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ABSTRACT

Mechanical reasoning is a hallmark of human intelligence, defined by its ubiqui-
tous yet irreplaceable role in human activities ranging from routine tasks to civil
engineering. Embedding machines with mechanical reasoning is therefore an im-
portant step towards building human-level artificial intelligence. Here, we lever-
aged 155 cognitive experiments to test the understanding of system stability, gears
and pulley systems, leverage principle, inertia and motion, and fluid mechanics in
26 Vision Language Models (VLMs). Results indicate that VLMs consistently
perform worse than humans on all domains, while demonstrate significant diffi-
culty in reasoning about gear systems and fluid mechanics. Notably, their perfor-
mance on these tasks do not improve as number of parameters increase, suggest-
ing that current attention-based architecture may fail to grasp certain underlying
mechanisms required for mechanical reasoning, particularly those pertaining to
mental simulations.
Keywords: mechanical reasoning; vision language models; model-based reason-
ing; intuitive physics; cognitive AI

1 INTRODUCTION

Humans are uniquely capable of working with complex mechanical systems, ranging from routine
tasks, such as assembling furniture, to large-scale civil endeavors, such as designing architectural
structures and developing advanced technologies (Harari, 2014). These capabilities are underpinned
by the cognitive ability to reason about the relationships and interactions of physical objects, an
ability known as mechanical reasoning (Clark, 2010; Harman, 2011; Vaesen, 2012). While there is
evidence that some animal species demonstrate limited mechanical reasoning, such as understand-
ing basic tool use or object interactions (Shumaker et al., 2011), the human capacity for mechanical
reasoning is unparalleled in its flexibility, sophistication, and creative potential. This distinction
allows humans to innovate, solve complex problems, and adapt tools and systems to a wide range
of environments and challenges (Allen et al., 2020; Allen, 2021). As such, mechanical reason-
ing is a cornerstone of human intelligence, driving technological and cultural progress throughout
history. Implementing mechanical reasoning is therefore a vital step toward developing artificial
intelligence systems capable of achieving human-level performance in real-life scenarios. Given the
rapid advancements in large language models (LLMs), particularly their variants that support visual
operations, i.e. vision language models (VLMs), mechanical reasoning appears to be a critical area
of assessment to evaluate their current reasoning capabilities and identify potential limitations.

Although mechanical reasoning is a high-level cognitive ability that does not emerge until late child-
hood, it has been found to rely heavily on more foundational cognitive strategies (Hegarty et al.,
1988; Kim & Spelke, 1999; Allen, 2021). In particular, decades of research in cognitive science
suggest that mental simulation, the process of constructing and operating mental models of the
world to guide reasoning, is critical for many aspects of mechanical reasoning (Hegarty, 2004).
For example, studies employing methods such as interviews and eye-tracking have revealed that
individuals dynamically construct spatial representations of gear and pulley systems to infer their
properties as they mentally simulate stages of motion (Hegarty, 1992; Lehrer & Schauble, 1998;
Kubricht et al., 2017; Rozenblit et al., 2002). On the other hand, while it remains an ongoing de-
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Figure 1: Sample Tasks on the Six Domains of MechBench. For each domain, GPT4o answered
correctly to the task on the left and failed the task on the right

bate, several studies have indicated that the ability to construct mental models of the world to guide
reasoning, particularly in the context of spatial dimensions, remains significantly underdeveloped
even in state-of-the-art LLMs (Hao et al., 2023; Mitchell & Krakauer, 2023; Goddu et al., 2024;
Gao et al., 2024). Since mental simulations necessitate this model-based reasoning capacity on the
visuospatial domain, a thorough evaluation of the mechanical reasoning capabilities of VLMs could
therefore provide valuable insights into this debate given the critical role of mental simulation in
solving mechanical reasoning tasks.

In the present work, to systematically evaluate VLMs’ mechanical reasoning abilities, we con-
structed the MechBench, which contains around 155 cognitive experiments. The experiments in-
vestigate six generalized domains of mechanical reasoning: system ability, pulley systems, gear
systems, leverage principle, inertia and motion, and fluid mechanics.

2 METHODS

2.1 COGNITIVE EXPERIMENTS

Mechanical reasoning has been widely explored in cognitive psychology and educational research.
This study uses single-image adaptations of classic cognitive tasks from the literature to assess
mechanical reasoning, focusing on six key aspects: system stability, pulley systems, gear systems,
leverage principle, inertia and motion, and fluid mechanics. Example cases on each domains are
presented in Figure 1. This categorization is intentionally designed to encompass the full range of
mechanical reasoning, ensuring each category represents a distinct but fundamental dimension of
physical understanding. Below, we provide explanations for each domain.
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System Stability The understanding of stability is essential for reasoning about states of equilib-
rium within physical systems, such as predicting whether a stack of blocks will remain upright or
collapse (McCloskey, 1983a). In our experiments, models are presented with images of objects like
stools with varying base widths or angles of inclination. The task involves selecting the most stable
configuration. Stability reasoning encompasses factors such as the center of gravity, base area, and
force distribution, making it a critical baseline for evaluating mechanical reasoning.

Pulley Systems Pulley systems are widely used in cognitive psychology and physics education to
study how individuals reason about force and motion (Hegarty & Sims, 1994), requiring an under-
standing of force distribution and machinery functions. For example, a simple task might involve
determining which pulley system requires less effort to lift a weight. By testing VLMs’ ability to
distinguish between fixed and movable pulleys and to predict object movement, we evaluate their
capacity to infer about dynamic relationships within real-life scenarios.

Gear Systems Gear systems are deterministic mechanical setups governed by well-defined rules,
such as adjacent gears rotating in opposite directions and gear ratios determining relative speeds.
These properties make gears an ideal domain for testing logical and causal reasoning (Hegarty et al.,
1988). Tasks in this category involve analyzing diagrams of connected gears to predict their rota-
tional direction and speed.

Leverage Principle The leverage principle illustrates the relationship between force, distance, and
torque. Balance-scale experiments in cognitive psychology have shown how humans progressively
develop an understanding of leverage through iterative learning and application (Peirce, 1992). Tasks
in this category include determining how shifting weights on a seesaw or applying force to a lever
affects balance.

