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Abstract
This paper introduces Swan, a family of cutting-001
edge embedding models specialized for Ara-002
bic language understanding. We present two003
models, namely Swan-Base and Swan-Large,004
which are further trained using a large-scale005
synthetic corpus. To comprehensively evalu-006
ate our models, we introduce an extensive text007
evaluation benchmark, dubbed ArabicMTEB.008
ArabicMTEB is the largest Arabic text em-009
bedding evaluation benchmark to date, cov-010
ering eight tasks across 74 diverse datasets.011
Additionally, we propose ArabicMTEBLite,012
a lightweight and domain-specific synthetic013
dataset designed for holistic evaluation. Our014
experiments reveal that Swan-Large exhibits015
remarkable text embedding capabilities, con-016
sistently outperforming all open source mod-017
els including, Multilingual-E5-large, across all018
tasks. Furthermore, our efficient model, Swan-019
Base, also surpasses Multilingual-E5-base in020
all evaluated tasks. We also explore the impact021
of synthetic data and the number of hard neg-022
atives on the performance of Swan-Base and023
Swan-Large. Our findings demonstrate that024
Swan-Base offers an optimal balance between025
performance, inference time, and cost. Our026
models will be made publicly accessible for027
research.028

1 Introduction029

Natural language processing (NLP) has recently030

experienced unprecedented growth, prompted by031

significant breakthroughs in deep learning. Cen-032

tral to these advancements is the development of033

sophisticated distributed text representations, in-034

cluding word embeddings and sentence embed-035

dings Devlin et al. (2018); Reimers and Gurevych036

(2019). These embeddings transform sentences037

into vectors or fixed-length representations, enhanc-038

ing their utility in various downstream tasks. The039

prominence of text embeddings, however, extends040

beyond simple text representation as they are piv-041

otal in enhancing the capabilities of large language042

Figure 1: Details of Arabic MTEB

models (LLMs) (Touvron et al., 2023b,a; Jiang 043

et al., 2023; Team et al., 2024) within information 044

retrieval systems using retrieval-augmented gen- 045

eration (RAG) (Shao et al., 2023; rag, 2023).In 046

most RAG systems, the information is extracted 047

from a large document using a light embedding 048

model and that information is passed to LLMs like 049

ChatGPT (OpenAI, 2023) GPT4 (OpenAI et al., 050

2024). Using RAG has shown significant improve- 051

ments in various question-answering tasks (Lin 052

et al., 2023; rag, 2023) as well as various domain- 053

specific tasks (Bhatia et al., 2024; Shi et al., 2023; 054

Lin et al., 2023) 055

The focus of current embedding models, how- 056

ever, remains primarily on English and Chinese 057

texts, posing substantial limitations when adapt- 058

ing these technologies for other languages and for 059

languages with different scripts. Such limitations 060

are especially pronounced in languages with con- 061

siderable linguistic divergence from English, such 062

as Arabic, necessitating tailored approaches to de- 063

velop effective multilingual and language-specific 064

models. This paper explores these themes, focusing 065

on the challenges of extending embedding models 066

to accommodate multilingual contexts and the spe- 067

cific adaptations required for Arabic. 068

Concretely, we offer a number of contributions: 069

(1) We introduce Swan, a family of cutting-edge 070
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embedding for Arabic. We propose two mod-071

