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Abstract

We propose an end-to-end deep learning framework for epileptic seizure localization from
scalp electroencephalography (EEG). Our architecture, SZLoc, extracts multi-resolution
information via local (single channel) and global (cross-channel) CNN encodings. These
interconnected representations are fused using a transformer layer. Leveraging its multi-
resolution outputs, SZLoc derives three clinically interpretable outputs: electrode-level
seizure activity, seizure onset zone localization, and identification of the EEG signal in-
tervals that contribute to the final localization. From an optimization standpoint, we
formulate a novel ensemble of loss functions to train SZLoc using inexact spatial and tem-
poral labels of seizure onset. In this manner, SZLoc automatically learns phenomena at
finer resolutions than the training labels. We validate our SZLoc framework and training
paradigm on a clinical EEG dataset of 34 focal epilepsy patients. As compared to other
deep learning baseline models, SZLoc achieves robust inter-patient seizure localization per-
formance. We also demonstrate generalization of SZLoc to a second cohort of 16 epilepsy
patients with different seizure characteristics and recorded at a different site. Taken to-
gether, SZLoc extends beyond the traditional paradigm of seizure detection by providing
clinically relevant seizure localization information from coarse and inexact training labels.
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1. Introduction

Epilepsy is a heterogeneous neurological disorder characterized by recurrent and unpro-
voked seizures (Fisher et al., 2014) that affects roughly 1.2% of the population (Zach and
et al., 2017). An estimated 20–40% of epilepsy patients are medically refractory (French,
2007) and do not respond to anti-epileptic drugs. In patients with focal epilepsy, whose
seizures originate a discrete Seizure Onset Zone (SOZ) (Lüders et al., 2006), subsequent
therapeutics include resective surgery and neurostimulation. Here, accurate SOZ localiza-
tion is a key determining factor of treatment outcome (Rosenow and Lüders, 2001). Scalp
EEG monitoring is often the first modality used in diagnosis and treatment planning for
focal epilepsy. Clinical SOZ localization based on EEG relies on visual inspection, a process
that is time consuming and often has low inter-rater agreement (van Donselaar et al., 1992).
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Machine learning methods for scalp EEG have largely overlooked the challenging prob-
lem of SOZ localization, instead focusing on the simpler problem of seizure detection. Tradi-
tional approaches used a standard feature extraction and classification pipeline to categorize
short windows (1–30 seconds) of the EEG as seizure or baseline (Osorio et al., 2016). More
recent works have turned to deep learning via convolutional (Wei et al., 2019; Zou et al.,
2018), recurrent (Vidyaratne et al., 2016; Hu et al., 2020), and hybrid CNN-RNN architec-
tures (Craley et al., 2021; Affes et al., 2019; Liang et al., 2020). While these methods report
high detection accuracies, simply determining the onset and offset times of the seizure has
limited clinical utility, as it fails to provide localization information for therapeutic planning.

A few prior studies have explored the problem of SOZ localization from scalp EEG. Such
methods have leveraged both cross-channel and spatio-temporal information. For example,
the work of (Craley et al., 2019) uses a graphical model with related detection and localiza-
tion variables to learn a spatial onset distribution for each patient. An alternative approach
by (Covert et al., 2019) relies on graph convolutional networks (GCNs); the authors demon-
strate that omitting EEG channels from within the SOZ greatly reduces downstream seizure
prediction, suggesting a possible localization scheme based on “explainable AI”. Likewise,
(Dissanayake et al., 2021) posits that localization information may be revealed by analyzing
the deep network trained for seizure detection. While promising, the latter two methods are
geared towards a patient-specific analysis, rather than drawing inferences for new patients.

The strategy of mining cross-channel and spatio-temporal information have appeared in
other EEG applications. Notably, GCN architectures have been applied to seizure detection,
as in (Wagh and Varatharajah, 2020) and (Lian et al., 2020). Transformer architectures go a
step further by relating sequential and spatially distributed features. The works of (Cisotto
et al., 2020) and (Kostas et al., 2021) investigate transformer architectures for EEG classi-
fication tasks. In (Liu et al., 2021), spatial and temporal attention are combined into one
transformer layer and evaluated on an emotion recognition task. (Qu et al., 2020) uses a
convolutional feature extractor and apply a transformer for sleep staging. Finally, (Sun
et al., 2021) and (Bagchi and Bathula, 2021) incorporate convolutional layers within the
transformer layers for motor imagery and visual stimuli classification, respectively.

In this paper, we present the first end-to-end framework for cross-patient SOZ local-
ization from scalp EEG. Our novel architecture, SZLoc, combines a convolutional, trans-
former, and recurrent module to efficiently learn the relevant (and heterogeneous) seizure
patterns from limited training examples. Crucially, we introduce an ensemble of weakly
supervised loss functions to train SZLoc to produce accurate SOZ localizations from inex-
act spatial and temporal onset labels. We validate the SOZ localization maps produced by
SZLoc on two clinically annotated datasets. Our results demonstrate the synergy of our
architecture, loss function, and training strategy for robust cross patient localization using
scalp EEG. To our knowledge, this is the first result of its kind in the epilepsy literature.

2. Methods

Figure 1 illustrates our SZLoc architecture, which uses a multi-resolution strategy to blend
information from local (electrode level) and global signal paths. Variables corresponding to
each path are denoted using superscripts e and g, respectively. Using convolutional neural
networks (CNN) and transformers, global and cross-channel information informs feature
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(a) Feature extraction

(b) Global prediction and attention

(c) Electrode seizure activity prediction

Figure 1: Schematic of our SZLoc framework. (a) SZLoc fuses electrode-level and global
convolutional encodings using a spatial transformer to generate electrode-level
representations. (b) Global features are used to generate seizure prediction Sg[t]
and onset attention ag[t] using GRU layers. (C) GRUs analyzing electrode fea-
tures output electrode level seizure predictions Ŷi[t].

extraction at each EEG electrode. The sequence of global features is used to produce
seizure detection Sg[t] and onset attention scores ag[t] at each time window t. In parallel, an
electrode-wise GRU outputs the seizure activity Ŷi[t] for each electrode i and time window t.
Ŷi[t] is used to derive the seizure detection Se[t] and onset attention ae[t] variables. SOZ
localization maps Ôe, Ôg ∈ [0, 1]19 are generated by combining Ŷi[t], a

e[t] and ag[t].

