracy and computational
efficiency, we choose a 5-day window as the default configuration.

H.3 Impact of ERA5-to-Station Edge Connectivity

Figure 16 illustrates the impact of varying the maximum number of ERA5-to-station edges on
prediction performance. As the number of edges increases, we observe consistent improvements
across RMSE. However, the performance gain plateaus beyond 4 edges, indicating diminishing
returns with denser spatial connections. Based on this trend, we select 4 as the default edge limit in
our model configuration to balance accuracy and computational efficiency.
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Figure 16: Forecast performance across different ERA5-to-station edge limits.
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Figure 17: Forecast performance under different inter-station connectivity levels.
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H.4 Impact of Station-to-Station Connectivity

Figure 17 shows the effect of varying the number of station-to-station connections on forecast
performance. Unlike the ERA5-to-station connectivity, increasing inter-station edge counts leads to
only minor fluctuations in RMSE, ACC, and TS@2mm. The performance remains relatively stable
across different settings, indicating that the model is less sensitive to this parameter. We therefore fix
the maximum number of inter-station edges at 3 for subsequent experiments.

I Implementation and Training Details

I.1 Training Objective and Loss Function

The proposed graph-based forecasting framework is trained in a supervised regression setting. The
objective is to minimize the discrepancy between the predicted values and ground-truth observations
at meteorological stations, thereby enabling accurate station-level interpolation.

Let ŷi denote the predicted value and yi the corresponding ground-truth observation for the i-th
sample across time and space. The loss function is defined as the mean squared error (MSE) over all
station samples:

LMSE =
1

N

N∑
i=1

∥ŷi − yi∥2 (12)

where N is the total number of training samples. This loss directly supervises the end-to-end
prediction pipeline, encouraging the model to align with observed precipitation patterns across both
spatial and temporal dimensions.

I.2 Task Configuration

We formulate the task as a station-level spatial interpolation problem, where the model observes past
T1 = 5 days of gridded data to predict the station value at the next day (T2 = 1). The temporal
granularity is set to daily. For each target station, the maximum number of spatial edges is constrained
to ensure computational efficiency and physical relevance:

• Grid-to-station connections: at most 4 ERA5 grid nodes;
• Station-to-station connections: at most 3 surrounding stations.

We use a 7-year dataset ranging from 2016 to 2022. Specifically, we assign the years 2016–2020
for training, 2021 for validation, and 2022 for final testing. All models are implemented using the
PyTorch deep learning framework.

I.3 Training Configuration

The entire training process is conducted on a single NVIDIA RTX 4090D GPU with 24GB of memory.
Each training epoch requires approximately 3 minutes. The total training spans 150 epochs and
completes in about 7.5 hours. This setup demonstrates strong computational efficiency and scalability.

I.4 Staged Training Strategy

We progressively activate key modules to stabilize training dynamics and ease inter-module adaptation.
The training process follows the table 7:

J Haversine Distance Computation

To measure the great-circle distance between two stations on the Earth’s surface, we employ the
Haversine formula, which accounts for the spherical geometry of the planet.

Let the two geographic locations be denoted as pi = (λi, ϕi) and pj = (λj , ϕj), where λ and ϕ
represent the longitude and latitude (in degrees), respectively. These coordinates are first converted
into radians:
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Table 6: Training Hyperparameters
Parameter Value
Framework PyTorch
Optimizer Adam [20]
Initial Learning Rate 1e-4
Weight Decay 1e-4
Batch Size 16
Epochs 150
Time Window T1 = 5 (past), T2 = 1 (future)
Grid Edges (max) 4
Station Edges (max) 3
Loss Function MSE Loss
Dropout 0.1
Activation LeakyReLU / DynamicTanh [43]
Training Years 2016–2020
Validation Year 2021
Test Year 2022

Table 7: Staged Training Strategy
Stage Epoch Range Activated Modules
Warm-up 0–20 Basic GNN backbone with fixed topology
GNN Training 20–40 Activate Dynamic Edge Modulator
Forecast Diversity 40–60 Enable Probabilistic Forecast Diffuser
Selector Adaptation 60–80 Introduce Multi-Criteria Score Selector
Station-wise Bias 80–100 Learn station-specific bias correction
Joint Training 100–150 Fine-tune all modules jointly for synergy

λradi = λi ·
π

180
, ϕradi = ϕi ·

π

180
(13)

We then compute the difference in latitude and longitude:

∆ϕ = ϕradj − ϕradi , ∆λ = λradj − λradi (14)

The Haversine formula estimates the spherical distance dij between the two points as follows:

a = sin2
(
∆ϕ

2

)
+ cos(ϕradi ) · cos(ϕradj ) · sin2

(
∆λ

2

)
(15)

c = 2 · arctan 2
(√
a,
√
1− a

)
(16)

dij = R · c (17)

Here, R = 6371 km denotes the average radius of the Earth.

K Baseline Method Descriptions

To evaluate the effectiveness and generalizability of our proposed framework, we compare against a
broad set of baseline models, categorized into four methodological groups. These baselines cover a
range of paradigms from classical statistical interpolation to advanced neural forecasting models.

(1) Traditional Interpolation Methods. We include four classic spatial interpolation techniques
widely used in geostatistics and meteorology:

• Nearest Neighbor assigns each station the value of the closest grid point without smoothing,
often leading to abrupt spatial transitions.
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• Linear Interpolation assumes uniform variation between nearby points, but does not
capture spatial correlation or terrain effects.

• Inverse Distance Weighting (IDW) assigns weights inversely proportional to distance,
introducing smooth decay but lacking adaptivity to local density or directional features.

