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ABSTRACT

Neural Operators, particularly Fourier Neural Operators (FNO), have proven
highly effective in simulating partial differential equations (PDEs), such as the
Navier-Stokes equations. We propose the Residual Factorized Fourier Neural Op-
erator (Res-F-FNO) for simulating three-dimensional (3D) flows, specifically fo-
cusing on flow dynamics around a cube. We extend the Factorized Fourier Neural
Operator (F-FNO) architecture by incorporating additional residual connections.
This change effectively reintroduces small-scale dynamic flows that may be lost
due to truncated Fourier modes, resulting in improved accuracy when modeling
wind fields. Our proposed Res-F-FNO model surpasses the performance of the
standard F-FNO, achieving an error reduction of over 30% in simulating 3D flows.
Furthermore, we propose the concept of a skip-corrector, to address the problem
of accumulated errors over multiple time steps. The skip-corrector was specifi-
cally trained to predict the behaviour of turbulences at a considerably extended
time interval. Incorporating the skip-corrector into the prediction process reduces
the average error in simulating 100 time steps by more than 50%. Additionally,
we adopt a modified training approach in which random time steps are chosen as
the initial condition for each sample in every epoch, as opposed to generating a
dataset by propagating each sample across all time steps. This leads to a signifi-
cant reduction in the the number of training iterations required for the models to
achieve convergence.

1 INTRODUCTION

Complex partial differential equations (PDEs) play a significant role in numerous fields in science
and engineering. These equations are instrumental in various applications, ranging from climate
change modeling (Taylor et al., 2011) to seismic wave propagation analysis (Chapman, 2004), stress
distribution exploration within materials (Pascon, 2019), and the investigation of biological pro-
cesses like disease spread (Majid et al., 2021). To accurately capture the inherent complexities of
real-world phenomena, numerical solvers necessitate a fine-grained discretization. This in turn, im-
poses considerable computational burdens and significant memory requirements (Hosseini et al.,
2016). Among these, the Navier-Strokes equations stand out for their role in defining fluid flow
characterstics and turbulence behavior. These equations can be solved numerically through compu-
tational fluid dynamics (CFD). Over the past few years, an increasing number of approaches based
on neural networks have been developed to complement, accelerate, or even completely replace tra-
ditional CFD approaches for modeling turbulent flows (Brunton et al., 2020; Duraisamy et al., 2019;
Um et al., 2021; Sirignano & Spiliopoulos, 2018).

Traditional neural network developments have been mainly focused on learning mappings between
finite dimensional Euclidean spaces or finite sets. These models are good at learning a particular
instance of the governing equation, but have difficulty generalizing when the function parameters,
initial condition, or boundary conditions change (Kovachki et al., 2023). The Fourier Neural Op-
erator (FNO) (Li et al., 2021) is of particular interest as it distinguishes itself from classical neural
networks by learning mappings between infinite dimensional function spaces instead of finite di-
mensional Euclidean spaces. This approach enables the learning of families of PDEs with enhanced
generalizability across various initial and boundary conditions. The Factorized Fourier Neural Op-
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erator (F-FNO) (Tran et al., 2023) represents an advancement over the FNO, allowing architectures
with significantly more layers to converge. As a result, it outperforms the FNO on a wide range of
challenges, including the Navier-Stokes problem and the airfoil flow problem.

The existing research primarily focuses on forecasting two-dimensional (2D) turbulent flows (Wu
et al., 2022; Cheng & Zhang, 2021; Peng et al., 2022a; Hasegawa et al., 2020a; Li et al., 2022b;
Hasegawa et al., 2020b; Jin et al., 2021). Addressing the prediction of three-dimensional (3D) flows
using deep neural networks poses significant challenges due to the substantial increase in simulation
data volume, demanding greater computational resources and graphics memory for training. Accu-
rately capturing the behavior of nonlinear 3D flows requires a considerably more complex neural
network architecture, characterized by a substantially higher parameter count compared to the 2D
scenario (Peng et al., 2022b). Particular approaches (Li et al., 2022a; Peng et al., 2022b; 2023),
utilize FNOs to predict 3D turbulent flows and to simulate 3D dynamics of urban microclimate.
Nonetheless, the investigation of small-scale 3D turbulent flows around objects remains unexplored.