2.1. SZLoc Architecture

Multi-scale Feature Extraction As shown in Figure 1 (a), feature extraction is performed
on one-second windows of the EEG. Two 1D CNNs, one acting globally across all EEG
electrodes and one individually on each electrode, extract 160 dimensional features for each
signal path, shown in yellow and red, respectively. A transformer layer, consisting of an
encoder-decoder structure, fuses spatial information between both the global and electrode
level representations of the EEG signal. Here, the encoder takes as input both the global
and electrode-level features. The encoder representations are combined with the original
electrode-level features in the decoder to produce the multi-scale outputs shown in orange.
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Global Seizure Activity Analysis As shown in Figure 1 (b), global features are input
into a bidirectional GRU acting temporally for seizure detection Sg[t] and onset scores ag[t]
for identifying the beginning of seizure. Detailed in Section 2.3, Sg[t] will be trained to
identify pre-seizure and post-seizure intervals. In contrast, ag[t] will be used to select time
windows around the seizure onset and will be combined with the electrode-level information
to generate SOZ localization maps for each seizure (see Section 2.2).

Electrode Level Seizure Prediction As shown Figure 1 (c), the multi-scale represen-
tations are analyzed for evolving seizure activity using a bidirectional temporal GRU. The
GRU parameters are tied across electrodes to reduce model complexity. For each channel i
and time window t, the GRU outputs an electrode level detection of seizure activity Ŷi[t].
These detections are shown on the right of Figure 1 (c) as topographic plots on the scalp.

In training, we only have access to the onset and offset times for each seizure. Therefore,
we generate a seizure detection Ŝe[t] for each time window t by applying a max pooling
operation across all electrodes: Ŝe = maxi Ŷi[t]. Acting as a form of weak supervision, this
operation allows SZLoc to detect seizure activity at higher resolutions (i.e., channels) than
the clinical annotations used for training. Onset attention scores are derived via a first order

difference of the overall seizure prediction. Formally, ae[t] = max
(
Ŝe[t]− Ŝe[t− 1], 0

)
,

selecting time windows during which the predicted likelihood of seizure activity is increasing.

2.2. Generating Seizure Level Onset Maps

The datasets used in this work are recorded in the 10-20 international system, corresponding
to 19 EEG electrodes. During training, we have access to clinical annotations of the lobe
and hemisphere of seizure onset in each patient. This coarse SOZ information can be used
to derive a binary localization map O ∈ {0, 1}19, where electrodes within the annotated
lobe and hemisphere are set to 1 and the remaining electrodes are set to 0. This labeling
scheme is demonstrated in Figure 2, where channels in the clinically provided annotation
of “Left Temporal” are enclosed in a separate region, denoting Oi = 1.

The onset attentions ag[t] and ae[t] are combined with the electrode detections Yi[t] to
generate a SOZ localization map Ôg, Ôe ∈ [0, 1]19. Here we use the generic attention a and
map Ô; the superscripts g and e indicate global and electrode derived variables, respectively,
e.g. ag[t] and Ôg[t]. Mathematically, the prediction for electrode i Ôi is computed as

Ôi =

∑T
t=2 a[t]Ŷi[t]∑19

j=1

∑T
t=2 a[t]Ŷj [t]

(1)

Notice that the numerator in Eq. (1) will be large if electrode i is manifesting seizure activity
during the learned patient-level seizure onset time, as captured by the attention variable
a[t]. The denominator of Eq. (1) normalizes the SOZ map, such that

∑
i Ôi = 1. Thus,

SZLoc provides interpretable labels of seizure activity used in its final SOZ predictions.
As is standard in epilepsy monitoring, each patient may have multiple seizures. We aver-

age the predictions Ô across these seizures to create a patient-level SOZ map incorporating
localization from each seizure. This process mirrors the SOZ information harmonization
used in clinical practice, where congruent information across multiple recordings provides
greater confidence in the final SOZ location. This strategy is depicted in Figure 2, where
two correct and one incorrect localization combine to form a correct patient level prediction.
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Figure 2: Localization aggregation. SOZ is correctly localized to the left temporal region
in 2 of 3 seizures. After aggregation over the patient’s 3 seizures, the total SOZ
prediction is in the left temporal region as indicated by clinical annotations.

2.3. Weakly Supervised Loss Functions

Our data contains coarse and noisy detection and localization labels, from which SZLoc
must learn precise, high resolution information. To learn from these labels, we separate
detection and localization into separate losses and further divide these tasks based on the
signal paths used. In detection, the annotated seizure interval is on a patient level and tends
to be overly generous compared to the underlying electrographic signatures. To compensate,
we train SZLoc on 45 s EEG snippets centered around the annotated seizure onset. Using
a cross-entropy loss, we enforce that Ŝ[t] should be zero (baseline) for the first 15 s, one
(seizure) for the last 15 s, and normalize over these 30 s. However, we do not enforce any
label during the middle 15 s, allowing SZLoc to learn the appropriate onset time. Formally,

Ldetection(Ŝ) = − 1

30

15∑
t=1

log(1− Ŝ[t])− 1

30

45∑
t=31

log(Ŝ[t]) (2)

where Ŝ may take the superscript g or e denoting global or electrode-level information.
On the localization front, only region-level (lobe and hemisphere) information is pro-

vided. While the SOZ lies somewhere within this region, notice that not all electrodes
will necessarily manifest seizure activity at the onset. In addition seizure activity may
appear outside the onset zone due to propagation effects. To accommodate these factors,
we construct three complementary loss functions. Mathematically, let P(O) be the set of
electrodes within the clinician annotated region and let Ō , Ô/maxi Ôi be SOZ predictions
normalized such that the maximum is 1. To reward correct onset predictions in P (O) and
penalize those outside of it, we apply a square loss to positive and negative SOZ regions.

