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Abstract

Recent advancements in offline reinforcement learning (RL) have underscored the
capabilities of conditional sequence modeling (CSM), a paradigm that models the
action distribution conditioned on both historical trajectories and target returns
associated with each state. However, due to the imbalanced return distribution
caused by suboptimal datasets, CSM is grappling with a serious distributional shift
problem when conditioning on high returns. While recent approaches attempt to
empirically tackle this challenge through return rebalancing techniques such as
weighted sampling and value-regularized supervision, the relationship between re-
turn rebalancing and the performance of CSM methods is not well understood. In
this paper, we reveal that both expert-level and full-spectrum return-coverage crit-
ically influence the performance and sample efficiency of CSM policies. Building
on this finding, we devise a simple yet effective return-coverage rebalancing mech-
anism that can be seamlessly integrated into common CSM frameworks, including
the most widely used one, Decision Transformer (DT). The resulting CSM algo-
rithm, referred to as Return-rebalanced Value-regularized Decision Transformer
(RVDT), integrates both implicit and explicit return-coverage rebalancing mecha-
nisms, and achieves state-of-the-art performance in the D4RL experiments.

1 Introduction

Offline RL aims to learn effective policies solely from previously collected datasets, without any
further environment interaction [20, 1”7, S, B0]. Recent advancements in offline RL primarily fo-
cus on the use of conditional sequence modeling (CSM), where the core idea is to learn the return-
conditioned distribution of actions at each state given historical information [b1, 5, 65, 66, Pf]. One
of the most representative methods in CSM is the decision transformer (DT) [I1], wherein historical
trajectories composed of multiple return-state-action triplets are exploited to train a Transformer-
based model. During inference time, the model predicts a sequence of actions conditioned on a target
return, effectively reframing the offline RL problem as a supervised learning task. By enabling the
policy to make decisions directly from temporally extended trajectories, this paradigm circumvents
the need for recursive value estimation, thereby avoiding both the challenges of Bellman complete-
ness and the bootstrapping errors associated with dynamic programming-based methods [T, bE].

However, CSM-based algorithms encounter substantial difficulties when learning from suboptimal
datasets, particularly due to the imbalance between near-optimal and low-return trajectories within
datasets [34, &7]. This uneven distribution of trajectory quality in the training dataset may induce a
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significant distributional shift problem at inference time when conditioning on high returns, critically
limiting the achievable performance of CSM methods [[4, TTU]. Recent advances have acknowledged
such difficulties and proposed various mitigation strategies by rebalancing return distributions [,
73, 47, 574, 5]. For instance, DiffStitch [22] employs diffusion models to synthesize high-return
trajectories by stitching together optimal sub-segments drawn from multiple suboptimal trajectories.
Critic-Guided Decision Transformer (CGDT) [87] and Q-value Regularized Transformer (QT) [25]
integrate value-based guidance into the DT framework, implicitly assigning greater importance to
near-optimal actions, thereby steering policies toward higher-return regions. These methods achieve
enhanced performance through explicit or implicit rebalancing of the return distribution, and their
efficacy has been empirically validated by achieving state-of-the-art (SOTA) results [42, 57, P5].
Nonetheless, none of these prior works provides a theoretical analysis elucidating the fundamental
principles underpinning their empirical successes.

In this paper, we uncover the relationship between the return distribution of the training dataset
and the performance of CSM policies at inference. Specifically, two aspects of return-coverage
are relevant to the performance: (i) expert-level return-coverage, corresponding to the coverage
of near-optimal and expert-level returns; (ii) full-spectrum return-coverage, which corresponds to
the return-coverage over the entire return space®. By analyzing the coverage of these two returns
within the offline datasets, we derive theoretical bounds quantifying the performance gap between
the learned CSM policy (given fixed inference-time conditioning functions) and the optimal policy
7* of the underlying MDP. Our analysis reveals that the performance gap is jointly influenced by
both expert-level and full-spectrum return-coverage, providing a principled explanation for why
return distribution rebalancing enhances policy performance and mitigates distributional shift at
inference.

Building upon this finding, we propose a simple yet effective return-coverage rebalancing mecha-
nism, which formulates rebalancing as a KL regularization between the agent’s policy and an expert
policy extracted from near-optimal trajectories in the dataset. The proposed mechanism is explicitly
interpretable and seamlessly compatible with most existing CSM algorithms as a plug-in module.
Leveraging this mechanism, we further design a practical CSM algorithm named Return-rebalanced
Value-regularized Decision Transformer (RVDT), which achieves consistent performance improve-
ments over state-of-the-art methods. Our contributions are summarized as follows:

1. We theoretically show how the performance of CSM-based policies is influenced by the coverage
of expert-level and full-spectrum conditional returns in the offline training dataset. Specifically,
we show that the gap between the expected return of the learned CSM policy and the optimal
return is inversely proportional to the coverage of these two returns, and we derive an upper
bound to explicitly characterize the associated sample complexity.

2. We propose an explicit return-coverage rebalancing mechanism as a plug-in module for enhanc-
ing existing CSM algorithms. In practice, an independent network is trained via imitation learn-
ing on expert-level trajectories to extract expert policies, whose KL divergence with the agent’s
policies is used as a regularizer. This regularizer has been shown to perform weighted sampling
explicitly over trajectories when the policy is parameterized by a Gaussian distribution.

3. We design RVDT, which utilizes both explicit and implicit rebalancing mechanisms, effectively
addressing the difficulties posed by limited expert data through the utilization of an expert KL
divergence regularizer and a value-regularized guidance. This combination collectively mitigates
inference-time distributional shift, enabling superior performance in challenging scenarios such
as sparse-reward environments and low-quality datasets.

The performance of RVDT is evaluated on the D4RL benchmarks [[[6]. Experimental results demon-
strate significant performance gains over representative baselines, establishing RVDT as a strong
candidate for advancing the state-of-the-art (SOTA) in offline RL.

2 Related Work

Learning from imbalanced datasets, comprising predominantly low-return trajectories and relatively
few high-return trajectories, has long been a critical challenge in offline RL [23, T, T4, IU]. Broadly,

The full-spectrum return-coverage is closely related to the runtime returns, i.e., the realistic returns during
policy execution, as the actual distribution of runtime conditional returns during execution is typically uncertain.
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prevailing methods tackling this challenge can be categorized into two types: explicit rebalancing
and implicit rebalancing. Explicit methods encompass techniques such as dataset selection [,
48, B7], weighted sampling [#4, 21, 23], and data synthesis [62, B4, 7], while implicit methods
generally leverage value estimation as additional guidance [BR, I3, "4, 9, 57, U5].

Sub-dataset Selection. Several methods explicitly select informative subsets from imbalanced
datasets, e.g., sample uncertainty [I2, 48] or frequency of being forgotten [54] is utilized to prune
the datasets. Other studies employ submodular functions that capture the notions of diversity, repre-
sentation, and coverage to eliminate redundancy [62, b, 59, BZ]. A more straightforward approach,
top-% BC, directly selects and fits only the highest-return trajectories within the dataset [39, [IT].

Weighted Sampling. Another line of research adopts weighted sampling techniques to rebalance
trajectory distributions [24, &1, 07, 44]. Hong et al. [21] leverage a Boltzmann distribution based
on trajectory returns or advantages to reweight trajectories. Similarly, density-ratio weighting [23]
utilizes importance sampling [29] to emulate sampling from other supplementary datasets.

Data Augmentation and Generation. Other methods address trajectory imbalance by augmenting
or synthesizing data [B6, 45, 64, 62, 34, &7]. For instance, QDT [62] relabels return tokens using
a learned conservative Q-function, subsequently integrating these augmented trajectories into the
training datasets. DiffStitch [47] leverages diffusion models to generate high-return trajectories by
stitching optimal sub-segments extracted from multiple suboptimal trajectories.

Value-regularized Supervised Learning. Recent works such as BEAR [BR], CDC [015], O-RL
[7], TD3+BC [I7], TD3+RKL [9], CGDT [67], and QT [Z5] integrate value-based guidance into
supervised learning frameworks to prioritize high-return actions. As a result of leveraging transition-
level value estimates to prioritize near-optimal actions without explicitly modifying the trajectory
return distribution, these algorithms are considered as implicit return rebalancing methods.

3 Preliminary

3.1 Offline Reinforcement Learning

We model an agent-environment interaction as a finite horizon Markov Decision Process (MDP)
(S, A, R, T, uo, H), where S and A denote the (continuous) state and action spaces. R : SxA — R
is the reward function, 7 defines the transition dynamics, i.e., s;+1 ~ T (+|$¢, at). po is the initial
state distribution, i.e., s1 ~ g, and H is the time horizon. In the offline RL setup, algorithms are
given a static dataset D consisting of trajectories 7 = {s1,a1,71, - ,SH,amy,ry }, collected by a

behavior policy m3. Let g(7;) = Zfit r; (abbreviated as g;) denote the return-to-go (RTG) of a
trajectory at time step ¢, and J () = E,., [g(7)] is the expected return of a policy 7.

3.2 Return Conditioned Sequence Modeling

Motivated by the wide-ranging applications and remarkable success of transformer models in var-
ious domains [B5, B, I, 27, 29, B&], CSM-based methods formulate policy learning as a return-
conditioned supervised learning problem. Specifically, during training, the policy 7 is optimized by
minimizing the empirical negative log-likelihood (NLL) loss over a dataset D of trajectories:

L(m) = _ZTGD21§t§Hlogﬂ-(at|8t7g(7t))7itlil)7 (D

where 72| = {9+ Kk, Sk, Qt—K,-- -, gi—1,5(1,a:_1} denotes the historical input with context
length K. During inference, the learned policy 7 is combined with a conditioning function f(s) to
form the inference-time policy 7 as 7 (als) := m(als, f(s), 7X), where s denotes the collection
of s and historical triplets. Algorithms such as DT and its variants, e.g., QT [25] and CGDT [57],
can be viewed as specific instantiations within this framework.

The NLL loss can be interpreted as approximating the conditional distribution P (als,g), where
P, denotes the distribution over states, actions, and returns induced by the behavior policy 7.
In the regime of infinite data, it has been shown that the CSM objective effectively reweights the
behavior policy based on the distribution of future returns. Under this setting, the optimal return-

conditioned policy w?SM for a given conditioning function f can be expressed as: W?SM(a|s) =
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Pr s)|s,a s . . . ..
ma(als) %. With infinite data and a fully expressive policy class, optimizing (II) guarantees

that the learned policy WJ(ESM is provably near-optimal [B].

Theorem 1. Consider a finite-horizon MDP with horizon H, a behavior policy mg, and a condi-
tioning function f. Suppose the following conditions hold: (i) The return is sufficiently covered, i.e.,
Pr,(g = f(s1)|s1) > ay for all initial states s,. (ii) The environment is nearly deterministic in
the sense that for some functions T and R, i.e., P(r # R(s,a) ors’ # T(s,a)|s,a) < €,Vs,a.
(iii) The conditioning function f is consistent such that f(s) = f(s') + r,Vs. Then the policy that
optimizes the CSM objective (Eq. 1) is guaranteed to be near-optimal: B, f(s1) — J (W?SM) <

(1/ay +2) H?e.

Theorem [ establishes theoretical guarantees and success conditions for CSM methods. Brandfon-
brener et al. [B] further analyze the performance gap between 7TJ§§M and 7*, where f* corresponds
to the optimal conditioning function. However, at inference time, the runtime conditional returns,
computed as the prior returns minus sampled rewards r, cannot consistently remain optimal due to
the inherent randomness of r [8, T3]. This discrepancy between theory and practice substantially

constrains its practical utility for enhancing the robustness and generalization of CSM algorithms.