In this paper, we propose the Residual Factorized Fourier Neural Operator (Res-F-FNO), which in-
corporates additional residual connections to enhance the accuracy of predicting 3D turbulent flow
around a cube, surpassing the performance of the default F-FNO. Furthermore, we introduce the
notion of a skip-corrector, embodied by a Res-F-FNO model, which effectively reduces the accu-
mulated error over time, leading to enhanced accuracy in predicting a significantly larger number
of time steps. Moreover, we detail a training strategy involving a limited number of samples with
extended time intervals and a random starting condition within each sample.

Overall, we make the following three key contributions:

1. We present the Res-F-FNO, which significantly enhances the precision in forecasting 3D
flows around a cube in comparison to F-FNO, achieved through the incorporation of addi-
tional residual connections (Eq. (7), Fig. 2, Fig. 3).

2. We propose a novel concept termed as skip-corrector, which effectively reduces accumu-
lated errors over consecutive time step predictions (Eq. (8), Fig. 5).

3. We showcase an innovative training methodology utilizing fewer samples but varying initial
conditions within each sample to train the Res-F-FNO model.

2 BACKGROUND AND RELATED WORK

The primary focus of recent research centers on the development of neural network based mod-
els, which directly learn the mapping between infinite-dimensional function spaces.Because these
models do not rely on the grid resolution used during training, they can solve PDEs, like the Navier-
Strokes equation, for different discretizations (Anandkumar et al., 2019; Kovachki et al., 2023; Li
et al., 2021; 2022b; Tran et al., 2023; Li et al., 2020).

The goal is to learn a mapping between two infinite-dimensional function spaces based on a finite
collection of input-output pairs obtained from this mapping. Let D ⊂ Rd be a bounded, open
set and define the target (typically) non-linear map as G† : A → U , where A = A(D;Rda) and
U = U(D;Rdu) be separable Banach spaces of functions taking values in Rda and Rdu from that
set D respectively. Furthermore, suppose we have the input-output pairs {aj , uj}Nj=1 where aj ∼ µ

describes an i.i.d. sequence from the probability measure µ supported on A and uj = G†(aj) is the
output from the mapping possibly corrupted with noise. The aim is to build a neural network, which
learns an approximation of G† by constructing a parametric map

G : A×Θ → U or equivalently, Gθ : A → U , θ ∈ Θ (1)

for some finite-dimensional parameter space Θ by choosing θ† ∈ Θ such that G(·, θ†) = Gθ† ≈ G†.
In general aj and uj are functions. Therefore, to use them as input for a neural network model,
they need to be evaluated point-wise. Let Dn = {x1, . . . , xn} ⊂ D be a n-point discretization
of the domain D and assume a finite collection of observed input-output pairs aj |Dn

∈ Rn×da ,
uj |Dn

∈ Rn×du , indexed by j. To be discretization-invariant and therefore a true function space
method, the neural network must be capable of producing an answer u(x) for any x ∈ D given an
input a ∼ µ. This property allows the transfer of solutions between different gird geometries and
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discretizations (Li et al., 2022a; Peng et al., 2022b; Li et al., 2021; Tran et al., 2023; Peng et al.,
2022a; Anandkumar et al., 2019).

Neural Operator. Anandkumar et al. (2019) proposed the concept of Neural Operators designed
to approximate the mapping between function spaces and formulated as an iterative architecture
v0 7→ v1 7→ · · · 7→ vT where vj for j = 0, 1, . . . , T − 1 is a sequence of functions each taking
values in Rdv . In a first step the input a ∈ A is lifted to a higher dimension Rdv0 by a neural
network layer. Subsequently, this higher dimensional representation is updated iteratively by

vt+1(x) = σ(Wvt(x) +K(a;ϕ)vt(x)), ∀x ∈ D (2)