els: Swan-Base, based on ARBERTv2 (Elmadany072

et al., 2022) and Swan-Large, based on ArMistral-073

chat, an in-house further trained SoTA Arabic074

LLM that we further trained using a large syn-075

thetic corpus generated using Cohere Command076

R+1 model. We also introduce (2) ArabicMTEB,077

an extensive and massive text evaluation bench-078

mark. ArabicMTEB is the largest Arabic text em-079

bedding evaluation benchmark and the only one080

that measures cross-lingual retrieval for Arabic081

as one language, encompassing eight tasks across082

74 datasets. (3) We introduce ArabicMTEBLite083

a lightweight domain-specific synthetic dataset084

for holistic evaluation of models on various Ara-085

bic domains. (4) Our large model, Swan-Large,086

demonstrates exceptional text embedding capabili-087

ties, achieving SoTA performance by outperform-088

ing Multilingual-E5-large (Wang et al., 2024b) in089

all Arabic tasks. Moreover, our efficient model,090

Swan-Base, surpasses Multilingual-E5-base (Wang091

et al., 2024b) in all Arabic tasks. (5) We also ex-092

plore the impact of synthetic data and the number093

of hard negatives on Swan-Base and Swan-Large,094

demonstrating that Swan-Base is optimized for la-095

tency and performance.096

The rest of the paper is organized as follows: In097

Section 2, we review related work with a particular098

emphasis on Arabic text embedding models, their099

applications and challenges. Section 3 outlines how100

we built our benchmark dataset, ArabicMTEB. We101

present our approach to model training Swan mod-102

els in Section 4. Section 5 is about our experiments103

and model analysis. We discuss our results in Sec-104

tion 6, including the impact of using synthetic data105

and the number of hard negatives, as well as model106

latency. Finally, we conclude in Section 7.107

2 Related Works108

Multilingual text embedding models are essen-109

tial for enabling cross-lingual understanding and110

retrieval tasks. Recent models such as the M3-111

Embedding (Chen et al., 2024) can handle multi-112

ple languages, functions, and input granularities.113

Similarly, Wang et al. (2024b) present the Multi-114

lingual E5 Text Embeddings, which leverage large-115

scale multilingual data for training embeddings ef-116

ficiently in various languages. These developments117

indicate a strong trend towards models that are118

not only efficient but also versatile across linguis-119

1https://docs.cohere.com/docs/command-r-plus

tic contexts. Additionally, the Gecko model (Lee 120

et al., 2024) illustrates the benefits of knowledge 121

distillation from LLMs into a more compact embed- 122

ding model that retains high retrieval performance 123

across languages. 124

Text Embedding Benchmarks play a pivotal role 125

in measuring the progress and effectiveness of text 126

embedding models. The Massive Text Embedding 127

Benchmark (MTEB) (Muennighoff et al., 2022) 128

provides a vast framework for evaluating differ- 129

ent embedding approaches across a wide array of 130

tasks and languages. Xiao et al. (2023) propose a 131

new Chinese Massive text embedding benchmark 132

(C-MTEB) focused on specific Chinese tasks. Sim- 133

ilarly, Wehrli et al. (2024); Mohr et al. (2024) pro- 134

pose benchmarks for German and Spanish text em- 135

beddings, highlighting the specific requirements of 136

language-focused evaluations. 137

Arabic Embeddings and Benchmarks. Specific 138

efforts have been made towards developing and 139

benchmarking Arabic language models and em- 140

beddings. Abdul-Mageed et al. (2020) introduce 141

ARBERT and MARBERT, deep bidirectional trans- 142

formers specifically aimed at a multi-dialectal Ara- 143

bic understanding. These models have set new 144

standards in Arabic by addressing the unique chal- 145

lenges of Arabic varieties. On the benchmarking 146

front, Elmadany et al. (2022) present ORCA, a com- 147

prehensive Arabic language understanding bench- 148

mark that includes multiple datasets and tasks to 149

cover the diversity of Arabic. Furthermore, the 150

Dolphin benchmark (Nagoudi et al., 2023) focuses 151

on Arabic language generation, providing a broad 152

range of tasks to assess the generative capabilities 153

of Arabic models. These initiatives contribute to 154

the field by providing tailored resources and bench- 155

marks that enhance the development of Arabic- 156

specific models. 157

In summary, the works reviewed here collec- 158

tively shape the evolving landscape of text embed- 159

dings, providing insights that can further impact 160

the development of Arabic text embedding models. 161

To our knowledge, our work is the first to focus on 162

Arabic text embedding models, benchmarks, and 163

crosslingual retrieval in one full swoop. 164

3 ArabicMTEB Benchmark 165

In this work, we introduce ArabicMTEB, a compre- 166

hensive benchmark specifically designed for evalu- 167

ating the generality of Arabic text embeddings (Fig- 168

ure 1). Recent years have seen the development of 169

2



Task Datasets Languages Dialects

ArRTR 15 1 4
CRTR 12 6 -
CLF 18 1 6
BTM 12 5 8
RRK 5 2 -
STS 5 1 -
CLR 4 1 -
PairCLF 3 1 -

Total∗ 74 11 9

Table 1: Overview of our Datasets. ArRTR: Arabic
Retrieval, STS: Semantic Textual Similarity, PairCLF:
Pair Classification, CLF: Classification, CLR: Cluster-
ing, RRK: Reranking, BTM: BiTextMining, CRTR:
Crosslingual Retrieval. ∗Total represents the unique lan-
guages.

pivotal datasets for studying Arabic NLP, such as170

ORCA (Elmadany et al., 2023), Dolphin (Nagoudi171

et al., 2023), and MTEB (Muennighoff et al., 2022).172

None of these works, however, has focused on spe-173

cific aspects of Arabic text embeddings models.174

For this work, we curated 74 datasets for evaluat-175

ing Arabic text embeddings. We group the datasets176

based on the capabilities of the embeddings they177

assess. More specifically, we cover the following178

categories: retrieval, re-ranking, semantic textual179

similarity, classification, pair classification, and180

clustering. Each category, drawing datasets from181

varied domains, comprehensively evaluates a spe-182

cific capability of the embeddings. An overview of183

the datasets is in Table 1 and Table 2.184

One central area of focus is the cross-lingual185

transfer of information, and we have specifically186

focused on cross-lingual reranking and retrieval187

tasks in Arabic and six other languages: English,188

German, Spanish, Chinese, Vietnamese, and Hindi.189

As seen from Table 2, our ArabicMTEB is the only190

benchmark to include Arabic and the largest and191

most comprehensive benchmark.192

3.1 Tasks and Evaluation Datasets193

In ArabicMTEB, we assess the capabilities of194

embeddings through various tasks using specific195

datasets. Each dataset is tailored to evaluate dif-196

ferent aspects of embedding performance in real-197

world conditions as we explain next.198

Arabic Retrieval. This task involves using test199

queries to find Top-k similar documents in a large200

corpus. We adopt BEIR’s (Thakur et al., 2021)201

methodology, primarily using NDCG@10 as the202

metric. Here we have 15 different datasets which 203

are long form question-answering datasets from 204

(Nagoudi et al., 2023). We include dialects from 205

Saudi Arabia, Egypt, Yemen and Jordan, along 206

with MSA. Other datasets include MLDR (Chen 207

et al., 2024) and XPDA (Shen et al., 2023), 208

which measure how well embeddings identify top- 209

relevant documents from large corpora that include 210

Arabic. 211

Bitext Mining. This task requires matching sen- 212

tences from two different language collections to 213

identify translations, focusing on dialects and lan- 214

guage pairs such as Moroccan to French and Ara- 215

bizi to English. Datasets for evaluation are taken 216

from Nagoudi et al. (2023). These datasets are orig- 217

inally for code switched machine translation but 218

we adapt them for bitext mining, using cosine simi- 219

larity to score sentence pair matches. Here we have 220

dialects from Algeria, Egypt, Jordan, Lebanon, Mo- 221

roccan, MSA, Saudi Arabia, and Yemen. Our bitext 222

mining collection comprises 12 datasets in total. 223

Cross-Lingual Retrieval. Using Arabic queries 224

to find Top-k similar documents in a corpus in a 225

different language, this task uses the Mmarco Dev 226

set (Bonifacio et al., 2021a), which spans several 227

language pairs from Arabic and six other languages: 228

English, German, Spanish, Chinese, Vietnamese, 229

and Hindi. 230

Re-Ranking. Candidate documents for test queries 231

are re-ranked based on embedding similarity. 232

Datasets such as the MIRACL (Zhang et al., 2022a), 233

which offers a multilingual perspective with an em- 234

phasis on Arabic and English, test the ability of 235

embeddings to reorder documents effectively. Here 236

we have five datasets in total. 237

Semantic Textual Similarity (STS). This task 238

measures the correlation between the embeddings 239

of two sentences. We follow the protocol from 240

Sentence-BERT (Reimers and Gurevych, 2019), 241

primarily using Spearman’s correlation. Datasets 242

like STS17 and STS22 (Cer et al., 2017b) evaluate 243

how well embeddings capture the semantic nuances 244

between sentences.We employ five datasets in this 245

category. 246

Classification. This task utilizes embeddings to 247

predict labels from input data, using datasets like 248

ORCA (Elmadany et al., 2022), which covers Ara- 249

bic classification, including six different dialects, 250

assessing the ability to categorize text into prede- 251

fined labels. This is our largest task with 18 multi 252

domain multi dialectal datasets. 253

Pair-classification. Predicting the relationship be- 254
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Benchmark Language Tasks Datasets #Tasks CRTR Arabic