Lloc+
(
Ō, O

)
=

∑
i∈P(O)

(
1− Ōi

)2
|P(O)|

Lloc−
(
Ō, O

)
=

∑
i 6∈P(O) Ō

2
i

19− |P(O)|
(3)

Lmargin

(
Ō, O

)
=

1

2

(
1− max

i∈P(O)
Ōi + max

i 6∈P(O)
Ōi

)
(4)

We additionally maximize the margin between regions, reflecting our evaluation strategy
based on the region containing the maximum predicted electrode location.

We train SZLoc with global and aggregated electrode detection and localization losses.
We apply a scaling factor to Eqs. (3-4), such that the loss terms lie in [0, 1], ensuring
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gradients of roughly equal magnitude during training. The scaling factor for Lloc+ is set to
2, while the remaining scaling factors are left at 1. The combined loss function is given by

Ltotal =Ldetection(Ŝg) + 2Lloc+(Ōe, O) + Lloc−(Ōe, O) + Lmargin(Ōe, O)

Ldetection(Ŝe) + 2Lloc+(Ōg, O) + Lloc−(Ōg, O) + Lmargin(Ōg, O)
(5)

2.4. Validation Strategy

We train the SZLoc architecture using leave-one-patient-out cross validation (LOPO-CV).
Using this strategy, we are able to quantify generalization ability to new patients. SZLoc
and competing baselines are evaluated for five random initializations and results are then
averaged across these test runs. We evaluation localization accuracy based on the maximum
value in the predicted onset map Ô. If the maximum predicted weight arg maxi Ô is within
the labeled SOZ for a seizure or patient P(O), the localization is considered correct.

Evaluating Onset Attention We validate our multi-signal path framework by evaluating
our architectures on subsets of weakly supervised loss functions. By setting loss factors for
Ôe and Ôg to 0, we evaluate the performance of the models using electrode and global,
respectively, onset attention individually. In addition, we train the same architecture using
an `2 reconstruction loss between O and Ô, rather than the loss terms in Eqs. (3-4). Thus,
we quantify the improvement due to each source of information.

Baseline Models Similar to the loss ablations, we evaluate SZLoc against ablated and
reordered versions of the architecture. Hidden representations in each layer are of length 160,
allowing modifications without the need to adjust network dimensions. The CGT baseline
reorders the layers such that the GRU follows the CNN and precedes the transformer layer.
SZLoc-No Connect and CGT No-Connect omit global features in the transformer input.
In CG, the transformer layer is omitted, while CT omits the GRUs. SZLoc-Final State
predicts SOZ using the final state of the GRU, rather than based on the attentions. Finally,
the TGCN uses Architecture II of (Covert et al., 2019) modified to generate electrode level
predictions. The SZLoc-Final State and TGCN models are trained using only one set of
localization losses, as these models contain only one source of SOZ maps.

3. Results

3.1. Clinical EEG Datasets

Datasets of adult patients from the Johns Hopkins Hospital (JHH) and pediatric patients
from the University of Wisconsin-Madison (UWM) were used in this work. Results are
presented as the total number of correctly localized patients or seizures averaged over all 5
seeds. The JHH dataset contains 201 seizures from 34 adult patients with focal epilepsy and
is used in our main LOPO-CV evaluation. JHH models are evaluated for generalization in
the UWM dataset, consisting of 101 seizures across 16 pediatric patients. Due to differences
between pediatric and adult EEG, we expect JHH model performance to degrade in the
UWM dataset. Each 45 s seizure recording contains 15 s of pre-seizure, an onset period
from 15 s to 30 s, and 15 s of post-onset seizure. EEG recordings are filtered from 0.5–30.0
Hz and normalized to mean 0 with STD 1, and clipped at 2 STDs. 1 s windows with no
overlap were used with data augmentation as described in the appendix in Section A.5.
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Table 1: JHH patient (n=34) and seizure (n=201) localizations for each training paradigm.

All Losses Electrode Losses `2 Reconstruction

Model Patient Seizure Patient Seizure Patient Seizure

SZLoc 24.2± 1.0 109.6± 8.2 23.0± 1.5 105.2± 7.0 18.8± 2.0 104.6± 12.4
CGT 15.6± 2.4 83.4± 10.9 19.0± 2.2 93.6± 3.3 15.6± 1.8 88.8± 2.3
SZLoc-No Connect 19.6± 2.6 102.0± 4.3 20.8± 2.9 101.6± 4.6 17.2± 2.5 88.6± 6.1
CGT-No Connect 16.4± 1.8 81.4± 7.9 17.2± 1.6 94.8± 6.6 17.4± 2.3 94.2± 7.9
CG 19.4± 2.6 87.2± 3.7 20.0± 3.0 102.0± 7.0 16.7± 1.9 90.2± 5.5
CT 22.0± 0.7 103.0± 4.8 22.2± 1.9 108.6± 4.2 14.0± 2.5 86.4± 6.1
SZLoc-Final State 20.8± 2.91 83.0± 3.11 —– —– 18.0± 2.6 91.2± 10.1
TGCN 23.2± 2.41 118.0± 9.21 —– —– 20.4± 2.0 110.8± 6.0

Table 2: UWM generalization results for patient (n=16) and seizure (n=101) localization.