where K : A×ΘK → L(U(D;Rdv ),U(D;Rdv )) maps to bounded linear operators on U(D;Rdv )
and is parameterized by ϕ ∈ ΘK, W : Rdv → Rdv describes a linear transformation, and σ : R → R
is an element-wise non-linear activation function. Anandkumar et al. (2019) define K(a;ϕ) to be
a kernel integral transformation parameterized by a neural network. Lastly, a point-wise function
RdvT → Rdu maps the hidden representation vT to the output function u.
Fourier Neural Operator (FNO). Li et al. (2021) presented the Fourier Neural Operator, which
replaces the kernel integral operator K(a;ϕ) in Eq. (2) by a convolution operator defined in Fourier
space. Rather than directly parameterizing the kernel in the Domain D, this approach contemplates
its representation in Fourier space and parameterizes it there. Let F and F−1 denote the Fourier
transform and its inverse transform of a function f : D → Rdv respectively. The kernel can then be
defined as Fourier integral operator

(K(ϕ)vt)(x) = F−1(Rϕ · (Fvt))(x), ∀x ∈ D (3)

where Rϕ is the Fourier transform of a periodic function κ : D̄ → Rdv×dv parameterized by
ϕ ∈ ΘK. Assuming periodicity for κ enables a Fourier series expansion, allowing the discretization
of the frequency modes k ∈ Zd. By truncating the Fourier series at a maximum mode kmax =
|Zkmax | = |{k ∈ Zd : |kj | ≤ kmax,j , for j = 1, . . . , d}| a finite-dimensional parameterization is
achieved, thus Rϕ is directly parameterized as complex-valued (kmax × vt × vt) tensor. Assuming
the discretization of domain D into n ∈ N points, we find that vt ∈ Rn×dv and F(vt) ∈ Cn×dv .
Truncating the higher modes yields to F(vt) ∈ Ckmax×dv and therefore

(Rϕ · (Fvt))k,l =

dv∑
j=1

Rϕk,l,j(Fvt)k,j , k = 1, . . . , kmax, j = 1, . . . , dv. (4)

When the discretization of the domain D is uniform, F can be replaced by the Fast Fourier Trans-
form (FFT) method in order to calculate the operation of the kernel integral operator with almost
linear complexity (Kovachki et al., 2023).
The methodologies introduced by Li et al. (2022a) and Peng et al. (2022b) involve the utilization of
the FNO for predicting 3D turbulent flows. Peng et al. (2023) presented an approach employing the
FNO to simulate the 3D dynamic urban microclimate.
Factorized Fourier Neural Operator (F-FNO). The Factorized Fourier Neural Operator devel-
oped by Tran et al. (2023) incorporates separable spectral layers, refined residual connections, and a
combination of different training strategies to enhance performance across a range of various PDEs,
surpassing the capabilities of the default FNO. By adding two feedforward layers inspired by the
feedforward design used in transformers (Vaswani et al., 2017) and by embedding the residual con-
nection after the non-linearity activation function to preserve more of the layer input, the operator
layer in Eq. (2) is changed to

vt+1(x) = vt(x) + σ(W2σ(W1K(a;ϕ)vt(x))), ∀x ∈ D. (5)
Furthermore, the Fourier transform gets factorized over the problem dimensions d, modifying Eq. (3)
to

(K(ϕ)vt)(x) =
∑
i∈d

F−1
i (Rϕi · (Fivt))(x), ∀x ∈ D. (6)

The change from Rϕ to Rϕi results in a reduction of the parameter count from (LH2Md) to
O(LH2Md), where H denotes the hidden size, M represents the number of top Fourier modes
being kept, and d signifies the problem dimension. This optimization is especially useful when ad-
dressing higher-dimensional problems, such as simulating the 3D turbulent flow around an object.
The incorporation of residual connections after the non-linear activation function preserves more of
the layer input and enables the operator to achieve convergence within deep networks.
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3 METHOD