Inertia and Motion Inertia and motion are dynamic aspects of mechanical reasoning that require
understanding how forces influence the movement of objects over time. These concepts are central
to Newtonian mechanics and intuitive physics (McCloskey, 1983b). Human cognition integrates
spatial and temporal information to make predictions about motion and forces, as seen in studies of
tool use and physical reasoning (Allen, 2021). Our experiments include scenarios such as predict-
ing the trajectory of an object on a moving cart or identifying the kinetic energy distribution of a
pendulum. These tasks thereby probe VLMs to integrate information about multiple aspects of the
physical world.

Fluid Mechanics Fluid mechanics involves understanding the behavior of liquids under various
conditions, such as flow, external pressures, and volume changes. Although gounded in the intuitive
understanding of fluid dynamics emerged very early in humans’ cognitive development (Hespos
et al., 2016), reasoning about liquid behaviors in mechanical systems require simultaneous consid-
eration of geometry, force, and dynamics. These tasks represent a highly important dimension of
mechanical reasoning concerning specifically about liquid motions as opposed to solid objects alone.

2.2 MODEL SELECTION AND EXPERIMENT

We evaluated the mechanical reasoning abilities of three categories of VLMs. To ensure a fair
comparison, all VLMs are evaluated on their ability to reason over images and texts under a zero-
shot generation task. A complete list of models is reported in the results section as shown in Figure
2. Model size data are curated at the same time. The models are categorized as follows:

1. Open-source VLMs with Multi-Image Reasoning: Includes models with different sizes
and other variants such as CogVLM Series(Hong et al., 2024), Qwen series(Qwen-VL (Bai
et al., 2023), Qwen-2 (Wang et al., 2024)), and Blip2 (Li et al., 2023), LLaVA-Next (Liu
et al., 2024) , which are capable of reasoning over interleaved multiple images and texts.

2. Closed-source VLMs with Multi-Image Reasoning: Includes proprietary models such as
GPT series (OpenAI) ( GPT-4v, GPT-4-turbo, GPT-4o-mini), Gemini Series (Gem-
ini), and Claude Series (claude). These models also support reasoning across interleaved
images and texts,

3



Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

G
PT

4o
_H

ig
h

G
PT

4V
_T

U
R

B
O

_H
IG

H

Ph
i-3

.5
-V

is
io

n

G
PT

4o
_M

IN
I

Q
w

en
2-

VL
-7

B
-In

st
ru

ct

Q
w

en
2-

VL
-2

B
-In

st
ru

ct

Ph
i-3

-V
is

io
n

O
vi

s1
.5

-L
la

m
a3

-8
B

M
in

i-I
nt

er
nV

L-
C

ha
t-4

B
-V

1-
5

co
gv

lm
-c

ha
t

M
in

i-I
nt

er
nV

L-
C

ha
t-2

B
-V

1-
5

lla
va

-v
1.

5-
7b

-x
tu

ne
r

lla
va

-v
1.

5-
13

b-
xt

un
er

lla
va

-ll
am

a-
3-

8b

O
m

C
ha

t

M
in

iC
PM

-V

M
an

tis
-8

B
-s

ig
lip

-ll
am

a3

Sl
im

e-
7B

Sl
im

e-
8B

qw
en

_c
ha

t

de
ep

se
ek

_v
l_

7b

de
ep

se
ek

_v
l_

1.
3b

m
PL

U
G

-O
w

l3

id
ef

ic
s2

_8
b

ch
am

el
eo

n_
7b

id
ef

ic
s_

9b
_i

ns
tr

uc
t

D
10

51

D
10

52

T1
10

4

D
10

04

D
10

18

D
10

10

D
10

20

D
10

02

D
10

05

0.0

0.2

0.4

0.6

0.8

1.0
Accuracy Comparison: Models vs Humans

Answer Source
Model
Human

Figure 2: Model Performance on MechBench As Compared to Human Performance

3. Open-source VLMs with single-Image Reasoning: Includes models designed to process
a single image alongside continuous text. InstructBlip Series (Dai et al., 2023), LLaVA
Series (Liu et al., 2023a) (Liu et al., 2023b)

In total, we aligned 26 models for evaluation. In order to analyze the reasoning abilities of VLMs,
we asked the models to explain their answers after they have given the answers by adding ”please
provide an explanation” in the prompt.

2.3 HUMAN BASELINE

We recruited a total of 9 participants, all of whom were college students proficient in English. Partic-
ipants were instructed to skip any question that was ambiguously phrased or too complex to answer
within 90 seconds. A question was marked as failed if the participant did not provide an answer.
For each question, at least 80% of participants needed to answer correctly; otherwise, we modified
the question, and new annotators completed the revised version. The human baseline result for each
question was normalized based on the number of participants who provided an answer.

In addition to answering the experimental questions, participants completed a test of visuospatial
fluid intelligence using Raven’s Advanced Progressive Matrices (APM), a widely used non-verbal
assessment tool for evaluating fluid intelligence (Raven et al., 2000). The APM results were col-
lected to explore correlations between participants’ general visuospatial reasoning abilities and their
performance on the experimental tasks.

3 RESULTS

3.1 GENERAL RESULTS

Our study reveals a significant disparity between human and model performance across multiple
evaluation dimensions. As shown in Figure 2 and 3, humans consistently outperform models both in
overall accuracy and in task-specific dimensions. These results highlight the limitations of current
VLMs in replicating human-like reasoning in mechanical and intuitive physics tasks. Among the
evaluating dimensions, Pulley Systems exhibits the largest performance gap, with human accuracy
nearing 90%, compared to model accuracy averaging around 50%.

3.2 HUMAN VS. MODEL PERFORMANCE ACROSS EACH DIMENSIONS

The ANOVA test (F = 11.8111, p < 0.0001) revealed significant differences in human performance
across the six categories. Tukey HSD post-hoc analysis (visualized in the heatmap) shows that the
performance of humans handling the pulley system is significantly different from the other five
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Figure 3: Overall and Dimension-Wise Accuracy: Humans vs. Models. A. For overall accuracy
across tasks, human participants outperform models significantly (p < 0.0001). B. Human partici-
pants consistently outperform models in each dimension (all categories p < 0.001).
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0.9956 0.0190 1.0000 0.9760 0.0016 0.0000