All Losses Electrode Losses `2 Reconstruction

Model Patient Seizure Patient Seizure Patient Seizure

SZLoc 6.4± 1.6 37.8± 4.4 6.7± 1.6 39.3± 4.9 6.6± 1.3 35.4± 5.1
CGT 6.1± 1.6 32.1± 4.5 5.7± 1.7 34.6± 5.0 5.0± 1.5 32.8± 4.5
SZLoc-No Connect 6.5± 1.8 37.5± 5.0 6.7± 1.6 39.7± 5.0 6.7± 1.4 37.0± 5.1
CGT-No Connect 5.8± 1.7 32.7± 5.1 5.4± 1.8 33.6± 4.7 4.9± 1.4 31.9± 5.6
CG 5.9± 1.7 32.7± 4.8 5.3± 1.7 33.6± 4.8 5.2± 1.5 31.9± 4.6
CT 6.8± 1.5 38.1± 4.3 6.9± 1.3 37.2± 5.0 5.9± 1.5 32.8± 5.1
SZLoc-Final State 5.1± 1.71 31.8± 4.31 —– —– 4.6± 1.6 29.2± 6.3
TGCN 5.8± 1.01 37.3± 4.91 —– —– 5.1± 1.0 35.6± 4.0

3.2. Localization Results

Localization in the JHH dataset is shown in Table 1 using electrode onset attention ae[t].
Performance with global attention is reported in Table 4 in the appendix. Across the board,
aggregated electrode attention outperforms global attention. SZLoc outperforms all com-
peting baselines at the patient level, achieving its best performance of 24.2 ± 1.0 of 34
(71.1%), though this result does not rise to the level of statistical significance due the size
of the dataset. For comparison, random chance prediction would result in a patient-level
accuracy of 9.6 (28.2%). TGCN achieves a higher seizure accuracy of 118.0 (58.7%) but
underperforms at the patient level. Competing baselines show similar performance with no
global attention applied during training, suggesting that only SZLoc is able to leverage infor-
mation from both onset attention sources effectively in the multi-signal path loss paradigm.
All models show performance degradation when trained with the `2 reconstruction loss,
demonstrating the efficacy of our ensemble of weakly supervised loss functions.

Table 2 shows generalization in the UWM dataset using JHH trained models. While
performance is lower, all models show localization efficacy as random chance assignment
would result in 4.2 (26.2%) and 25.2 (24.9%) at the patient and seizure level, respectively.
Similar trends are evident, with a statistically significant SZLoc result over the TGCN.
Transformer models generalize well, underscoring the benefits of the multi-scale architecture.

1. Baseline models with one source of attention are trained with only one set of localization loss functions.
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Figure 3: Patient maps Oe for an SZLoc run in the JHH dataset. SOZ electrodes are shown
by white circles and circumscribed in black. SOZ predictions are shown in red.
Small circles indicate correct (green) and incorrect (red) localization. In 26 of 34
patients, SZLoc correctly places the highest weight within the SOZ annotation.
SZLoc predicts onset near or places a second mode within O in 6 missed patients.

Figure 3 shows patient SOZ localization maps for the best performing random initial-
ization of SZLoc. SZLoc correctly identified the SOZ in 26 out of 34 patients. Secondary
modes are observed when localizations for a subset of seizures diverge from the majority.
This behavior conforms with clinical expectations that some seizure presentations contain
better localization information than others, highlighting the benefits of patient level aggre-
gation. We note that in most missed patients, either the mode is adjacent to the annotated
region, or a secondary mode occurs within the annotated region. This demonstrates that
SZLoc provides valuable clinical information even in cases where the prediction is incorrect.

4. Conclusion

In this paper we present SZLoc for automated epileptic seizure localization. Fusing infor-
mation across multi-scale signal paths, SZLoc combines global and electrode-level spatio-
temporal seizure activity leading to robust SOZ localization. An ensemble of weakly su-
pervised loss functions allows SZLoc to compensate for coarse and noisy training labels.
Namely, desirable properties of the SOZ are balanced to generate spatial maps at the
seizure and patient level. By leveraging the information rich output of the SZLoc model,
EEG activity contributing to the final localization can be visualized in the original signal
space. We also demonstrate that SZLoc is capable of cross-patient localization, a relevant
clinical use case. Taken together, SZLoc provides clinically useful information at multiple
scales to aid in the localization of focal epileptic seizures for therapeutic planning.

8



SZLoc: Multi-resolution Seizure Localization from Scalp EEG

Acknowledgments

This work is supported by the National Science Foundation CRCNS award 1822575 and
CAREER award 1845430, and the National Institutes of Health award R01EB029977.

References

Abir Affes, Afef Mdhaffar, Chahnez Triki, Mohamed Jmaiel, and Bernd Freisleben. A con-
volutional gated recurrent neural network for epileptic seizure prediction. In International
Conference on Smart Homes and Health Telematics, pages 85–96. Springer, 2019.

Subhranil Bagchi and Deepti R Bathula. Eeg-convtransformer for single-trial eeg based
visual stimuli classification. arXiv preprint arXiv:2107.03983, 2021.

Giulia Cisotto, Alessio Zanga, Joanna Chlebus, Italo Zoppis, Sara Manzoni, and Urszula
Markowska-Kaczmar. Comparison of attention-based deep learning models for eeg clas-
sification. arXiv preprint arXiv:2012.01074, 2020.

Ian Covert, Balu Krishnan, Imad Najm, Jiening Zhan, Matthew Shore, John Hixson, and
Ming Jack Po. Temporal graph convolutional networks for automatic seizure detection.
arXiv preprint arXiv:1905.01375, 2019.

Jeff Craley, Emily Johnson, Christophe Jouny, and Archana Venkataraman. Automated
noninvasive seizure detection and localization using switching markov models and convo-
lutional neural networks. In International Conference on Medical Image Computing and
Computer-Assisted Intervention, pages 253–261. Springer, 2019.