Dataset. The training and testing data are generated using the open source CFD software Open-
FOAM. We generate 3D velocity data on a grid of dimensions 108 × 25 × 108 around a cube
measuring 12 × 12 × 12 units. The cube maintains a fixed position within the 3D space, remain-
ing unchanged across all samples. The feature edges of the 3D room and the cube are depicted in
Fig. A.1. The turbulent flow around the cube is simulated until it reaches a state of convergence.
Each sample corresponds to the flow spanning 700 to 800 time steps until convergence is achieved.
A total of 118 samples are created, featuring variations in wind speeds and wind directions. These
samples encompass wind speeds of 3 m/s, 5 m/s, and 10 m/s. We partition this dataset into 96 sam-
ples for training and 18 samples for testing. In all test data, wind directions are deliberately chosen
to be distinct from those in the training data, ensuring that the model is solely assessed under entirely
unfamiliar scenarios.
Residual Factorized Fourier Neural Operator (Res-F-FNO). The architecture of the Res-F-
FNO is primary based on the F-FNO framework introduced by Tran et al. (2023). By incorporating
residual connections and Fourier factorization, this modified model necessitates fewer parameters
than the FNO (Li et al., 2021), which is particularly advantageous in 3D scenarios. Furthermore,
those changes also allow F-FNO architectures with significantly more layers to converge. Truncating
higher-order Fourier modes result in the loss of small-scale flow structures, leading to a reduction in
the precision of the inferred wind field. To address this problem, we add the output of the higher di-
mensional representation P(a(x)) after the summation of the factorized Fourier transform. Through
these residual connections the omitted information from previous layers will be incorporated again,
thus improving the overall accuracy of the simulation. We change the Factorized Fourier integral
operator defined in Eq. (6) by adding additional residual connections between output of the up pro-
jection P(x) and the output of the summation of the factorized Fourier transforms to:

(K(ϕ)vt)(x) = P(x) +
∑
i∈d

F−1
i (Rϕi · (Fivt))(x), ∀x ∈ D. (7)

Incorporating these residual connections retains the original number of parameters within the F-FNO
framework, consequently preserving the computational performance of the model.

5

Figure 1: The schematic representation of the Residual Factorized Fourier Neural Operator (Res-
F-FNO) architecture utilized for the simulation of 3D turbulent flow around a box. The zoomed-in
view of the operator shows the independent processing of each spatial dimension in the Fourier space
before their subsequent recombination in the physical space. Subsequently the residual connection
is added to the result of the summation (Eq. (7)).

To ensure comparability between the F-FNO and Res-F-FNO architectures, we maintain identi-
cal hyperparameters across both models. Both configurations comprise 24 operator layers and
accept input tensors with the shape (Nx, Ny, Nz, Cin), yielding output tensors of dimensions
(Nx, Ny, Nz, Cout). In this context, the dimensions Nx, Ny , and Nz represent the spatial resolu-
tions within the 3D space, and their values are specified as Nx = 108, Ny = 25, and Nz = 108. Cin
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denotes the input channels, encompassing information for each grid cell, including its classification
as an object component (Box=1, Air=0) and the cell center’s coordinates (x, y, z). Additionally,
wind speeds vx, vy , and vz at time t are integrated into Cin, resulting in an input shape of (108, 25,
108, 7). The output dimensions of the models combine the grid dimension coordinates (Nx, Ny, Nz)
and the predicted wind speeds vx, vy , and vz at time t+1, yielding an output shape of (108, 25, 108,
3). The input is projected to the higher dimensional space (108, 25, 108, 64) by a fully connected
feedforward network P(x) before it is used in the first Fourier layer. Accordingly, the output from
the final Fourier layer is down-projected from (108, 25, 108, 64) to the output format (108, 25, 108,
3) by a fully connected feedforward network Q(x). The number of truncated Fourier modes is 32
for the dimensions Nx and Nz and 13 for Ny . The described architecture of the Res-F-FNO is also
visualized in Fig. 1.

Skip-corrector. In the context of simulating PDEs employing data-driven methodologies, such
as the FNO framework, wherein successive predictions rely on previous estimates, the prediction
error accumulates incrementally for each time step. Considering the simulation of wind fields and
their chaotic behaviour over time, this error has the potential to grow exponentially. Reducing the
accumulated error for sequential time step prediction remains a challenge for all data-driven methods
employed in PDE simulation including wind field predictions (Peng et al., 2022a; 2023; 2022b; Um
et al., 2021).
The underlying rationale for the introduction of the skip-corrector is to incorporate an auxiliary
solver that employs a coarser temporal discretization scheme. Instead of iteratively solving the
governing equations for time instants t1, t2, t3, . . . , tN , the skip-corrector focuses on the instances
t1, t1+n, t1+2n, . . . , tN . Let us designate v̂t(x) as the skip-correctors solution, which is defined only
for time instants t1, t1+n, t1+2n, . . . , tN . Accordingly, Eq. (5) is reformulated as:

vt+1(x) =

{
v̂t(x) + σ (W2σ (W1K(a;ϕ)v̂t(x))) if t = 1 + k · n,
vt(x) + σ (W2σ (W1K(a;ϕ)vt(x))) else.