MTEB English RTR, STS, PairCLF, CLF, RRK, CLR, SUM 56 7 × ✓
C-MTEB Chinese RTR, STS, PairCLF, CLF, RRK, CLR 35 6 × ×
De-MTEB German RTR, STS, PairCLF, CLF, RRK, CLR 17 6 × ×
F-MTEB French RTR, STS, PairCLF, CLF, RRK, CLR, BTM 17 7 × ×
Es-MTEB Spanish RTR, STS, PairCLF, CLF, RRK, CLR 17 6 × ×
Polish-MTEB Polish RTR, STS, PairCLF, CLF, CLR 26 5 × ×

Scand. MTEB
Danish

RTR, CLF, BTM, CLR 26 4
× ×

Norwegian × ×
Swedish × ×

ArabicMTEB Arabic ArRTR, STS, PairCLF, CLF, RRK, CLR, BTM, CRTR 74 8 ✓ ✓

Table 2: Comparison of Massive Text Embedding benchmarks proposed in the literature across the different
covered task clusters. RTR: Retrieval, ArRTR: Arabic Retrieval, STS: Semantic Textual Similarity, PairCLF: Pair
Classification, CLF: Classification, CLR: Clustering, RRK: Reranking, BTM: BitextMining, CRTR: Crosslingual
Retrieval.

tween a pair of sentences using embedding simi-255

larity is tested using datasets such as XNLI (Con-256

neau et al., 2018) and PairCLF (Cer et al., 2017b),257

focusing on understanding relationships between258

sentence pairs. Here use three datasets in this cate-259

gory.260

Clustering. Grouping sentences into clusters us-261

ing mini-batch k-means, this task uses datasets like262

Arabic News Articles which are collected from Al-263

Jazeera and Baly et al. (2018a) stance headings,264

which evaluate the effectiveness of embeddings265

in clustering related content. Here we have four266

datasets. Each dataset in ArabicMTEBis meticu-267

lously chosen to cover a broad spectrum of linguis-268

tic and semantic scenarios, ensuring a comprehen-269

sive evaluation of Arabic text embeddings.270

3.2 ArabicMTEBLite Benchmark271

Due to the large size of the ArabicMTEB, it is not272

feasible to evaluate proprietary embedding models.273

Therefore, we have developed a novel benchmark274

to address the need for robust domain-specific mod-275

els in Arabic information retrieval, specializing in276

domains such as news, finance, legal, medical, and277

general knowledge. This benchmark is light and278

easy to run, yet we believe it represents the clos-279

est evaluation to real-time scenarios. Creation of280

this benchmark involved the conversion of Arabic281

documents from these as well as Wikipedia. We282

split and chunk the documents into texts of 1,024283

lengths. We then randomly select chunks and ask284

GPT4-Turbo (OpenAI et al., 2024) to generate five285

different styles of queries for each chunk. Conse-286

quently, we filter out duplicate and repeated queries287

using GPT4-Omni (OpenAI et al., 2024) to ensure a288

high-quality evaluation dataset. ArabicMTEB con-289

tains a total of 10k queries and 100k documents290

1024 Length
splits

Multi Domain
Arabic 

Documents

Generating
5 queries
per chunk

Filtering and
removing 
duplicates

ArabicMTEBLite

Shuffling
 and chunking

Figure 2: Generation pipeline for our ArabicMTEBLite
Benchmark.

Family Language Dataset Type Size

Monolingual Arabic
Synthetic Paragraph 100K

ORCA Sentence 500K
MMARCO-ar 8.1M

Crosslingual Arabic to 15 Langs MMARCO Sentence 3M
Arabic to 6 Langs XOR-TyDi 20.5K

Multilingual 11 Langs Mr-Tydi Sentence 49K
16 Langs Miracl 343K

Total 12.3M

Table 3: The diverse datasets employed for training our
embedding language models.

from various domains as described above. 291

4 Swan 292

4.1 Training Data 293

We develop the largest training corpus for Arabic 294

embedding models, leveraging a unique assem- 295

bly of datasets to ensure comprehensive linguistic 296

coverage and diversity. Our training strategy em- 297

ploys paragraph-based and sentence-based datasets, 298

meticulously curated from multiple sources, en- 299

hancing the model’s ability to effectively under- 300

stand Arabic text. Table 3 shows an overview of our 301

training datasets. The datasets can be categorized 302

into three main categories: Arabic-specific, cross- 303

lingual, and multilingual. The Arabic-specific 304

datasets focus on enhancing the model’s perfor- 305

mance in handling various forms of Arabic text. 306

Cross-lingual datasets, particularly those facilitat- 307
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Brainstorm a list of potentially useful text retrieval tasks.
Here are a few examples for your reference:
{Example 1}
{Example 2}
{Example 3}
Please adhere to the following guidelines:
Specify what the query is and what the desired documents are.
Each retrieval task should cover a wide range of queries and not
be too specific. Each of them must be in Modern Standard Arabic
and related to the Arabic culture. Do not explain yourself or output
anything else. Be creative!

Cohere

(a) Query Generation

You have been assigned a retrieval task: {task}
Your mission is to write one text retrieval example for this task in
JSON format.
Please adhere to the following guidelines:
The user_query should be paragraph-based, understandable with
some effort or ambiguity, and diverse in topic. The hard_negative
contains some useful information, but it should be less useful or
comprehensive than the positive.