Jeff Craley, Emily Johnson, Christophe Jouny, and Archana Venkataraman. Automated
inter-patient seizure detection using multichannel convolutional and recurrent neural net-
works. Biomedical Signal Processing and Control, 64:102360, 2021.

Theekshana Dissanayake, Tharindu Fernando, Simon Denman, Sridha Sridharan, and Clin-
ton Fookes. Geometric deep learning for subject-independent epileptic seizure prediction
using scalp eeg signals. IEEE Journal of Biomedical and Health Informatics, 2021.

Robert S Fisher, Carlos Acevedo, Alexis Arzimanoglou, Alicia Bogacz, J Helen Cross, Chris-
tian E Elger, Jerome Engel Jr, Lars Forsgren, Jacqueline A French, Mike Glynn, et al.
Ilae official report: a practical clinical definition of epilepsy. Epilepsia, 55(4):475–482,
2014.

Jacqueline A French. Refractory epilepsy: clinical overview. Epilepsia, 48:3–7, 2007.

Xinmei Hu, Shasha Yuan, Fangzhou Xu, Yan Leng, Kejiang Yuan, and Qi Yuan. Scalp eeg
classification using deep bi-lstm network for seizure detection. Computers in Biology and
Medicine, 124:103919, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

9



SZLoc: Multi-resolution Seizure Localization from Scalp EEG

Demetres Kostas, Stephane Aroca-Ouellette, and Frank Rudzicz. Bendr: using transformers
and a contrastive self-supervised learning task to learn from massive amounts of eeg data.
arXiv preprint arXiv:2101.12037, 2021.
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Felix Rosenow and Hans Lüders. Presurgical evaluation of epilepsy. Brain, 124(9):1683–
1700, 2001.

Jiayao Sun, Jin Xie, and Huihui Zhou. Eeg classification with transformer-based models.
In 2021 IEEE 3rd Global Conference on Life Sciences and Technologies (LifeTech), pages
92–93. IEEE, 2021.

Cees A van Donselaar, Robert-Jan Schimsheimer, Ada T Geerts, and August C De-
clerck. Value of the electroencephalogram in adult patients with untreated idiopathic
first seizures. Archives of neurology, 49(3):231–237, 1992.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez,  Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in neural information processing systems, pages 5998–6008, 2017.

L Vidyaratne, A Glandon, Mahbubul Alam, and Khan M Iftekharuddin. Deep recurrent
neural network for seizure detection. In 2016 International Joint Conference on Neural
Networks (IJCNN), pages 1202–1207. IEEE, 2016.

10

http://arxiv.org/abs/1602.02995


SZLoc: Multi-resolution Seizure Localization from Scalp EEG

Neeraj Wagh and Yogatheesan Varatharajah. Eeg-gcnn: Augmenting
electroencephalogram-based neurological disease diagnosis using a domain-guided
graph convolutional neural network. In Machine Learning for Health, pages 367–378.
PMLR, 2020.

Zuochen Wei, Junzhong Zou, Jian Zhang, and Jianqiang Xu. Automatic epileptic eeg detec-
tion using convolutional neural network with improvements in time-domain. Biomedical
Signal Processing and Control, 53:101551, 2019.

M.M. Zach and et al. National and state estimates of the numbers of adults and children
with active epilepsy – united states, 2015. CDC MMWR, 66:821–825, 2017.

Lang Zou, Xiaofeng Liu, Aimin Jiang, and Xu Zhousp. Epileptic seizure detection using
deep convolutional network. In 2018 IEEE 23rd International Conference on Digital
Signal Processing (DSP), pages 1–4. IEEE, 2018.

11



SZLoc: Multi-resolution Seizure Localization from Scalp EEG

(a) SZLoc (b) SZLoc-No Connect
(c) CT

(d) CGT (e) CGT-No Connect
(f) CG

Figure 4: SZLoc (a) and ablation baseline (b–f) schematics.

Table 3: Table of symbols.

Symbol Meaning

Ŝ Generic seizure detection prediction

Ŝg Seizure detection prediction using global signal path

Ŝe Seizure detection prediction using electrode signal path

a Generic attention score
ag Attention score using global signal path
ae Attention score using electrode signal path

O True onset map

Ôg Onset prediction score using global signal path

Ôe Onset prediction score using electrode signal path
Ō Generic normalized onset prediction
Ōg Normalized onset prediction using global signal path
Ōe Normalized onset prediction using global signal path

P(O) Set of electrodes within the SOZ region

Appendix A. Network Implementation Details

A.1. Feature Extractor Implementation

A simplified schematic of the SZLoc network is shown in Figure 4 (a). We use two separate
CNN architectures for the global and electrode signal paths. Each CNN consists of an
embedding layer, followed by a cascade of residual blocks and convolutional projection
layers. Each residual block first applies a convolution layer followed by batchnorm and
a PReLU activation. Another application of convolution and batchnorm follow, with a
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residual connection between the input of the block prior to the final PReLU activation.
Convolutions within the block use the same number of channels as the block’s input and
kernels with a length 7 and a stride of 1. The projection layers between convolutional blocks
double the number of channels while halving the length of the representation; they employ
a kernel size of 3 and a stride of 2 unless otherwise noted. We apply global average pooling
at the end of the CNN to reduce the time-series channels to a length 160 feature vector.

The global CNN starts with an embedding convolution on the 19-channel EEG signal
with kernel size 7 and an output of 80 channels. Next, a residual convolution block with
80 channels is applied, followed by a projection layer to increase the number of channels to
160, followed by another convolution block. This representation is then passed through a
convolution layer with 160 channels of input and output, kernel size 1, and a stride of 2 to
reduce the (temporal) length of the representation. A final residual block is applied before
global average pooling. We use dropout on the final feature representation during training.