(8)

A coarser temporal discretization has dual implications. On one hand, the increased interval between
discretization points intensifies the complexity of accurately capturing the system’s underlying dy-
namics. Conversely, a less granular temporal resolution mitigates the accumulation of numerical
errors propagated by the model. Our empirical observations suggest that, given an optimally se-
lected discretization scheme, the skip-corrector can enhance the predictive accuracy. This is primar-
ily because the reduction in cumulative error tends to outweigh any errors introduced by employing
a coarser discretization method. The interaction between the skip-corrector and the subsequent time
step prediction models is visualized in Fig. A.2.
The implementation of the skip-corrector leverages the Res-F-FNO architecture, using identical
hyperparameters (including the number of layers, Fourier modes, etc.) as those employed by the
primary model for predicting subsequent time steps.

Training strategy. In the traditional training paradigm for models aimed at simulating PDEs, a
dataset is typically generated through numerical solvers, encompassing a wide array of data samples
with unique initial conditions. Each sample inherently encompasses of multiple time steps to model
the temporal evolution or dynamic behavior of physical phenomena described by the PDE. The
dataset is then constructed by rolling out each time step for each sample. In contrast to constructing
the dataset using all samples and all time steps, our training methodology involves the selection of a
random time step from the time interval of each sample during each iteration. This selected time step
serves as the initial condition for predicting the subsequent time step. This approach significantly
reduces the duration of a training epoch in comparison to scenarios where the dataset is constructed
using all time steps from each sample. This strategy leads to a substantial reduction in the duration
of a training epoch when compared to situations where the dataset comprises all time steps from
each sample. This is especially beneficial when working with 3D samples.
In addition to our training strategy, we employ the same deep learning techniques as those utilized
by Tran et al. (2023). These techniques encompass enforcing the first-order Markov property, imple-
menting the teacher forcing technique, and adding a small amount of Gaussian noise. Notably, one
distinction in our approach is the absence of input normalization. We train the models once for 2000
epochs and once for 500 epochs. The learning rate follows a warm-up schedule, gradually increas-
ing over the initial 500 steps until reaching a value of 10−4, subsequently being reduced using the
cosine function. We employ the non-linear ReLU activation function and the Adam optimizer with
β1 = 0.9, β2 = 0.99 and ϵ = 10−8. As evaluation metric and loss function we use the normalized
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mean squared error, which is defined as

N-MSE =
1

B

B∑
i=1

||ω̂ − ω||2
||ω||2

,

where B describes the batch size, ω the ground truth, ω̂ the prediction and || · ||2 the l2-norm. The
models are implemented in PyTorch and trained on two NVIDIA A100 80GB GPUs.

4 EVALUATION

Comparison against F-FNO. All the models under consideration, are trained using the random-
ized time step selection approach for two different durations: 2000 epochs and 500 epochs. The
training and testing loss of each model is illustrated in Fig. A.3. The performance of the Res-F-
FNO and the F-FNO model in predicting the wind field for the subsequent time step and for the
next 100 subsequent time steps is plotted in Fig. 2. Given the utilization of randomly selected time
points from the turbulence history as training samples, the plots display the average performance
across all test samples when predicting wind fields at various initial time points. This presentation
not only facilitates the evaluation of different model performances but also demonstrates the models
ability to simulate turbulence from test samples originating at distinct initial time points, despite the
randomized initial conditions employed during training.
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Figure 2: Performance comparison of the F-FNO and Res-F-FNO models. In (a), the average N-
MSE spanning all test samples for one-time-step predictions across various starting time points is
shown. In (b), we show the average N-MSE across all test samples and 100 prediction steps for
different initial time points.

