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ABSTRACT

In this paper, we focus on an intriguing question: Can existing fine-tuning adapters,
such as LoRA, trained on one model be effectively transferred to its parameter-wise
variants? To investigate this problem, we first examine the technical underpinnings
of widely adopted parameter-efficient fine-tuning methods. Our theoretical analysis
reveals that, due to the strong coupling between adaptation components and base
weights, these methods are vulnerable to weight transformations, leading to un-
satisfactory cross-model performance and potential model-specific overfitting. To
alleviate this issue, we accordingly propose two alternatives, which pose the adap-
tation on the input and output features, respectively, with an explicit decoupling
scheme. In this way, the adaptation components for an unseen base model can be
modulated by its native parameters and thus exhibit more robust transferability.
Notably, the proposed methods can serve as plug-and-play components with merely
one-line code modifications required. Though extremely simple, extensive exper-
iments across a variety of models and applications demonstrate that our method
achieves comparable performance to existing counterparts on the source model and
consistently outperforms them in cross-model transfer settings.

1 INTRODUCTION

Recent years have witnessed dramatic progressions in artificial general intelligence (AGI), fueled
by foundation models in a variety of domains, such as vision Radford et al.| (2021); Rombach et al.
(2022), language |Brown et al.| (2020); Touvron et al.| (2023ajb)); |Grattafior1 et al.| (2024)); |Bai et al.
(2023a)); [Yang et al.| (20244a); Liu et al.| (2024a), audio |Chu et al.| (2024); Yang et al.[(2023), and their
intersections Bai et al.|(2023b)); Wang et al.|(2024b); |[Liu et al.|(2023a). In many practical cases, users
seek to adapt these foundation models into specific domains or equip them with novel concepts Ruiz
et al.| (2023); Han et al.| (2023)); Kumari et al.| (2023)). To address these needs, a series of works
are dedicated to effective model adaptation approaches, particularly parameter-efficient fine-tuning
(PEFT) methods, which adapt pretrained models by modifying only a small subset of parameters or
incorporating lightweight modules |Lialin et al.|(2023); |Hu et al.|(2022); Yeh et al.| (2023); Yang et al.
(2024b)); Meng et al.|(2024); Wang et al.|(2024a); Liu et al.|(2024b). For instance, low-rank adaptation
(LoRA)[Hu et al.|(2022) freezes the pretrained weights and learns low-rank update matrices for each
layer, yielding orders-of-magnitude fewer trainable parameters, e.g., ~ 10, 000 x reduction, while
matching or even exceeding full fine-tuning performance.

Although these PEFT methods have achieved remarkable progress in model adaptation and have
become standard practice in both academic research and industrial deployment, when the underlying
base model changes, it remains unclear whether existing adapters trained on one base model can be
effectively transferred to a different model, and whether current methods achieve optimal performance
in cross-model settings. These scenarios are practical since modern foundation models can be
updated frequently to accommodate novel information and functionalities, e.g., Stable Diffusion
series models Rombach et al.[(2022)); |Podell et al.|(2023); Esser et al.|(2024). However, since existing
fine-tuners are typically designed on a per-model-per-adaptation basis, they have to be retrained on
the original adaptation data for these cases, which is highly cumbersome if not infeasible at all.

To alleviate this dilemma, in this paper, we begin by exploring an intriguing question: Can popular
fine-tuners, such as LoRA, trained on a source model be effectively transferred to its parameter-wise
variants, e.g., models within the same family? Our preliminary studies on diffusion models Ho et al.
(2020); Nichol & Dhariwal| (2021)); Rombach et al.|(2022) indicate that such transferred adapters can
produce plausible images; however, as illustrated in Fig. [T} their performance remains suboptimal
and leaves significant room for improvement.
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(a) Fine-Tuning-Based Personalized Image Generation (b) Adapter-Based Personalized Image Generation
Figure 1: In this paper, we focus on the problem of cross-model adaptation, which concerns how well
a fine-tuner or adapter trained on a source model generalizes to an unseen target model. We propose a
simple yet effective strategy based on input/output feature adaptation, which consistently outperforms
widely used parameter tuning approaches such as LoRA in this setting. Results of fine-tuning-based
and adapter-based personalized image generation are shown here. Images generated by the source
and target models are marked by the blue and orange borders, respectively.

We thus delve into the technical foundations of widely adopted fine-tuners and identify a key
limitation: the adaptation components are tightly coupled with the specific weights of the base model,
which fundamentally hinders their transferability across models. Specifically, consider the case
of applying LoRA to a linear layer with a weight matrix W € R®*?, where c and d denote the
input and output dimensions, respectively. Let X € R™*¢ and Y € R"*? represent the input and
output matrices, where n is the batch dimension. LoRA learns two low-rank matrices A € R¢*" and
B € R™*9, where the rank 7 < min{c, d}. For Y = XW, the forward propagation is updated as:

Y = XW + XAB = X(W + AB), (1)

where the adaptation components A B are applied onto the weight matrix. For a different target model
with the weights W', since the parameter spaces of the source and target can be different, the weight
offsets trained on the source model may not be applicable to the target. In other words, directly
transferring the weight offsets, i.e., W’ + AB, may not be meaningful due to discrepancies between
the parameter spaces of the source and target models.

The above analysis highlights the importance of decoupling the adaptation components from the base
model’s parameters. To this end, we aim at alternative spaces for these adaptation components to
enable effective cross-model transfer of fine-tuners. In this paper, we turn to the input/output feature
spaces of neural networks, motivated by the Platonic Representation Hypothesis (2024),
which indicates that representations in Al models—particularly deep networks—tend to converge.
Recent studies [Yang et al| (2022); Xu et al.| (2024)); [Pan et al| (2023) also suggest that, under certain
circumstances, various network blocks can be treated as functionally equivalent, especially among
those within the same architectural family. Furthermore, in many cases, the feature spaces across
different models are exactly aligned; for instance, a range of text-to-image diffusion models
et al] (2022); [Luo et al.| (20234); [Kim et al.| (2024) utilize the same CLIP text encoder to process input
prompts. Based on these insights, we hypothesize that the feature spaces of neural networks are more
transferable across different models.

Correspondingly, we propose two fine-tuning strategies as shown in Fig. [3} rather than learning
weight offsets, we perform adaptation directly in the input and output feature spaces, i.e., the spaces of
X and Y, respectively. One notable advantage of such designs lies in that the adaptation components
are modulated by the native parameters of the base model, enabling more robust transferability
across models. Moreover, these input/output adapters are not limited to LoRA. Instead, they can
be seamlessly integrated into a wide spectrum of fine-tuning methods, requiring only one-line code
modifications. Despite their simplicity, extensive experiments across diverse models and applications,
including personalized and controllable image generation, architectural adaptation, and large language
models, show that our methods achieve on-par performance with their counterparts on the source
model, while consistently outperforming them in cross-model transfer scenarios. Our contributions
can be summarized as follows:

* We figure out the underlying limitation of popular fine-tuning methods in terms of cross-
model transferability and propose simple yet effective strategies to tackle the challenge;
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» Leveraging the potential consistency of input and output feature spaces, we provide a
theoretical analysis of the applicability and effectiveness of the proposed methods;

* We conduct extensive experiments across a range of models and applications, which demon-
strate that the proposed methods can serve as plug-and-play components for a variety of
fine-tuning strategies, consistently enhancing cross-model transferability while maintaining
competitive performance on the source model.

2 RELATED WORKS

In this section, we review related works from two perspectives relevant to our proposed methods: (1)
parameter-efficient fine-tuning and (2) cross-model fine-tuner transfer.