Cohere

(b) Positive and hard negative generation

Figure 3: Methodology to generate our synthetic data.

ing translation between Arabic and 15 other lan-308

guages, are crucial for applications involving mul-309

tiple languages. Finally, the multilingual datasets310

incorporate data from multiple languages, further311

enriching the model’s capability to operate in a312

global multilingual environment.313

Arabic Datasets. We use two primary sources314

of data: ORCA (Elmadany et al., 2023) and315

mMARCO-ar (Bonifacio et al., 2021a). ORCA is a316

compilation of labelled datasets with multiple tasks317

such as semantic text similarity (STS), sentence318

classification, text classification, natural language319

inference (NLI), and question answering. We use320

all the training sets from ORCA, encompassing321

60 different datasets. These datasets are used as322

the Arabic monolingual data after cleaning up323

and de-duplication using the pipeline developed324

by Bhatia (2023), which is further described in325

Appendix D. The de-duplication process removes326

data with a lot of noise. Additionally, we generate327

a 100k paragraph-to-paragraph synthetic dataset328

using the Cohere Command R+ model, which is329

proficient in generating Arabic texts. We used330

the same method as Wang et al. (2023), utilizing331

a large Arabic text dataset comprising 100M332

documents as seed data. This multi-domain seed333

data focuses on various areas such as news, finance,334

medicine, and legal text. The data generation335

process used four A100 GPUs and vLLM (Kwon336

et al., 2023) as the inference accelerator. The337

format of the prompts used to instruct the Co-338

here Command R+ model can be found in Figure 3.339

340

Cross-Lingual Dataset. The mMARCO dataset 341

comprises translations of the MS MARCO dataset 342

into 15 languages (Bonifacio et al., 2021b). To 343

ensure that documents correspond accurately to 344

their queries in different languages, we utilize 345

specific IDs. We create 100k samples for each 346

cross-lingual pair and shuffle the IDs to prevent 347

repetition, thus guaranteeing that unique data 348

samples are employed for each language. 349

350

Multilingual Datasets. We utilize the MIR- 351

ACL (Zhang et al., 2022b) and Mr.TyDi (Zhang 352

et al., 2021) datasets as our multilingual resources 353

to enhance our model’s capability in understand- 354

ing multiple languages, ensuring it performs 355

effectively across various multilingual tasks. 356

4.2 Hard-Negatives Selection 357

To enhance the model’s accuracy, it is crucial to 358

use negative documents closely aligned with the 359

query’s context (Karpukhin et al., 2020). This 360

is achieved by leveraging advanced models such 361

as the multilingual-E5 models from Wang et al. 362

(2024b). The process involves converting all doc- 363

uments into a vector form within the embedding 364

space. Subsequently, these document embeddings 365

are compared using the cosine similarity score to 366

establish their relevance to the query. Once all 367

documents are scored, they are sorted by their sim- 368

ilarity to the query. The top-ranked document is 369

typically the positive example, while the rest are 370

potential negatives. To rigorously test the model’s 371

performance with varying degrees of difficulty, we 372
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systematically select negative samples in increas-373