4 Methodology

This paper focuses on investigating how return distribution of the training dataset impacts the per-
formance of CSM policies through the lens of return-coverage. We theoretically reveal that the
performance gap between the MDP’s optimal policy 7* and the learned CSM policy is jointly de-
termined by both expert-level and full-spectrum return-coverage. Likewise, we establish that the
sample complexity is similarly governed by these two aspects of coverage. The theoretical insights
elucidate why previous approaches, utilizing explicit or implicit rebalancing of return distributions,
effectively improve performance. Following this notion, we propose a simple yet effective return-
coverage rebalancing mechanism, which is explicitly interpretable, and seamlessly compatible as a
plug-in module with most existing CSM algorithms. To demonstrate the effectiveness of this mech-
anism, we integrate it into QT [25], the current SOTA, resulting in a new approach termed RVDT.

4.1 Analysis on Return-Coverage Rebalancing for Conditional Sequence Modeling

Due to the imbalance between expert-level and low-return trajectories in offline datasets, the study of
Brandfonbrener et al. [B], which focuses on the optimal conditioning function f*, becomes imprac-
tical for real-world scenarios. Our analysis extends this perspective by considering a more general
function class that encompasses both potentially non-optimal runtime conditioning functions and
optimal (or near-optimal) conditioning functions, denoted as f and f*, respectively. The runtime
conditional return function f corresponds to arbitrary possible returns that may be encountered dur-
ing policy execution. Let G denote the collection of all possible returns collected by 7w € II, then
f S — G. The target conditional function f* that we aim to find is the RTG under the optimal
policy 7*, i.e., f(s) = max,E;[g(s)]. We define the expert-level return-coverage in the offline
dataset generated by behavior policy 73 as Pr,(g = f*(s1)|s1), where the f* corresponds to the
optimal policy 7* of the underlying MDP. Correspondingly, the full-spectrum return-coverage is
defined as Py, (g = f(s1)|s1). We first analyze the performance of CSM policies under an ideal-
ized setting with infinite data and a fully expressive policy class, establishing an upper bound on the
suboptimality of CSM policies and quantifying its dependence on both aspects of return-coverage.

Theorem 2 (Performance gap with respect to return-coverage). Consider a finite-horizon MDP with
horizon H, behavior policy mg, a runtime conditioning function f, and the optimal conditioning
function for 7 is f*. Assume the following assumptions hold: (i) Return-coverage: Py, (g =
f(s1)|s1) > ay and Py, (9= f*(s1)|s1) > o} for all initial states s1. (ii) Near determinism:
P(r # R(s,a)ors’ # T(s,a)ls,a) < €at all (s,a) for some T and R. (iii) Consistency of f:
f(s) = f(s") + r for all s. Then the following upper bound holds:

1 1 1

J(7*) = J(xPM) < (= +3)H e+ (— + —)H?C, )
o} ap o

where C' € (0, 1) is a constant. The proof is provided in Appendix B2,
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The result formally characterizes how the effectiveness of policies trained via CSM is constrained
by both expert-level and full-spectrum return-coverage. This implies that algorithms are capable of
modulating o} and «y through rebalancing the return distribution, thereby facilitating the conver-
gence of W?SM toward the optimal policy 7*. Notably, in the offline RL setting, the relationship
ay +aj < 1holds when f # f*. In other words, strategies such as sub-dataset selection or
weighted sampling that attempt to increase one type of return-coverage without altering the distribu-
tion’s support tend to reduce the other.

The subsequent analysis examines the sample efficiency of CSM methods under common assump-
tions as in [B], with finite data and a restricted policy class. Letting N denote the size of the dataset,
Theorem B demonstrates that the sample complexity exhibits a structural dependence on the return-
coverage analogous to that in Theorem . Note that for clarity, we consider the case of a single s
(7/ | = ©) here, which can be readily extended to the non-empty 7/ ; scenario.

Theorem 3 (Sample complexity). To get finite data guarantees, add to the above assumptions in
Theorem B that (i) bounded occupancy mismatch: PWJC;SM(S) < Cf - Pry(s) for all s; (ii) the policy
class 11 is finite; (iii) |log 7(a|s, g) — log7 (a'|s', ¢')| < ¢ for any (a,s,g,d’,s',¢") and all 7 € II;
(iv) the approximation error of I1 is bounded by €approx, i.€., mingcr L(7) < €approx. -

Define the expected loss as L(7) = Esnpr Egap,, (1s) [KL (Pr,(:|s,g) || #(:|s, 9))]. Then for any
estimated CSM policy ¢ that conditions on f at inference time, with probability at least 1 — 6,

i X c log|m|/s\* ¢ c C
J(n*) = J (f) SO< affﬁ(%) +a—f\/eap,,mx N P 3)
f f

o’ o
f f
The proof, provided in Appendix B3, utilizes uniform convergence results from supervised learning theory [B{1].

Theorem B quantifies the sample complexity of CSM methods in terms of expert-level and full-
spectrum return-coverage. Together with Theorem [, our analysis unveils the fundamental principles
underpinning the empirical successes of current return-coverage rebalancing strategies. That is,
rebalancing o’ and oy reduces the gap between the learned CSM policies and 7.

4.2 Plug-in Return-Coverage Rebalancing Mechanism for CSM

Building upon the theoretical insights established in preceding theorems, we propose an explicit re-
balancing mechanism based on KL divergence regularization with respect to a learned expert policy
w°. Specifically, a subset of near-optimal trajectories is filtered from the offline dataset, denoted
as D, C D, from which 7¢ is extracted via imitation learning. Given a CSM policy 7y parame-
terized by DT, our proposed rebalancing mechanism operates as a plug-in module appended to the
original NLL loss in Eq. . We refer to the resulting CSM algorithm as Return-rebalanced Decision
Transformer (RDT), which is optimized with the following loss:
H H
Lror(0) = E-nn [ Y —logmo(ailsi, g(r:), 71)] +0Brmp, Y KL[mo(-[si, g(7:), 7o) [|7°(-]55)]. ()
=1 =1
The first term in Eq. (@) aligns the model with the empirical action distribution of 7g, while the
regularization term guides the policy towards expert-level actions. Notably, the rebalancing mod-
ule adopts KL divergence instead of MSE, designed to maintain compatibility with broader policy
classes in modern CSM methods, such as diffusion models [0Y, &7].

To illustrate how the expert KL regularizer explicitly rebalances the return-coverage, we demon-
strate that under a common stochastic policy parameterization, the regularization process can be
equivalently interpreted as trajectory-level reweighting of expert-level samples in the offline dataset.
Proposition 1 (KL regularization as weighted sampling strategy). Assume the policy 7y is param-
eterized by a factorized Gaussian distribution with a fixed standard deviation. Then optimizing the
RDT objective in (B) is equivalent to optimizing the following weighted NLL loss (proof in B4):

arg min Lgpr(0) = argmin E-p [ (I1+a-I[r €D - (Zszl —log mo(ai|si, g(1i), ?fil))]. ®)
L) To

Proposition [ shows that the KL regularization effectively performs a weighted resampling of ex-
pert trajectories, practically increasing the expert-level return-coverage within the offline dataset.
Though an optimal rebalancing ratio exists, it is generally infeasible to compute explicitly. In prac-
tice, our rebalancing mechanism, akin to other rebalancing strategies [I'Z, U, D], amplifies the gra-
dient contributions of expert-level behaviors during training.



4.3 Return-rebalanced Value-regularized Decision Transformer

We integrate our proposed rebalancing mechanism into the current SOTA method, QT, resulting
in a novel algorithm that incorporates both explicit and implicit return-coverage rebalancing mecha-
nisms, referred to as RVDT. By implicitly rebalancing the return-coverage with a Q-value regularizer
to DT, the loss function of QT is defined as follows.

£QT(9) =K, p [Zfil — log g (ai|5i7 g(Ti), 7Ttlil)] - UETNDE&NT,MNM [Qﬂg (S’i> ai)]' (6)
However, accurate Q-value estimation can be prohibitive in complex environments, limiting the
effectiveness of QT’s value-based rebalancing mechanism. In contrast, RVDT uniquely combines
explicit and implicit rebalancing mechanisms, i.e., an expert KL divergence regularizer and an value-
regularized guidance, enhancing its adaptability to challenging offline datasets. The resulting learn-
ing objective for RVDT augments policy regularization with value-based guidance:

Lrvor(0) =B [3[1, — logmo(ailsi, g(7i), 1)) = MEranEs;mraimmy [Q7 (51, a:)]
+aBrnp, 3oL KL o (-], g(7i), 1) |7 (-]s4)].
We adopt the same parameterization strategy as QT and employ offline DP to iteratively learn the

value function Q™. The coefficient 7 follows a commonly adopted normalization scheme [I7], i.e.,
M= E o ‘)’7 Qi Gianl’ where 7 is a tunable hyperparameter. The training and inference

details, along with the algorithm pseudocode, are provided in Appendix B.

O]

Compared to QT, RVDT not only inherits its strengths but also benefits from directly aligning its pol-
icy distribution with expert-level trajectories, thereby significantly enhancing performance in sparse-
reward tasks where accurate Q-value estimation is infeasible. While empirical evidence (Section B)
confirms the superiority of RVDT, we provide a theoretical perspective to substantiate its superior-
ity over related methods under idealized conditions (i.e., infinite data and neglecting approximation
errors). The formal statement and proof of Proposition I are provided in Appendix B7.

Proposition 2 (Informal). Let 7}, ), and 7}, denote the optimal policies learned from the objec-
tives of RVDT, RDT, and QT, respectively. Given the behavior policy g, there exists an expert-level
subset D, C D and an appropriate coefficient o« > 0 such that the following inequalities hold for all
states s ~ dn,: E;V™ (s) > E;V™e (s) > E;V™ (s) and EV ™ (s) > E, V7™ (s) > E, V7™ (s).

5 Experiment

We conduct a comprehensive empirical evaluation of our proposed approach on the D4RL bench-
marks [I6]. RVDT is compared against a broad range of baselines, mainly composed of DP-based
methods [371, 19, 40], value-regularized SL [BR, [, T7], and CSM approaches [I1, 51, B2, P8, 57,
63, 29]. To further assess the robustness of RVDT, we design a set of more challenging datasets to
compare RVDT with the current SOTA method (QT) [23], focusing on three key desired properties:
(i) effective utilization of limited expert data, (ii) learning ability under low-data regimes [26], and
(iii) trajectory stitching ability. Finally, we perform carefully designed ablation studies to isolate
and examine the contributions of key components in RVDT, including the KL regularization-based
return-coverage rebalancing mechanism, the Q-value guidance, and the stochastic policy modeling.

Benchmarks and Baselines. We evaluate our method across five diverse domains from the D4RL
benchmarks [I6]: Gym, Adroit, Kitchen, Maze2D, and AntMaze, encompassing tasks from continu-
ous control to multi-task manipulation and long-horizon planning. Our approach is compared against
a broad set of baselines, including CSM-based methods (DT [I1], StAR [51], QDT [62], GDT [2¥],
CGDT [51], QT [25]), DP-based methods (IQL [B7], BCQ [19], CQL [&0]), value-regularized SL
methods (BEAR [BX], O-RL [2], TD3+BC [[I7]), and diffusion-based methods (Diffuser [31], De-
cision Diffuser [2], Diffusion-QL [68]). We further include a model-based approach (MoRel [B3])
for broader comparison. QT is reproduced using its official implementation, while other baselines
follow their original publications or results reported in QT’s paper, depending on availability. Addi-
tional benchmark and implementation details are provided in Appendix Cl and D.