1.0000 0.0002 0.9760 1.0000 0.0000 0.0000

0.0076 0.7874 0.0016 0.0000 1.0000 0.4119

0.0001 0.0253 0.0000 0.0000 0.4119 1.0000

Model Tukey HSD P-values

1.0000 0.3315 0.9999 0.9863 0.9997 0.9988

0.3315 1.0000 0.0195 0.0006 0.0547 0.0168

0.9999 0.0195 1.0000 0.9937 0.9808 0.9999

0.9863 0.0006 0.9937 1.0000 0.7395 0.9997

0.9997 0.0547 0.9808 0.7395 1.0000 0.9444

0.9988 0.0168 0.9999 0.9997 0.9444 1.0000
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Figure 4: Comparison of Tukey HSD P-values for Model and Human Performance Across Dif-
ferent Dimensions. A. The ANOVA results for model performance reveal a significant difference
across the six dimensions (F-statistic = 11.8111, p ¡ 0.0001), indicating that the models exhibit
varying accuracy depending on the task. Tukey HSD tests show that significant differences exist
between several pairs of dimensions, with System Stability, Inertia and Motion, and Fluid Systems
exhibiting large disparities in accuracy. Leverage Principle and Gear Systems show less pronounced
differences. B. Human performance across the six dimensions shows no significant difference (F-
statistic = 1.6809, p = 0.1430). Tukey HSD tests for human performance indicate that none of the
comparisons between different dimensions reach statistical significance, suggesting a more uniform
performance across dimensions.

categories. As can be seen from the heat map, the performance of humans handling the pulley
system is significantly better than the other five categories. In contrast, ANOVA results for model
performance (F = 1.6809, p = 0.1430) indicated no significant differences across task categories.
Tukey HSD analysis further reveals that models exhibited similar accuracy across all categories
with the exception of Fluid System, which deviates significantly with other dimensions. Together,
as shown in Figure 3, the distribution of human performance is narrower, indicating more consistent
accuracy, whereas the models display a wider range of variability.
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Figure 5: The Relationship Between Model Performance and Model Size The six plots on the left
illustrate how model size, as measured by numbers of parameter in the models’ neural networks (log
scale), affects accuracy across six evaluation dimensions. The plot on the right shows the overall
accuracy across tasks.

3.3 RELATIONSHIP BETWEEN MODEL PERFORMANCE AND MODEL SIZE

A widely held belief in the machine learning community is that an increase in a model’s scale,
measured by the number of parameters, leads to systematic improvements in its reasoning abilities
(Sutton, 2019; Kaplan et al., 2020), a concept known as the scaling law. However, this assumption
is an empirical observation without theoretical proof. To evaluate whether the scaling law applies
to mechanical reasoning, we further examined the relationship between model performance on me-
chanical reasoning tasks and model size, as measured by the number of parameters (Figure 5). For
overall accuracy across task, regression analysis yielded a formula y = 0.0821x + 0.4318 (p =
0.0053, R² = 0.2917). This trend was particularly evident in models with parameter counts exceed-
ing 10 billion, such as GPT-4o High and GPT4V-TURBO-HIGH, which consistently outperformed
smaller models. In most of the dimensions (System Stability, Pulley Systems, Leverage Principle,
Inertia and Motion, Fluid Mechanics), accuracy increases with larger model sizes. However, Gear
Systems and Fluid Systems show very weak relationships, with slopes and R-squared values close
to zero (Gear Systems: y = 0.0010x + 0.5547, p = 0.981628, R² = 0.000023; Fluid Systems:
y = 0.0169x + 0.3695, p = 0.787137, R² = 0.003097). These findings suggest that while model
size often correlates with improved performance in many mechanical reasoning domains, some do-
mains may not benefit significantly from increased model scale. This indicates a potential distinction
between the underlying mechanisms across different domains of mechanical reasoning.

Additionally, in conjunction with participants’ scores on the Raven’s Advanced Progressive Matri-
ces (APM), we found that that humans’ performance correlates significantly with fluid intelligence
(Pearson correlation coefficient R2 = 0.24). This holds for all evaluating dimensions with the
exception of System Stability, which exhibited a moderately negative correlation with fluid intelli-
gence (Figure 6). This irregularity likely indicates that tasks in this category rely more on intuitive
judgment than on advanced logical reasoning. This static relationship between System Stability and
fluid intelligence, however, is not replicated between model performance on said domain and model
size. This result potentially indicated a divergence between the underlying process of models and
humans in solving System Stability tasks, where models rely more on scalable abilities as opposed
to intuitive judgment.
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Figure 6: The Relationship Between Human Performance on MechBench and Human Fluid
Intelligence. We further validate our MechBench using correlations with human fluid intelligence,
measured via Raven’s Advanced Progressive Matrices (Raven et al., 2000). Interestingly, System
Ability seems to be an innate cognitive ability that’s orthogonal to human fluid intelligence.

4 DISCUSSIONS

Here, we constructed MechBench, an assay of 155 cognitive experiments that include six aspects
of mechanical reasoning. We investigated VLMs’ ability in reasoning about System Stability, Gear
Systems, Pulley Systems, Leverage Principle, Inertia and Motion, and Fluid Mechanics. Despite
falling behind humans on all domains, in general they achieved significantly above chance perfor-
mance, indicating certain levels of mechanical reasoning abilities.

Notably, VLMs’ performance on two dimensions—Gear Systems and Fluid Mechanics—remains
close to chance and does not improve with increased model size, serving as a counterexample to the
scaling law hypothesis in machine learning (Sutton, 2019; Kaplan et al., 2020). Such a trend indicate
that the underlying architecture of these models is yet to be able to support certain mechanisms
that are required for a system to have mechanical reasoning abilities regarding Gear System and
Fluid Mechanics. Similar trends have previously been reported in VLMs’ performance on level-2
perspective-taking tasks, in which the models are asked to tell how another agent would see the same
spatial arrangement in a perspective different from their own (Gao et al., 2024; Piaget & Inhelder,
1969; Moll & Meltzoff, 2011). Interestingly, like mechanical reasoning, said ability is also known
to be supported by mental simulation in humans (Hegarty, 2004; Zhao et al., 2016). Together,
these findings suggest that VLMs may lack the ability to perform model-based reasoning, possibly
highlighting a fundamental limitation in the architecture of the foundational models used in current
VLMs.