ing batch sizes—specifically, batches from the set374

{1, 3, 7, 15, 31}. This method allows us to ob-375

serve the impact of introducing more challenging376

or "hard" negatives into the training process. We377

only generate hard negatives for the Arabic subset378

of our training data from Section 4.1.379

4.3 Training Strategy380

Our training recipe is inspired by RankLlama (Ma381

et al., 2023) and the BGE models (Xiao et al.,382

2023). We use LoRA (Hu et al., 2021) for our383

large model’s parameters and full training for the384

small model. We train our models for three epochs385

on the entire dataset, using a learning rate of 5e−6386

and a constant batch size of 128. To optimize per-387

formance, we included seven hard negatives in the388

training process. Further details of the training389

process can be found in Appendix B.390

4.4 Evaluation391

We evaluate our trained model on our Arabic mas-392

sive text embedding benchmark, ArabicMTEB393

(section 3), based on MTEB (Muennighoff et al.,394

2022), with enhanced settings for improved Ara-395

bic understanding. Evaluation is conducted using396

prompts from Table 10, on both ArabicMTEB and397

ArabicMTEBLite. For document retrieval tasks,398

we use NDCG@10 to measure retrieval quality. Bi-399

text Mining employs the F1 score for sentence pair400

alignment. Re-ranking of documents uses the MAP401

score for ordering candidate documents. Semantic402

Textual Similarity (STS) uses Spearman’s corre-403

lation for semantic similarity, while Classification404

and Pair-classification tasks use average precision.405

Clustering employs the V-measure score to assess406

cluster coherence.407

5 Experiments408

This paper introduces two models, Swan-Base built409

with ARBERTv2 (Abdul-Mageed et al., 2021a)410

and Swan-Large based on an in-house further411

pretrained Mistral-7B model(Jiang et al., 2023),412

dubbed ArMistral-7B. As seen from Elmadany413

et al. (2022) ARBERTv2 is a powerful SoTA414

Arabic NLU model pretrained on a 30B tokens415

dataset. We further pretrain Mistral-7B using a416

35B tokens large corpus of Arabic text datasets417

which we clean, filtered and de-duplicate using418

an in-house pre-processing pipeline as described419

in Appendix D. We then instruction finetune the420

model using a large dataset of instructions from421

Huang et al. (2024) and align it using DPO and 422

SimPO (Rafailov et al., 2023; Meng et al., 2024). 423

This model is a top-performing model in all Ara- 424

bic generation tasks, and we have shared our in- 425

house results in Appendix A. We also compare the 426

performance of our models to 12 other baseline 427

models. We evaluated with two versions of MAR- 428

BERT (Abdul-Mageed et al., 2020), two versions 429

of ARBERT (Abdul-Mageed et al., 2021b), two ver- 430

sions of ARBERTv2 (Elmadany et al., 2022), four 431

versions of CamelBERT (Inoue et al., 2021) and 432

four versions of the multilingual E5 models (Wang 433

et al., 2024b,a). 434

5.1 ArabicMTEB Results 435

We present the results of our evaluation on all tasks 436

in Table 4. 437

Swan-Base. With a smaller size of 164M param- 438

eters, Swan-Base shows strong capabilities, par- 439

ticularly in classification, where it outperforms all 440

other models with a score of 57.34. This model 441

also performs robustly in Pair classification (74.93) 442

and achieves a respectable average of 57.21. Since 443

Swan-Base is based on ARBERTv2, which per- 444

forms well on classification tasks, our model fur- 445

ther improves the results on ARBERTv2 scores. 446

Swan-Large. Swan-Large, 7.23B parameters, out- 447

performs all other models in most of the evaluated 448

tasks. It scores highest in Retrieval (65.63), Pair 449

classification (75.62), and Bitext mining (71.24), 450

with an impressive average score of 62.11. Its per- 451

formance in STS is also noteworthy, achieving a 452

close second-highest score (59.10), marginally be- 453

low the best-performing model in this category. 454

This strong performance shows the efficacy of our 455

training data as well as our use of a larger LLM 456

based on the ArMistral-7B, which has been exten- 457

sively trained on a diverse Arabic dataset. 458

The comparison also includes several versions of 459

well-known Arabic encoder models such as MAR- 460

BERT, ARBERT, ARBERT-v02, CamelBERT, and 461

the multilingual E5 series as seen in Table 11. No- 462

tably, the multilingual-e5-large model emerges as 463

a strong overall model, securing the second-best 464

average score (61.65) and excelling in STS (59.45) 465

and Re-ranking (70.79). 466

5.2 ArabicMTEBLite Results 467

We compare the Swan models with proprietary 468

models by OpenAI and Cohere. These two are 469

considered the SoTA in the area of embedding 470

models. As seen from Table 5 Swan-Large per- 471
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Model Size Dim. RTR STS PairCLF CLF RRK CLR BTM Avg.

ARBERTv2 164M 768 15.12 37.88 62.87 56.85 62.21 39.25 1.99 39.45
text2vec-base-multilingual 118M 384 27.69 59.37 71.41 47.94 57.76 37.26 38.32 48.54
LaBSE 471M 768 34.98 54.15 70.60 49.57 62.17 41.42 33.28 49.45
multilingual-e5-small 118M 384 55.14 56.73 73.97 50.85 67.92 42.37 38.47 55.06
multilingual-e5-base 278M 768 56.91 57.99 74.30 52.30 69.07 42.56 33.90 55.29
Swan-Small 164M 768 58.42 58.44 74.93 57.34 68.43 40.43 42.45 57.21

e5-mistral-7b-instruct 7.11B 4096 56.34 57.02 70.24 53.21 66.24 39.44 70.50 59.00
multilingual-e5-large 560M 1024 64.01 59.45 75.06 53.43 70.79 42.49 66.33 61.65
Swan-Large 7.23B 4096 65.63 59.10 75.62 52.55 69.42 41.24 71.24 62.11

Table 4: ArabicMTEBResults Here we compare our models in two different classes small and large. ArRTR: Arabic
Retrieval, STS: Semantic Textual Similarity, PairCLF: Pair Classification, CLF: Classification, CLR: Clustering,
RRK: Reranking, BTM: BiTextMining, CRTR: Crosslingual Retrieval.

Model News Legal Medical Finance Wikipedia Avg Cost

Openai-3-large 88.10 89.68 80.24 61.46 91.52 82.20 3.88$
Swan-Large 90.42 87.90 79.64 55.34 93.10 81.28 0.75$
Cohere-v3.0 85.23 86.52 63.27 42.80 90.96 73.76 1.54$

Swan-Base 81.55 78.86 70.97 42.48 80.46 70.86 0.44$
Openai-3-small 71.42 85.23 71.50 32.90 82.20 68.65 1.75$
Cohere-light-v3.0 70.32 86.83 67.68 22.68 90.34 67.57 0.55$
Openai-ada-002 65.34 81.83 71.76 39.62 76.79 67.07 1.66$

Table 5: ArabicMTEBLite Results.

forms competitively with text-embedding-3-large472

(with an average score of 81.28 for Swan-large473

compared to 82.20 for text-embedding-3-large).474

We also see that Swan-Large outperforms embed-475

multilingual-v3.0 by Cohere, a very strong multi-476

lingual model. Our Swan-Base outperforms text-477

embedding-3-small, text-embedding-ada-002 by478

OpenAI and embed-multilingual-light-v3.0 by Co-479

here in terms of performance on ArabicMTEBLite.480

Table 5 also shows that models struggle to find the481

right documents in the financial domain, suggest-482

ing further scope for improvement through building483

domain-specific models (Bhatia et al., 2024).484

In addition, we show the cost of evaluating these485

models on ArabicMTEBLite, which contains 10k486

queries and 100k documents using the OpenAI487

and Cohere APIs. We evaluate Swan models on488

a single V100 32 GB GPU, which costs 2.30$ an489

hour. As Table 5 shows, our models are the most490

economical in the entire range and have very strong491

performance. When comparing the performance-492

cost trade-of, our models emerge as much better493

suited than OpenAI and Cohere models.494

6 Discussion495

In this section, we explore the effects of (i) incor-496

porating synthetic data and (ii) varying the number497

of hard negatives on our models. We also evaluate498

and compare the latency of all the models.499

Impact of Hard Negatives: Hard negatives are500

Model (HN) 1 3 7 15 31

Swan-Base 48.84 52.19 54.13 56.25 51.93

Swan-Large 59.48 59.35 60.42 59.44 59.83

Table 6: Impact of number of Hard Negatives (HN).

challenging examples that are nearly correct but ul- 501

timately incorrect, forcing the model to learn more 502

nuanced distinctions between the different classes. 503

Our experiments focuse on assessing the impact 504

of varying the hard negatives used while training 505

our models, Swan-Large and Swan-Base. We train 506

each model with different quantities of hard nega- 507

tives. Namely, we experiment with using 1, 3, 7, 508

15, and 31 hard negatives per training instance. 509

Swan-Large show a peak in performance with 510

60.42 when trained with seven hard negatives, indi- 511

cating an optimal level of challenge that enhances 512

learning without overwhelming the model. Inter- 513

estingly, further increases in hard negatives does 514

not improve performance, suggesting a threshold 515

beyond which additional complexity does not trans- 516

late to better learning outcomes. 517

Swan-Base reaches its highest performance at 518

56.25 with 15 hard negatives. This model shows a 519

general upward trend in performance as the number 520

of hard negatives increases, peaking at 15, but then 521

declining slightly when the number is increased 522

to 31. This pattern suggests that while additional 523

hard negatives initially provide beneficial learning 524

challenges, there can be a point of diminishing re- 525

turns where too much complexity hinders further 526

learning. 527

Impact of Synthetic Data. Synthetic data has 528

become increasingly popular in training machine 529

learning models, particularly when real-world data 530

is scarce or lacks diversity. This approach aims to 531

enhance the models’ ability to generalize across 532
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Model RTR STS PairCLF CLF RRK CLK BTM Avg.

