
Dynamic Thinker: Optimizing Decision-Time Planning with
Costly Compute

Kevin A. Wang
Brown University

kevin_a_wang@brown.edu

Jerry Xia
Brown University

Stephen Chung
University of Cambridge

Amy Greenwald
Brown University

ABSTRACT
Decision-time planning (DTP) agents use significant amounts of
time and compute to search before taking an action. Such agents
have been instrumental in achieving strong performance in do-
mains like chess, go, and poker. Some DTP agents, like AlphaZero,
are trained via reinforcement learning. However, the learning objec-
tives that these agents optimize for do not typically include the cost
of using time and compute. Instead, algorithm designers control
the trade-off between performance and compute cost by tuning
coarse-grained hyperparameters or writing hardcoded heuristics.

In this work, we introduce Dynamic Thinker, which is a modi-
fication of an existing state-of-the-art tree-search agent, Thinker.
Dynamic Thinker is capable of optimizing its DTP behavior, under
objective functions which account for the cost of computation. We
design such objective functions for some toy environments, and
show that Dynamic Thinker outperforms Thinker and AlphaZero.

Qualitatively, we find that Dynamic Thinker performs well by
learning to use compute resources efficiently. We also highlight
Dynamic Thinker’s interesting emergent behavior, such as using
more search in the start of the episode in one environment, and
using more search near the end of the episode in another.

KEYWORDS
Reinforcement Learning, MCTS, Tree Search, Search, Decision-
Time Planning, System 2 Thinking, metareasoning, rational metar-
easoning

1 INTRODUCTION
Reinforcement learning (RL) is concerned with producing agents
that maximize some utility function. Typically, the utility of an
agent for some environment is defined as the expected return of
its policy – that is, the expected sum of discounted rewards that its
policy earns [37, 40].

However, the field of rational metareasoning [29] argues that the
utility of an agent can’t be described just in terms of the policy that
the agent implements, but is instead a function of the behavior of
the agent – namely, that the time and resource cost of computation
should be considered as part of the utility of the agent.

For example, it is easy to write a program that implements a
Nash equilibrium policy for chess: brute-force search of the entire
game tree will do the trick. However, such a program will be of no

Proc. of the Adaptive and Learning Agents Workshop (ALA 2025), Avalos, Aydeniz,
Müller, Mohammedalamen (eds.), May 19 – 20, 2025, Detroit, Michigan, USA, ala-
workshop.github.io. 2025.

use to anyone, as it will take longer than the age of the universe to
decide on most of its moves.

Many reinforcement learning agents use an insignificant and
constant amount of compute per decision (e.g. by simply querying
a neural network one time) [22, 33], so optimizing for the return of
the agent’s policy is equivalent to optimizing for the behavior of
the agent with compute costs taken into account.

Alternatively, an agent can spend a non-trivial amount of time
and compute to decide on an action, a phase called decision-time
planning (DTP) [40]. A prominent example of this is the Alp-
haZero family of agents [32, 36]. DTP has indeed proven beneficial
in domains like chess, go [35], poker [5, 23], and mathematical
reasoning [10, 17, 25, 46].

When building these agents, our goal is that of limited rationality
from Russell and Wefald [29]: How can we optimize the behavior
of decision-making agents, under an objective function that ac-
counts for the cost of computation? In this paper, we specifically
focus on DTP agents that use lookahead search in deterministic
environments.

Broadly, there are two ways in which an algorithm designer can
control the behavior of a DTP agent: first, by directly programming
the computation of the agent, and second, by training parameters
that control the computation of the agent. Generally, allowing more
of the behavior to be controlled by learned parameters can result
in better agents [39].

With the advent of deep learning, more and more of DTP behav-
ior is controlled by learned parameters (neural network weights)
rather than hand-crafted heuristics [1, 4, 12, 13, 20, 25, 31, 32, 38, 41].

AlphaZero decides which nodes to traverse during search using
its action-selection heuristic (a hardcoded formula) [11], together
with a learned policy network and value network. It acts by taking
the action visited most often during its search phase, another hard-
coded rule. In the original description of AlphaZero, the agent
always used 800 steps of search during training, and 1/20th of the
remaining time budget at test-time [36].

The Thinker algorithm [7] replaces AlphaZero’s hardcoded rules
with learned behavior, parameterized by neural network weights
and trained through reinforcement learning.While Thinker achieves
state-of-the-art performance in environments where search is use-
ful, the number of states explored during search is still a hardcoded
hyperparameter. Thus, we are unable to automatically train Thinker
to find the optimal tradeoff between the better performance that
can be obtained by investing resources in decision-time planning
vs. its higher cost.

Our contributions are:



• We introduce Dynamic Thinker, by modifying Thinker
with an additional action, which lets it stop searching and
take a real action at any point.1

• We model the cost of compute in Dynamic Thinker’s re-
ward function, and train it via reinforcement learning on toy
knapsack environments.