2.1 PARAMETER-EFFICIENT FINE-TUNING

Given a base model, parameter-efficient fine-tuning (PEFT) techniques Xu et al.|(2023)) aim to adapt
it to a different domain by updating only a small subset of its parameters, which significantly reduces
memory overhead during fine-tuning and is particularly advantageous in low-resource scenarios, such
as for end users. Popular PEFT methods include adapter tuning Hu et al.|(2022); [Sung et al.| (2022),
prompt tuning |Lester et al.|(2021), and prefix tuning|Li & Liang|(2021). In this paper, we mainly
focus on those based on adapter tuning, given its widespread usage in a series of scenarios, such as
visual generation Ruiz et al.|(2023));|Tan et al.| (2024); Luo et al.[(2023b)), language understanding|Mao
et al.|(2025)), and multi-modal tasks|Zhou et al.| (2024).

A representative method in this category, LoRA [Hu et al.| (2022), observes that model updates
often lie in a low-rank subspace and introduces low-rank adaptation modules to achieve parameter
efficiency. Recent studies have explored alternative weight decomposition strategies to enhance
parameter-efficient fine-tuning, including but not limited to magnitude-direction decomposition in
DoRA [Liu et al.|(2024b), singular value decomposition in PiISSA Meng et al.|(2024), CorDA [Yang
et al.| (2024b), and MiLoRA Wang et al.| (2024a), frequency-based decomposition in FourierFT (Gao
et al.|(2024), Hadamard-product-based LoHa|Hyeon-Woo et al.| (2021)), and Kronecker-product-based
LoKr|Yeh et al.| (2023)), and others Qiu et al.| (2023)); |Liu et al.| (2023b); Kopiczko et al.|(2023); [Liu
et al.[(2022).

In this paper, we propose fine-tuning strategies that are orthogonal to existing methods and can serve
as plug-and-play components, easily integrated with them to enhance performance in cross-model
transfer scenarios. Please refer to Sec. [3|for the methodology and Sec. [5|for the experimental results.

2.2 CROSS-MODEL FINE-TUNER TRANSFER

In the literature, we find that there are works tackling the challenge of cross-model fine-tuner transfer
from various perspectives. Lin et al. [Lin et al.|(2025)) reveal that the weight offsets through fine-tuning
are transferable to various base models. However, our theoretical and experimental studies suggest
the limitations of such direct transfer. Wang er al.[Wang et al.|(2024d) and Ran et al. Ran et al.| (2024)
propose training-based solutions to adapt fine-tuners onto various base models, which are different
from the training-free perspective in this paper. Most recently, Farhadzadeh et al. Farhadzadeh et al.
(2025) introduce LoRA-X. This approach exploits subspace consistency between source and target
weights to achieve training-free cross-model fine-tuner adaptation. Nevertheless, the assumption of
consistent parameter subspaces remains strong and may limit generalizability. Moreover, LORA-X
constrains weight updates to a bottleneck matrix of shape r x r or even its diagonal elements, which
inevitably limits its adaptation capacity on the source model compared to LoRA counterparts with
the same forward computational budget.

3 METHODS

3.1 MOTIVATIONS

As mentioned in Sec.[I} the parameter spaces of various models can be different. To verify this claim,
in Fig. [2] we visualize the average pairwise cosine similarity of the common parameters among
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Stable Diffusion v1.5 Rombach et al.|(2022) and its variants Luo et al.|(2023b); |[Kim et al.| (2024).
Results show that, despite originating from the same source model, the fine-tuning process shifts the
parameter spaces of these variants, reducing their robustness to weight offsets trained on the original
model [Lin et al.|(2025]).

Fortunately, we notice that, although parameters
are different, all these models take features pre-
dicted by a common variational autoencoder and
CLIP text model as input, suggesting the feasi-
bility of posing the adaptation to the input space.
Similarly, if the outputs exhibit consistency for
various inputs, it would be beneficial to conduct
adaptation in the output space.
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(a) 20% Layers with the Lowest Cosine Similarity (b) All Layers
Figure 2: Pairwise similarity measurements among

32  INPUT/OUTPUT ADAPTATION variants of Stable Diffusion (SD) v1.5.

Motivated by the above analysis, we introduce the technical details of the proposed input/output
adaptation strategies in this part. Still taking LoRA on a linear transformation layer as an example,
we perform adaptation on its input/output with a couple of learnable low-rank matrices. The input
and output adaptation can be formulated as:

Y =(X+XAB)W and Y =XW + XWAB, )

respectively. Fig. [B(upper) provides an illustration of their workflows, and Fig. [B(below) presents the
corresponding PyTorch-style [Paszke| (2019) pseudo codes. Notably, the proposed strategies require
only one-line modifications to existing LoRA implementations, highlighting their ease in practical
deployment. In terms of efficiency, when the input and output feature dimensions are equal, i.e.,
¢ = d, these modifications incur no additional computational overhead compared to vanilla LoRA.

After training, when we want to deploy the adapter AB on another model, we can simply replace W in
Eq. 2| with the new parameter W’. In contrast to vanilla LoRA, which uses static update components
X AB as shown in Eq. [I] our methods generate output offsets conditioned on the deployed base
weights, thereby benefiting cross-model adaptability. Please refer to Sec. [ for formal analyses.

3.3 PLUG-AND-PLAY COMPONENTS

It is worth noting that, although LoRA is used as an illustrative example to present the proposed
workflows, the underlying insights are broadly applicable to a range of weight adaptation methods,
including full fine-tuning. This part elaborates on how this is achieved. Closely examining Eq.[2] the
computation can be rewritten as:

Y =X(I+AB)W and Y =XW(I+ AB). 3)

Eq.3]indicates that, in the case of LoRA, the proposed input/output adaptation can be interpreted as
injecting low-rank adapters into a linear transformation layer initialized with an identity matrix.

Therefore, the essence of the proposed strategies lies in keeping the base weights fixed while applying
the adaptation to an identity transformation I, which is inserted at the beginning or end of the current
layer in the base model, corresponding to input and output adaptation, respectively. This principle
implies that any adaptation function ®¢, with learnable parameters 6, can be applied to the identity
matrix [ in the same manner as it would traditionally be applied to the base weight matrix W and
initialize the parameters 6. More broadly, for a base layer f parameterized by W, the proposed input
and output adaptation strategies can be formalized as Eqs. [#b]and [Ad] respectively.

Y =f(X;00(W)), (4a) Y = f(f(X;P(1)); W), (4b) Y = f(f(X;W); (). (4c)

We also supplement the expression of popular weight adapters in Eq. [4a|for a clear comparison. If
f is a linear operator, e.g., a linear transformation or convolution, the adaptation components can
be absorbed into the base weights—an inherent property of most PEFT methods—ensuring that the
fine-tuned model maintains the same computational cost as the base model at deployment.
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Figure 3: Illustrative and algorithmic workflows of the base model, vanilla LoRA, and the proposed
input/output adaptation. Blue modules are frozen in training, while orange modules are learnable and
require gradient during adaptation.

4 THEORETICAL ANALYSIS

This section presents theoretical evidence for the effectiveness of the proposed input/output adaptation
schemes in cross-model fine-tuner transfer. Specifically, we examine two scenarios, one assuming
consistency in relative representation similarity and the other assuming consistency in model func-
tionalities between the source and target. The former assumption is widely employed to design
auxiliary supervision signals that accelerate training by aligning feature representations [Yu et al.
(2024)), whereas the latter entails a stronger requirement, typically satisfied when the input and output
spaces of the source and target models are closely aligned, e.g., in diffusion models that leverage
CLIP for conditional encoding.

For the former, consider one linear layer, and the source and target models can be writtenas Y = XW
and Y/ = XW’, respectively. x; and x5 are two feature vectors in the input space of the source
model, and y; and y, are the corresponding output vectors with the parameter W. 2, /, y}, and
y4 are defined for the target model, similarly. Assume that the cosine similarity between x; and x5,
denoted as sim(x1, x2), is equal to that between x} and x5, i.e., sim(x1, xo) = sim(x), x4), and that
so := sim(y1, y2) = sim(y{, y5). The three adaptation strategies in Eqs.[I|and[3|are considered. The
adapters A B are trained on the source model and transferred to the target. Assume that the adaptation
components are L2-regularized, i.e., || AB||3 < . We are interested in the similarity distance between
output vectors produced under various adaptation strategies, i.e., | sim(g, §2) — sim(g, 95)|, where
“ denotes outputs from models after adaptation. The theoretical results concerning the three strategies
are summarized as follows:

Proposition 1. After applying the vanilla LoRA shown in Eq.[I|on both source and target models, the

similarity distance between output vectors satisfies | sim({1, §2) —sim(g7, 95)| < (1+ so) ( HH::I‘/W +
lIx2l| e lIx’ |l

s e 2
Wl T Toc W ux;ww) +0(e%).