5.1 Main Results on D4RL Benchmarks
The experimental results comparing RVDT against baselines on the D4RL benchmarks are presented

in Table . RVDT consistently outperforms most baselines across various domains, establishing new
SOTA performance on the majority of D4RL tasks. Task-level comparisons are provided below.
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Table 1: Performance comparison across D4RL tasks. For each task, RVDT reports the mean and
standard error of normalized scores [I6] over 30 random rollouts and averaged over 5 random seeds.

Gym Tasks CQL IQL BCQ TD3+BC MoRel BC DD DT StAR GDT CGDT QT RVDT
halfcheetah-m-e  91.6 867 69.6  90.7 533 552 906 868 937 932 936 932 944401
hopper-m-e 1054 915 109.1  98.0 1087 525 1118 107.6 111.1 111.1 107.6 113.0 1131405
walker2d-m-e  108.8 109.6 67.3  110.1 956  107.5 108.8 108.1 109.0 1077 109.3 112.0 1127 & 1.6
halfcheetah-m 492 474 415 484 421 426 491 426 429 429 430 510 519403
hopper-m 694 663 651 593 954 529 793 676 595 771 969 99.6 1002 0.1
walker2d-m 830 783 520 837 778 753 825 740 738 765 791 872 90240.1
halfcheetah-m-r  45.5 442 348  44.6 402 366 393 366 368 405 404 488 538420
hopper-m-r 950 947 311 609 936 181 1000 827 292 853 934 102.1 1032+ 19
walker2d-m-r 772 739 137 818 498 323 750 794 398 775 781 978 993408
Average 806 770 538 753 729 526 818 762 662 79.1 824 894 91.2
Adroit Tasks CQL IQL BCQ BEAR ORL BC DD DQL DI SAR GDT QT RVDT
pen-human 375 715 669  -1.0 907 639 667 728 795 779 925 1119 1272455
hammer-human 44 14 09 0.3 0.2 12 1.9 02 37 37 55 104 240+15
pen-cloned 392 373 509 265 600 370 428 573 758 331 862 858 1178486
hammer-cloned 2.1 2.1 04 0.3 2.0 0.6 1.7 31 30 03 89 118 213427
Average 208 281 29.8 6.5 382 257 283 334 405 288 483 550 726
Kitchen Tasks CQL IQL BCQ BEAR O-RL BC DD DQL DT SAR GDT QT RVDT
kitchen-Comp. 438 62.5 8.1 0.0 2.0 650 650 840 508 408 438 817 845423
kitchen-partial ~ 49.8 463 189  13.1 355 338 570 605 57.9 123 733 725 75.0£25
Average 468 544 135 6.6 188 494 610 722 544 266 586 771 79.8
Maze2D Tasks CQL IQL BCQ BEAR TD3+BC BC Diffiser DD DT GDT QDT QT RVDT
maze2d-u 947 421 491 657 148 889 1139 1162 310 504 573 992 145138
maze2d-m 418 349 171 250 621 383 1215 1223 82 78 133 1688 183545
maze2d-1 496 617 308  81.0 88.6 15 1230 1259 23 07 310 2427 2543146
Average 620 462 323 572 552 429 1195 1215 138 196 339 1702 1943
AntMaze Tasks CQL IQL BCQ BEAR TD3+BC BC DD D-QL DT StAR GDT QT RVDT
antmaze-u 740 875 789 730 786 546 731 934 592 513 760 960 98.0 4 4.0
antmaze-u-d 840 622 550 610 714 456 492 662 530 456 690 920 98.0 4 4.0
antmaze-m-d 537 700 0.0 8.0 3.0 00 246 786 00 00 60 240 300463
antmaze-1-d 149 475 22 0.0 0.0 0.0 75 566 00 00 00 100 10000
Average 566 668 340 355 382 250 386 737 280 242 318 57 59.0

Gym MuJoCo tasks are widely employed to evaluate continuous control capabilities under dense
reward conditions. From Table [, we observe that RVDT achieves new SOTA results across all
datasets. Notably, scores exceeding 100 on D4RL MuJoCo tasks are already near the theoretical
performance ceiling, where boundary effects make even small improvements significant. Moreover,
algorithms employing return-coverage rebalancing mechanisms, such as RVDT, QT, CGDT, and
TD3+BC, consistently demonstrate superior performance over traditional methods (e.g., BC and
DT) across the majority of tasks, providing empirical support for our theoretical analysis.

Adroit tasks present substantial challenges for offline RL due to pronounced extrapolation errors
stemming from the limited coverage of human demonstrations [[[6]. Consequently, these tasks crit-
ically test robustness against distributional shift and the ability to imitate from sparse expert data.
Several observations emerge from our results: (i) except for RVDT and QT, other baselines fail
to achieve satisfactory performance; (ii) RVDT and QT significantly outperform DT due to their
utilization of rebalancing mechanisms; (iii) RVDT notably surpasses QT with 25% and 105% im-
provements on pen and hammer, respectively. These findings underscore RVDT’s effectiveness in
learning from limited data and highlight the advantage gained from integrating explicit and implicit
rebalancing mechanisms, effectively mitigating extrapolation errors and distributional shift problem.

Kitchen tasks primarily assess algorithms’ capabilities in multi-task manipulation and generaliza-
tion to unseen states. Our results indicate that RVDT slightly outperforms current SOTA methods,
demonstrating its competence in managing multi-task dependencies and generalizing effectively.
Furthermore, RVDT substantially surpasses non-CSM approaches, reinforcing the superiority of
CSM methods over DP-based methods, aligning with findings from prior works [T, 25].

Maze tasks evaluate the trajectory stitching capacity of CSM algorithms [I6, 25]. By integrating ex-
pert KL regularization and Q-value guidance into a Transformer-based policy, RVDT substantially
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Table 2: Performance comparison under varying proportions of expert trajectory augmentation.
Each setting (e.g., 15% RVDT) corresponds to training on a mixed dataset composed of the base
dataset (merged -m and -m-r) and top-k£% expert trajectories sampled from the -m-e dataset.

0% Expert 15% Expert 30% Expert 50% Expert
BC QT RVDT BC QT RVDT BC QT RVDT BC QT RVDT

halfcheetah 42.4 469 493 460 795 927 733 913 933 71.1 928 944
hopper 654 958 100.2 99.0 108.0 113.1 1123 110.6 113.8 112.8 108.3 113.9
walker2d  81.0 923 92.7 107.8 1063 1103 1082 108.0 1124 108.1 113.6 113.8

Average 629 783 803 843 979 1054 979 1034 1065 973 1049 107.0

Task

Table 3: Performance comparison in low-data regimes. The learning difficulty increases progres-
sively from D; to Dy, with D1/D, containing 280 trajectories each and D3/D, containing 140 each.

Dl DQ D3 D4
QT RVDT QT RVDT QT RVDT QT RVDT

maze2d-umaze 100.3 171.7 81.8 101.8 73.1 769 614 100.5
maze2d-medium 137.1 1874 1752 190.0 1632 182.0 98.3 1753
maze2d-large 109.5 1404 815 901 1044 131.3 100.2 95.1

Average 115.6 166.5 112.8 127.3 113.6 130.1 86.6 123.6

Task (sparse R)

enhances its ability to assemble optimal paths from fragmented sub-trajectories, thereby signifi-
cantly outperforming all baselines. The AntMaze tasks, characterized by abundant suboptimal and
unsuccessful trajectories, pose even greater challenges due to multi-action per state scenarios. While
RVDT maintains competitive performance on smaller mazes (antmaze-u), virtually all CSM and
value-regularized SL methods fail in larger, more complex mazes (antmaze-m, antmaze-1). In con-
trast, D-QL, leveraging expressive diffusion policies, achieves the best performance on these chal-
lenging tasks. This suggests that highly expressive policies are particularly effective in multi-action
per state environments, highlighting the limitations in expressiveness of current CSM methods.

5.2 Performance under Imbalanced Trajectory Distributions

Effectiveness of Expert Data Utilization. We evaluate whether RVDT, integrating both explicit
and implicit return rebalancing mechanisms, can more effectively leverage expert-level data from
suboptimal datasets compared to QT and BC. We construct a base dataset by merging the -m and
-m-r datasets, incrementally augmenting it with top-performing trajectories from the -m-e dataset.
Table [ shows the performance of BC, QT, and RVDT at varying expert ratios. The results indicate:
(i) RVDT consistently outperforms QT and BC at all expert ratios, highlighting the advantage of
combining explicit and implicit rebalancing mechanisms compared to using only one (QT) or none
(BC) of them; (ii) as the proportion of expert trajectories increases, RVDT and QT show steady
improvements, while BC plateaus beyond approximately 30% expert data. This underscores the
effectiveness of rebalancing mechanisms in enabling CSM policies to effectively utilize expert data.

Performance in Low-Data Regimes. To assess RVDT’s performance in low-data scenarios [26],
we construct four datasets (D1-D,) by subsampling the original maze2d datasets. The learning diffi-
culty increases progressively from D; to Dy, with D; and D, containing 280 trajectories each, and
D3 and Dy containing 140 trajectories. Within each pair, Ds includes fewer expert-level trajectories
than D, as does D4 compared to D3. Compared to the original 2000-trajectory maze2d dataset,
these subsets better reflect algorithmic performance in small-sample conditions (details for D1-Dy
are provided in Appendix ETl). Table B shows RVDT consistently outperforming QT, often by a
large margin, with average improvements of 45.4%, 14.5%, 14.2%, and 45.6% across D1-D,. This
substantial performance gain highlights RVDT’s superior ability to utilize useful information from
limited and low-quality datasets (detailed comparisons in Appendix ETl).

Stitching Ability. Maze2D is commonly used to evaluate the trajectory stitching capability of of-
fline RL algorithms [25], as agents are required to compose successful trajectories by integrating
fragmented experience. We test RVDT and several baselines across four Maze2D environments
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Table 4: Performance comparison on Maze2D environments with sparse and dense rewards.

Dataset CQL DT QDT QT RVDT

maze2d-open-v0 216.7 £80.7 196.4 £39.6 190.1 £37.8 4979 +£12.3 634.6 = 12.3
maze2d-umaze-vl  94.7£23.1 31.0£213 573+£82 1054+48 1451+38
maze2d-medium-vl 41.8 £+ 13.6 82+44 133+56 1720+62 1835145
maze2d-large-v1 49.6 £84 23£09 31.0 £19.8 240.1 £25 2543+4.6

maze2d-open-v0 307.6 £43.5 3462+ 143 3257+614 6084+19 6639+ 159
maze2d-umaze-vl 727+ 10.1 —-6.8+109 58.6+33 103.1+78 995+43

maze2d-medium-vl 70.9+92  315+£37 423+£7.1 1119+19 1269 +38.7
maze2d-large-v1 909 £194 453+112 6224+£99 177.2£78 197.9+2.0

Dense R | Sparse R

Table 5: Component-level breakdown across ablation variants.

Component DT DT-Dup RDT QT VDT RVDT-Dup RVDT-Determ RVDT
Explicit Rebal. None Dup. KL None None Dup. KL KL
Implicit Rebal. None None None Q-value Q-value Q-value Q-value Q-value
Policy Type Determ. Stoch.  Stoch. Determ. Stoch.  Stoch. Determ. Stoch.

Table 6: Performance comparison of ablation variants across MuJoCo tasks.

Task DT DT-Dup RDT QT VDT RVDT-Dup RVDT-Determ RVDT
halfcheetah 84.2 90.3 90.5 912 895 93.4 91.5 94.9
hopper 109.5 1121 1119 1123 112.6 112.1 113.6 113.8
walker2d  108.2 108.8 109.7 113.2 110.3 110.9 113.1 118.7
Average 100.6 103.7 104.0 105.6 104.1 105.5 106.1 109.1

with increasing complexity (open, umaze, medium, large) under both sparse and dense reward
settings. Results in Table B show RVDT significantly outperforming baselines across almost all
configurations. Notably, RVDT achieves significant improvements over QT under the sparse reward
setting, where effective trajectory stitching is crucial. Results demonstrate that integrating explicit
and implicit return rebalancing mechanisms substantially improves CSM-based policies’ stitching
capabilities, particularly for tasks requiring long-horizon credit assignment ability.