There is however an important concern with this interpretation: if the limitations of VLMs in me-
chanical reasoning are indeed due to their inability to perform model-based reasoning, why do they
not also under-perform in domains like Pulley Systems, which are also known to rely on such rea-
soning? Two possible explanations could account for this discrepancy. Foremost, the role of mental
simulations in mechanical reasoning is known to be mediated by low-level cognitive abilities, such
as intuitions about object relations and motions—often referred to as intuitive physics (McCloskey,
1983a; Kubricht et al., 2017). Intuitive physics involves understanding how objects and substances
in the environment are subject to physical laws without relying on formal, abstract knowledge.
While intuitive physics may draw on domain-general abilities like model-based reasoning, it also
depends on the differential application of key physical principles, such as motion, gravity, and states
of matter (Kaiser et al., 1986; Kubricht et al., 2017). Different domains of mechanical reasoning are
supported by an intuitive understanding of these physical principles. For instance, reasoning about
fluid mechanics heavily relies on understanding liquid properties, which differentiates from that of
solid objects (Kawabe et al., 2015). It is possible that models can perform model-based reasoning
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at a lower level but fail to apply it effectively to certain physical domains, explaining their varied
performance across mechanical reasoning tasks.

On the other hand, it may just be that models have learned shortcuts that allow them to bypass
model-based reasoning when tackling certain domains. Pulley Systems, for example, are heavily
represented in online materials related to physics education. Given that Pulley Systems often in-
volve a small number of components (e.g., fixed and moving pulleys), with limited variety in their
arrangements, models may exploit spurious correlations between benchmark questions and similar
examples already present in their training data. In other words, the performance of models on certain
domains of mechanical reasoning may not reflect genuine, step-by-step reasoning but rather statisti-
cal correlations (Bender et al., 2021; Bleeker et al., 2024). This is supported by the observation that
very large models, such as GPT-4o, perform particularly well on Pulley System tasks, while smaller
models tend to perform much worse.

5 CONCLUSION

In this paper, we presented the first comprehensive assessment of VLMs’ mechanical reasoning abil-
ities. Drawing on experimental paradigms from cognitive science literature, our findings reveal that
current VLMs fail to fully acquire the necessary competencies for mechanical reasoning across vari-
ous domains. Furthermore, the observation that performance on certain tasks does not improve with
increased model size underscores potential fundamental limitations in existing model architectures.
In line with previous research, we specifically highlighted model-based reasoning—the ability to
mentally simulate dynamic relations within physical systems. However, given that mechanical rea-
soning is a high-level cognitive ability reliant on a range of basic cognitive processes, the precise
mechanisms underlying these limitations remain unclear. Further exploration of these mechanisms
could provide crucial insights into the constraints of current AI models and inform the development
of more capable architectures for mechanical reasoning tasks.
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Appendix

A DETAILED ANALYSIS OF MODEL PERFORMANCE ON EACH DOMAINS OF
MECHANICAL REASONING

A.1 SYSTEM STABILITY

A

B

A

C

D

E

F

There are two sets of vertical strip-like objects. Now, if you 
push the upper left part of both sets of objects with your 
hand, which set is more likely to fall over? Please select from 
the following choices:

A. The same; B. Right side; C. Left side Correct Answer: C
GPT4o: C left side. the set of strip-like objects on the right has additional structural 
support in the form of two shorter vertical supports and a horizontal base this added 
support increases the stability of the structure on the right, making it less likely to fall over. 
When pushed in contrast, the set of objects on the left lacks any base or additional 
supports and thus is more susceptible to falling over when pressure is applied.

These stools are the same height. Which is more likely to tip 
over when an active child sits on it? Please select from the 
following choices: 
A. Left one;
B. Right one; Correct Answer: A

GPT4o: B right one.The stool on the right is more likely to tip over when an active child 
sits on it because its legs are splayed at an angle, making the base wider and potentially 
more stable under normal circumstances but also adding a tipping hazard due to the 
non-vertical configuration of the legs if the direction of force isn't managed an active child 
could more easily generate lateral forces that could tip the stool the left stool has straight 
legs that provide a more direct downward support aligned with the force of gravity, making 
it generally more stable and less prone to tipping

Two bridges with different designs: the first bridge is supported by two 
vertical pillars; the second bridge has additional cross-bracing between 
the two pillars for enhanced stability. With a sandbag of equal weight 
placed on each bridge, which bridge is more likely to withstand collapse? 
Please answer with A, B, C and provide an explanation.

A. The first bridge;
B. The second bridge;
C.  Both bridges are equally stable; 

GPT4o: B the second bridge. The second bridge is more likely to withstand collapse 
because it has additional cross-bracing between the two pillars. Cross-bracing increases the 
structural integrity and stability of the bridge by distributing loads more effectively and 
providing resistance against lateral forces.

Correct Answer: B

As shown in the picture, which standing posture is more likely to become tiring 
after standing for a long time? Please select from the following choices:

A. Left side;
B. Right side; Correct Answer: B

GPT4o: b right side. Standing on the toes, as shown on the right side, is more likely to 
become tiring more quickly than standing flat on the feet this position puts more strain 
on the muscles in the feet, calves, and ankles, requiring more effort to maintain 
balance and stability the left side, with feet flat on the ground, provides a more stable 
and less physically demanding stance

As shown in the picture, between the two types of porcelain objects, which one is 
more likely to tip over? Please select from the following choices:

A. The top one;
B. The bottom one Correct Answer: B

GPT4o:A the top on. The likelihood of an object tipping over depends on its center 
of gravity and base width the top porcelain object has a much narrower base and a 
broader top, which raises its center of gravity and makes it more prone to tipping 
over in contrast, the bottom porcelain object has a wider base and a more evenly 
distributed shape, lowering its center of gravity and making it more stable

In this picture, for the same bottle of cola, which placement method is less 
likely to roll, the one on top or the one on the bottom? Please select from the 
following choices:

A. The top one;
B. The bottom one Correct Answer: A

GPT4o: b the bottom one. The bottom placement has the bottle lying horizontally, 
which is less likely to roll compared to the vertical placement (depicted at the top) 
when a bottle is placed horizontally, it has a larger area of contact with the surface, 
creating more friction, which helps prevent rolling conversely, a vertically standing 
bottle (as shown in the top image) has a smaller base area in contact with the surface 
and is more prone to tipping and rolling

Figure 7: VLMs performance on reasoning about mechanical system stability in MechBench
.