Proposition 2. After applying the input or output adaptation shown in Eq.|3|on both source and
target models, the similarity distance between output vectors satisfies | sim (g1, ¥2) — sim(g, 95)] <

4(1+ so) e + O(e2).

The proof and further analyses, including those for the latter scenario, are provided in the appendix.
Intuitively, the above propositions imply that the upper bound of the similarity distance induced by
the proposed input/output adapters is independent of the base parameters of the source and target
models, suggesting a more robust preservation of relative relationships during adaptation transfer.

Revisiting Eqgs. |1| and 3] we observe that the proposed input/output adapters apply linear trans-
formations to the base weights, enabling a broader range of operations—including rotation and
scaling—beyond the pure offset/translation applied in vanilla LoRA. Consequently, in many practical
scenarios, the proposed methods also lead to improved fine-tuning performance on the source models.
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Model SD-v1.5 SD-v3.5 FLUX SD-XL SD-XL (Cross-Ait.)

& Metric CT CI DI CT CI DI CT CI DI CT CI DI CT CI DI
soume | LORA 294 770 578 307 787 652 298 801 679 293 815 694 289 810 .673
ot InputAda 293 777 587 308 785 645 299 797 666 299 806 671 285 815 663

Output Ada. .294 .790 .626 .306 .794 .665 296 .808 .685 .300 .811 .690 .289 .806 .664

LoRA 289 785 .608 301 780 .642 .308 773 626 309 752 592 .307 743 .566
Input Ada. 288 792 .618 .302 .782 .642 .308 .784 .627 .316 .759 592 296 .783 .622
Output Ada. .294 .793 .634 298 .794 .659 306 .789 .639 309 .762 .614 .307 .750 .576

Target
Model

Table 1: Performance in same-model and cross-model settings for vanilla LoRA and the proposed
input/output adaptation strategies on the DreamBooth benchmark.

5 EXPERIMENTS

In this section, we experimentally demonstrate the effectiveness of the proposed input/output adapta-
tion techniques. Sec. [5.1]presents our main results of applying the input/output adaptation on top of
LoRA and a series of PEFT methods in a variety of tasks, including personalized and controllable
image generation, architectural adaptation, and large language models. Section [5.2] presents a further
exploration of the properties of the proposed methods.

5.1 MAIN RESULTS

Fine-Tuning-Based Personalized Image Generation. In personalized image generation—also
known as subject-driven image generation—the goal is to produce images that follow text prompts
while faithfully preserving the identity and appearance of subjects from user-provided images |Gal
et al.[(2022). A line of studies addresses this challenge by fine-tuning pre-trained text-to-image
diffusion models to capture the appearance of given subjects, such as DreamBooth |Ruiz et al.|(2023)
and many following works Kumari et al.|(2023)); |(Chen et al.|(2023a). PEFT techniques are widely
adopted in this field to facilitate this fine-tuning process.

In this paper, we conduct experiments on the popular codebase provided by the Diffusers library jvon
Platen et al.|(2022)) and build a variety of PEFT adapters, including LoRA Hu et al.| (2022)), DoRA Liu
et al.| (2024b)), LoHa Hyeon-Woo et al.|(2021), and LoKr |Yeh et al.| (2023)), upon multiple popular
text-to-image diffusion models, including Stable Diffusion 1.5 Rombach et al.| (2022) (SD-v1.5),
Stable Diffusion XL |Podell et al.| (2023) (SD-XL), Stable Diffusion 3.5-Large [Esser et al.| (2024)
(SD-v3.5), and FLUX 1.dev [Labs| (2024). For cross-model fine-tuner transfer, we consider their
corresponding time-distilled variants, i.e., Latent Consistency Model [Luo et al.|(2023a), SDXL-Turbo,
SD3.5-Turbo Sauer et al.|(2024), and FLUX 1.schnell |Labs|(2024)), respectively, as the target models.

Following common practice, we evaluate performance on the DreamBooth dataset Ruiz et al.| (2023)),
which includes 30 subjects, each represented by 4 to 6 images. For each subject, the base diffusion
model is fine-tuned using the provided images and the prompt “a photo of a [c]”, where [c]

denotes the subject’s class name. The fine-tuned model is then evaluated using 25 diverse textual
prompts, each repeated across 5 random seeds. There are 30 x 25 x 5 = 3750 test cases in total.
For each case, we evaluate three metrics: C-I, D-I, and C-T. C-I and D-TI assess the average
cosine similarity between features of the generated images and the source subject images, extracted
by the CLIP image encoder Radford et al.|(2021)) and the ViT-S/16 DINO encoder |Caron et al.|(2021),
respectively. C—T measures the cosine similarity between the CLIP image features of the generated
images and the CLIP text features of the editing prompts. The average results across all the test cases
are summarized in Tabs. [[land

Through results, we observe that the proposed input/output adaptation methods achieve performance
on par with baseline methods on the source model, while consistently outperforming them in cross-
model transfer setups in terms of CLIP—-I and DINO-I. While our methods may yield slightly lower
CLIP-T scores in some cases, this reflects the inherent trade-off between appearance preservation
and prompt fidelity commonly observed in subject-driven generation [Huang et al.|(2024); Hoang et al.
(2025)). Specifically, as training progresses, the diffusion model tends to overfit to the subject images,
diminishing its responsiveness to text prompts. From this perspective, higher image consistency
potentially indicates better adaptability and generalization of the fine-tuning methods. Qualitative
comparisons in Fig.|l|align with this analysis. Please refer to the appendix for more visual results.
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SD-v1.5 LCM SD-Base SD-Small éD-Tiny Figure 5: Cross-model trans-
Figure 4: Qualitative results of adapter-based personalized image fer results from FLUX-

generation. Compared to transferring weight offsets [Lin et al|(2025), 1.dev to FLUX-1.schnell
the proposed input adapter achieves better cross-model transferability. of OminiControl under the

SD-v1.5 is the source model, and others are unseen target models. Canny edge condition.
PEFT Method LoRA DoRA LoHa LoKr
& Metric

¢t ¢I DI CT CI DI CT CI DI CT CI DI

Param. Ada. 298 801 .679 .303 801 .672 275 819 .697 289 818 .704

i/‘l’:)‘(ricef Input Ada. 299 797 666 .303 .803 676 279 .820 .700 291 810 .682

Output Ada. 296 .808 .685 .300 .810 .689 .281 816 .685 .288 .820 .705
Taee  PAAMAda 308 773 626 314 772 612 288 797 658 305 785 625
1\/?;%121 Input Ada. 308 784 627 311 .775 613 .294 810 .683 .304 786 .630

Output Ada. 306 .789 .639 308 .781 .633 .294 804 .664 .302 .797 .659

Table 2: Performance in same-model and cross-model settings for various PEFT methods and the
proposed input/output adaptation strategies built upon each of them on the DreamBooth benchmark.
The source and target models are FLUX-1.dev and FLUX-1.schnell, respectively.

Adapter-Based Personalized Image Generation. The fine-tuning-based personalized image genera-
tion methods mentioned above require a training process for each individual subject, which results in
limited flexibility and efficiency in practice. To address this drawback, a series of approaches are

dedicated to fine-tuning-free schemes |Li et al.| (2024)); [Shi et al.| (2023)); /Chen et al.| (2023b));[Wang
et al.| (2024c); Wei et al| (2023)); [Ye et al.|(2023). The key idea is to tame an adapter that maps a
subject image into the conditional space of a diffusion model, enabling it to handle arbitrary subject
images during inference in a feed-forward manner.