The electrode CNN uses a similar architecture but increases the network depth. We train
the same CNN across EEG channels to ensure consistency in the final feature representation
for subsequent multi-channel analyses. The individual electrode signal is passed through an
embedding convolution with kernel size 7 and 20 output channels. Next 3 residual blocks
and projection layers are applied, increasing the representation from 20 to 40, 80, and 160,
while halving the length of the representation after each projection. A final residual block
is applied with 160 features before global average pooling and dropout are applied.

By adopting an encoder-decoder transformer structure, different sets of feature repre-
sentations can be considered within each transformer component. In the encoder, global
and electrode level CNN representations are used as input features while only electrode fea-
tures are included in the decoder. This structure allows features from the global CNN and
from each individual electrode to contribute to the final representation for each electrode.
The decoder and encoder layers of the transformer follow (Vaswani et al., 2017), however
only one layer is used in both the encoder and decoder. In preliminary experimentation,
increased transformer depth led to poorer generalization, likely due to overfitting. The feed-
forward dimension is set to 256 and dropout is applied. The 19 length 160 representations
from from the electrode CNN and 160 dimensional representation from the global CNN are
fed into the encoder of the transformer. The 19 electrode representations are input into the
decoder, resulting in a length 160 feature representation of each electrode channel. Thus
each electrode channel representation incorporates information from the other channels as
well as the global EEG signal for effective multi-scale information fusion.

A.2. Global GRU

In the GRU cell, reset and update gates, rt and zt, are computed based on the previous
value of the hidden state, h(t−1), and the input xt. The sigmoid nonlinearity ensures that
these gate values range between 0 and 1. The gates control how the GRU weighs (1)
incoming information from the previous hidden state, and (2) the value of the new observed
datapoint. An update to the hidden state nt is computed based on the input data xt and
the previous state h(t−1), as weighted by the value of the reset gate. For example, if the
reset gate is near zero, only information from the the new datapoint will be considered in
the update. Finally a linear combination of the previous hidden state and the update nt
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are computed using the update gate zt. Mathematically, the GRU is governed by

rt = σ
(
Wirxt + bir +Whrh(t−1) + bhr

)
zt = σ

(
Wizxt + biz +Whzh(t−1) + bhz

)
nt = tanh

(
Winxt + bin + rt

(
Whnh(t−1) + bhn

))
ht = (1− zt) ∗ nt + zt ∗ h(t−1)

(6)

At a high level, the GRU unit weighs incoming data according to the previous values of the
hidden state to produce a new hidden representation.

The bidirectional GRU in SZLoc uses 2 layers with a hidden size of 80. Thus the
combined output from the forward and backward directions is 160 dimensional. To generate
predictions Ŝg[t], the length 160 representations for each time window are fed into a linear
layer with an output of 2 followed by a softmax. Global onset attention scores ag[t] are
generated using a linear layer which reduces the 160 length representation to a scalar at each
time window. The softmax operation is applied across time windows so that

∑T
t=1 a

g[t] = 1.

A.3. Electrode GRU

The electrode GRU cells follow the same formulation as the Global GRU cells given in the
previous section. Following the global signal path, the electrode signal path is fed into a
2 layer bidirectional GRU with a hidden size of 80. The 160 dimensional output is passed
through a linear classification layer and a softmax is applied to generate electrode level
seizure activity predictions Ŷi[t]. Similar to the electrode CNN, the same GRU and linear
layers are trained across channels to efficiently leverage multi-channel information.

A.4. Baseline Details

Schematics of the ablated SZLoc baselines are shown in Figure 4 (b–f). Transformer and
GRU blocks are reordered and omitted depending on the architecture of the specific baseline.
In addition, connections between the global features and the transformer block are omitted
in the SZLoc-No Connect and CGT-No Connect baselines.

We construct the TGCN baseline according to architecture II of (Covert et al., 2019).
In this network, a graph of connectivity is constructed over the EEG electrodes based on
local proximity. Using this graph, a series of spatio-temporal convolutional (STC) layers
are applied. In each STC layer, a graph convolution is first applied across EEG electrodes
to share features between neighboring electrodes. Second, a 1D convolution is applied
temporally as in a temporal CNN (Lea et al., 2016). A cascade of 8 STC layers is applied. In
the original formulation, features are pooled across EEG channels for seizure detection (i.e.,
a single prediction for each time window). Thus, we modify the architecture for application
to seizure localization. Instead of pooling features, we append a linear classification layer
to the final nodes at every point in time to generate predictions Ŷi[t] as in SZLoc.

A.5. Data Augmentation

We use three data augmentation techniques to combat the limited size of our datasets.
The first technique injects random Gaussian noise into the raw EEG signals. For each
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(a) Left Frontal (b) Right Fronto-Temporal (c) Left Parietal

Figure 5: Example seizure onset maps overlaid on the 10-20 electrodes for (a) a left frontal
SOZ, (b) a right fronto-temporal SOZ, and (c) a left parietal onset zone.

EEG channel, let Mi[t] ∼ Bernoulli(0.5) be a random variable indicating whether or not
Gaussian noise will be added. Similarly, the degree of additive noise for each window is
sampled from a Gaussian distribution Vi[t] ∼ N (0, 0.1) with variance 0.1. Mathematically,
noise augmentation G(·) applied in channel i at time t can be written as

G(Xi[t]) = Xi[t] +Mi[t]Vi[t] · ε (7)

where each entry of ε ∈ R200 is generated from a standard normal distribution. This
data augmentation technique applies noise to each channel and window individually, thus
prompting robustness to changes in noise conditions across channels and time.

In addition to additive noise, signal time reversal and cross-hemispheric signal flipping
is applied. For signal time reversal, the EEG signal in each window is reversed for all
channels simultaneously. However, the order of the windows remains consistent, ensuring
that seizure onset and propagation information is preserved. Cross-hemispheric flipping
interchanges left and right channels, creating a mirror image of the original EEG signal
and onset labels. This flipping ensures that the global signal path is invariant to lateralized
effects. The electrode signal path remains unaffected as no sense of spatial position is
preserved inherently in this part of the network. In contrast to the window based additive
noise augmentation, to preserve important phase and spatial relationships between channels,
both of these techniques are applied for all electrodes and time windows for a given sequence.
Each augmentation technique is applied with probability 0.5 to each sequence.