VLMs performance in intuitively evaluating system stability is not ideal, however here we observe
some interesting phenomena. Models excel at identifying objects in images, and they not only
understand what the objects are, the models also successfully recognize their mechanical states as
well. Also, the models could effectively connect mechanical descriptions with the corresponding
mechanical scenarios (Figure 7). In Experiments 7B and 7F, the models could recognize the two
chairs and the two bottles, and their mechanical situations; however, the models still failed to provide
the correct answers in the experiments. For instance, in Experiment 7B, the model explains, ”the
stool on the right is more likely to tip over when an active child sits on it because its legs are splayed
at an angle, making the base wider and potentially more stable under normal circumstances but
also adding a tipping hazard due to the non-vertical configuration of the legs”. The model correctly
notices that it’s the angle of the leg that matters for the stability of the system. However, it reasons
completely the opposite way to correct answers. When the leg’s angle wider, it’s actually more
stable. It’s a very intuitive physical problem for humans but the models fail, even though they still
demonstrate step-by-step reasoning abilities in this case. In Experiment 7F, the model is correct that
the bottle on the bottom ”has a larger area of contact with the surface, creating more friction, which
helps prevent rolling”. However, the model fails to realize one bottle is standing, and one bottle is
rolling, and sliding friction and rolling friction are completely different. In contrast, humans can
easily solve these problems intuitively.

12



Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

A
Which pulley system needs the least amount of effort to lift 
the black weight? Please answer with A, B, C and provide 
an explanation.

A. Left Pulley system A;
B. Right Pulley system B;
C. Equal in both systems; 

Correct Answer: A

GPT4o: B. “ in the given diagrams, the left pulley system (a) shows a single fixed pulley, 
while the right pulley system (b) shows a single movable pulley.  This means you only 
need to exert half the force to lift the weight.”

B

A

In the pulley system, if we pull the black rope in the green 
arrow downwards direction, how many read sheaves will 
move? Please select from the following choices: 

Correct Answer: B

A. None of them;
B. One of them will move;
C. Both of them will move;
D. There are three red sheaves that will move

GPT4o: C both of them will move. When you pull the black rope in the direction of the 
green arrow, it will cause the load to lift. Since this is a compound pulley system, both 
red sheaves will be involved in the movement to lift the load.

C In the pulley system, if we pull the black rope in the green 
arrow upwards direction, which red sheave will move?
Please select from the following choices:

A. The Left Red Sheave;
B. The Right Red Sheave;
C. None of them will move;
D. Both of them will move;

GPT4o: B the right red sheave. If you pull the black rope in the direction of the green 
arrow (upwards) on the right side, it will cause the right red sheave to move downwards 
due to the tension in the rope the left red sheave, along with the load it is holding, will 
move upwards thus, only the right red sheave will move downward when pulling the 
rope in the indicated direction

Correct Answer: A

D
In the pulley system, if we pull the black rope in the green arrow upwards direction, 
in which direction the red sheave will go? Please select from the following choices:

A. Going Rightward;
B. Going Leftward;
C. Going Upward;
D. Going Downward;

Correct Answer: C

E How many sheaves will move if we pull the rope on the right? Please select 
from the following choices:

A. 1;
B. 2;
C. 3;
D. None;

Correct Answer: A
GPT4o: B 2;in the shown pulley system, there are a total of three 
pulleys/sheaves, two at the top and one at the bottom attached to the load when 
you pull the rope on the right, the force is transferred through the system of 
pulleys the two upper pulleys are fixed. the bottom pulley, attached to the load, 
will move up or down, depending on whether the rope is pulled or released.

F
If we pull the blue rope on the right, how many purple sheaves will move? 
Please select from the following choices:

Correct Answer: C
GPT4o: D all will move;In the arrangement shown, all the purple sheaves (pulleys) are 
interconnected by the blue ropes when you pull the blue rope on the right, it will cause movement 
in the blue rope, translating to motion in the pulleys through which the rope passes as all the purple 
sheaves are connected via the blue rope system, pulling the blue rope on the right will cause all 
moving parts to engage, leading to the motion of all purple sheaves

A. none will move;
B. one of them;
C. two of them;
D. All will move;

GPT4o: D going downward. In this pulley system, if you pull the black rope upwards in the direction 
of the green arrow, the red sheave will be pulled downward. This is because the pulley redirects the 
force applied to the rope pulling the rope upwards decreases the length of the rope segment on the 
right, causing the sheave to move downward to balance the tension in the rope

Figure 8: VLMs performance on reasoning about pulley systems in MechBench
.

A.2 PULLEY SYSTEMS

We find that current VLMs struggle to handle pulley systems (Figure 8). We observe that there are
generally three failures in VLMs reasoning about pulley systems: first, VLMs are not able to identify
which are the movable pulleys in the system, and second, VLMs exhibit relatively low accuracy in
determining whether an object is rising or falling through pulley systems.

VLMs perform poorly in recognizing movable pulley systems. In Experiment 8A, the image in-
cludes a standard single movable pulley system and a standard single fixed pulley system. The
question ”Which system requires less effort?” is essentially asking whether the model can correctly
select the movable pulley. Clearly, the model failed in its selection, as it straightforwardly provided
an incorrect answer in its explanation. VLMs also struggle in predicting whether a suspended weight
is being lifted or lowered through a pulley system. Experiments 8B-F either directly or indirectly re-
flect this issue, with Experiment 8D being the most direct and concise. In Experiment D, the weight
is directly attached to the movable pulley, and by pulling the other end of the rope, the pulley and the
weight are lifted. However, the model’s response was the exact opposite of the correct answer. In
its explanation, the model seemed to imply that the pulley was not fixed (though it did not explicitly
state that it was a movable pulley), and the physics it provided was entirely incorrect. Therefore,
we can hypothesize that the model’s poor performance in predicting the weight’s movement may be
due to its limited ability to recognize movable pulleys. However, the specific reasons require further
experiments to be analyzed in detail.

The above two issues confirm that VLMs still have limitations in recognizing pulley systems,
whereas for individuals with some mechanical experience, identifying simple pulley systems
through basic diagrams is not difficult (especially in the case of Experiments 8A and 8D).
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A

B

C

D

E

F

The blue gear in the bottom left corner rotates 
counterclockwise. In which direction does the orange 
gear rotate? Please select from the following choices:

A. Clockwise;
B. Counterclockwise;
C. No rotation;

GPT4o: a clockwise. The blue gear in the bottom left rotates counterclockwise. The 
next blue gear so rotates counterclockwise. A small blue gear, meshed with the 
second blue gear, rotates clockwise. The large blue gear, meshed with the small one, 
rotates counterclockwise. The large blue gear is connected by a belt to the first 
orange gear, which rotates counterclockwise. The first orange gear, meshing with the 
second orange gear, makes the second orange gear rotate clockwise.