Swan-Base 15.12 37.88 62.87 56.85 62.21 39.25 1.99 39.45
+ Arabic 28.39 41.49 70.25 51.89 68.57 39.12 18.74 45.49
+ Synthetic 31.07 55.78 74.23 54.27 68.88 39.43 18.19 48.84

Swan-Large 44.46 48.63 72.34 50.43 69.39 38.28 44.2 52.53
+ Arabic 54.53 52.93 75.24 52.54 70.49 40.21 48.35 56.33
+ Synthetic 56.34 57.89 76.90 50.21 70.92 41.76 62.34 59.48

Table 7: Impact of using Synthetic data.

different contexts and improve their robustness533

against unusual or rare linguistic patterns. As534

shown in Table 7, the incorporation of synthetic535

data impacts the performance of both models across536

all tasks. For the Swan-Base model, adding syn-537

thetic data resulted in substantial improvements538

in several key performance metrics: Retrieval saw539

an increase from 15.12 to 31.07, Semantic Textual540

Similarity jumped from 37.88 to 55.78, and Pair541

Classification from 62.87 to 74.23. The notable542

boost in STS is particularly significant, suggesting543

that the synthetic data helps the model better under-544

stand and process complex semantic relationships545

within texts. For the Swan-Large model, the results546

are similarly encouraging. The model performs547

better across all evaluated tasks when trained with548

synthetic data. For instance, the score in Bitext549

Mining soared from 44.20 to 62.34, highlighting550

a major improvement in the model’s capability to551

identify and align text pairs across languages, an552

essential task for evaluating the quality of machine553

translation. Moreover, synthetic data helped to el-554

evate the model’s performance in STS from 48.63555

to 57.89 and in Pair classification from 72.34 to556

76.90.557

Inference Latency. Inference latency is very558

critical in deploying machine learning models, es-559

pecially in real-time applications with crucial re-560

sponse time. It refers to the time taken by a model561

to predict received input. In the context of text562

embedding models such as Swan-Base and Swan-563

Large, lower latency is particularly valuable for564

user-facing services that rely on fast processing of565

natural language input, such as chatbots and search566

engines. From Figure 4, we find that Swan-Large,567

despite its larger size indicated by a larger bubble,568

has optimized inference times due to architectural569

efficiencies, and Swan-Base strikes the perfect bal-570

ance between size, performance, and latency. We571

compare the performance of the models from Ta-572

ble 4.573

Figure 4: Latency vs Performance.

7 Conclusion 574

In this paper, we introduced Swan-Large and 575

Swan-Base, along with the comprehensive Ara- 576

bicMTEB benchmark for evaluating Arabic text 577

embeddings. Our models demonstrate outstanding 578

performance, benefiting from the strategic use of 579

hard negatives and synthetic data in training. These 580

approaches enhance model robustness and gener- 581

alization capabilities, essential for handling com- 582

plex linguistic scenarios. Additionally, our models 583

achieves efficient inference times, making them 584

suitable for real-time applications. These results 585

set new benchmarks in Arabic text embeddings, 586

paving the way for future advancements in multi- 587

lingual text analysis. 588

8 Limitations 589

While the development of the Amwaj models and 590

the introduction of the ArabicMTEB benchmark 591

mark significant advancements in Arabic text em- 592

beddings, there are some limitations to consider: 593

• Synthetic Data Dependency: The reliance 594

on synthetic data for training and evaluation, 595
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while beneficial in some respects, introduces596

potential biases and does not fully capture the597

diversity and complexity of real-world data.598

This could lead to models that perform well on599

synthetic benchmarks but may not generalize600

as effectively in real-world applications.601

• Cross-Lingual Performance: Although the602

Amwaj models demonstrate strong perfor-603

mance in cross-lingual tasks, the evaluation is604

primarily focused on a limited set of language605

pairs. The generalizability of these results to606

a broader range of languages, especially low-607

resource languages, remains uncertain.608

• Dialectal Variations: Arabic is a highly di-609

alectal language, and while the models incor-610

porate multiple dialects, the coverage and per-611

formance across all major dialects are not uni-612

formly robust. This could affect the usability613

of the models in regions where certain dialects614

predominate.615

• Inference Latency: Despite optimizations,616

the larger model, Amwaj-Large, still presents617

higher inference latency, which could be a bar-618

rier to real-time applications. The trade-off619

between model size, performance, and latency620

needs further exploration to enhance practical-621

ity.622

• Ethical and Bias Concerns: The use of syn-623

thetic data and the inherent biases in training624

corpora raise ethical concerns about fairness625

and representation. The models might inadver-626

tently perpetuate or amplify existing biases in627

the data, which warrants careful consideration628

and mitigation strategies.629

9 Ethical Statement630

All research and development activities for the631

Swan models and ArabicMTEB benchmark were632

conducted with a commitment to ethical standards.633

Data collection and usage adhered to privacy and634

confidentiality norms, ensuring no sensitive infor-635

mation was utilized without proper anonymization636

and consent. We acknowledge the potential biases637

introduced by synthetic data and have taken steps638

to mitigate these through diverse data sources and639

rigorous evaluation.640
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A ArMistral Training1073