Although effective, it remains unclear whether an adapter trained on one diffusion model can be
directly applied to a different target model. Empirically, we find that existing methods generally fail
in this setting. In particular, when the source and target models have different dimensionalities, the
adapter often cannot be loaded at all due to misaligned feature spaces. By contrast, our methods
alleviate this issue by leveraging the consistent input space across various text-to-image models.
Specifically, although different diffusion models may have distinct intermediate conditional spaces,
many of them share a common input space. For instance, CLIP text features are used as input across
a range of modern text-to-image models, including SD-v1.5 Rombach et al.|(2022) and its distilled
variants [Kim et al| (2024), SD-XL [Podell et al|| (2023), SD-3.5 [Esser et al.|(2024), efc.

Based on this analysis, we apply the proposed input adaptation method to train the adapter on SD-v1.5
following ELITE. and evaluate its cross-model transferability on the remaining
models. The benchmarks and evaluation protocols follow those described above. Results shown in
Tabs. [3] and [ demonstrate the effectiveness and superiority of our method in this setup. Figs.[T]and[4]
present some qualitative visualizations. Additional visual comparisons can be found in the appendix.

Controllable Image Generation. A variety of works focus on training additional adapters to inject

conditions beyond textual prompts as input to a pre-trained text-to-image diffusion model
(2023); Mou et al.|(2023). We experiment with OminiControl Tan et al.| (2024), a popular FLUX-
based framework for controllable image generation that incorporates low-rank adapters into additional

conditional branches, and explore the transferability of these adapters from FLUX-1.dev to FLUX-
1.schnell[Labs|(2024). In Fig. 5] we present results under the Canny edge condition and report average

SSIM scores over 5,000 validation images from COCO2017 (2014). Our input/output

adaptation methods enhance visual results and deliver notable performance improvements.
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Target Model SD-v1.5 LCM SD-Base SD-Small SD-Tiny
&Metric 't ] pI CT CI DI CT CI DI CT CI DI CT CI DI

Param. Ada. 295 .782 .679 2890 .747 539 297 .663 359 286 .645 323 283 .630 .323
Input Ada. 302 775 668 301 .768 .596 312 .740 .540 .308 .715 .518 .289 .671 .466

Table 3: Quantitative results of adapter-based personalized image generation. Trained on SD-v1.5,
the adapter by our method achieves superior transferability to various target models.

Metric C-T CI1I DI ; i
Metric Img. Text  Two Pos.  Cnt. Sin. Col. Col. Overall

SD-XL 204 766 580 Acc.  Acc.  Obj. Ob;. Attr.
SD-v3.5 323 748 573 Param. Ada. 6573 79.57 84.60 2125 64.06 99.06 81.38 51.50 0.670
Input Ada. 67.13 81.01 87.37 2475 74.69 9844 7872 4750  0.686
Table 4: Cross-model results of Output Ada.  66.00 81.74 84.85 21.00 67.81 9875 79.52 52.00 0.673
our input adaptation on models - -
with large architectural gaps to Table 5: GenEval results by transferring the components for archi-

the source model SD-v1.5. tectural adaptation on FLUX-Dev2Pro to FLUX-1.dev.

Architectural Adaptation. Recent works |Liu et al.| (2024djc) find that it is feasible to accelerate pre-
trained diffusion transformers by replacing the attention modules with their efficient alternatives like
neighborhood attention [Hassani et al.|(2023)). After distillation-based adaptation, the new architecture
can achieve on-par performance with the original one while enjoying better inference efficiency.

Nevertheless, recent findings [Shi| (2024)) show that for guidance-distilled models such as FLUX-
1.dev|Labs|(2024), direct adaptation often yields suboptimal results due to the entanglement introduced
by classifier-free guidance |Ho & Salimans| (2022). For FLUX, it is recommended to conduct
adaptation on its “undistilled” version Flux-Dev2Pro|Ashen0209|(2024) and transfer the adapters to
FLUX-1.dev during inference.

We thus apply the proposed input/output adaptation methods to this setup. The GenEval metrics|Ghosh
et al| (2023) shown in Tab. [5|demonstrate the advantages of the input adapter in this case. Output
adaptation achieves performance comparable to the baseline of transferring weight offsets [Lin
et al.[(2025)). We speculate that it is due to a mismatch in output distributions—with and without
classifier-free guidance.

Large Language Model. We further evaluate the proposed methods on widely used benchmarks for
large language model (LLM) fine-tuning. Specifically, we use CommonsenseQA Talmor et al.[(2018)),
MetaMath |Yu et al.[(2023), and Code-Feedback Zheng et al.| (2024) as training datasets to assess
capabilities in commonsense reasoning, mathematical problem-solving, and coding, respectively. The
evaluation is conducted on the eight sub-tasks of CommonsenseQA, GSM8K |Cobbe et al.| (2021)),
and both HumanEval|Chen et al.|(2021)) and MBPP |Austin et al.| (2021) corresponding to the three
domains. We use Llama-3.2-1B |Grattafior1 et al. (2024) as the source model and its instruction-tuned
variant, Llama-3.2-1B-Instruct, as the target model. Detailed setup here is provided in the appendix.

As shown in Tab. [f] input adaptation outperforms output adaptation and vanilla LoRA in this setting.
We hypothesize that it is due to the similarity in input distributions, whereas the instruction-tuned
target model tends to produce output styles that differ from those of the source model.

5.2 EMPIRICAL STUDIES

Conversion from Vanilla LoRA. We are curious about an interesting question: Can a pre-trained
vanilla LoRA be converted into the proposed input/output adapters, enabling cross-model transfer
without the need for training new adapters? We find that it is theoretically feasible. Taking the output
adaptation in Eq.[3[right) as an example, a vanilla LoRA in Eq.[I]satisfies:

Y = X(W+AB) = XW(I +WT'AB), (5)

where T denotes the pseudoinverse and WWT = I. Since A and B are rank-r matrices, the overall
rank of the term W' AB is at most r, which can also be factorized into two low-rank matrices via
singular value decomposition, i.e., there exist A’ and B’ satisfying A’B’ = W1AB. A’ and B’ can
serve as the parameters in the proposed output adapters.

Unfortunately, our experiments show that it may result in subpar performance. As illustrated in Fig.[6]
transferring LoRA trained on FLUX-1.dev to FLUX-1.schnell [Labs| (2024) in this manner leads to
diminished subject consistency and noticeably degraded image quality. These results indicate that the
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Figure 6: It is infeasible to convert a LoRA model Figure 7 The proposed 1nput/0utput adaptatlon
pre-trained on FLUX-1.dev into the proposed in- strategy can be integrated with existing PEFT
put/output adaptation form via Eq. 5] and then methods, achieving the best of both worlds on

Ours Converted from LoRA Ours Converted fmm LoRA

apply it to FLUX-1.schnell. certain metrics.
Task BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg. GSM8K HumanEval MBPP
Source LoRA 6242 7557 71.65 68.61 68.51 6595 50.68 67.20 6632 2547 213 38.1
Model Input Ada. 62.14 7617 71.65 63.75 69.22 68.98 51.28 66.20  66.17 23.96 23.8 37.0
Output Ada.  62.26  74.37 72.16 67.40 67.17 69.70 5256 67.40 66.63  26.76 213 38.9
Taret LoRA 61.87 60.01 65.56 47.86 60.62 68.10  51.02  60.00 59.38 7.81 34.1 49.2
Moﬁel Input Ada.  61.96 69.26 69.70 54.20 64.96 69.53 52,65 65.80 63.51 16.07 42.1 49.7
Output Ada.  62.17 64.69 65.05 50.95 61.80 68.10 50.94 60.80 60.56  22.59 36.6 484

Table 6: Performance in same-model and cross-model settings for vanilla LoRA and the proposed
input/output adaptation strategies in commonsense reasoning, mathematical problem-solving, and
coding. The source and target models are Llama-3.2-1B and Llama-3.2-1B-Instruct, respectively.

strong coupling between adaptation components and base weights in vanilla LoRA is intrinsic and
difficult to resolve through post-training strategies.