A.6. Training Details

SZLoc is implemented in Pytorch 1.9. We train the architecture for 100 epochs using Adam
(Kingma and Ba, 2014), a batch size of 5, and a learning rate of 0.001. Weight decay is set
to 0.001 and dropout in the CNN, transformer, and GRU are set to 0.1.
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A.7. Example SOZ Maps

Figure 5 shows example SOZ maps for different onset labels in the JHH dataset. Potential
onset electrodes corresponding to the SOZ annotation are marked and encircled. In onset
maps O, these electrodes are assigned a value of 1 while remaining electrodes are assigned
a value of 0. In Figure 5 (a), electrodes corresponding to a left frontal localization are
shown. Similarly, Figure 5 (b) shows an SOZ map which selects electrodes in the frontal
and temporal regions as potential onset locations for a patient with a fronto-temporal SOZ.
Figure 5 (c) shows onset electrodes for a patient with left parietal seizure onsets.

Appendix B. Supplemental Results and Discussion

When comparing SZLoc to the ablated baselines in Table 1, we observe SZLoc outperforms
all of them. Interestingly, the CT baseline, which contains no recurrent element, performs
best among ablated baselines with a patient level electrode score of 22.0± 0.7. This result
suggests that while the GRU enhances performance in the overall SZLoc architecture, when
elements of the network are removed, then the GRU may overfit to the training data.
This hypothesis is reinforced by the fact that the CGT baseline performs the worst of
all baselines with a patient electrode performance of 15.6 ± 2.6. By placing the GRU
before the transformer, it is likely that the model can fit to the data more directly than
when the transformer occurs first in the signal path. Interestingly, when the connection
between the global and the electrode signal paths are severed (SZLoc-No Connect), the
performance degrades. Finally, the the CGT-No Connect performance increases when multi-
scale information is not considered in the transformer, which further supports our hypothesis
that placing the GRU before the transformer increases the likelihood of overfitting.

Figure 6 shows the localization maps Ôg generated using the global attention variable
for the same model as pictured in Figure 3. Patients are presented in the same order to allow
for easy comparison between the figures. While the overall localization behavior is similar
for both attention variables, we note that two patients with correct channel localizations
are incorrectly localized in Figure 6. As noted in the main text, we hypothesize that the
decrease in performance can be attributed to the tendency of the global attention variable
to remain constant in the period before the onset of a seizure.

Figures 7 and 8 show localization maps from the two next best performing baselines, the
CT and TGCN, respectively. As in Figure 6, the patients are preseted in the same order
as Figure 3 for easy comparison. In its best fold performance, the CT baseline correctly
identifies 23 of 34 localization zones. While the quantitative performance of the CT model
is decent, the localization maps from this model are notably more diffuse, possibly due to
the lack of sequence modeling. As shown in Figure 8, the TGCN correctly localizes 27
of 34 patients in its best performance, exceeding the maximum of SZLoc. However, the
TGCN baseline shows a strong preference for temporal and central electrodes T7, C3, C4,
and T8. The local connectivities encoded within the structured graph layers of the TGCN
encourage the SOZ predictions within these electrodes, as they are common to nearly all SOZ
annotations. Effectively, this allows the model to reduce the SOZ localization problem to the
simpler problem of lateralization. In summary, while the TGCN baseline achieves the best
quantitative performance of any of the competing baselines with 23.2± 2.4 (68.2%) at the
patient level and 118.0± 9.2 (58.7%), it is apparent that the TGCN does this by overfitting
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Figure 6: SZLoc global attention localization results

to the distribution of SOZs. In contrast, the spatial transformer in SZLoc does not include
local connectivity information, meaning that SZLoc must learn to identify channel-level
seizure activity. Hence, it is incapable of the overfitting seen in the TGCN.

Figure 9 shows seizure predictions from the (a) CT baseline and (b) TGCN baseline
for the same seizure as shown in Figure 10. The CT baseline shows correct localization in
the right temporal lobe. However as this model has no sequence modeling via the GRU
layer, the predictions are temporally discontiguous. The TGCN, shown in Figure 9 (b),
predicts almost simultaneous onset in both the left and temporal lobes. By relying on the
local connectivity in the GCN layers, the TGCN baseline learns to predict seizure activity
concurrently in temporal electrodes on both sides. While the TGCN achieves relatively
high localization results, the model shows signs of overfitting to temporal lobe electrodes,
as these electrodes are most commonly implicated as SOZ locations.

Figure 10 (a) shows predictions of seizure activity in each electrode Ŷi. By analyzing
matrices P , Figures 10 (b) and (c) demonstrate how epileptic EEG signals contributing to
localization can be annotated, providing added interpretability beyond SOZ map outputs.
We observe that SZLoc learns to maintain a constant value for ag before fading to zero
during the seizure while ae is more sharply positioned near the onset, indicating a potential
explanation for electrode onset outperforming global onset in localization metrics.
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Figure 7: CT Channel attention localization results

Figure 8: TGCN Channel attention localization results
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(a) CT Predictions (b) TGCN Predictions

Figure 9: Seizure predictions from the (a) CT Baseline and (b) TGCN baseline for the
seizure seizure shown in Figure 10. The CT baseline identifies the right temporal
onset signal. The TGCN predicts bilateral left and right temporal onsets.

this space intentionally
left blank

Global Attention Score Electrode Attention Score

(a) Channel Predictions (b) Global attention onset (c) Electrode attention onset

Figure 10: Seizure and onset predictions overlayed on a EEG of a right temporal seizure. (a)
Seizure predictions Ŷ from each individual channel are shown. Seizure activity
begins in channel T8 and spreads to neighboring channels. Derived variable ag,
P g and ae, P e are shown in (b) and (c), respectively. By visualizing Yi[t] and
P , seizure activity contributing to SOZ maps can be easily identified.
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Appendix C. Localization Performance Using Global Attention

Table 4: JHH patient (n=34) and seizure (n=201) level localization results for each training
paradigm using global attention.