Correct Answer: A

The gear on the far right rotates clockwise. In which 
direction does the orange gear rotate? Please select 
from the following choices:

A. Clockwise;
B. Counterclockwise;
C. No rotation;

Correct Answer: B

GPT4o: b counterclockwise. identify the gear on the far right, which is rotating 
clockwise. The gear directly to the left of it meshes with the gear on the far right, so it 
must rotate in the opposite direction, which will be counterclockwise following this 
pattern, each gear that meshes with another will rotate in the opposite direction. The 
orange gear meshes with the blue gear next to it, which is rotating clockwise.

The gear on the far right rotates counterclockwise. In 
which direction does the orange gear rotate? Please 
select from the following choices: 

A. Clockwise;
B. Counterclockwise;
C. No rotation;

Correct Answer: B

GPT4o: B counterclockwise. When dealing with a system of gears, adjacent gears 
always rotate in opposite directions. here, the gear on the far right (blue) is rotating 
counterclockwise this means that the middle blue gear, which it meshes with, will rotate 
clockwise. The middle blue gear, in turn, meshes with the orange gear since the middle 
gear rotates clockwise, the orange gear will rotate in the opposite direction, which is 
counterclockwise.

If bar A moves right, how does bar B move? Please select from 
the following choices:

A. Left;
B. Right;

Correct Answer: B

GPT4o: b right. the gears in the image are interlocked, and each one rotates in the opposite 
direction of the gear it is meshed with if bar a moves to the right, it will cause the small gear attached 
to it to rotate clockwise this clockwise rotation of the first small gear will cause the second small gear, 
which it is meshed with, to rotate counterclockwise the counterclockwise rotation of the second small 
gear will then cause the large gear it is meshed with to rotate clockwise finally, this clockwise rotation 
of the large gear will cause the bar b, which is in contact with the large gear, to move to the right

The diagram shows two fixed cogwheels which can only rotate 
around their own axis. A rack is inserted between the two 
cogwheels and is moved in the direction shown by the arrow, 
What are the directions of movement and velocities of revolution 
of the cogwheels? Please select from the following choices:

A. Same direction, same velocities;      B. Same direction, different velocities;
C. Different directions, same velocities;D. Different directions, different velocities

GPT4o: D.The rack and pinion mechanism makes the cogwheels rotate in different directions—red 
cogwheel clockwise, gray cogwheel counterclockwise. Due to the size difference, they rotate at 
different velocities—the larger red cogwheel rotates slower, while the smaller gray cogwheel rotates 
faster, even though the rack moves at a constant speed.

Correct Answer: D

If the green wheel rotates counterclockwise, driving the conveyor belt 
to move, and thereby causing the entire wheel set to move, in which 
direction does the purple wheel rotate? Please select from the 
following choices:

A. Counterclockwise; B. Clockwise Correct Answer: B
GPT4o: b clockwise; if the green wheel rotates counterclockwise, the part of the conveyor belt that 
is in contact with the green wheel moves to the right consequently, with the belt moving to the right, 
the first white wheel must rotate clockwise to accommodate the belt's motion. Following this pattern, 
each successive wheel will rotate in the opposite direction of the previous one therefore, if the first 
white wheel rotates clockwise, the second white wheel will rotate counterclockwise, and so on, 
alternating directions. Since there is an odd number of intermediary wheels, the purple wheel, being 
the sixth wheel from the green one, will rotate in the same direction as the first white wheel, which is 
clockwise hence, the purple wheel rotates clockwise

Figure 9: VLMs performance on reasoning about gear systems in MechBench
.

A.3 GEAR SYSTEMS

On gear and conveyor belt problems, VLMs are able to give highly accurate judgments (Figure 9). In
particular, VLMs can reliably determine the rotation of one pulley based on the direction of another.

Compared to pulley systems, we speculate several reasons why VLMs perform better in gear sys-
tems. First, gear problems typically involve simple mechanical setups with fixed scenarios, meaning
the layout and interactions between gears are often straightforward. This reduces the complexity
for the model when analyzing the system, as it does not need to account for too many variables or
unpredictable changes in the structure. In other words, a gear system could be reduced into a logical
diagram, and solved correctly using that diagram.

Secondly, gear problems rely on a few key physical principles. Specifically, there are two important
rules: adjacent gears always rotate in opposite directions, and smaller gears rotate faster than larger
ones. Unlike problems that involve complex mathematical calculations, these rules are straightfor-
ward for the model to understand and apply consistently. As a result, the model can accurately
analyze and predict gear behavior. Similarly, these physical rules can be reduced to logical rules,
allowing the model to solve the problem using fixed logical principles.
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A

B

A

The person on the left is lower than the person on the 
right. What can the person on the right do in order to 
make the seesaw more level? 

Correct Answer: C

A. Slide forward;
B. Sit up straight;
C. Slide backward;
D. Lean forward; 

GPT4o: A. “A seesaw balances based on the principle of 
leverage. Sliding forward will decrease the distance of the 
person on the right from the fulcrum”

C

D

E

F

Which wrench will make it easier to tighten the bolt? Please 
answer with A, B and provide an explanation.

A. The red can
B. The silver can

GPT4o: B the right one. Explanation: the right wrench has 
a longer handle, which provides more leverage with more 
leverage, it requires less force to achieve the same amount 
of torque on the bolt, making it easier to tighten

Correct Answer: B

Which handle requires less force to lift? Please select 
from the following choices:

A. Right Handle;
B. Left Handle

Correct Answer: B

GPT4o: B left handle. The diagram shows two levers with the same weight 
placed at the same position on both levers the key difference lies in the length 
of the handles the left handle is longer than the right handle according to the 
principles of leverage, the longer the lever arm, the less force is required to lift 
the same weight the length of the lever arm increases the mechanical 
advantage, thereby decreasing the necessary force to lift the weight.

A balance scale is shown in the picture, forcibly kept in equilibrium by hand, with objects of equal 
weight in both trays. The distance from the left tray to the base is less than that of the right tray. 
When the hand is released, will the scale tilt to the right?