Integration with Vanilla LoRA. In principle, vanilla LoRA learns weight offsets relative to the
base model, whereas the proposed input/output adaptation learns linear transformations in the feature
space. These two mechanisms are complementary and can potentially be combined to harness both
functionalities. The combined input and output adaptation can be implemented as:

Y = X((I + AlBl)W + AQBQ) and Y = X(W(I + AlBl) + AQBQ), (6)

respectively. We conduct experiments on FLUX-1.dev and FLUX-1.schnell [Labs|(2024) using the
output adaptation strategy to illustrate this effect. The total rank is fixed at 4, while we vary the
proportion of rank allocated to each component. As shown in Fig.[7] the best CLIP-T performance
is achieved when 25% of the rank is assigned to output adaptation. This extension allows flexible
control over the trade-off between identity preservation and prompt alignment.

Choices of Adaptation Layers. In practice, prior knowledge of the target model can inform the
choice of feature layers to adapt. For example, in the case of SD-XL [Podell et al.| (2023), if the
target model—such as SDXL-Turbo [Sauer et al.| (2024)—is known to share the same text encoder for
processing input prompts, it is advantageous to focus adaptation on the cross-attention layers, which
primarily govern text-image interactions. The results in Tab. [I] (right) highlight this advantage: when
all attention layers in SD-XL are fine-tuned, output adaptation slightly outperforms input adaptation.
In contrast, when only cross-attention layers are made learnable, input adaptation achieves better
performance, benefiting from the exact alignment of input feature spaces and yielding superior
cross-model generalization.

6 CONCLUSIONS

In this paper, we identify and investigate a fundamental limitation of existing fine-tuning methods,
such as LoRA: their unsatisfactory cross-model transferability due to the strong coupling between
adaptation components and the base model weights. To overcome this issue, we propose sim-
ple yet effective alternatives—input and output adaptation—which decouple the adaptation from
model-specific parameters and instead operate in the input/output feature spaces, by leveraging
the underlying coherence of these spaces across parameter-wise model variants. Our approaches
allow the adaptation components to be dynamically modulated by the target model’s native weights,
thereby significantly enhancing robustness in cross-model transfer scenarios. Our theoretical analysis
supports the effectiveness of the proposed method and highlights its ability to model a broader class
of linear transformations compared to traditional approaches. Notably, the proposed strategies require
only one-line code changes and are compatible with a wide range of PEFT techniques. Extensive
experiments across various models and tasks—such as personalized image generation, architectural
adaptation, high-resolution adaptation, and large language models—demonstrate that our methods
maintain competitive performance on the source model while consistently outperforming existing
approaches in cross-model transfer settings.
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In this part, we provide additional information related to the proposed input/output feature adaptation
methods that cannot fit into the main manuscript due to the page limit, including theoretical proofs,
additional implementation details, additional experimental results, the use of large language models
(LLMs), and impacts, limitations, and future work.

A THEORETICAL PROOF

A.1 ASSUMPTION OF CONSISTENT RELATIVE REPRESENTATION SIMILARITY

We first provide a theoretical proof to Prop. [I] and Prop. [2] of the main manuscript. For better
readability, we summarize the theoretical setups and conclusions here again.

Consider one linear layer, and the source and target models can be written as ¥ = XW and
Y’ = XW/, respectively. x1 and x5 are two feature vectors in the input space of the source model,
and y; and y, are the corresponding output vectors with the parameter W. i, x5, v}, and v}
are defined for the target model, similarly. Assume that the cosine similarity between 1 and zo,
denoted as sim(x1, 2:2), is equal to that between x} and x5, i.e., sim(z1, 22) = sim(z], %), and that
S0 := sim(y1, y2) = sim(y}, y5). The three adaptation strategies in Egs. [[]and[3|are considered. The
adapters A B are trained on the source model and transferred to the target. Assume that the adaptation
components are L2-regularized, i.e., || AB||3 < e. We are interested in the similarity distance between
output vectors produced under various adaptation strategies, i.e., | sim(g1, §2) — sim(g4, 94)|, where
“ denotes outputs from models after adaptation. The theoretical results concerning the three strategies
are as follows:

Lemma 1 (First-order expansion of cosine similarity). Let u,v € R? with |u|| > 0, ||v|| > 0 and

uTv

s(u,v) =

[ullfivi]®

For adaptation components Au, Av € R? one has the exact first-order expansion
s(u+ Au, v+ Av) = s(u,v) + 6 + R,

where the first-order term § is

Au'v+ulAv u'v u'v

0 = - W Au- —— v
[[ull[v]] [[ul]3|[v|] [[alf[v]?

TAv, (7

and the remainder R satisfies R = O(||Aul|? + ||Av|?). Moreover, the following convenient
first-order norm bound holds:

®)

8] < (1+ s<u7v>)<lﬁull N ||Av||> |

[[al| vl

Proof. Define f(u,v) =u'v and g(u,v) = ||uf||[v]|. Then s = f/g. Compute differentials:
df =du’v +u'dv,

and

u'du vidv
dg = ——— [Iv[l + [lull ,
[[ull [ vl

Using the quotient rule for differentials,

d _df-g—f-dg
S*72.
g

Substitute f = u'v and g = ||ul|[|v|| and replace du, dv by specific increments Au, Av to obtain
the formula Eq.[7]

For the bound Eq. [§]apply Cauchy—Schwarz:

[Aulv] < [[Aulf[lv]l,  [uTAv] < [ul| |Av]].
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Also

T

u'v [|Aul| ‘ u'v |Av]|
I

u' Au .
[ vl

< |s(u, v)]

|3VTAV‘ < |s(u,v)|

[[alP]Iv] [lall ™ [fallllv]

Combine these inequalities to get Eq.[§]

The statement that R = O(||Au|? + ||Av||?) follows from the fact that s is C'°° on the open set
{(u,v) : |Ju|| > 0,]|v|| > 0}, hence Taylor expansion with remainder applies. O

To control the remainder quantitatively, we will use a Hessian (second derivative) bound. Write the
gradient components

v u u v
s(u,v)—>, Vys(u,v) = s(u, v)——.
[[ul? IvIl®
Denote by H (u, v) the block Hessian of s (a 2d x 2d matrix with blocks Hy,y,, Huyoy Hyuy, Hyy). A
direct (but routine) calculation of these second derivatives yields that each block can be bounded in
operator norm in terms of ||ul|, ||v|| and |s(u, v)|. A simple coarse (but explicit) bound that suffices
for our purpose is:

Vaus(u,v) =

[[ul[[[v]] [[ul[{lvll

Lemma 2 (Hessian operator-norm bound). Let m := min(||lul|,||v||) > 0. Then for the Hessian
H(u,v) of s at (u, V) one has the operator-norm bound
C + [s(u,v)[)

1H (v op < 500

where one may take e.g. C' = 12 (a conservative explicit constant).

Sketch of proof and explanation of the constant. We only sketch the elementary (but somewhat te-
dious) steps. Differentiate the explicit formulae for Vs and V, s. Each component of the block
derivatives is a linear combination of terms of the following types (schematically):

etc.

Fali™ Al vl v
Each “.” is either a vector of norm < ||u|| or ||v|| or the scalar s(u,v). By repeatedly applying
Cauchy—Schwarz and triangle inequality, one obtains bounds for each block’s operator norm by
expressions of the form C;(1 + |s|)/m?2. Gathering all blocks and using subadditivity of operator
norms yields the stated bound. Choosing C' = 12 is conservative and covers the numerical coefficients
arising from all block contributions. O

Using the integral form of the remainder in Taylor’s theorem (or the mean-value form for vector-
valued functions), we obtain a quantitative second-order remainder bound: for increments Au, Av,

1
|R| < 3 sup [[H(u+ tAu, v +tAv)|op (||Au||2 + ||Av||2).
tel0,1]

Applying Lemmal2]to the point (u + tAu, v + tAv) gives an explicit O(||Au||? + | Av/||?) estimate
whose constant depends on the minimum norms along the segment.