After undergoing 2000 training epochs, the F-FNO exhibits an average normalized mean squared
error (N-MSE) of 0.0097 when predicting the next time step across all test samples and various
initial time points. In contrast, the Res-F-FNO, also trained for 2000 epochs, achieves a notable
reduction in error, attaining an average N-MSE of 0.0067 for simulating the subsequent time step.
The introduction of residual connections leads to a substantial 30% reduction in error, all while
keeping the parameter count unchanged. Furthermore, in the case of models trained over 500 epochs,
the Res-F-FNO achieves an N-MSE of 0.0091, which is a remarkable 30% lower than the F-FNO’s
N-MSE of 0.013. Impressively, the Res-F-FNO trained for 500 epochs even outperforms the F-FNO
trained for 2000 epochs by 6%, all while requiring just a quarter of the training time.
In the context of predicting multiple consecutive time steps, the prediction error accumulates with
each time step, leading to a notable escalation in the average N-MSE over a span of 100 time steps
(Fig. 2b). Specifically, the F-FNO model, trained for 500 epochs, exhibits an average N-MSE of
0.67, while the N-MSE reduces to 0.43 after 2000 epochs of training. In both scenarios, the intro-
duced Res-F-FNO architecture demonstrates its effectiveness in substantially mitigating prediction
errors. Following 2000 epochs of training, the Res-F-FNO achieves a 16% reduction in error, de-
creasing it from 0.43 to 0.36. Additionally, the Res-F-FNO model trained for 500 epochs displays
a 28% error reduction, lowering the N-MSE from 0.67 to 0.48 when compared to their respective
F-FNO counterparts.
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Effect of additional residual connections. The truncation of higher-order Fourier modes result
in the loss of small-scale flow structures. However, with the incorporation of additional residual
connections in the Res-F-FNO architecture, these previously missing structures are reintroduced
following the truncation of higher Fourier modes in the Factorized Fourier integral operator. Conse-
quently, this enhancement significantly improves the accuracy of the predicted wind field. Figure 3
presents visualizations of the ground truth, predictions generated by both the F-FNO and Res-F-
FNO models, and the absolute error between these predictions and the ground truth for an one-step
forecasting. In order to improve the clarity of visualizing turbulent dynamics and the associated
absolute error, a clipping operation was applied along the Y-normal plane within the original 3D
space, which has dimensions of (108, 25, 108). This clipping procedure effectively reveals the in-
ternal structures within the space at a specific height of 6 out of 25 units. This specific height level
corresponds to the flow occurring at the mid-height position around the cube, given that the cube
object itself has dimensions of (12, 12, 12).
To facilitate a comprehensive evaluation of the models, we calculated and evaluate the absolute error
between their predictions and the ground truth. Particularly, we focused on assessing the models’
capability to resolve small deviations falling within the range of 0.0 to 0.1 m/s. The integration
of additional residual connections in the Res-F-FNO architecture yields a notable reduction in these
minor deviations compared to the outcomes of the F-FNO model. Consequently, the Res-F-FNO ex-
hibits an enhanced ability to predict turbulence with greater accuracy, as evidenced by the reduction
in N-MSE.

Ground truth F-FNO prediction Res-F-FNO prediction

Absolute error
(F-FNO)

Absolute error
(Res-F-FNO)

Figure 3: One-step prediction comparison: We contrast the 3D flow prediction for a single time
step between the F-FNO and Res-F-FNO models. The visualization in the second row illustrates the
absolute error between the ground truth and the prediction.