All Losses Global Losses `2 Reconstruction

Model Patient Seizure Patient Seizure Patient Seizure

SZLoc 23.6± 0.5 112.0± 5.4 19.2± 2.0 101.6± 3.3 17.6± 3.2 100.2± 8.1
CGT 14.6± 1.9 84.6± 8.6 19.2± 1.0 92.4± 12.8 15.0± 2.0 86.2± 3.0
SZLoc-No Connect 18.6± 0.5 102.0± 4.3 17.6± 1.5 94.2± 7.7 14.8± 2.2 90.6± 5.7
CGT-No Connect 17.8± 3.0 80.6± 8.9 18.6± 3.1 89.4± 1.8 15.0± 2.7 89.0± 6.0
CG 20.2± 2.2 91.8± 3.0 17.2± 2.5 90.2± 4.8 15.2± 1.4 90.2± 5.5
CT 22.2± 1.8 111.8± 11.6 21.0± 2.8 109.0± 3.3 21.2± 1.9 108.4± 3.5

Table 5: UWM generalization localization results for global training paradigms.

All Losses Global Losses `2 Reconstruction

Model Patient Seizure Patient Seizure Patient Seizure

SZLoc 6.7± 1.7 37.9± 4.4 7.1± 1.6 41.6± 4.6 6.8± 1.6 36.4± 4.9
CGT 6.2± 1.7 32.2± 4.7 5.8± 1.8 33.4± 4.9 5.7± 1.4 33.7± 4.6
SZLoc-No Connect 6.7± 1.6 38.0± 4.8 7.3± 1.6 41.8± 4.6 7.0± 1.4 37.5± 5.2
CGT-No Connect 6.0± 1.8 33.0± 5.1 5.9± 1.5 32.1± 4.3 5.7± 1.6 31.8± 5.6
CG 6.0± 1.7 33.2± 4.8 6.4± 1.5 36.5± 4.5 6.0± 1.6 33.6± 4.8
CT 7.0± 1.5 40.9± 5.1 6.4± 1.5 40.1± 5.2 6.9± 1.5 37.2± 4.3

Tables 4 and 5 report the localization performance when using global attention for
seizure onset determination. As the SZLoc-Final State and TGCN models only have one
source of SOZ map generation, we refer the reader to Table 1 in the main text for their
respective performances. SZLoc outperforms competing baselines at the patient and seizure
levels with correct localizations of 23.6 (69.4%) and 112.0 (55.7%), respectively. Localization
performance degrades when the models are trained using the `2 reconstruction loss. In cross
dataset generalization performance, shown in Table 5, the SZLoc and SZLoc-No Connect
baselines show strong generalization when only global loss is applied.
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Appendix D. Loss Ablation Study

Table 6: JHH patient (n=34) and seizure (n=201) localizations with loss functions ablated.

Electrode Attention Global Attention

Model Patient Seizure Patient Seizure

SZLoc 24.2± 1.0 109.6± 8.2 23.6± 0.5 101.6± 3.3
No Detection 21.8± 0.4 103.6± 7.7 21.8± 1.6 104.6± 6.4
No loc+ 16.2± 2.5 76.6± 8.3 13.6± 2.7 69.8± 11.1
loc+ 1 21.8± 1.0 112.4± 7.2 21.8± 2.7 113.0± 7.6
No loc- 18.2± 1.3 99.2± 4.6 18.2± 1.3 99.0± 3.1
No margin 21.4± 3.2 98.8± 7.2 21.6± 2.9 99.2± 8.3

To assess the contribution of each loss function to the overall localization performance,
we evaluate the SZLoc architecture with each loss function individually removed from the
overall ensemble. In this experiment, global and electrode losses are ablated concurrently,
i.e. for the No Detection model the total loss function is

Ltotal =�������
Ldetection(Ŝg) + 2Lloc+(Ōe, O) + Lloc−(Ōe, O) + Lmargin(Ōe, O)

�������
Ldetection(Ŝe) + 2Lloc+(Ōg, O) + Lloc−(Ōg, O) + Lmargin(Ōg, O)

(8)

and similarly for the other modified loss functions. Table 6 reports results of this study for
both electrode and global sources of attention. We note that SZLoc performs best with all
loss functions applied using electrode attention ae. Importantly, we observe that the overall
performance degrades in nearly all cases when the seizure detection task is removed. This
observation suggests that while we are primarily interested in seizure localization, training
the network for an auxiliary detection task improves our generalization.

When evaluating SZLoc when each localization loss is removed, again we see that the
full ensemble of losses performs best. The largest decrease in performance occurs when
the positive loss function Lloc+ is removed. As this loss function is directly responsible for
enforcing localizations within the SOZ, this behaviour makes intuitive sense. Interestingly,
with the Lloc+ scaling factor set to 1 patient level performance decreases while seizure
level localization accuracy increases. This indicates that at the higher scaling factor of 2,
SZLoc places more confidence in correct localizations in individual recordings, allowing it
to more correctly localize after aggregating over the set of a patient’s recordings. Similarly,
when Lloc−, the loss component responsible for suppressing localizations outside the SOZ,
is removed there is a similar but not as large degradation in performance. When Lmargin

is ablated the drop in performance is less dramatic, as Lloc+ and Lloc− capture the positive
and negative SOZ localization components. However we observe that the margin loss does
contribute to increased performance in all metrics as well.
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