Correct Answer: Yes

GPT4o: yes, the scale will tilt to the right. This is because the torque (rotational force) on each 
side depends on both the weight of the objects and the distance from the pivot point (fulcrum) 
although the weights are equal, the distance from the left tray to the pivot point is less than the 
distance from the right tray to the pivot point

In which picture will the scalesread lower (less weight)? Please select from 
the following choices:

A. the upper;
B. the below one;
C. same;

Correct Answer: A

GPT4o: B. In the lower image, the scale is closer to the 30 kg weight, meaning it bears more of the 
weight directly because the fulcrum is farther from the scale in the lower image than in the upper 
image, the scale has to support less torque the distribution of weight in this setup leads to a lower 
reading on the scale in the lower image compared to the upper image therefore, the scale will read 
lower in the below picture

There is a balance scale with a square object on the left tray and a triangular object on the right 
tray. The distance from both trays to the base is equal. If the triangular object is lighter than the 
square object, which way will the balance scale tilt? Please select from the following choices:

Correct Answer: A

GPT4o: A. if the triangular object on the right tray is lighter than the square object on the left 
tray, the left side of the balance scale (where the heavier square object is placed) will go down, 
and the right side (where the lighter triangular object is placed) will go up

A. To the left;
B. To the right;
C. Remain level;

Figure 10: VLMs performance on reasoning about seesaw-like systems and leverage principle in
MechBench

.

A.4 SEESAW-LIKE SYSTEMS AND LEVERAGE PRINCIPLE

We observe diverse behaviors in VLMs on solving seesaw-like mechanical systems and applying
leverage principle (Figure 10). Experiments 10A, 10C, 10D, and 10F involve relatively simple
scene-based question answering and basic extrapolation. Experiments 10A and 10D are straightfor-
ward question-answer tasks. As long as the model identifies the key information in the images—such
as the length of the wrench in Experiment 10A or the unequal torques in Experiment 10D—it can
easily solve the problems. Experiments 10C and 10F involve simple extrapolations based on scene
information, like understanding how changes in the length of the resistance arm affect force in
Experiment 10C or predicting the outcome when the weights on a balance scale are unequal in
Experiment 10F. It is evident that the model performed exceptionally well in these experiments,
providing both correct answers and detailed explanations. However, in Experiments 10B and 10E,
VLMs failed to give the correct answers. We suspect that VLMs struggle when the mechanical
reasoning processes, particularly applying the leverage principle and solving seesaw-like systems,
require multiple steps. For example, in Experiment 10B, while VLMs recognize it is a seesaw-like
system, they fail to understand how to operate within this system: sliding backward would give more
leverage. This reasoning process may require backtracking through several steps: first, identifying
the seesaw-like system; second, understanding how to apply leverage; third, realizing that sliding
backward increases leverage; fourth, recognizing that more leverage is needed to level the system;
and finally, concluding that sliding backward is necessary. The same issue arises in Experiment 5E.
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A

B

A

C A ball is performing simple pendulum motion, where left, 
middle, and right respectively represent the ball being at the 
highest point, middle position, and lowest point. At which 
position will the pendulum normally travel the fastest?

A. left;
B. middle;
C. right;

GPT4o: B. middle;  “In a simple pendulum motion, the pendulum has the 
highest potential energy and the lowest kinetic energy at its highest points (left 
and right positions) as it swings toward the middle position (lowest point)”

Correct Answer: C

D

E

F

If the cart is moving in the direction of the arrow and suddenly 
stops, which direction will the pop fall? Please select from the 
following choices:

A. forward;
B. backward;

Correct Answer: A

GPT4o: A. According to the laws of inertia, an object in motion will stay in motion 
unless acted upon by an external force when the cart is moving and suddenly stops, 
the pop inside the cart will continue moving in the same direction the cart was originally 
moving since the cart is moving in the direction of the arrow (to the left), and it suddenly 
stops, the pop will continue moving forward (to the left) and fall in that direction.

An object is suspended from the ceiling by two thin strings, with 
the ends of the strings fixed at different positions on the ceiling. 
If the right string breaks, how will the object move? Please 
select from the following choices:

A. Swing like a pendulum towards the right;
B. Swing like a pendulum towards the left;
C. Remain stationary;

Correct Answer: B

GPT4o: B. When the right string breaks, the tension in the right string that was 
balancing the weight of the object will be lost as a result, the object will no longer have 
support from the right side and will swing to the left due to the remaining tension from 
the left string the left string will act as a pivot, causing the object to swing like a 
pendulum towards the left

One object is connected to the ceiling by a first thin string, and another object 
is connected to the first object by a second thin string. Is the force on the first 
string greater than on the second one
Correct Answer: Yes

GPT4o: Yes. The force on the first string is greater than the force on the second string this is 
because the first string must support the weight of both objects, while the second string only needs 
to support the weight of the lower object the tension in the first string results from the combined 
weight of the two objects, while the tension in the second string results from just the weight of the 
lower object

A small ball is connected to the suspension of the car through a thin wire. 
According to the state of the ball and the string, does the car remain motionless

Correct Answer: No

GPT4o: No, the car is not motionless the image shows a small ball hanging from a string, and the 
string is slanted backward at an angle relative to the vertical this indicates that the car is 
experiencing acceleration or deceleration if the car were stationary, the string would hang straight 
down due to gravity the backward slant suggests that the car is accelerating forward, causing the ball 
to be pulled backward due to inertia

A small ball is connected to the car's suspension by a thin string. The 
car is moving to the right. Please answer, if the car suddenly stops, the 
ball will: Please select from the following choices: 
A. Remain unchanged relative to the car;
B. Move backward relative to the car;
C. Move forward relative to the car;
Correct Answer: C

GPT4o: B move backward relative to the car. When the car suddenly stops, the ball will continue 
moving forward due to its inertia, as stated by newton's first law of motion relative to the car, which 
has stopped, the ball will appear to move backward this backward motion relative to the car is 
actually the ball continuing to move forward while the car decelerates

Figure 11: VLMs performance on reasoning about inertia and motion in MechBench
.

A.5 INERTIA AND MOTION

We also observe very diverse behaviors in VLMs’ understanding of inertia and motion (Figure 11).
Similar to seesaw-like systems, VLMs are able to identify the mechanical situations in the problem
settings. However, they lack the ability to effectively predict the next step based on the current scene.

Experiment 11E involves scene-based question. The model not only identified that the cart was
not stationary, but it also further analyzed that if the object suspended on the cart were stationary,
it would fall vertically due to gravity. However, the depicted scene likely indicates that the cart
is accelerating forward. Experiments 11A, 11B, and 11D, on the other hand, are cases of simple
extrapolation. They are categorized as ”simple extrapolation” because the scenarios are straightfor-
ward and involve a single, clear change. For example, in Experiment 11A, the change involves the
cart suddenly stopping—a relatively simple scene (involving only two objects, the drink and the cart,
with straight-line motion and vertical force equilibrium). Similar patterns apply to Experiments 11B
and 11D.