• We demonstrate that Dynamic Thinker outperforms Thinker,
AlphaZero, and model-free RL in these settings, by using its
search efficiently.

• We demonstrate that Dynamic Thinker displays non-trivial
learned behavior, by using different amounts of search based
on the characteristics of the state and environment.

In this paper, we are strictly concerned with the utility of (includ-
ing computational cost of the behavior of) trained agents. Although
offline training costs are also important, they are not our focus.

Examples of compute resources include wall time, CPU cycles,
and energy consumption. For simplicity, in this paper we refer to
all resources used while planning as “compute.”

2 MODELING COMPUTE COSTS
In this section, we first present the typical formulation of MDPs and
policies. Then, we present a description of Thinker as a decision-
making agent in a metalevel MDP.

2.1 Traditional MDPs and Policies
When building an RL agent, we typically model the environment
as aMarkov decision process (MDP) or a variant thereof,2 and
we model the agent as a policy.

We write △(X) to denote the set of probability distributions over
an arbitrary (finite) set X.

An MDP is a tuple (S,A, 𝑃, 𝑅,𝛾, 𝜇) where S is a set of states, A
is a set of actions, 𝑃 : S × A → △(S) is a probabilistic transition
function, 𝑅 : S × A → R is a reward function, 𝛾 ∈ [0, 1] is a
discount factor, and 𝜇 is an distribution over initial states.

An MDP starts at time step 𝑡 = 0 with the agent in a state 𝑠0
randomly drawn from 𝜇. It then samples an action 𝑎0 from 𝜋 (𝑠0).
The environment then draws a new state 𝑠1 from 𝑃 (𝑠0, 𝑎0), and the
agent receives reward 𝑟1 = 𝑅(𝑠0, 𝑎0). This process then repeats.

A policy 𝜋 : S → △(A) is a function that maps each state to
a distribution over actions. Every policy 𝜋 in an MDP induces an
expected discounted return E

[∑∞
𝑡=0 𝛾

𝑡𝑟𝑡 | 𝜋
]
. An optimal policy is

one that maximizes this return.
Wemake an important distinction between computational agents

(which we refer to in this paper as agents) and policies. A com-
putational agent is a computer program that implements a policy.
These programs take a state as input, perform computation, and
output an action.

1We use the term dynamic as it was introduced for checkers/chess in Markovitch and
Sella [21]: Compute usage can be static (amount of compute per decision is determined
before the episode begins), semi-dynamic (amount of compute for a given decision is
determined before planning for that decision), or dynamic (amount of compute may
be conditional on the state of the planning process itself).
2Other variants of the MDP include the partially observable MDP (POMDP), the Decen-
tralized POMDP (Dec-POMDP), the Markov game [34], and the factored-observation
stochastic game [18].

Figure 1: Overview of Dynamic Thinker. Step 5 is unique to
Dynamic Thinker. The other steps describe both Thinker
and Dynamic Thinker.
1. The planning agent starts planning at the current game
state, which becomes the root of the search tree.
2. To plan, the agent takes virtual search actions to explore
the search tree, conditioned on the search state.
3. At any time during the search, the agent can return to the
root node to explore another branch of the tree.
4. The virtual search is informative, because the agent ex-
plores states to determine the best action.
5. Dynamic Thinker can take a stop search action, which it
chooses when using additional compute provides little mar-
ginal benefit.
6. When the virtual search ends, the agent takes a real ac-
tion conditioned on the search tree explored during virtual
search.

A typical policy doesn’t model an agent’s decision-making time.
A policy is an excellent model for the types of agents that are typi-
cally studied in RL, namely “fast” agents that do not use significant
amounts of time or compute to make decisions. For instance, RL
agents may simply query a policy table or a Q-value table (or their
respective neural network counterparts). Then, they return either
the result of the query, or the result of extremely simple computa-
tion on the results, such as taking the argmax. This process takes a
small, constant amount of time.



Now, consider a hypothesis class of agents in which some agents
use more compute than others to make decisions. We call such
hypothesis classes compute-varying. Two agents 𝜋 and 𝜌 may
implement the same compute-independent policy; that is, they may
choose the same actions at all states. However, they may also reach
these decisions using different amounts of compute. If 𝜌 takes 1
year of computation to reach each decision while 𝜋 only takes 1
second, 𝜋 is likely preferable. Thus, policies are insufficient models
of agents when our hypothesis class is compute-varying.

When building a search agent, such as AlphaZero for chess,
the hypothesis class is typically compute-varying: the amount of
search used at each state can be tuned. To date, engineers have
largely controlled this by designing hand-crafted heuristics and
setting hyperparameters [2]. However, as search algorithms are
becoming increasingly general and governed by learned parameters,
it seems reasonable to also incorporate learned parameters that
dictate search time, and cost functions that evaluate resource usage.
Agents would then learn the right balance between the benefits of
resource use vs. its costs.