5.3 Ablation Studies

To quantify the contribution of each individual component in RVDT, we perform ablation studies
on merged datasets (-m-e, -m-r, and -m) for MuJoCo continuous control tasks. These merged
datasets alleviate coverage limitations in state, action, and return spaces, providing a clearer evalua-
tion of component impacts without dataset-boundary biases [, 68]. The ablation variants focus on
three key aspects: explicit rebalancing mechanisms, implicit rebalancing mechanisms, and policy
types. Explicit rebalancing mechanisms include expert-policy KL regularization and expert-level
data duplication, while the implicit rebalancing mechanism corresponds to Q-value guidance. For
policy types, we consider both Gaussian stochastic policies and deterministic policies. The ablation
variants are summarized in Table B. Specifically, the two major regularizers introduced in our frame-
work, the policy regularization term and the value-based guidance term, correspond to the "Explicit
Rebal." (Explicit Rebalancing Mechanism) and "Implicit Rebal." (Implicit Rebalancing Mechanism)
abbreviated in Table B, respectively. The variant RDT denotes the ablated version of RVDT without
the value-based guidance component, while VDT represents the version without the policy regu-
larization term. For the ablated variant employing deterministic policies (RVDT-Determ), the KL
regularization term is replaced with an MSE objective. In variants where data duplication is applied,
the top 50% of trajectories are directly duplicated and appended to the original dataset. Details are
provided in Appendix O.

Table B summarizes the ablation results and reveals several key insights: (i) RVDT consistently
achieves top performance across all tasks, demonstrating the synergistic effectiveness of integrating
all proposed components. (ii) Both RDT (explicit rebalancing) and QT/VDT (implicit rebalanc-
ing) individually outperform DT, confirming the effectiveness of applying return-coverage rebalanc-
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ing mechanisms on DT, and indicating that the combination of rebalancing mechanisms in RVDT
provides additional performance gains. (iii) RVDT-Dup, which employs direct expert-level data
duplication, achieves comparable or superior performance relative to VDT, supporting our theoreti-
cal insights regarding the benefits of explicit rebalancing mechanisms. (iv) A comparison between
RVDT-Determ (deterministic policy) and RVDT (stochastic policy) shows that RVDT with stochas-
tic policy outperforms its deterministic counterpart, highlighting the importance of policy expres-
siveness, particularly in multi-action per state scenarios.

6 Conclusion

This work establishes that both expert-level and full-spectrum return-coverage are critical determi-
nants of the performance and sample efficiency of CSM policies in offline RL. Theoretical bounds
that quantify the impact of these two aspects of return-coverage on policy optimality and sample
complexity are derived, offering a principled understanding of the underlying mechanisms that drive
the effectiveness of return rebalancing strategies in CSM-based methods. Moreover, we propose
RVDT, the first CSM-based approach that elegantly integrates explicit and implicit return rebalanc-
ing mechanisms to effectively alleviate challenges posed by suboptimal datasets. Empirical evalua-
tions on D4RL benchmarks demonstrate that RVDT enhances state-of-the-art performance in offline
RL, validating the benefits and efficacy of return-coverage rebalancing.
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it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

Xvi



5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper utilizes open-source datasets, and the complete code of the algo-
rithm is provided in the supplementary material, along with detailed instructions to faith-
fully reproduce the main experimental results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section B, along with Appendix B and Appendix O, provides a comprehensive
description of the experimental settings and details, including all training and test configu-
rations, data splits, hyperparameters, and optimizer selections.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experimental results are presented with error bars that represent the stan-
dard error of the mean (SEM), as reported in the corresponding tables (e.g., Table ).

Guidelines:

* The answer NA means that the paper does not include experiments.

Xvii


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% ClI, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computational resources used for our experiments, including hardware
specifications, memory usage, and execution time, are detailed in Appendix D.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper fully complies with the NeurIPS Code
of Ethics. All datasets used are publicly available and legally obtained, with no privacy
concerns. The experimental evaluations are designed to ensure fairness and unbiased com-
parisons across different methods. Additionally, the computational resources are managed
responsibly, and the study does not pose any negative environmental or societal impacts.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]

Justification: This work primarily focuses on foundational research in machine learning,
specifically in the development and evaluation of offline reinforcement learning algorithms.
It does not involve applications or deployment scenarios that would directly impact societal,
ethical, or privacy-related domains. Therefore, the study does not present any identifiable
positive or negative societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

e The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work focuses on offline reinforcement learning algorithms evaluated on
publicly available datasets (e.g., D4RL benchmarks) that do not contain sensitive or scraped
information. The proposed models are purely for experimental evaluation and do not have
direct deployment scenarios that would pose risks for misuse or dual-use concerns.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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Justification: All datasets, codebases, and pre-trained models used in this paper are properly
cited, and their licenses and terms of use are explicitly followed as specified by the original
authors.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: This work introduces an implementation of the RVDT algorithm, which is
open-sourced and well-documented. The documentation provides sufficient instructions
for reproduction and experimental setups, ensuring clarity and ease of use.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]|
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA|
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

¢ For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLN)
for what should or should not be described.
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A  Proofs

A.1 Proof of Theorem @

The original proof is provided in [6]. For completeness, we restate the proof within our context to
better align with the assumptions and notations adopted in this paper.

Proof. Let g (s1,a1.5) be the value of the return by rolling out the open loop sequence of actions
a1.z under the deterministic dynamics induced by 7" and r. Then we can write

Es, [f (51)] = J (7f) = Eq, []EWf\sl [f (s1) — a1]
=By, [Eaygymmsjss [f (51) — g (51, 01.1)]]
+Es, [Eayymmsisy [9 (51, 01:8) — 91]]
< Es, [Eayymnglss [f (51) = g (s1,01.0)]] + eH? (®)

where the last step follows by bounding the magnitude of the difference between g1 and g (s1, a1.1)
by H and applying a union bound over the H steps in the trajectory (using the near determinism
assumption), namely:

H- supLJPatN,TH51 (re # 7 (s1,a1) or spp1 # T (s, a0)) < eH?

S1

Now we consider the first term from (B). Again bounding the magnitude of the difference by H we
get that

Esl [Eal:Hwﬂf\sl [f (81) - g(slvale)]] S Esl / Pﬂ'f (ale | SI)H [g (Slaale) 7é f (81)] H
! ©)

To simplify notation, let 5; = T (s1,a1..—1) be the result of following the deterministic dynamics
defined by T up until step ¢. Expanding it out, applying the near determinism, the consistency of f,
the coverage assumption, canceling some terms, and then inducting we see that:

Py, (ar.n]s1) = 7y (a1|s1>/ P (sals1,a1) Pr, (azst]s1, 52)

< 7y (a1]s1) P, (a2:1151,52) + €

_ Pr, (g1 = f(s1)s1,01)

=73 (a1]%1) Py (1= £ (51) |51)

€+ Pry (g1 — 7 (51,01) = [ (51) =7 (81,01) |51, a1, 32)
Pr, (g1 = f(s1)]s1)

€+ Pry (92 = [ (52) ]52)

Pr, (a2:m]s1,52) + ¢

< mg (a1]s1) Py, (a2:m]s1,52) + €

=T (a1|81) Pﬂ@ (91 _ f(sl) |81) P7rf (GQ:H‘SMEQ) +e€
G e (1)
Pr, (92 = [ (52)]52) Pr |53,
< moron m o) 2 27O T L RSP Gl 5)
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)
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. Pr, (gu = [ (30) |5, an) 1
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where the last step follows from the determinism of the trajectory that determines 5z and the consis-
tency of f. Plugging this back into (H) and noticing that the two indicator functions can never both
be 1, we get that:

B [Ba e [ (1) = g v ] < % (1)

Plugging this back into (B) yields the result. O

A.2 Proof of Theorem 2 (performance gap)

We first give the following Lemmas to help the proof of Theorem D.

Lemma 1 (Brandfonbrener et al. [B]). Consider the assumptions of Theorem . There exists an opti-
mal conditioning function f*, defined such that f*(s1) corresponds to the return of the deterministic
optimal policy * for the underlying MDP. Assume optimal return-coverage Py, (g = f*(s1)|s1) >
oz} holds for all initial states s1. Then we have that

1
J(r*) — J(W?fM) < <Oéf* + 3) H?e.

Proof. Since f*(s1) corresponds to the return of the deterministic optimal policy 7* for the under-
lying MDP, so that E [f* (s1)] is approximately J (7*).

Let 77" (s1,t) represent the state reached by running 7* from s; for ¢ steps under the deterministic
dynamics defined by 7. Then:

s =3 (17 )7 (T7 (s1,0)))

t=1

Now we have as in the proof of Theorem [ that the probability that g # f*(s) is bounded by eH, so
that

Es, [f* (s1)] = J () = B, [Egumejsy [ (51) = g]] S E, [Pre (9 7 [ (51) | 51) - H] < eH?

Combining this with Theorem [ yields the result.
O

Lemma 2 (Achiam et al. [1]). Let d, refer to the marginal distribution of P, over states only. For
any two policies w, 7 we have:

ldn = dnelly < 2H - Egea, [TV (7 (- [ $)[|7(- | 5))]
Proof. First we will define a few useful objects. Let d?(s) = Py (s, = s). Let Ay, = ||d(s)—
dy(s)|l1. Let 6 = 2E o qn [TV (7 (- | $)||7'(- | 5))]-
Now we claim that Ay, < dp_1 + Ap_q forh > 1and Ay =0.

To see this, consider some fixed h. Note that d(s) = [, d2=* (s') [, 7 (a’ | ') P (s | s',a’). Then

s/

expanding the definitions and adding and subtracting we see that
B = [ |dh(s) = ()
<[|[ e [ @@ -w @ 1) P sa)
s |Js! a’

w1 @ - a ) [ @ s P s
OB, [TV (| IFC )]+ ™ =, = s+ B
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Now applying the claim and the definition of d, we get that

H h-1

ldy — dor|], < HZAh<HZZ(5 <HHZ<5h—2H B, [TV (x(- | )7 (- | 9))]

h=1 j=1
O

Now we are ready to prove Theorem 2.

Proof. Let f*(s1) denote the return of the optimal deterministic policy 7* under deterministic dy-
namics. According to Theorem [ and Lemma [, we have:

|J( CSM) J(7T]Cc§M)| < |J( CSM) (776)‘ + |J(7T]Cc§M) J(?T,@)| (11

Denote W?SM with an arbitrary conditioning function f’ by 7. LetPr ., and Py, denote the station-

ary distribution over states, actions, and returns induced by policy 7/ and g respectively.

| T(xp) = I (m)| = H] (Er, ,[r(s, )] ~ Ep, [r(s,a)]) |

S H‘ dﬂ'f/ - d‘/rﬁ
1
< 2H? Egua,, [TV (15 (-]8) |75 (:[5))]
< H? - Esud,, U |7y (als) — 7Tﬁ(ClIS)|] 12)

) Py (F/(3)]s) — Pay (£1(5)]5.)
<HE”%{AWM$ P (P (5)]s) }

H2
< b, | [ o).

where the third inequality above utilizes the result of Lemma D.