Proposition 1. After applying the vanilla LoRA shown in Eq.|l|on both source and target models, the

similarity distance between output vectors satisfies | sim({1, §2) —sim(g7, 95)| < (1+ so) ( H‘L’:ll‘\/l/f” 4

lIx2]| e lIx e

EAE )
Tea W T T W7 T ux;vv/u) +0(e%).

Proof. Apply Lemmal[l]to the pair (y1,y2) with
Ayl = ZElAB, Ayg = [EQAB

We obtain the expansion

5(91,92) = s(y1,y2) + 01 + Ru,
with &; given by Eq. [7] (with (u,v) = (y1,%2) and Au = 2;AB,Av = 13AB) and |R;| <
3 supyeio.1) 1H (1 + tAy1, y2 + tAYs) [lop ([ Ay [|* + | Aya[?).
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Using Eq. [SJand [|Ay;|| = [|2;AB| < ||2i[[[AB||2 < [|l2ile we get

[E211E szllé‘)

<
811< (L 50) (ST + o

For the remainder R; apply Lemma [2] at the segment points: since every point on the segment
{(y1 + tAy1,y2 + tAys) : t € [0, 1]} has norms bounded below by A,,;, > 0, we have

1 C"(1 + [8|max)
2 A2

min

C/
(IAal* + 1 Age|?) <

[Bal < o Ain(llzall* + loa]|*) €%,

where |$|max denotes the maximum of |s(+, )| along the segment; we can bound 1 + |s|max < 2
conservatively but here absorb it into C’.

An identical argument applies for the primed pair, giving |d2| < (1+s0) (||} |le/|ly1ll + |25 lle/|va 1)
and a remainder Ry bounded by the same style of €2 term (with ||2}]|* + ||z5]*). By the triangle
inequality,

|s(1,92) — (01, 05)| < 101] + [62] + | Ra| + | Ral,

which yields Prop. 1| after combining the 2-terms. O

Remark A.1. The displayed bound separates the linear-in-c contribution (explicit and often dominant
when & < 1) and an explicit quadratic term in £2. Both parts are computable from the data.

Proposition 2. After applying the input or output adaptation shown in Eq.|3|on both source and
target models, the similarity distance between output vectors satisfies | sim (g1, g2) — sim(g], 95)] <
4(1 + s0) e + O(e?).

Proof. For input adaptation, it follows the same route as Prop. [T} Now the adaptation components are
Ayl = $1ABVV, Ayg = IEQABW,

with ||Ay1 || < |lz1|||ABJ2||W]| < ||z1||le]|W ]| (since || AB||2 < ||AB||r = €). Insert these bounds
into Lemmal(I|to get the linear-in-¢ terms; the second-order remainder is handled via Lemma [2]as
before, producing an explicit O(e?) term depending on ||z;||, || W || and the minimal norms of y;, y..

For output adaptation, Ay; = y; AB and ||Ay;| < ||y;||e. Apply Lemmal[l|to each pair to obtain a
linear term bounded by (1 + so)(||y1]le/||y1]| + |y2ll€/||y2]|) for the first pair and similarly for the
primed pair. Summing and controlling remainders as before yields the stated inequality. O

A.2 ASSUMPTION OF CONSISTENT INPUT/OUTPUT FEATURE SPACES

We consider compositional linear models, i.e., Y = X W3 W5, as base models and low-rank adaptation
for our theoretical analysis. Assume that the data, represented as row vectors, are drawn from a
c-dimensional Gaussian distribution with zero mean and covariance matrix ¥ = o217, i.e., x ~
N(0,02I). The adapters are trained on a source model, parameterized by (W7, W5), and tested
on a target model, parameterized by (W], W3). The overall functionalities of the source and target
models are assumed to be similar, with their difference upper bounded in Frobenius norm, i.e.,
WAWs — WIW3|2 < e.

We then consider 3 adaptation strategies: vanilla LoRA, input adaptation, and output adaptation,
applied to either W; or Wgﬂ W1, and W, respectively. The corresponding models are:

Y = X(Wy + AB)Wa, Y = X(I+ AB)WiW,, and Y = XWiWo(I + AB). (9)

We are interested in the output discrepancy between the source and target models after the adapters
are trained on the source model, and summarize the theoretical results as follows:

Lemma 3. The expectation of the output distance between the source and target models before
fine-tuning satisfies By nr(0,021) [l W1Wa — 2 W{W3|13] < oe.

'Without loss of generality, we apply LoRA to W7, as the analysis for the case of W follows analogously.
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Proof. Assume that the random vector z ~ N'(0, 21), and consider two composite linear transfor-
mations: W1 W5 and W{WJ, where the matrices have compatible dimensions. Define:

A =W1Wy — WiWj.
Then,
J}W1W2 — J?W{WQI = ],‘A
We aim to compute the expected squared Euclidean norm:

E [[lzA[3] -

Since z ~ N(0,0%I), and using the known formula for the second moment of a quadratic form of a
Gaussian:

E[zAA 2] = 0 tr(AAT) = 02| A|| 7.
we get:
E [[lzAl3] = oAl

Now, assume that:
[WAWa — WiW3 |7 = A7 =e.

Then the final result is:

E [[laWiWa — 2W{W3|3] = o”e.

O

Proposition 3. After applying the vanilla LoRA on both source and target models, the expectation of
the output distance between them satisfies By (0,02 1)[[|2(W1 + AB)W, — x(W{ + AB)W3|3] <
0?(Ve +||AB||2|[W2 — Wi ).

Proof. Assume a random vector z ~ N (0, o2] ), and let AB be a known fixed linear transformation,
where A and B are matrices with compatible dimensions.

We aim to compute the expected squared distance between two transformations:

x(Wy + AB)W, and x(W/ + AB)WS.
Define:
A = (Wi + ABYWo — (W! + ABYW, = (Wi Ws — WIWL) + AB(Wo — W2).
Let x ~ N(0,021), and let A be any deterministic matrix. Then:
E [|zA[3] = o®[| A
Using Lemma 3}
E [llz(W1 + AB)W, — a(W] + AB)W; 3] = o® (Wi W — W{W3) + AB(W2 = W3)|[.
If |W1 Wy — W{W}||% = &, we can upper-bound:

(W1 Wo = WiW3) + AB(Wy = W)l p < [[WaWo — WiW|[p + [[AB|l2 - [W2 — Wy F,

which gives:

E [|a(W, + AB)Ws — a(W{ + AB)W3|13] < 0 (v + || AB|s|[Wa — Wil £).

O

Proposition 4. After applying the input adaptation Y = X (I + AB)W1 W4 on both source and
target models, the expectation of the output distance between them satisfies By nr(0,021)[||2(1 +

ABYW Wy — x(I + ABYW{W3||3] < o?||I + AB||3¢.
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Proof. Assume a random vector z ~ N(0,02%I), and a fixed known linear transformation 7' =
I + AB, where A and B are matrices of compatible dimensions.

Consider two composite linear transformations: W1 W5, and W{ W3, with

A =Wy Wy — W]W.

Then,

Let z ~ N(0,021), and let A be a deterministic matrix. Then:
E [|zAl3] = o®[I A
Using Lemma[3|with Ay = TA = (I + AB)(W, W, — W{W3), we have:
E [[l2(I + AB)W1 Wy — a(I + AB)W{Wj|3] = E [[lzAr 3] = o*|(I+AB) (Wi Wa—~W{W3)|%.

Using the submultiplicativity of the Frobenius norm:
I(I + AB) (W1 Wy — WiW3)|lp < |1+ AB|lz - [WaiWa = WiWs|p = [T + AB|2 - Ve.