• Ordinary Kriging (OK) estimates station values using spatial covariance models (vari-
ograms), providing statistically grounded predictions but requiring stationarity assumptions
and manual variogram fitting.

While these methods are computationally efficient and interpretable, they rely on static spatial assump-
tions, lack learnable parameters, and do not account for temporal context or spatial heterogeneity,
resulting in degraded performance over complex terrains or data-sparse regions.

(2) Graph Neural Network (GNN) Models. GNNs provide a flexible framework for modeling
spatial relationships among stations by learning representations through message passing:

• GCN [19] applies localized spectral convolutions on fixed station graphs, but tends to
oversmooth signals across the network.

• GAT [38] introduces attention mechanisms to weigh neighbor importance, improving
expressiveness but still relying on static edges.

• GraphSAGE [14] supports inductive learning via sampled aggregation, yet assumes homo-
geneous information flow across all regions.

• KCN [3] combines kernel-based weighting with graph convolutions to capture geostatistical
structure, but uses fixed kernels and non-adaptive connectivity.

Despite their spatial modeling strengths, these GNNs often employ fixed topologies and uniform
propagation rules, which limit their ability to adjust to station-specific characteristics and introduce
oversmoothing in high-resolution prediction tasks.

(3) Physics-Inspired and Multimodal Graphs. We also include two architectures that incorporate
physical priors or multimodal inputs:

• MeshGraphNet [31] learns graph-based simulators aligned with physical PDEs, capturing
spatial continuity but requiring large data and stable mesh structures.

• MGNN [39] constructs heterogeneous graphs combining reanalysis grids and observational
stations, enabling multimodal fusion but still relying on predefined graph rules and lacking
dynamic edge adaptation.

These models offer better spatial fidelity than standard GNNs but often inherit rigid structures or
handcrafted designs, limiting flexibility in highly heterogeneous or evolving forecast settings.

(4) Generative and Transformer-Based Spatial Models. To assess uncertainty modeling and
spatial diversity, we include:

• Diffusion Models [18] generate samples via iterative noise reversal, allowing diverse outputs
but often requiring long sampling chains and lacking explicit graph structure.

• Vision Transformer (ViT) [11] applies global self-attention over spatial patches, capturing
long-range dependencies but prone to global averaging, which may obscure local extremes
or abrupt transitions.

These models demonstrate strong generative capacity, yet often lack station-aware structure and
may smooth over localized variations, making them less suitable for fine-grained, heterogeneous
interpolation tasks.

Together, these baselines form a representative and challenging benchmark suite, allowing us to assess
not only interpolation accuracy but also spatial adaptivity, generalization capacity, and robustness to
heterogeneity.
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L Evaluation Metrics

We adopt three widely used metrics to evaluate interpolation and prediction accuracy for station-level
precipitation: Anomaly Correlation Coefficient (ACC), Root Mean Square Error (RMSE), and Threat
Score (TS) under a 2 mm threshold. The formal definitions are provided below.

Given the true values yi and predicted values ŷi at each location i, we define their respective
climatological means ȳi and ¯̂yi as the multi-year averages over a reference period for the observed
and predicted data, respectively. The anomaly correlation coefficient (ACC) is then computed as:

ACC =

∑
i(yi − ȳi)(ŷi − ¯̂yi)√∑

i(yi − ȳi)2 ·
√∑

i(ŷi − ¯̂yi)2
(18)

ACC measures the pattern similarity between predicted and observed anomalies, accounting for
inter-location variance.

Root Mean Square Error (RMSE). RMSE evaluates the overall deviation between predictions and
ground truth, and is defined as:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (19)

where N is the total number of evaluated samples. RMSE is sensitive to large errors and commonly
used in regression tasks.

Threat Score at 2mm (TS@2mm). To assess the model’s ability to detect light to moderate
precipitation events, we calculate the Threat Score (TS) under a fixed threshold of 2 mm/day:

TS@2mm =
TP

TP + FN + FP
(20)

where TP (true positives), FN (false negatives), and FP (false positives) are determined based on
thresholded binary classification:

TP =
∑
i

1[yi ≥ 2 ∧ ŷi ≥ 2], FN =
∑
i

1[yi ≥ 2 ∧ ŷi < 2], FP =
∑
i

1[yi < 2 ∧ ŷi ≥ 2]

TS reflects the model’s event-level accuracy in a binary detection task and is widely used in precipita-
tion forecast verification.

M License and Attribution Details

This study uses several existing assets whose licenses and usage terms are properly acknowledged
and respected:

• Model License. The proposed model will be released under the CC-BY 4.0 license upon
publication.

• Baselines. All baseline models used in our experiments are implemented based on open-
source releases from their original papers. We cite the corresponding works in our main text,
and all implementations respect the original licenses provided by their authors.

• ERA5 Data. We use the hourly precipitation product from the ERA5 reanaly-
sis dataset, provided by the European Centre for Medium-Range Weather Forecasts
(ECMWF). This dataset is publicly accessible via the [Copernicus Climate Data
Store](https://cds.climate.copernicus.eu/) and is licensed under CC-BY 4.0. We use the
version released in 2022.
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• CMA Observation Data. The ground truth observation data from the China Meteorological
Administration (CMA) is not publicly available. Access to this dataset was granted to us
through proper institutional authorization.

No scraped, re-packaged, or third-party datasets outside of these sources are used in this study.

N Visual comparison of spatial interpolation results
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Figure 18: Visual comparison of spatial interpolation results. Predicted daily accumulated
precipitation for July 5, 2022.
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