Denote Esa, [, m5(als)] by a@s. By equation (I2) and equation (ITl) we have

1 1
CsM CSM 2~
|J(757) = J (w50 S(aff‘kaf;)H ag (13)
Combine (M) and (3) we conclude
" 1 1 1 _
J(r*) = J(x§M) < e(E +3)H? + (a— + CT*)HQO% (14)
f f f
Where we have the condition
ar+ap <1lar€(0,1]; (15)
if f# f*,oz} € (0,1]. (16)

That is 8 should have both good coverage on sample f and the optimal f*, when expert data increase,
f* will increase but f may decrease.

’ Should balance expert data and full-spectrum data! ‘ a7

O
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A.3 Proof of Theorem B (sample complexity)

We first introduce the following useful lemma, whose proof synthesizes the techniques from Achiam

et al.[l]] and Brandfonbrener et al.[H].

Lemma 3 (Sample complexity of CSM). Consider any conditioning function f : S — R such
that the following assumptions hold: (i) Bounded occupancy mismatch: P, R SM (s) < CrPry(s)

for all s. (ii) Return-coverage: Pr,(g = f(s) | s) > ay for all 5. (iii) The policy class I is
finite. (iv) |logm(a | s,9) —logm(a' | s',9")| < cforany (a,s,g,d',s',¢") and all w € T1. (v) The

approximation error ofH is bounded by €pprox , i.€., Minzcry L(7r) < €approx. -

Define the expected loss for a CSM algorithm as
L(#) = Esnp, ,Egnp, 1s) [KL (Pry (- [ 5,9)17(- [ 5,9))] -
Then with probability at least 1 — 0,

1/
J(x§™) I (7y) £ O (Cffﬂ (wé (2=2) r ﬁ)) .

af
Proof. Applying the definition of J and Lemma [, we get
J (,R_JCCISM) —J(ry)=H <]Ep7r(;SM [r(s,a)] — Epﬁ_f [r(s,a)])

R
Tf 1

<2. EM e [TV (7§M( | 9)||5(- | 5))] H

Expanding definitions, using the multiply and divide trick, and applying the assumptions:

2-Esua CSM [TV( CSM( ‘ 5>||ﬁ-f( | S))]
~Eri [/| (a] s, f(s)) - #(a s,f<s>>|}

:ESNW[ / |Pey(a | 5, (s >—fr<a|s,f<s>>|]

/3

G s)|s als,f(s)—m(als,f(s
<ZB, [Pwﬁm) ) [ 1Pesta 006 - 7(a .16

C
< B, | [ Prata19) [ 1Prfal 5.9) = #(al 5]

C .
=2 B gongre, s [TV (P 5,07 1 5.)]

C
< =L\/2L(%),

af
where the last step comes from Pinsker’s inequality.
Combining with the above bound on the difference in expected values, we can get:

. C p
J (n§M) — J (7) < a—;HQ 2L (7).

We now write L(7) =
—E(s,a,9)~p,  [log7(a

g

L(m) — Hy,, where H,, = —]E(s,a,g)NPw
| s,

g)] is the cross- entropy loss.

Denoting 7 € arg min,err L(7), we have

L(ﬁ-) = L(ﬁ-) —L (ﬂj) +L (WT) < E(ﬁ) —-L (WT) + €approx -

XXV

(18)

19)

[log P‘ﬂ'ﬂ (a' | 3,9)] and E(ﬂ') =



Denoting L the empirical cross-entropy loss that is minimized by 7, we may further decompose

L(#) — L(n") = L(#) — L(7) + L(#) — L (#") + L (x") — L (")
Vi

< 2sup |L(7) — L(7)|
well

Under the assumptions on bounded loss differences, we may bound this, e.g., using McDiarmid’s
inequality and a union bound on II to obtain the final result in (I) [50, B]. O

Now we are ready to prove the theorem 3

Proof. By Lemma [ we have the following result that

1/4
J (7§5M) = J(77) <O <CfH2 <\ﬁ (log|]\l;l|/6) + ,/ieappro,{)) . (20)

afr
By Theorem [ we have the following result that

1 1 1
J(r*) = J(x$™M) < (a—* + 3)H?e + (a—f + E)HQC. 1)
f f

Thus, by combining the results from (0I) and (), we conclude that

o 1/4 .
J(7*) = J(7p) <O <C’£H2 <\/E (mﬁ/é) +\/T> + < +*C +C> H2) .

af

A.4 Proof of Proposition 0

Proof. To prove Proposition [, we show that the KL regularization term in (8) is proportional to the
negative log-likelihood (NLL) loss, under the assumption that the policy 7y is a factorized Gaussian
distribution with a fixed isotropic covariance. The equivalence then implies that KL regularization
explicitly reweights the NLL loss, thereby implementing an explicit resampling mechanism.

Recall the KL divergence between two multivariate Gaussians N (p1, 1) and N (pz, X2) is given
by:
|22]

1 _ _
Dxr, (N (p1, 21) | N (p2, X2)) = 3 tr(35 ' S1) + (2 — pa) '3 (2 — pa) — d + log =)

(22)
where d is the dimensionality of the action space.

In our setting, the policy is parameterized as mg(a|s) = N(ug(s),&I) and the target is a Dirac
approximation centered at the action a, i.e., A'(a, £I). Substituting into (Z2), we obtain:

Dy (N (po(s), €1) | N(a, £1)) = % [tr(1) + (no(s) — a) " (€1) " (po(s) — a) — d +log 1],

where we use the fact that 31 = ¥ = £1. Simplifying yields:

Dxr (N (no(s),£1) | N(a, 1)) = %IIM@(S) —al*.

Taking expectation over (s, a) ~ D gives:
1
IE(s,a)N'D [DKL (N(:ue(s)agl) ||N(aa§I))] = 276 E(s,a)ND [HMG(S) - a||2] )

which shows that the KL divergence is proportional to the mean squared error (MSE) loss between
o (s) and the ground-truth action a.
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The log-likelihood of the Gaussian policy mg(als) = N (a; po(s), EI) is

log o (als) = — 3 log(2¢) - —||a ~ po(s)]%

Taking the negative log-likelihood gives:
1 5 d
~logmy(als) = 5 lno(s) — all? + G log(2€).

The constant term g log(27€) is independent of the policy parameters # and does not affect optimiza-
tion. Therefore, minimizing the KL divergence is equivalent (up to scaling and additive constants)
to minimizing the NLL loss:

E(s,a)~p [Drr (N (ra(s),&1) [| N(a, &1))] = Es q)~p [~ log mg(als)] 4 constant. (23)

Recall that the RDT objective in (B) augments the standard NLL loss with a KL regularization term
over expert trajectories:

H

Lror(0) = TNDZ [ log mo(ai|si, g(73), Teo 1)} +aE up, Z [DKL (ﬂe(.|si,g(n),7‘£1) ||7Te(|sz))] .

i=1

If 7. is a delta function centered at a; (i.e., using the empirical action from the expert trajectory),
and both policies are Gaussians with identical covariance £, the KL term simplifies to an MSE loss,
and hence to an NLL term by (Z3). Thus, the second expectation term becomes equivalent to an
additional NLL loss over D, with weighting factor a.

This yields the final objective:

H
ACRDT(G) =E,..p (1 + - H[T S De]) : Z —log W@(ailsi, g(TZ'), 77}151) -+ constant.
i=1
Since the constant term does not affect the optimization process, the proof is thus completed. O

A.5 Formal Statement and Proof of Proposition 2

Proof. To formally state Proposition D, we first define the loss functions of the respective algorithms.

We begin by explicitly stating our key assumptions:

* Infinite dataset size, i.e., |D| — oo
* Both 7 and 73 are gaussian policy
Under these conditions, it has been shown that minimizing the negative log-likelihood is equivalent
to minimizing the KL divergence between 7 and mg:
NLL = E(s,a)wD[_ 10g7T((1| )}
= Eond,, () [Drr(m(-|s)[[m5(-]5))]

As shown in Proposition [, KL regularization corresponds to a reweighting of the data distribution.
We define the reweighted dataset ) and the corresponding mixture policy 7 ; as:

(24)

1 «

D=——D+-—D,
1+ 1+ a (25)
1 n «
Ty = 0 i
B 14+a P +a ¢
With these definitions, we rewrite the learning objectives for DT, QT, RDT and RVDT:
Ty = arng;?XLDT(W) = argmf?xESN(iﬂB(,)[—DKL(W(-\5)||7rg(~|s))] =g (26)
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g = argmax Lor(m) = arg max By, () [=Drr(7(]s)[[7(|s)) + 1Bann([s) [Qn (s, a)]]
27)

= arg max Lrpr(m) = arg m;iX]ESNdﬁﬂ(A)[—DKL(’]T('|S)H7TB("S))] =75 (28)

L= arg max Lrypr(m) = arg HI;}XESNCZWB(A)[—DKL(’IT('|S)H7TB(-|S)) + NEqan(|s) [@Qx (5, a)]]
(29)

Based on these optimization objectives, we can formally restate Proposition D

Proposition 3 (Formal statement of Proposition Q). Let 7}, 7, 7, and 7}, denote the optimal poli-
cies learned from the objectives of RVDT (Z9), RDT (Z8), QT (Iﬂq) and DT (28) respectively. Given
the behavior policy mg, there exists an expert-level subset D, C D and an appropriate coefficient
a > 0 such that the following inequalities hold for all states s ~ dy ,:

EV™ (s) > BV (s) > BVt (s),  and

E V7 (s) > E,VTa(s) > E, V™ (s). G0
Since 7}, = mg, we aim to prove the following policy improvement results:
Eonidy, (V7™ (5) < Egna,, ()V(5) (31)
Eondry ()V(5) < Eqgnay, ()V7 () (32)
Esndn, )V (8) < Esna, () V™(s) (33)
Eonidry ()Y (8) < Bgna 0V (8) (34)

Inequalities (B1l) and (B2) follow directly since (I) and (B) are special cases of (B) and (B2), respec-
tively, when o = 0.

We now prove (B3).
B, () [V ()]
T RN (oL 10%)
> NBsnd, a1 [Q7 (5, @)] = Esna,  , [DxL(m(-|3)|5(:15))] (35)
|

2 B, yamms Q7 (5, 0)] = Esna, ) [Drr(mp(:ls)ms(-]s))]
= nESNd«[,(-)ﬂNms [Qwﬁ (S, a)] =nEsq [Vﬂﬁ( )]

0 ﬁ

where the first inequality follows the non-negativity of KL divergence, the second inequality follows
g 1s the optimal policy of 7.

Similarly, for (B4):
MBsa, () (V7 (s)]
= By s (1@ (
B(anmi(ls) ) (36)
2 MBsnd, () (10 Q7% (8, @)] = Bsna, o [Drr(m(-[s)m5(:|s))]
> 77Es~d,,ﬁ(_),a~7r5- [QWB (87 a ] = nEswd,rB(')[Vﬂ—é (3)]

This completes the proof. O
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B Training and Inference

We instantiate the previously described formulation using a transformer-based architecture. The
RVDT architecture extends the DT framework by explicitly accounting for stochastic policies, pre-
dicting the policy’s mean and log-variance through two separate fully connected layers. The com-
prehensive training procedure for RVDT is summarized in Algorithm 0. For notational simplicity,
Algorithm [ represents the policy input using the shorthand 7y (-|s;— ki, Gi—K:i—1, gi—K:i), Which
explicitly treats the current state—return pair (s;, g;) as part of the context window. When i — K < 0,
the context window is truncated to the available prefix of the trajectory.

In scenarios without supplementary datasets or direct access to expert policies, we rely on cumulative
returns to differentiate trajectory quality. Specifically, we select the top p% trajectories (p is a
hyperparameter), ranked by cumulative return, to form the expert dataset D.. The expert policy
¢ is subsequently trained via behavior cloning on D.. Note that alternative imitation learning
approaches such as GAIL [20] or IRL [B] could similarly be utilized to derive 7°.