Thus, we obtain the upper bound:

E [|z(I + ABYW1W> — z(I + AB)W{W3||3] < o®||[I + AB|j3 - e.

O

Proposition 5. After applying the output adaptation Y = XW1 Wy (I + AB) on both source and tar-
get models, the expectation of the output distance between them satisfies By zr(0,021) [||[tW1 W2 (1 +

AB) — aW{Wi(I + AB)|3] < o?||I + AB||3¢.
Proof. Assume a random vector x ~ N'(0,021), and let T = I + AB be a known fixed linear
transformation, where A and B are matrices of compatible dimensions.

Consider two composite transformations:
Z‘W1W2T and JUWIIWQ/T
Define the difference:
A=W Wy — WiW5,

so that:
aWAWLT — aW{WiT = zAT.

Let z ~ N(0,021), and let A € R4*™  then:
E [[lzAl3] = o*| A%
Apply Lemma[3|to Ar = AT = (W, W, — W{W3)(I + AB), yielding:
E [[lsW1Wa(I + AB) — aWiW3(I + AB)|3] = E [[|zAr|[3] = o*|[(WiWa—WW3)(I+AB)|[%.
Using the submultiplicativity of the Frobenius norm:
IAT 7 < [Allp - ITll2 = VE - IT + ABl2,
we obtain the bound:

E [|laW1Wa(I + AB) — sW{W5(I + AB)||3] < 0|1 + AB|j3 - .

O

Intuitively, the above propositions suggest that when two models exhibit similar overall functionality,
their outputs—after applying the proposed input/output adapters—also tend to be similar, regardless of
discrepancies at the individual layer level. These properties enhance their cross-model transferability
across various parameter-wise model variants. We include a toy example to further illustrate these
effects in Fig.

19



Under review as a conference paper at ICLR 2026
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v
x X'=(1+4),A=-025
Z'=(wh +AX, Wy =0.5,8=-075

=
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Y=y +8).8=-025
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(a) Original Models

-3 -1 0 1 2 3

(b) Vanilla LoRA

-1 0 1 2 3

(c) Input Adaptation

-1 0 1 2 3

(d) Output Adaptation

Figure 8: A toy example illustrating the theoretical analysis of vanilla LoRA and the proposed
input/output adaptations. The sample follows a 2D “crescent” distribution. The source and target
models are composed of affine transformations with the same overall functionality but different
parameters. Blue, pink, and green points represent the inputs, intermediate features, and outputs,
respectively. In this setting, vanilla LoRA fails to preserve output consistency after adaptation,
whereas the proposed input/output adaptation demonstrates greater robustness.

Model SD-v1.5 SD-v3.5-Large  FLUX-1.dev SD-XL SD-XL (Cross-Att.)
Optimizer AdamW Prodigy Prodigy AdamW AdamW
Learning Rate le-4 1 1 le-4 le-4
Batch Size 4
Training Iterations 500
Rank LoRA: 4/DoRA: 4/ LoHa: 64 / LoKr: 128
Resolution 512
["to_k", ["to_k",
["to_k", "to_q", "to_q",
"to_q", "to_v", "to_v", ["to_k",
Target Modules ) "to_v", ' "to_out.O”., ' "to_out.O”., ':to_q::, ["attn2.t0_k"',
to_out.0", 'add_k_proj", 'add_k_proj", "to_v", "attn2.to_v"]
"add_k_proj", "add_v_proj", "add_v_proj", "to_out.0"]
"add_v_proj"] "add_qg_proj", "add_q_proj",
"to_add_out"] "to_add_out"]
Hardware 1xRTX6000 Ada

Table 7: Detailed configurations of hyperparameters and training setups for the experiments of
fine-tuning-based personalized image generation.

B ADDITIONAL IMPLEMENTATION DETAILS

For reproducibility, we provide detailed configurations of experiments in the main manuscript.

Input/Output Adaptation. The proposed input/output adaptation strategies are implemented by
modifying the source codes of the popular PEFT libraryﬂ The code is under the Apache License
Version 2.0. Specifically, the codes for defining the shapes of the adapters, forward propagation, and
merging the adapter weights with the original ones are modified. The modified files are attached as
supplementary materials.

“https://github.com/huggingface/peft
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Evaluation. The main evaluation is conducted on the DreamBooth |[Ruiz et al.| (2023) dataseﬂ The
dataset is under the license of Creative Commons Attribution 4.0 International, with complete licenses
for all the included images.

Fine-Tuning-Based Personalized Image Generation. The experiments of fine-tuning-based per-
sonalized image generation are conducted on the popular codebase provided by the DreamBooth
example in the Diffusers libraryﬂ The code is under the Apache License Version 2.0. We experiment
with four models: SD-v1.5, SD-v3.5-Large, FLUX-1.dev, and SD-XL. Following convention, we
mainly add adapters to the weights in the attention layers. The detailed configurations like optimizer,
learning rate, batch size, efc. are provided in Tab.

Adapter-Based Personalized Image Generation. The idea of adapter-based personalized image
generation is to tame an adapter that maps a subject image into the conditional space of a diffusion
model. For example, for SD-v1.5, the cross-attention layers are adopted to handle the interactions
between image features and text conditions. A series of methods like ELITE Wei et al.| (2023)) train an
image encoder that encodes a subject image into multiple key-value tokens used for cross-attention.
It is demonstrated that optimizing additional key-value mapping parameters for tokens from subject
images can benefit performance. However, since the dimensions and configurations of cross-attention
layers in various diffusion models are different, the optimized key-value mapping parameters in one
model are inapplicable to other unseen models in general. To handle this drawback, in this paper, we
deploy the proposed input adaptation strategy to this field, since the text embedding spaces in a series
of diffusion models are aligned: multiple diffusion models like the Stable Diffusion series adopt the
CLIP text encoder to encode input prompts.

Specifically, we build the input adaptation strategy based on ELITE |Wei et al.| (2023)) due to its
availability of codes for both training and inference’| The code is under the Apache License Version
2.0. Instead of introducing additional key and value mapping parameters for subject features, we use
the native parameters in the cross-attention layers to handle them. Moreover, we train a mapping
network to encode the subject features into the word embedding space of the CLIP text encoder and
fine-tune the text encoder as well. In this way, the input for diffusion models, i.e., CLIP text features,
are adapted to contain subject-relevant features.

We train the mapping network and the text encoder for 80,000 iterations on 4 RTX6000 Ada GPUs,
which takes around 1 day. Other configurations, including training data, optimization, the structure of
the encoder, etc., follow the default setups of ELITE. SD-v1.5 is adopted in training, while distilled
SD, SD-XL, and SD-3 are adopted in evaluation.

Controllable Image Generation. Recent works like OminiControl Tan et al.| (2024)) achieve con-
trollable image generation through LoRA. By taming a low-rank adapter for each control signal
and concatenating tokens from the control signal with the latent tokens of a pre-trained diffusion
transformer, the generated results are trained to follow the input conditions. In this paper, we build
the proposed input/output adaptation strategies on OminiControﬂ with the Canny edge condition.
The code is under the Apache License Version 2.0. The training is conducted on 2 H100 GPUs for
15,000 steps. Other configurations maintain the same as the original OminiControl. FLUX-1.dev and
FLUX-1.schnell are adopted as training and evaluation models, respectively.

Architectural Adaptation. Recent works like CLEAR |Liu et al.| (2024c) demonstrate that it is
feasible to replace self-attention in a pre-trained diffusion transformer, which results in high inference
latency, especially for high-resolution images, with efficient alternatives like neighborhood attention.
After a distillation-based adaptation process, it turns out that the efficient counterpart achieves
performance comparable to or even better than the original model.