Effect of the skip-corrector. In order to forecast multiple consecutive time steps, both the Res-
F-FNO and F-FNO models take the previous prediction as ground truth for estimating turbulence
in the subsequent time step. This approach results in an accumulation of prediction errors over a
sequence of time steps, leading to a substantial increase in the N-MSE throughout the prediction of
multiple time steps.
As depicted in Fig. 4a, all models exhibit a consistently low N-MSE during the initial time step
prediction. Specifically, the F-FNO model, trained over 500 epochs, yields an average N-MSE of
0.013 across all test samples for this initial prediction, while the F-FNO model trained over 2000
epochs achieves an average N-MSE of 0.0095. In contrast, the corresponding Res-F-FNO models
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demonstrate an even better performance, with N-MSE values of 0.0091 and 0.0065, respectively,
representing a notable enhancement of 30% for each model.
When predicting multiple consecutive time steps, prediction errors cumulatively impact each step.
For instance, at the 50th time step prediction, the F-FNO model trained over 500 epochs records
an average N-MSE of 0.54, whereas the model trained over 2000 epochs exhibits a reduced N-
MSE of 0.35. In contrast, the Res-F-FNO models exhibit further improvement with average N-MSE
values of 0.43 and 0.32, corresponding to 20% and 8% enhancements over their respective F-FNO
counterparts.
Extending the analysis to the 100th time step prediction, the N-MSE rises to 1.61 for the F-FNO
model trained over 500 epochs and 1.06 for the model trained over 2000 epochs. In contrast, the
Res-F-FNO models exhibit superior predictive capabilities, achieving a 30% and 11% reduction in
error, resulting in corresponding N-MSE values of 1.12 and 0.94, respectively.
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Figure 4: Performance comparison of the F-FNO, Res-F-FNO, and skip-corrector models. In (a),
the average N-MSE for each of the 100 prediction steps is displayed across all test samples and
starting points. In (b), we present the average N-MSE across all test samples, considering various
initial time points for predicting the 6th consecutive time step.

The primary objective of the skip-corrector is to substantially mitigate the cumulative error that
occurs during the prediction of numerous consecutive time steps. Specifically, it is trained simulate
the wind field u(x)t+n, at a considerably extended time interval based on the input variable a(x)t.
In this context, t represents the initial temporal point, while n denotes the number of intermediate
time steps spanning between the input and the desired output. Our study involves the utilization
of two distinct architectural implementations for the skip-corrector: firstly, employing the F-FNO
architecture, and secondly, employing the Res-F-FNO architecture. A comparative analysis of these
two approaches is presented. Both models are trained for 2000 epochs, with the specific objective of
predicting the state u(x)t+6, relying on the input a(x)t. The training and testing loss for each model
is visualized in Fig. A.4.
In Fig. 4b, the average N-MSE for predicting the 6th time step across all samples is illus-
trated. Initial conditions for those predictions were established using wind fields at time points
(0, 50, 100, 150, ..., 700). Both the skip-corrector based on the F-FNO architecture and the skip-
corrector based on the Res-F-FNO architecture exhibit superior accuracy in predicting the 6th time
step when compared to the F-FNO and Res-F-FNO models. Notably, the cumulative error incurred
during the prediction of 6 consecutive time steps is markedly higher than the N-MSE recorded when
directly predicting the 6th time step using the skip-corrector approach.
Specifically, the F-FNO model yields an N-MSE of 0.052 for the prediction of the 6th consecutive
time step, while the Res-F-FNO model achieves an N-MSE of 0.034. This represents a significant
34% reduction in error when utilizing the Res-F-FNO architecture. The skip-corrector employing
the F-FNO architecture attains an average N-MSE of 0.021 for direct prediction of the 6th time step,
reducing the error by a substantial 59% in comparison to the F-FNO model and 38% in comparison
to the Res-F-FNO model. Furthermore, the skip-corrector utilizing the Res-F-FNO architecture
achieves an average error of 0.016 in the direct prediction of the 6th time step. This results in a
substantial 69% reduction in N-MSE compared to the F-FNO model, a 52% reduction compared to
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the Res-F-FNO model, and a 23% reduction in comparison to the N-MSE associated with the skip
skip-corrector implemented by the F-FNO architecture.
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Figure 5: Impact of the skip-corrector when predicting 100 consecutive time steps. In (a), the
average N-MSE for each of the 100 prediction steps is exhibited across all test samples and starting
points. In (b), we illustrate the average N-MSE across all test samples, encompassing different initial
time points for predicting 100 consecutive time steps.