RVDT employs a two-step sampling process to ensure uniform sampling of sub-trajectories of length
K from the replay buffer 7play. Initially, an entire trajectory is sampled with probability propor-
tional to its length, and subsequently, a sub-trajectory of length K is uniformly extracted. For
environments characterized by non-negative dense rewards, this approach resembles an importance
sampling scheme [67].

We leverage offline Dynamic Programming techniques to train the value network @), optimizing
via Temporal Difference (TD) learning [53]. In practical implementation, standard stabilization
techniques such as double Q-learning [I¥] and the use of a target network [43] are adopted. It is
noteworthy that in the offline RL setting, conservative Q-learning (CQL) [40] is typically employed
to mitigate the out-of-distribution issue by maintaining policy similarity to the behavior policy. How-
ever, since the RVDT inherently incorporates behavior cloning, which naturally ensures similarity
to the behavior policy, the additional adoption of CQL yields minimal performance gains.

During inference, return-conditioned supervised methods initially require specifying a target return
as the first RTG token, subsequently subtracting sampled rewards to update the RTG token iteratively.
According to Theorem [I, achieving the target return critically depends on the coverage of the speci-
fied return in the dataset. Hence, a practical choice is to utilize the maximum return observed in the
training dataset as the initial target. Nonetheless, given RVDT’s integration with dynamic program-
ming principles and its strong trajectory stitching capability, the actual optimal target return may
surpass the dataset’s maximum observed return. Building upon the inference strategy of QT, we ran-
domly sample candidate returns within a positive 10% margin above the maximum return observed
in the dataset, thereby obtaining multiple candidate return-to-go tokens g3, g, - - -, g5*. Actions
corresponding to each candidate return-to-go token are simultaneously generated. Subsequently,
we employ the learned Q-value function to preferentially select actions associated with higher
returns. This selection mechanism is formally expressed as: ai = arg maxg; Qy (st,ak),where

ai ~m(:|se, gi, 7).

C Experimental Details

C.1 Benchmark Details

Our evaluation is performed across five diverse domains in the D4RL benchmarks [I6]: Gym,
Adroit, Kitchen, Maze2D, and AntMaze. These domains are designed to comprehensively evalu-
ate the capability of offline RL algorithms in handling different types of dynamics, reward structures,
and state-action distributions.

* Gym-MuJoCo locomotion tasks serve as standard benchmarks for continuous control. These
tasks, such as HalfCheetah, Hopper, and Walker2d, are characterized by smooth reward func-
tions and dense feedback signals. The datasets include trajectories generated by policies of varying
quality: random, medium, expert, and medium-expert, representing different levels of optimal-
ity. While expert and medium-expert provide high-quality trajectories, medium, random, and
medium-replay contain suboptimal and exploratory behavior, offering diverse state-action cov-
erage for offline learning.
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Algorithm 1: RVDT: Return-rebalanced Value-regularized Decision Transformer

Input: Sequence length K, dataset D, hyperparameters «, 7, expert ratio p%
Initialize: Policy 7y, critic @
Construct expert dataset D, by selecting top p% trajectories from D;
Train expert policy 7¢ on D, via BC;
fort =1to T do
Sample a trajectory 7 ~ D and a length- K subsequence from ;
Denote the sampled subsequence as {(s;, a;, ;) } £ ; by re-indexing;
// Critic update
Update critic ¢y using offline TD learning on transitions sampled from D;
// Policy update
for i =1to K do
Sample action @; ~ g (+[Si—K:is Qi ki1, Gi—K:i)3
Compute Qy (s, a;);
Compute KI(7o(-8i— ki, GieKcii1, Gi—k:i) | 7(-]si))s
Update policy 7 by minimizing Eq. (1);

return 7y;

* Adroit tasks involve high-dimensional dexterous manipulation using a 24-DoF robotic hand. The
datasets are primarily collected from human demonstrations and behavior cloned policies, result-
ing in narrow state-action coverage and strong multi-modal behavior. Due to the inherent complex-
ity of the hand’s control space, policies must be effectively regularized to avoid out-of-distribution
(OOD) actions. The sparse nature of successful demonstrations and the high variance in human
trajectories further challenge offline RL algorithms in terms of generalization and stability.

* Kitchen environment introduces long-horizon, multi-task manipulation scenarios, where an agent
is required to execute a fixed sequence of four subtasks to achieve a goal configuration, such as
turning on the microwave, opening the cabinet, or switching on the light. This setting emphasizes
the importance of temporal abstraction and multi-task planning. The datasets are collected from
demonstrator policies that exhibit varying degrees of task completion, leading to fragmented sub-
trajectories that need to be stitched together effectively during offline learning.

* Maze2D tasks are specifically designed to evaluate the ability of offline RL algorithms to stitch to-
gether fragmented sub-trajectories and recover globally optimal paths in a continuous navigation
setting. Unlike Gym-MuJoCo, Maze2D environments present sparse rewards, requiring the agent
to combine distant state transitions to solve navigation tasks effectively. Although Maze2D also
provides a dense reward setting, we primarily focus on its sparse reward version throughout this
work unless otherwise specified. The agent controls a 2D ball in complex maze-like structures,
where the challenge lies in leveraging suboptimal paths to construct optimal global trajectories.

* AntMaze represents a more challenging extension of Maze2D by introducing an 8-DoF Ant robot
instead of a simple 2D ball. The sparse reward structure remains, but the high-dimensional state
space and unstable dynamics of the Ant make trajectory stitching significantly more difficult. Suc-
cessful navigation requires effective trajectory stitching and long-horizon credit assignment to
traverse disconnected regions of the maze. Datasets are collected using goal-conditioned poli-
cies with diverse start-goal configurations, introducing variability in trajectory quality and return
distributions.

Dataset descriptions and policy types for representative tasks in the D4RL benchmarks is given in
Table [@.
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Table 7: Dataset descriptions and policy types for representative tasks in the D4RL benchmarks.

Task Policy Type Description

hopper-medium-expert-v2 Expert + Medium policy A 50-50 mixture of trajectories from a near-optimal ex-
pert policy and a medium-performance policy.

hopper-medium-v2 Medium behavior policy Collected by a policy trained to partial convergence, rep-
resenting moderately optimal behavior.

hopper-medium-replay-v2 Medium + Experience replay A replay buffer from the medium policy, including a
wide range of suboptimal and early-stage transitions.

pen-human-v1 Human demonstrations Trajectories collected via human teleoperation using a
virtual reality interface.

pen-cloned-v1 Behavior cloning policy Trajectories generated by a policy trained via behavioral
cloning on human demonstration data.

kitchen-complete-v0 Expert policy Expert demonstrations accomplishing a fixed sequence
of four goal-directed tasks.

kitchen-partial-v0 Expert policy Expert demonstrations completing a variable subset of
kitchen tasks in different orders.

maze2d-umaze-v1 Trajectory tracking (suboptimal) Random-walk trajectories collected in a small U-shaped
maze.
maze2d-medium-v1 Trajectory tracking (suboptimal) Random-walk trajectories in a medium-sized maze with

increased spatial complexity.

maze2d-large-v1 Trajectory tracking (suboptimal) Random-walk trajectories in the largest maze with long-
horizon navigation.

antmaze-umaze-v0 Expert policy Goal-conditioned expert demonstrations in a small U-
shaped maze.

antmaze-umaze-diverse-v0 Expert policy (diverse goals)  Goal-reaching demonstrations in the small maze with
diverse start-goal pairs.

antmaze-medium-diverse-v0  Expert policy (diverse goals) ~ Goal-directed expert trajectories in a medium maze
with varying start-goal configurations.

antmaze-large-diverse-v0 Expert policy (sparse + diverse) Sparse, long-horizon goal-reaching demonstrations in a
large maze using an 8-DoF quadruped agent.

D Implementation Details

The policy network of RVDT is implemented as a Decision Transformer, built upon the open-source
minGPT codebase® and the official QT implementation”. Detailed model parameters are provided in
Table B.

The expert policy 7 is modeled using a fully connected neural network and trained via behavior
cloning. The corresponding model parameters are listed in Table B.

The Q-networks are represented by three-layer MLPs with Mish activations and 256 hidden units
for each layer.

All networks are trained using the Adam optimizer [35].

The code of RVDT, including all hyperparameter configurations and experimental setups, is provided
in the supplementary material for reproducibility.

The experiments were conducted on a server equipped with two AMD EPYC 7542 32-Core Proces-
sors and 8 NVIDIA GeForce RTX 4090 GPUs with 24 GB of memory. For each task, the average
training time on a single GPU was approximately 20,000 seconds, with a memory consumption of
around 3000MB. These computational settings ensure reproducibility and align with the reported
performance metrics.

*https://github.com/karpathy/minGPT
4https ://github.com/charleshsc/QT
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Table 8: Hyperparameters of RVDT in our experiment.

Parameter Value
Number of layers 4
Number of attention heads 4
Embedding dimension 256

Nonlinearity function ReLU
Batch size 256
Context length K 20
Dropout 0.1
Learning rate 3.0e — 4
Weight decay 1.0e — 4

Table 9: Hyperparameters of 7¢ in our experiment.

Parameter Value
Number of layers 4
Embedding dimension 256
Nonlinearity function ReLU

Batch size 256
Dropout 0.1
Learning rate 1.0e — 4
Weight decay 1.0e — 4

E Hyperparameters for RVDT

‘We recall the loss function for RVDT as follows:
Lrypr(0) =KkE.p [Zfil —log o (ai|si, g(7:), 7))
H = e
+OCET~DCZ7;:1KL[7T6('|81',Q(Ti)aTt}EﬂHW ('|3i)] 37

n
- ETN Esiw‘r,aiNﬂ' Q Siy Qi )-
ETN'DE(Si,ai)NT‘Qd)(Si7 a1)| P 6[ ’4/’( )]

(B12) involves four key hyperparameters that may vary across different tasks:

* The weight of the NLL, «;
* The weight of the expert policy KL regularizer, «;
* The weight of the Q-value guidance term, 7;

* The proportion of expert-level trajectories selected from the dataset D to form the expert
dataset D,, denoted as p%.

We employ the Tree-structured Parzen Estimator (TPE) for hyperparameter optimization in each
environment. The optimal values are determined based on performance on a held-out validation
set, aiming to achieve the best trade-off between policy regularization and value maximization. The
key hyperparameters of RVDT is given in Table . Other hyperparameter configurations used for
reproducing the experiments are provided in the code available in the supplementary material.
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Table 10: Key hyperparameter settings for all selected tasks to reproduce the main results reported
in Table [.