Experiments 11C and 11F, however, involve more complex reasoning related to inertia and mo-
tion prediction. Experiment 11F is a derivative question from Experiment 11E, asking what would
happen if the cart suddenly stopped. The suspended object would continue moving forward due
to inertia. Although the scene in Experiment 11F is similar to Experiment 11E, and the question
is similar to that in Experiment 11A, it involves more objects (the pulling rope, the cart, and the
pulled object), more physical principles, and a sudden change in force (as the rope loses tension).
The model clearly struggled with this problem, providing an incorrect answer and an explanation
that did not meet expectations. Notably, Experiment 11C asks a common-sense question based on
pendulum motion. The image in Experiment 11C marks three points in the half-arc of the pen-
dulum’s swing: the highest point, the quarter-arc point, and the lowest point. This information is
also specified in the prompt. However, the model gave an incorrect answer, and its explanation was
confused. The model completely misunderstood the designated points in the diagram and in the
prompt, mistaking the first and third points as the left and right highest points of the pendulum’s
motion and the second point as the lowest point. One possible reason for this error is that the model
may have mistaken the half-arc pendulum motion in Experiment 11C for a full pendulum motion. A
deeper explanation might suggest that the model has issues with perceptual constancy. The image in
Experiment 11C might have been misinterpreted as a 3D scene, and this visual misperception could
be the root of the error. This hypothesis requires further experimentation to be confirmed.
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If a balloon is completely submerged in water by hand, and then let 
go, how will the balloon move? Please select from the following 
choices:

A.  Move upwards in the water;
B.  Move downwards in the water;

GPT4o: A. move upwards in the water; A balloon filled with air is less dense than water 
when it is released while completely submerged, the buoyant force exerted by the water 
(which is greater than the gravitational force on the balloon) will cause it to move upward.

Correct Answer: A

Objects left and right are submerged in separate tanks, bothfilled 
with water. In which tank(Left or Right) will the waterlevel be the 
highest? Please select from the following choices:

A. the Right one;
B. the Left one;

Correct Answer: B

GPT4o: B the left one; Considering that the right object is larger, it will displace 
more water compared to the left object however, because the right object's weight is 
supported by a solid base (it is apparently not floating), only its volume beneath the 
water level causes displacement the volume of displaced water will be less than 
when compared to the left object if we assume the left object is fully submerged or 
floating without a base supporting it.

Will there be water left in the bucket at the end?
Correct Answer: Yes

GPT4o: No. The image shows a bucket with a hole from which 
water is spilling out assuming there is no continuous supply of 
water being added to the bucket, all the water will eventually 
leak out through the hole therefore, there will be no water left in 
the bucket

Two cups contain the same amount of water. A single object is placed into the left cup, 
and two objects are placed into the right cup. Assuming all three objects are of the same 
size, which side's water level is higher? Please select from the following choices:

A. Left side;
B. Right side;

Correct Answer: B

GPT4o: B right side. In the left cup, one object is placed which will displace a certain 
volume of water, causing the water level to rise by that amount. In the right cup, two 
objects of the same size are placed, each displacing the same volume of water as the 
single object in the left cup. Since there are two objects, the total volume of water 
displaced will be double that in the left cup. Therefore, since the right cup displaces 
more water due to the additional object, the water level in the right cup will be higher

Which measure is marked properly?

A. Left;
B. Middle;
C. Right

Correct Answer: C

GPT4o: C right. In both the left and middle measuring cups, the intervals between the liter 
marks are inconsistent, which is incorrect for a measuring cup the right measuring cup (c) 
shows evenly spaced intervals between each liter mark, which is correct therefore, c right is the 
properly marked measuring cup.

Two cups contain the same amount of water. A single object is placed 
into the left cup, and two objects are placed into the right cup. 
Assuming all three objects are of the same size and are completely 
submerged, which side's water level is higher? Please select from the 
following choices:
A. Left side;     B. Right side; Correct Answer: B

GPT4o: B right side. The boat with two dolls will sit deeper in the water compared to the boat 
with one doll this is due to the additional weight of the second doll, which increases the overall 
weight that the boat has to support according to archimedes' principle, the boat will displace an 
amount of water equal to the weight of the boat and its contents therefore, the heavier boat (with 
two dolls) will displace more water and sit deeper in the water than the lighter boat (with one doll)

Figure 12: VLMs performance on reasoning about fluid systems in MechBench
.

A.6 FLUID MECHANICS

The fluid-related experiments involved properties such as fluid flow, buoyancy, and volume. In fluid-
related systems, VLMs still face the aforementioned issues, particularly the challenge of complex
inference. However, a notable highlight is that VLMs have demonstrated impressive scene under-
standing and detail-capturing abilities.

Experiments 12B and 12C highlighted the model’s weaker inference abilities. In Experiment 12B,
the hole in the bucket was positioned at the middle of the bucket’s wall. Clearly, once the water level
drops to the level of the hole, water will stop flowing out, meaning some water will remain in the
bucket. However, the model failed to capture this crucial detail about the hole’s location, leading to
an incorrect answer. Similarly, in Experiment 12C, although the model provided the correct answer,
its explanation was incorrect.

It is worth noting that the model excelled in image comprehension and detail recognition, especially
in Experiments 12D and 12F. In Experiment 12D, the measuring cup had a narrow base and a wider
top, meaning the scale markings could not be evenly spaced. The model successfully captured these
details, including the design of the measuring cup, the distribution of the scale, and the correspond-
ing numerical values and units, offering a detailed explanation. The same can be said for Experiment
12F. The model accurately identified that the balloon was fully inflated with gas and incorporated
the concepts of gas and liquid density to explain the current state and predict the next step of the
experiment.

17


	Introduction
	Methods
	Cognitive Experiments
	Model Selection and Experiment
	Human Baseline

	Results
	General Results
	Human vs. Model Performance Across Each Dimensions
	Relationship Between Model Performance and Model Size

	Discussions
	Conclusion
	Detailed Analysis of Model Performance on Each Domains of Mechanical Reasoning
	System Stability
	Pulley Systems
	Gear Systems
	Seesaw-like systems and Leverage Principle
	Inertia and Motion
	Fluid Mechanics