ArMistral, is an autoregressive pretrained language1074

model based on Mistral-7B.1075

Pretraining data We further pretrain it on a large1076

and diverse Arabic dataset, including all categories1077

of Arabic, namely Classical Arabic (CA), Dialectal1078

Arabic (DA), and MSA. This data is aggregated1079

from various sources: AraNewsv2 (Nagoudi et al.,1080

2020), El-Khair (El-Khair, 2016), Gigaword,2 OS-1081

CAR (Suárez et al., 2019), OSIAN (Zeroual et al.,1082

2019), 101 Billion arabic words (Aloui et al., 2024),1083

Wikipedia Arabic, and Hindawi Books.3 We also1084

derived ArabicWeb22 (A) and (B) from the open1085

source Arabic text 2022.4 This pretraining dataset1086

was cleaned, filtered and deduplicated using Bhatia1087

(2023). We have also ensured that the model is pre-1088

trained in multiple domains, enhancing its results1089

as seen in Table 8.1090

Instruction Finetuning. To enhance the capa-1091

bilities of our ArMistral, we instruct-tuning it1092

on three datasets: Alpaca-GPT4, Evol-instruct,1093

and ShareGPT extracted from MultilingualSIFT1094

datasets (Chen et al., 2023).1095

2LDC Catalog Link
3OpenITI corpus (v1.6) (?).
4ArabicText-2022 data

Alignment Dataset We collected an alignment 1096

dataset from Quora and Mawdoo websites and then 1097

we took the gold answers as the choosen and we 1098

generated the rejected using AceGPT-7B (Huang 1099

et al., 2024). 1100

Results 1101

As seen from Table 8, Our ArMistral-Chat model 1102

outperforms all existing Arabic LLMs. 1103

B Training methodology 1104

Given a relevant query-document pair (q+, d+), 1105

we modify the query by appending an instructional 1106

template to it. This process transforms the original 1107

query q+ into a new form q+inst as defined below: 1108

q+inst = Instruction: {task_instruction} Query:{q+}

Here, “{task_instruction}” refers to a one- 1109

sentence description of the embedding task taken 1110

from Table 10, which outlines the instructions for 1111

different tasks. Using a pretrained large language 1112

model (LLM), we append a [EOS] token at the 1113

end of both the modified query and the document. 1114

These are then input into the LLM to extract em- 1115

beddings hq+inst
and hd+ from the vector at the 1116

last [EOS] layer. The training of the embedding 1117

model is conducted using the InfoNCE loss func- 1118

tion (van den Oord et al., 2019), which is widely 1119

recognized for its effectiveness in learning high- 1120

quality embeddings. The objective is minimized 1121

using the following formulation: 1122

min

(
− log

ϕ(q+inst, d
+)

ϕ(q+inst, d
+) +

∑
ni∈N ϕ(q+inst, ni)

)

In the equation above, N denotes the set of nega- 1123

tive samples, and ϕ(q, d) is the similarity scoring 1124

function between a query q and a document d. 1125

C Datasets overview 1126

The table 9 provides a comprehensive summary 1127

of the various datasets utilized in the study. It 1128

categorizes datasets based on their type, such as 1129

Reranking, Bitext Mining, Retrieval, Crosslingual 1130

Retrieval, STS, Pair Classification, Clustering, and 1131

Classification. Each entry specifies the dataset 1132

name, language, citation, and category, reflecting 1133

the diversity and scope of data sources for evaluat- 1134

ing the model’s performance across different tasks 1135

and linguistic contexts. 1136
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Model ARC Hellaswag Exams MMLU Truthfulqa ACVA AlGhafa Average

ArMistral-7B-Chat 43.20 55.53 45.54 43.50 52.44 77.06 35.57 50.41
Jais-13b-chat 41.10 57.70 46.74 42.80 47.48 72.56 34.42 48.97
AceGPT-13B-chat 43.80 52.70 42.09 41.10 49.96 78.42 31.95 48.57
AceGPT-13B-base 39.90 51.30 39.48 40.50 46.73 75.29 30.37 46.22
AraLLama-7B-Chat 39.45 50.23 38.24 41.03 50.44 70.45 32.54 46.05
ArMistral-7B-Base 41.50 52.50 38.92 37.50 51.27 69.64 30.24 45.94
Jais-13b-base 39.60 50.30 39.29 36.90 50.59 68.09 30.07 44.98
AceGPT-7B-chat 38.50 49.80 37.62 34.30 49.85 71.81 31.83 44.81
AraLLama-7B-Base 38.40 50.12 38.43 40.23 45.32 69.42 31.52 44.78
AceGPT-7B-base 37.50 48.90 35.75 29.70 43.04 68.96 33.11 42.42

Table 8: Comparison of ArMistral with other Arabic LLMs

D Polydedupe: versatile cleaning Pipeline1137

PolyDeDupe is a Python package designed for effi-1138

cient and effective data deduplication across over1139

100 languages. It supports syntactic and seman-1140

tic deduplication, making it a versatile tool for1141

high-quality data preprocessing in NLP tasks. Key1142

features include customizable Jaccard similarity1143

thresholds, a performance speed twice that of other1144

tools like SlimPajama, and support for deduplicat-1145

ing instruction tuning data. It can be easily installed1146

via pip to deduplicate datasets, display original and1147

filtered dataset sizes, and identify duplicate clus-1148

ters. Supported languages span Western, Central,1149

and Eastern European languages, Slavic languages1150

using Cyrillic script, Greek, various Arabic and1151

Devanagari script languages, and more.1152

E Prompts for evaluation1153

Table 10 provides an overview of the prompts used1154

for evaluating various tasks. It includes instructions1155

for Reranking, Bitext Mining, Retrieval, Crosslin-1156

gual Retrieval, Semantic Textual Similarity (STS),1157

Pair Classification, Clustering, and Classification.1158

Each entry outlines the specific task and the cor-1159

responding instruction used to guide the model’s1160

evaluation process.1161

F Full Leaderboard1162

Table 11 presents the performance comparison1163

of various models on different tasks within the1164

ArMTEB benchmark. It includes metrics for Re-1165

trieval, Semantic Textual Similarity (STS), Pair1166

Classification (PairCLF), Classification (CLF), Re-1167

ranking, Clustering, and Bitext Mining (BTM). The1168

table lists each model, its dimensionality, and the1169

scores for each task, along with an overall aver-1170

age score. The results highlight the strengths and1171

weaknesses of each model across a range of tasks,1172

providing a comprehensive overview of their per- 1173

formance. 1174
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Type Dataset Language Citation Category