The integration of the skip corrector yields a substantial reduction in cumulative error when pre-
dicting 100 consecutive time steps (Fig. 5a). Notably, while the N-MSE for the prediction of the
50th time step stands at 0.35 and 0.32 for the F-FNO and Res-F-FNO models, respectively, these
values can be markedly decreased to 0.078 and 0.06 through the combination of Res-F-FNO with
the skip corrector implemented by the F-FNO architecture, and 0.06 when using the skip corrector
represented by the Res-F-FNO architecture. This corresponds to a remarkable enhancement of 77%
and 82% compared to the F-FNO model and 75% and 81% compared to the Res-F-FNO model. In
forecasting the 100th time step, the F-FNO model exhibits an average N-MSE of 1.06, while the
Res-F-FNO architecture achieves a lower N-MSE of 0.94. The incorporation of the skip correc-
tor, implemented by the F-FNO architecture, results in a substantial error reduction to 0.12. This
represents an enhancement of 88% and 87%, respectively.
When considering the average N-MSE across all samples and various initial conditions at different
time points (0, 50, 100, 150, ..., 700), the F-FNO model yields an N-MSE of 0.43, while the Res-
F-FNO model achieves an N-MSE of 0.35. Integration of the skip-corrector, implemented by the
F-FNO architecture, leads to a notable reduction in the average error, bringing it down to 0.075. This
represents a substantial improvement of 82% and 78%, respectively. Furthermore, the utilization of
the skip corrector embedded by the Res-F-FNO architecture results in a further reduction of the error
to 0.06. This corresponds to a significant enhancement of 86% and 82%, respectively. Additionally,
when employing the skip corrector which utilizes the Res-F-FNO architecture, the error is further
reduced to 0.09, corresponding to an even more substantial reduction of 91% and 88%, respectively
(Fig. 5b).

5 CONCLUSION

In this study, we have demonstrated that the Res-F-FNO model, coupled with the skip-corrector
concept, exhibits the capability to forecast turbulent flow patterns around a cube over a span of 100
time steps with an average N-MSE of less than 7%.
For future work, we are interested to explore how effective this approach can generalize to various
objects and shapes, provided that the dataset is expanded accordingly. Furthermore, it would be
interesting to investigate to what extent the cumulative error can be further reduced by incorporating
attention approaches or physical constraints.
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A APPENDIX

Figure A.1: Illustration depicting the feature edges within the 3D space and the cube it encompasses.
The room’s dimensions are 108× 25× 108, while the cube’s dimensions are 12× 12× 12.

Figure A.2: Visual representation of the interaction between the Res-F-FNO and the skip-corrector
in predicting 10 consecutive time steps. In this particular scenario, the skip-corrector is trained to
specifically predict the 4th successive time step based on the current input. The process commences
with the input variable a(x) serving as the initial condition at time t0, from which the subsequent 10
time steps are simulated.
The prediction is executed by the Res-F-FNO model for the first 3 time steps, where each prediction
employs the preceding prediction as input to determine the subsequent state. The prediction of the
4th time step, is performed by the skip-corrector. This skip-corrector receives, as input, the state
from 3 time steps prior, in this instance the wind field at time t0, and subsequently predicts the state
at t4. This prediction then serves as input for the Res-F-FNO model, which proceeds to determine
the states at t5, t6, and t7 based on the preceding time step.
Given the specific training of the skip-corrector, which is configured to predict every 4th time step,
it forecasts the state at time t8. The skip-corrector uses the wind field data from time t4 as its input.
The states at time t9 and t10 are subsequently determined by the Res-F-FNO model, leveraging the
preceding states at t8 and t9 as their input respectively.
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Figure A.3: Training and testing curves for the F-FNO and Res-F-FNO models. In (a), we present
the training and testing curve for the F-FNO model over 500 epochs. In (b), the training and testing
curve for the Res-F-FNO model, trained for 500 epochs, is displayed. In (c), we depict the training
and testing curve for the F-FNO model, trained for 2000 epochs. In (d), the training and testing
curve for the Res-F-FNO model, trained for 2000 epochs, is visualized. All training curves exhibit
stability, and each model successfully converged.
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Figure A.4: Training and testing curves for the skip-corrector models. In (a), we present the training
and testing curve for the skip-corrector which utilizes the F-FNO architecture. In (b), the training
and testing curves for the skip-corrector which is implemented by the Res-F-FNO architecture is
visualized.
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