Tasks e n % Expert dataset ratio p% Grad Norm
halfcheetah-medium-expert-v2 0.1 5.0 0.02 50% 15.0
hopper-medium-expert-v2 0.01 1.0 0.02 50% 9.0
walker2d-medium-expert-v2 0.01 2.0 5e-6 10% 5.0
halfcheetah-medium-v2 0.1 50 0.02 10% 15.0
hopper-medium-v2 1.0 1.0 0.02 50% 9.0
walker2d-medium-v2 0.1 20 0.02 10% 5.0
halfcheetah-medium-replay-v2 1.0 5.0 2e-4 50% 15.0
hopper-medium-replay-v2 1.0 3.0 0.02 50% 9.0
walker2d-medium-replay-v2 0.1 20 0.02 10% 5.0
maze2d-open-v0 1.0 0.01 0.02 10% 9.0
maze2d-umaze-vl 1.0 50 1.0 30% 20.0
maze2d-medium-v1 0.1 50 5Se-6 30% 9.0
maze2d-large-v1 1.0 40 2e-6 30% 9.0
antmaze-umaze-v0 0.1 0.05 0.02 30% 9.0
antmaze-umaze-diverse-v0 0.1 0.02 0.01 70% 9.0
pen-human-v1 10.0 0.1 2e-3 50% 9.0
hammer-human-v1 1.0 1.0 0.02 50% 5.0
pen-cloned-v1 10.0 0.1 0.02 30% 9.0
hammer-cloned-v1 0.5 0.01 2e-4 50% 9.0
kitchen-complete-v0 0.1 0.001 Tle-4 50% 9.0
kitchen-partial-v0 10.0 0.01 0.02 50% 9.0
maze2d-open-dense-v0 1.0 0.01 0.02 10% 9.0
maze2d-umaze-dense-v1 0.5 3.0 0.02 10% 5.0
maze2d-medium-dense-v1 100.0 5.0 2e4 10% 9.0
maze2d-large-dense-v1 1.0 40 2e3 10% 9.0
antmaze-medium-diverse-v(Q 0.1 0.01 0.02 30% 9.0
antmaze-large-diverse-v0 0.1 0.005 0.02 30% 9.0

F Additional Experimental Results

F.1 Performance in Low-data Regimes

We provide a detailed description of the four sub-datasets D; — D, constructed for the low-data
regime experiments. First, note that each of the original maze2d-umaze, maze2d-medium, and
maze2d-large datasets consists of 2000 trajectories. For each task, we filter the original dataset
to distinguish trajectories of different quality levels. We define three quality-based sub-datasets:
expert, medium, and noise, denoted as D, D,,, and D, respectively. These subsets are obtained by
randomly sampling 200 trajectories from the top 30%, middle 40%, and bottom 30% of returns in
the original dataset.

The sub-datasets D; — D, are then constructed by randomly sampling from D, D,,, and D,, ac-
cording to the following proportions:

1. D1: 50% D, + 50% D,,, + 40% D,,, comprising 280 trajectories, designed to achieve full
return-coverage.

2. Ds: 20% D, + 20% D,,, + 100% D,,, comprising 280 trajectories, dominated by random-
policy data with a smaller fraction of medium and expert trajectories.

3. D3z 25% D, + 25% D, + 20% D,,, comprising 140 trajectories, mirroring the empirical
return distribution of D; but with fewer samples.

4. Dy: 10% D, + 10% D,,, + 50% D,,, comprising 140 trajectories, mirroring the empirical
return distribution of D, with a reduced sample size.

Table B demonstrates the significant performance improvements of RVDT over QT in low-data
regimes. The percentage improvements of RVDT over QT, derived from Table B, are summarized in
Table . These results confirm that RVDT, by incorporating both explicit and implicit rebalancing
mechanisms, substantially enhances its ability to recover optimal policies from limited data sam-
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ples. This further highlights the non-trivial nature of RVDT’s pioneering integration of explicit and
implicit rebalancing strategies.

Table 11: Percentage improvement of RVDT over QT across different datasets. For example, an
71.2% 1 indicates that RVDT outperforms QT by 71.2% on the maze2d-umaze environment when
trained with the D, dataset.

Tasks (sparse R) D1 Do D3 Dy

maze2d-umaze 71.2% 1T 24.4% 1T 52% 7T 63.7% T
maze2d-medium 36.7% 1T 84% 1 11.5% 1 78.3% *
maze2d-large 282% 1T 10.6% 1T 25.8% 1T -5.1% |

Average 454% 1 145% 1 14.2% 1 45.6% 1

F.2 TImpact of Expert dataset ratio

We evaluate the performance of RVDT when trained with varying proportions of subsampled expert
trajectories, i.e., by adjusting the expert dataset ratio p%. Adjusting the proportion p% directly
affects the trade-off between o} and oy as the proportion increases from 10% to 100%, % first rises
and then declines, while oy exhibits the opposite trend. This experiment aims to (1) examine how
the interplay between o} and oy influences algorithmic performance, and (2) identify the optimal
ratio of expert-level trajectories required for effective learning.

The results, summarized in Table [, show that using approximately 30% of the top-performing
trajectories consistently yields the best results across Maze2D tasks. Specifically, the 30% expert
subset achieves higher scores than both smaller (10%) and larger (50%, 70%, and 100%) proportions,
suggesting that o’y and oy reach a near-optimal balance under this configuration.

This observation aligns closely with our theoretical analysis, which highlights the importance of
maintaining a balance between expert-level and full-spectrum return-coverage. It reveals that effec-
tive rebalancing does not simply entail maximizing the proportion of high-quality expert trajectories.
Intuitively, relying exclusively on expert data (i.e., maximizing oy while neglecting ary) can cause
significant performance degradation due to distributional shift, particularly when training data are
limited. Therefore, careful calibration between expert-level and full-spectrum return-coverage is
crucial for achieving optimal performance in offline RL.

Table 12: Performance comparison with different proportions of subsampled expert datasets. For
example, 10% RVDT corresponds to the performance of RVDT when the expert dataset D, consists
of the top 10% of trajectories ranked by return from the full offline dataset D.

Task (sparse R) 10% RVDT 30% RVDT 50% RVDT 70% RVDT 100% RVDT

maze2d-umaze-vl 93.1 143.0 100.4 102.4 101.6
maze2d-medium-v1 189.9 195.0 192.5 191.6 188.6
maze2d-large-v1 246.5 250.0 248.5 248.1 243.6
Average 176.50 196.0 180.47 180.70 177.93

F.3 Influence of Expert Data Quality

To empirically investigate how the quality of the expert policy affects RVDT performance, we evalu-
ate RVDT under varying proportions of expert trajectory augmentation. As summarized in Table [3,
each configuration (e.g., RVDT (15%)) is trained on a mixed dataset composed of the base dataset
(merged -m and -m-r) and the top-k% expert trajectories sampled from the -m-e dataset, which can
be regarded as expert-level trajectories.

The results show that RVDT performance consistently improves as the proportion of expert trajecto-
ries increases, with the most notable gain observed between RVDT (0%) and RVDT (15%). These
findings indicate that higher-quality expert policies contribute to better performance. Combined
with the results in Table [, we can clearly observe the influence of adjusting and rebalancing return
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coverage on algorithm performance, thereby further confirming the effectiveness of the proposed
return-coverage rebalancing mechanism.

It is important to note that the expert policy used in RVDT for the main experiments (see Table [4)
is not trained from any externally provided demonstrations. Instead, it is derived from a subset of
the existing offline dataset, denoted as D, C D, by selecting relatively high-return trajectories. Con-
sequently, our method is fully applicable to standard offline RL settings without requiring any addi-
tional expert data. Moreover, the return coverage assumed in our theoretical analysis is not restricted
to strictly optimal trajectories. In practice, the presence of near-expert or moderately high-return tra-
jectories is often sufficient to ensure effective learning. This property underscores that RVDT does
not rely on idealized expert-level datasets and remains robust as long as the dataset exhibits suffi-
cient diversity to support relative return ranking. As demonstrated in Table [d, RVDT continues to
achieve notable improvements even on the -medium and -medium-replay datasets, which contain no
expert demonstrations, validating its practicality under realistic offline RL conditions.

Table 13: Performance comparison under varying proportions of expert trajectory augmentation.
Each configuration (e.g., RVDT (15%)) is trained on a mixed dataset composed of the base dataset
(merged -m and -m-r) and top-k% expert trajectories sampled from the -m-e dataset.

Task RVDT (0%) RVDT (15%) RVDT (30%) RVDT (50%)
halfcheetah 49.3 92.7 93.3 94.4
hopper 100.2 113.1 113.8 113.9
walker2d 92.7 110.3 112.4 113.8
Average 80.3 105.4 106.5 107.0

Table 14: Performance comparison across D4RL tasks. For each task, RVDT reports the mean and
standard error of normalized scores [[[fl] over 30 random rollouts and averaged over 5 random seeds.

Gym Tasks CQL IQL BCQ TD3+BC MoRel BC DD DT StAR GDT CGDT QT RVDT
halfcheetah-m-e  91.6 867 69.6  90.7 533 552 906 868 937 932 936 932408 944-+0.1
hopper-m-¢ 1054 915 109.1 980 1087 525 1118 1076 111.1 1111 107.6 113.0+02 113.1+0.5
walker2d-m-e 1088 109.6 67.3  110.1 956 1075 1088 108.1 109.0 107.7 1093 1120+03 1127+ 16
halfcheetah-m 492 474 415 484 42.1 426 491 426 429 429 430 51.0+£02 519+03
hopper-m 694 663 651 593 954 529 793 676 595 771 969 99.6+ 13 100.2+0.1
walker2d-m 83.0 783 520 837 778 753 825 740 738 765 791 872+10 902+0.1
halfcheetah-m-r 455 442 348 446 402 366 393 366 368 405 404 488+15 53.8+20
hopper-m-r 950 947 311 609 936 181 1000 827 292 853 934 102.1+06 1032419
walker2d-m-r 772 739 137 818 498 323 750 794 398 775 781 97.8+09 993+08
Average 80.6 770 538 753 729 526 818 762 662 79.1 824 89.4 91.2
AdroitTasks CQL IQL BCQ BEAR ORL BC DD D-QL DT StAR GDT QT RVDT
pen-human 375 715 669  -1.0 907 639 667 728 795 779 925 1119+118 1272+55
hammer-human 44 14 09 03 0.2 12 1.9 02 37 37 55 104453 240+15
pen-cloned 392 373 509 265 600 370 428 573 758 331 862 858+ 126 117.8+86
hammer-cloned 2.1 2.1 04 0.3 2.0 0.6 1.7 31 30 03 89  118+58 213427
Average 208 281 298 6.5 382 257 283 334 405 288 483 55.0 72.6
Kitchen Tasks CQL IQL BCQ BEAR  O-RL  BC DD D-QL DT StAR GDT QT RVDT
kitchen-Comp. 438 625 8.1 0.0 2.0 650 650 840 508 408 438 817417 845423
kitchen-partial ~ 49.8 463 189  13.1 355 338 570 605 579 123 733  725+25 750425
Average 468 544 135 6.6 188 494 610 722 544 266 586 77.1 79.8
Maze2D Tasks CQL IQL BCQ BEAR TD3+BC BC Diffuser DD DT GDT QDT QT RVDT
maze2d-u 947 421 491 657 148 889 1139 1162 310 504 573 992+10 145.1+38
maze2d-m 418 349 171 250 62.1 383 1215 1223 82 78 133 1688+85 183.5+45
maze2d-1 496 617 308 810 88.6 15 1230 1259 23 07 310 2427+73 2543+46
Average 620 462 323 572 552 429 1195 1215 138 196 339 170.2 1943
AntMaze Tasks CQL IQL BCQ BEAR TD3+BC BC DD D-QL DT StAR GDT QT RVDT
antmaze-u 740 875 789 730 786 546 731 934 592 513 760 96.0+30 98.0+40
antmaze-u-d 840 622 550 610 714 456 492 662 530 456 690 920+62 98.0+40
antmaze-m-d 537 700 0.0 8.0 3.0 00 246 786 00 00 60 240+56 300+63
antmaze-1-d 149 475 22 0.0 0.0 0.0 75 566 00 00 00  100£00 10.0£0.0
Average 566 668 340 355 382 250 386 737 280 242 378 57 59.0
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F.4 Details for Ablation Studies

The ablation variants focus on three key aspects: explicit rebalancing mechanisms, implicit rebal-
ancing mechanisms, and policy types. Explicit rebalancing mechanisms include expert-policy KL
regularization and expert-level data duplication. For the latter, the duplicated expert data correspond
to the top 50% of trajectories ranked by return, with a single additional copy included. The implicit
rebalancing mechanism refers specifically to Q-value guidance. Regarding policy types, we consider
two policy types, Gaussian stochastic policies and deterministic policies.