Reranking

Miracl Multilingual (Arabic subset) Zhang et al. (2022b) s2p
Mmarco Dev set Arabic Bonifacio et al. (2021b) s2p

MedicalQA Arabic Our Paper s2p
MMarco Crosslingual English to MSA Bonifacio et al. (2021b) s2p
MMarco Crosslingual MSA to English s2p

BitextMining

Machine Translation

Moroccan Dialect to English

Nagoudi et al. (2023)

s2s
Arabizi to French s2s

English to MSA s2s
French to MSA s2s

Spanish to MSA s2s
Russian to MSA s2s

Code Switching

Algerian Dialect to French

Nagoudi et al. (2023)

s2s
Egyptian Dialect to English s2s
Jordanian Arabic to English s2s
Moroccan Arabic to French s2s

Palestinian Arabic to English s2s
Yemeni Arabic to English s2s

Retrieval

MLDR Multilingual (Arabic subset) s2p
XPDA Multilingual (Arabic subset) s2s

Mintaka Multilingual (Arabic subset) s2s
LareqaQA Arabic

Nagoudi et al. (2023)

s2p
DawqsQA Arabic s2s
ExamsQA Arabic s2s

MKQA Arabic s2s
MLQA Arabic s2s

ARCDQA Arabic s2s
TyDiQA Arabic s2s

XSquadQA Arabic s2s

Crosslingual Retrieval Mmarco Dev set

MSA to German

Bonifacio et al. (2021b)

s2p
MSA to English s2p
MSA to Spanish s2p

MSA to Hindi s2p
MSA to Vietnamese s2p

MSA to Chinese s2p
German to MSA s2p
English to MSA s2p
Spanish to MSA s2p

Hindi to MSA s2p
Vietnamese to MSA s2p

Chinese to MSA s2p

STS

STS17 Arabic s2s
STS22 Arabic p2p

Arabic STS Sentence Arabic
Our Paper

s2s
Arabic STS Mutli Dialect Arabic s2s

Arabic STS Paragraphs Arabic p2p

PairClassification
Xnli Arabic Conneau et al. (2018) s2s

Orca STS Arabic Cer et al. (2017a) s2s
M2Q2 Arabic Elmadany et al. (2022) s2s

Clustering

Arabic News Paragraphs Arabic Our Paper p2p
Arabic News headlines Arabic s2s
Baly Stance Paragraphs Arabic Baly et al. (2018b) p2p

Baly Stance Headings Arabic Baly et al. (2018b) s2s

Classification

Massive Intent Multilingual (Arabic subset) FitzGerald et al. (2022) s2s
Massive Scenario Multilingual (Arabic subset) FitzGerald et al. (2022) s2s

Sentiment Analysis Arabic

Elmadany et al. (2022)

s2s
Dialect Region Arabic s2s
Dialect Binary Arabic s2s

Dialect Country Arabic s2s
ANS Claim Arabic s2s

Machine Generation Arabic s2s
Age Arabic s2s

Gender Arabic s2s
Adult Arabic s2s

Dangerous Arabic s2s
Emotion Arabic s2s

Hate Speech Arabic s2s
Offensive Arabic s2s

Irony Arabic s2s
Sarcasm Arabic s2s
Abusive Arabic s2s

Table 9: Datasets Overview.
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Task Instructions

Reranking Given an Arabic search query, retrieve web passages that answer the question in {Lang}. Query:{query}.
BitextMining Retrieve parallel sentences in {Lang}.
Retrieval Given an Arabic search query, retrieve web passages that answer the question. Query:{query}.
Crosslingual Retrieval Given an Arabic search query, retrieve web passages that answer the question in {Lang}. Query:{query}.
STS Retrieve semantically similar text. Text: {text}.
Pair Classification Retrieve texts that are semantically similar to the given text. Text: {text}.
Clustering Identify the topic or theme of the given news article. Article:{article}.
Classification Classify the text into the given categories {options}.

Table 10: Prompts used for evaluation.

Model Dim. Retrieval STS PairCLF CLF Re-rank Cluster BTM Avg

Number of datasets 23 5 3 18 5 4 12 70

Swan-Large 4096 65.63 59.10 75.62 52.55 69.42 41.24 71.24 62.11
multilingual-e5-large 1024 64.01 59.45 75.06 53.43 70.79 42.49 66.33 61.65
e5-mistral-7b-instruct 4096 56.34 57.02 70.24 53.21 66.24 39.44 70.50 59.00
Swan-Base 768 58.42 58.44 74.93 57.34 68.43 40.43 42.45 57.21
multilingual-e5-base 768 56.91 57.99 74.30 52.30 69.07 42.56 33.90 55.29
multilingual-e5-small 384 55.14 56.73 73.97 50.85 67.92 42.37 38.47 55.06
LaBSE 768 34.98 54.15 70.60 49.57 62.17 41.42 33.28 49.45
text2vec-base 384 27.69 59.37 71.41 47.94 57.76 37.26 38.32 48.54
ARBERTv2 768 15.12 37.88 62.87 56.85 62.21 39.25 1.99 39.45
CamelBERT-msa 768 9.21 47.69 67.43 55.77 60.20 39.89 1.85 40.29
arabertv02-large 1024 7.34 34.26 63.63 54.32 56.71 37.26 10.97 37.78
arabertv02-base 768 8.62 39.77 66.30 55.77 60.03 41.74 0.70 38.99
CamelBERT-mix 768 7.19 46.47 67.23 56.68 57.50 38.72 0.41 39.17
MARBERTv2 768 5.88 45.21 70.89 54.89 58.64 40.81 0.45 39.54
ARBERT 768 8.07 29.89 61.86 56.92 61.09 37.10 2.28 36.74
CamelBERT-da 768 4.07 41.05 65.82 53.75 54.44 37.63 0.31 36.72
MARBERT 768 2.22 40.62 66.46 54.35 53.09 36.33 0.40 36.21
CamelBERT-ca 768 2.74 36.49 62.26 46.26 51.34 35.77 0.09 33.56

Table 11: ArMTEB Results.
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