In this work, we adopt the “undistilled” FLUX-1.dev modeﬂ as the teacher model seen during trainin
and evaluate the adaptation components on FLUX-1.dev. Following the default setup of CLEA
which is under the Apache License Version 2.0, the entire to_qg, to_k, to_v, and to_out

3https://github.com/google/dreambooth/tree/main/dataset
*https://github.com/huggingface/diffusers/tree/main/examples/dreambooth
Shttps://github.com/csyxwei/ELITE
Shttps://github.com/Yuanshi9815/0miniControl
"https://huggingface.co/ashen0209/Flux-Dev2Pro
8https://github.com/Huage001/CLEAR
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Model SD-v1.5 SD-XL SD-v3.5 FLUX
PEFT Metric = CT CI DI CT CI DI CT CI DI CT CI DI
Source Param. Ada. 294 770 578 293 815 694 307 787 652 298 801 679

WS InputAda. 293 777 587 299 806 671 308 785 645 299 797 666

Output Ada. .294 .790 626 .300 811 690 306 .794 .665 296 .808 .685

LoRA Taeey  Param.Ada 289 785 608 309 752 592 301 780 642 308 773 626
VRS nputAda. 288 792 618 316 759 592 302 782 642 308 784 627

Output Ada. 294 793 .634 309 762 .614 298 .794 659 306 .89 .639

Source Paam. Ada. 294 772 580 293 815 693 308 782 644 303 801 672

JOUC InputAda. 284 786 609 291 815 690 311 787 651 303 803 676

Output Ada. 294 791 .627 .300 810 .689 305 .795 .665 300 .810 .689

DoRA oo PAAM. Ada. 290 784 607 322 735 538 303 778 642 34 T2 612
S InputAda. 280 790 615 317 751 569 307 784 648 311 775 613

Output Ada. .294 .791 633 321 743 557 299 793 .656 308 781 .633

Souce Param. Ada. 301 759 550 300 808 .677 301 814 .693 275 819 697

OUC nputAda. 302 760 553 297 810 676 302 811 688 279 820 700

Output Ada. 303 774 .595 300 811 671 302 809 683 .281 816 .685

LoHa Taree;  Param.Ada 304 698 429 317 756 591 289 810 690 288 797 658
NS nputAda. 304 709 443 312 767 607 290 810 690 294 810 683

Output Ada. 308 698 430 315 767 607 290 806 676 .294 804 664

ource Param. Ada. 295 788 617 315 757 545 304 805 680 289 818 704

oW InputAda. 295 790 21 312 766 560 305 806 681 291 810 682

Output Ada. 291 .802 .648 319 744 509 302 .813 .691 288 .820 .705

oK o Paam Ada 300 759 560 323 716 483 294 801 676 305 785 625
VMBS nputAda. 299 760 566 321 726 .S01 294 802 678 304 786 630

Output Ada. .300 .770 .588 .323 718 486 .291 .810 .687 .302 .797 .659

Table 8: Full performance in same-model and cross-model settings for various PEFT methods and the
proposed input/output adaptation strategies built upon each of them on the DreamBooth benchmark.
LoRA Rank ! 4 16 64 256
&Metic CT CI DI CT CI DI CT CI DI CT CI DI CT CI DI

Param. Ada. .316 .754 570 .308 .773 .626 .309 .790 .650 .311 777 .621 .309 787 .647
Input Ada. 313 .756 570 .308 .784 .627 308 .794 .653 311 780 .629 306 .789 .647
Output Ada. 313 773 .620 306 .789 .639 306 .791 .654 308 .793 .651 .303 .797 .659

Table 9: Performance in cross-model settings for vanilla LoRA and the proposed input/output
adaptation strategies on the DreamBooth benchmark. The adapters are trained on FLUX-1.dev and
evaluated on FLUX-1.schnell.

matrices are learnable. Therefore, the input and output adaptation strategies are implemented as
Y=X(I+A)WandY = XW (I + A), respectively, where A is learnable and initialized as zero
matrices. The radius of the circular attention window is set as 8, and the down-sampling factor is 8.
The training is conducted on 4 H100 GPUs for 40,000 steps. Other configurations maintain the same
as the original CLEAR.

Large Language Model. In this work, we build the proposed input/output adaptation strategies on the
codebases of DoRA |Liu et al. (2024bﬂ under the Apache License Version 2.0 and PiSSA |Meng et al.
(2024@ for the experiments on the commonsense reasoning task and the mathematical problem-
solving and coding tasks, respectively. All the training and evaluation protocols follow their default
setups.

C ADDITIONAL EXPERIMENTAL RESULTS

Full Results of Fine-Tuning-Based Personalized Image Generation on Various Models and
PEFT Methods. See Tab.[8] Please refer to Fig.[9] for more visualized results.

“https://github.com/NVlabs/DoRA
https://github.com/GraphPKU/PiSSA
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Model & FLUX-1.dev (Source) ~ FLUX-1.schnell (Target) Model & FLUX-1.dev (Source) FLUX-1.schnell (Target)
Metrie CT CI DI CT CI D-I Metric T c1 DI CcT C1 D-I
VanillaLoRA 298 801 679 .308 773 626
X-LoRA 295 793 662 307 777 616

Vanilla LoRA  298+.001  .801+.004  .6794+.006  .308+.001 .773+£.006 .6264.011

InputAda. 2994001 797005 666£.011 308L.002 .784+.004 627+.005
Cuput Ads. 298 T SeE dw T Diff 001+.001  -004+.004 -0I13+.010 0004001 0114003 .001+.006
putAda. 296 . : 306 : Output Ada. 296001 808005 .685-.008 306002 789005 .639+.010
Diff J002£001 0074002 006£.006 -002+.001 016+.002 013004

Table 10: Comparisons with the most

recent work X-LoRA (2024). The Table 11: Results of standard deviation of various random
adapters are trained on FLUX-1.dev seeds. The adapters are trained on FLUX-1.dev and evalu-
and evaluated on FLUX-1.schnell. ated on FLUX-1.schnell.

Subject  Param. Ada. Input Ada. Output Ada. Subject  Param. Ada. Output Ada.

Input Ada.

%Y

a dog with a blue house in the background

Figure 9: More visualization of the proposed input/output adaptation strategies for fine-tuning-based
personalized image generation.

More Results of Adapter-Based Personalized Image Generation. Seen on SD-v1.5, the large-to-
small generalization results are shown in Fig.[T0} and the small-to-large generalization results are
shown in Fig. [TT]

Various LoRA Ranks. See Tab.[9l The conclusion is insensitive to various LoRA ranks.

Standard Deviations. See Tab.[I1] The proposed methods outperform the vanilla LoRA in terms of
cross-model generalization on various random seeds consistently.

Comparisons with the Most Recent Work. We provide comparison results with X-LoRA
(2024), the most recent work on a similar topic. Due to the lack of the source code, we reproduce the
algorithm given the implementation details from the original paper.

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with the ICLR 2026 policy on the use of large language models (LLMs) in paper
writing, we disclose that LLMs were employed solely for language-related purposes. Specifically, we
used LLMs to assist with grammar correction, sentence polishing, and improving the readability of
the text. Importantly, LLMs were not used to generate novel research ideas or draw conclusions.

E IMPACTS, LIMITATIONS, AND FUTURE WORK

Impacts. If not properly regulated, the proposed input/output adaptation frameworks can potentially
be used to generate information with negative social impacts, like fake news, illegal images, efc.
Incorporating existing safe checkers, like the one used in the Stable Diffusion series, is helpful to
alleviate these drawbacks.

Limitations and Future Work. Although this paper introduces the concepts of input and output
adaptation, to keep the scope focused, we do not conduct fine-grained investigations to identify which
layers or blocks in specific models benefit most from each type of adapter. Such explorations, tailored
to specific cross-model transfer scenarios, are valuable directions for future work.
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SD (Seen) LCM Base Diffusion Small Diffusion Tiny Diffusion

Figure 10: More visualization of the proposed input adaptation strategies for adapter-based personal-
ized image generation. SD-v1.5 is the seen model during training, while the others are unseen.
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Subject Input Ada. Param. Ada.
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Figure 11: More visualization of the proposed input adaptation strategies for adapter-based personal-
ized image generation. Results on two unseen models, SD-XL and SD-3, are shown here.
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