Table 15: Component-level breakdown across ablation variants.

Component DT DT-Dup RDT QT VDT RVDT-Dup RVDT-Determ RVDT
Explicit Rebal. None Dup. KL None None Dup. KL KL
Implicit Rebal. None None None Q-value Q-value Q-value Q-value Q-value
Policy Type Determ. Stoch.  Stoch. Determ. Stoch.  Stoch. Determ. Stoch.

Detailed descriptions of the ablation variants in Table [3 are as follows:

* DT: The original Decision Transformer method utilizing deterministic policies, implemented by
disabling the Q-value guidance term of QT.

* DT-Dup: A stochastic variant of DT enhanced with expert data duplication, modeling the policy
as a parameterized Gaussian distribution.

* RDT: An RVDT variant without the implicit rebalancing mechanism (Q-value guidance), isolating
the effect of the expert-policy KL regularizer.

* QT: The original QT model implemented using the official codebase, serving as the deterministic-
policy counterpart of RVDT without explicit rebalancing mechanisms.

* VDT: An RVDT variant excluding expert-policy KL regularization to specifically isolate the con-
tribution of Q-value guidance.

* RVDT-Dup: An RVDT variant employing expert-level data duplication as the explicit rebalanc-
ing mechanism, enabling comparison between KL-based rebalancing and data duplication ap-
proaches.

* RVDT-Determ: A deterministic policy variant of RVDT, replacing the stochastic policy with
deterministic outputs and substituting KL regularization with an MSE loss, assessing the role of
policy expressiveness.

* RVDT: The complete RVDT method integrating expert-policy KL regularization and Q-value
guidance with a stochastic policy parameterized by a Gaussian distribution.

F.5 Influence of Policy Expressiveness on Performance

To further investigate the influence of policy expressiveness [4] on algorithmic performance, we
compare RVDT with several representative Q-learning-based baselines (CQL, IQL, and D-QL) on
the D4RL benchmark. As shown in Table T8, CQL and IQL employ Gaussian stochastic policies,
while D-QL adopts a more expressive diffusion policy. In contrast, RVDT is built upon conditional
sequence modeling (CSM) techniques and incorporates a simple Gaussian stochastic policy.

From the results, we observe that D-QL, which leverages the diffusion policy, significantly outper-
forms the simpler Gaussian-policy baselines (CQL and IQL), both across most tasks and in terms of
overall average performance, demonstrating the advantage of higher policy expressiveness. Never-
theless, RVDT achieves superior performance on most tasks, which highlights the effectiveness of
leveraging CSM together with the return-coverage rebalancing mechanism.

However, in the AntMaze tasks with larger mazes (-m, -1), D-QL performs better than RVDT. This
may be attributed to the multi-legged morphology of the Ant agent, which entails a complex and
highly multi-modal action distribution. In these scenarios, the expressiveness of the diffusion policy
becomes particularly beneficial, whereas RVDT’s Gaussian policy may be insufficient to capture
such rich multimodal behaviors.
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Table 16: Performance of Q-learning-based baselines (CQL, IQL, D-QL) and RVDT on D4RL
tasks, where CQL and IQL adopt Gaussian policies, and D-QL employs a diffusion policy. Results
are averaged over 5 random seeds.

Tasks CQL IQL D-QL RVDT

pen-human 375 715 728 127.2
hammer-human 44 14 0.2 24.0
pen-cloned 39.2 373 573 1178
hammer-cloned 2.1 2.1 3.1 21.3
kitchen-Comp. 43.8 62.5 84.0 84.5
kitchen-partial 49.8 46.3 60.5 75.0

maze2d-m 41.8 349 91.0 183.5
maze2d-1 49.6 61.7 200.7 254.3
antmaze-u 740 875 934 98.0

antmaze-u-d 84.0 622 66.2 98.0
antmaze-m-d 537 70.0 78.6 30.0
antmaze-1-d 149 47.5 56.6 10.0

Average 41.2 48.7 72.0 935

Overall, these findings suggest that both policy expressiveness and CSM with return-coverage rebal-
ancing are effective factors in improving offline RL performance. The two mechanisms are comple-
mentary: diffusion policies enhance local action diversity, while CSM with rebalancing strengthens
long-horizon modeling capability. Exploring their integration represents a promising direction for
future research.

F.6 Training Time

To evaluate the computational efficiency of RVDT, we provide a detailed comparison of training
times among DT, QT, and RVDT on the D4RL benchmark. The results, summarized in Table [,
report the total training time measured until convergence (120 epochs) on an NVIDIA GeForce RTX
4090 GPU. The reported time for RVDT additionally includes the training phase of the expert policy
me. As shown in the table, the expert policy training phase typically accounts for approximately
one-fifth of the total RVDT training time. When this phase is excluded, the additional overhead
introduced by RVDT relative to QT is less than 10%. It can also be observed that QT itself incurs
a substantial increase in training time compared to DT, which primarily stems from its additional
Q-value learning process.

Table 17: Training time comparison measured until convergence. The reported training time for
RVDT additionally includes the expert policy training phase.

Gym Tasks DT QT RVDT (total) Expert policy in RVDT

halfcheetah-m-e 7.3hr 12.2hr 15.5hr 3.3hr
hopper-m-e 3.6hr 10.3hr 14.6hr 3.0hr
walker2d-m-e  6.1hr 11.7hr 15.4hr 3.3hr
halfcheetah-m  6.3hr 11.8hr 16.1hr 3.2hr
hopper-m 3.5hr 9.2hr 14.0hr 3.2hr
walker2d-m 6.1hr 11.5hr 16.0hr 3.2hr
halfcheetah-m-r 7.2hr 12.2hr 17.4hr 3.3hr
hopper-m-r 3.5hr 8.5hr 12.3hr 3.2hr
walker2d-m-r 6.2hr 11.2hr 14.8hr 2.8hr
Average 5.5hr 11.0hr 15.2hr 3.2hr
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G Discussion

G.1 Imbalance of Datasets

Learning from imbalanced datasets has long been recognized as a critical challenge in offline re-
inforcement learning. Such imbalance typically manifests in datasets predominantly composed of
low-return trajectories, with relatively few high-return trajectories. This scenario is common in
real-world applications since acquiring high-return trajectories is usually more costly compared to
low-return ones.

Existing offline RL algorithms, including dynamic programming (DP) based methods, imitation
learning (IL) based methods, and conditional sequence modeling (CSM) based methods, encounter
significant difficulties when learning from imbalanced datasets. DP-based methods often incorporate
inductive biases or regularization terms to enforce policy closeness to the behavioral distribution ob-
served in the dataset, thereby mitigating out-of-distribution (OOD) errors [, 9], which in turn leads
the learned policy to resemble the action distribution of the non-optimal behavior policy. IL-based
methods essentially imitate the underlying suboptimal behavior policy that generated the imbal-
anced dataset, which can result in overly conservative policies due to excessive imitation of actions
from the abundant low-performing trajectories. CSM-based methods typically condition on optimal
(or near-optimal) returns during inference for decision-making. However, due to the skewed distri-
bution of near-optimal versus low-return trajectories in the training datasets, CSM-based methods
frequently train on trajectories with low returns. This discrepancy in return conditioning between the
training and inference phases leads CSM methods to experience severe distributional shift problems
when conditioning on high returns for inference.

Recent studies describe dataset imbalance from multiple perspectives. For instance, Hong et al. [23]
define dataset imbalance through the positive-sided variance of returns (RPSV, defined in Defini-
tion ). Other research interprets dataset imbalance from the perspective of data coverage, where
data coverage broadly encompasses both the coverage of state and action spaces [b&] and the trajec-
tory return-coverage within the return space [B].

Definition 1. RPSV of a dataset, V [g(7;)], corresponds to the second-order moment of the pos-
itive component of the difference between trajectory return: g(7;) = 23;61 yir(si, al) and its
expectation, where T; denotes a trajectory in the dataset:

Vilg(m)] = Erop [(9(73) = Brimplg(r)])} | with 4 = max{z, 0},

G.2 Expert-Level and Full-Spectrum Return-Coverage

In this paper, we uncover the relationship between the return distribution of the training dataset
and the inference-time performance of CSM policies. Since the return distribution of an offline RL
dataset corresponds to a discrete distribution over the return space, their probability density functions
(PDFs) or cumulative distribution functions (CDFs) are challenging to represent. Therefore, this pa-
per interprets return distributions from the perspective of return-coverage, offering a mathematically
tractable description suitable for our theoretical analysis.

It is commonly understood that for a well-trained CSM algorithm, its inference-time performance
largely aligns with the initial input return-to-go (RTG) token, which is a manually specified mapping
from the initial state s; to a real number, i.e., f(s1) : S — R. The initial RTG token represents the
human-expected final return for the test algorithm; thus, it is generally chosen to correspond to the
optimal return associated with the optimal policy 7* of the underlying MDP. We denote this optimal
policy-derived conditioning function as the optimal conditioning function f*. The inference-time
returns associated with f* are referred to as the optimal conditional returns. For CSM algorithms,
apart from the initial RTG token derived directly from f*, subsequent RTG tokens are computed
by subtracting the sampled reward r from the previous RTG token, i.e., f(s¢+1) = f(s¢) — r. Due
to the inherent randomness of r and the stochastic nature of environmental transitions, subsequent
RTG tokens cannot consistently remain optimal [5, T3]. Consequently, returns encountered during
policy execution follow a more general conditioning function f, which with high probability differs
from f*. We term this broader class of conditioning functions as runtime conditioning functions,
and the corresponding inference-time returns as runtime conditional returns.
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Based on the preceding descriptions of optimal conditional returns and runtime conditional returns,
we define their corresponding coverage as expert-level return-coverage and full-spectrum return-
coverage, respectively (consistent with definitions presented in Section EI). Let P, denote the
distribution over states, actions, and returns induced by the behavior policy 3. We define the expert-
level return-coverage in an offline dataset generated by behavior policy mg as Pr,(g = f*(s1)[s1),
where f* corresponds to the optimal conditioning function. Similarly, the full-spectrum return-

coverage is defined as Py, (g = f(s1)]s1), where f represents the runtime conditioning function.

Based on these definitions, it becomes evident that return-coverage captures the representation of
inference-time conditional returns within the dataset. The central theoretical analysis of this paper
(detailed in Section H) aims to explain how expert-level return-coverage and full-spectrum return-
coverage collectively influence the performance of CSM policies. Motivated by this theoretical
insight, we propose a simple yet effective return-coverage rebalancing mechanism, designed to sub-
stantially enhance the performance of state-of-the-art CSM algorithms.

G.3 Limitations and Future Directions

Several aspects merit further exploration. First, RVDT involves training an additional imitation pol-
icy for the return-coverage rebalancing process, which introduces a modest computational overhead.
This cost, however, remains manageable and is well justified by the resulting improvements in pol-
icy quality. Future work may explore more efficient architectures or parameter-sharing strategies
to further reduce this overhead. Second, the current design of RVDT focuses on the purely offline
RL setting. Extending RVDT to online or hybrid settings, where limited online interactions are
available, could enable the model to dynamically expand return support beyond the static dataset.
In addition, integrating RVDT with data augmentation or generative modeling techniques, such as
diffusion-based trajectory stitching or sub-trajectory generation [42, B4], may further enhance re-
turn support and improve algorithmic robustness. Third, the current rebalancing mechanism relies
on trajectory returns as a measure of trajectory quality. In certain real-world domains, such as health-
care or autonomous driving, reliable return estimation can be challenging. In such cases, alternative
evaluation criteria or task-specific metrics could be incorporated to approximate trajectory quality,
thereby broadening the applicability of the proposed framework.
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