2.2 Thinker Augmented MDP
Thankfully, we can still model the problem as an MDP – one in
which the state represents not only the state of the environment,
but also the state of the internal computation of the agent, in which
actions represent performing computation, and rewards include
the cost of compute. Then, we train a “fast” RL agent to maximize
returns in the MDP. This is referred to in metareasoning as a met-
alevel MDP [6, 29]

Luckily, Thinker [7] is already described in this way – termed
an augmented MDP – but without a cost of compute3.

Thinker is a tree search algorithm that is heavily controlled by
learned parameters. Because of its ability to learn parameters that
are hardcoded in other tree search algorithms, it can be thought of
as a generalized version of other algorithms like AlphaZero.

In Thinker, the search tree is considered external to the agent. An
MDP is transformed into an augmented MDP, in which the agent
can not only take actions in the original MDP, but it can also take
actions to explore nodes in the search tree, which we call planning
actions. Both types of actions are chosen conditionally on the state
of the current search tree.

We refer to the agent in the augmented MDP as the internal
agent. We refer to the induced agent in the original MDP as the
holistic agent. The internal agent itself is “fast”, yet by acting in its
search-tree environment, it performs planning. That is, the internal
agent uses a small, fixed amount of compute resources per decision,
yet it spends a large amount of compute between real actions in the
real environment (i.e., by taking multiple planning actions before
taking a real action). This formulation of planning is elegant and
biologically plausible [16].

We denote an Augmented MDP as

M𝑎𝑢𝑔 = (S𝑎𝑢𝑔,A𝑎𝑢𝑔, 𝑃𝑎𝑢𝑔, 𝑅𝑎𝑢𝑔, 𝛾𝑎𝑢𝑔, 𝜇𝑎𝑢𝑔) .

3Although in environments where rewards are non-negative, the discount factor
imposes a cost of compute.

An Augmented MDP is transformed from a base MDP asM𝑎𝑢𝑔 =

𝑓 (M, 𝜃𝑉 , 𝜃𝑃 ), whereM is the base MDP, 𝜃𝑉 are the parameters of
a value network, and 𝜃𝑃 are the parameters of a policy network.

• S𝑎𝑢𝑔: Each state (𝑠,𝑇 ) ∈ S𝑎𝑢𝑔 is composed of a real MDP
state 𝑠 ∈ S, and the internal state of a search tree, denoted
𝑇 .

• A𝑎𝑢𝑔 : There are two kinds of actions in the augmented MDP:
A𝑎𝑢𝑔 = A ∪A′. The set A is the set of real MDP actions,
and the set A′ is the set of planning actions. An planning
action can be thought of as traversing the search tree.

• 𝑃𝑎𝑢𝑔 and 𝑅𝑎𝑢𝑔: After the Internal Agent takes an planning
action 𝑎 ∈ A′ at a state (𝑠,𝑇 ), the environment transitions
to a new state (𝑠,𝑇 ′) and receives 0 reward4, where 𝑇 ′ =

𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒 (𝑇, 𝑎). After the Internal Agent takes a real action
𝑎 ∈ A at a state (𝑠,𝑇 ), the environment transitions to a
new state (𝑠′,𝑇0) and receives reward 𝑟 , where 𝑠′ = 𝑃 (𝑠, 𝑎),
𝑟 = 𝑅(𝑠), and 𝑇0 is an empty search tree.

• 𝛾𝑎𝑢𝑔 may be kept equal to 𝛾 or rescaled.
• 𝜇𝑎𝑢𝑔 ((𝑠,𝑇0)) = 𝜇 (𝑠), where 𝜇𝑎𝑢𝑔 ((𝑠,𝑇0)) is the probability
of (𝑠,𝑇0) under 𝜇𝑎𝑢𝑔 , and 𝜇 (𝑠) is the probability of 𝑠 under
𝜇. 𝜇𝑎𝑢𝑔 ((𝑠,𝑇 )) = 0, where 𝑇 ≠ 𝑇0.

A search tree node is a tuple (𝑠, 𝑣, 𝑝,𝑢, 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛), where
• 𝑠 ∈ S is the state represented by the node,
• 𝑣 is the value of 𝑠 according to 𝜃𝑉𝑃 (called the base value of
𝑠),

• 𝑝 is the policy at 𝑠 according to 𝜃𝑉𝑃 (called the base policy
of 𝑠),

• 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 is an array, where 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛[𝑖] points to the search
tree node corresponding to the state 𝑠′ = 𝑃 (𝑠, 𝑎𝑖 ),

• 𝑢, called hints, contains statistics such as the mean and max
base value of all visited descendant nodes, the number of
times the node has been visited, etc.

A search tree𝑇 is composed of a rooted tree of search tree nodes,
and the node that the agent is currently at.

At a state (𝑠,𝑇0), the Internal Agent is at the root node of the tree,
which corresponds to the real state 𝑠 . Taking the action 𝑎′

𝑖
∈ A′,

results in 𝑇 ′ = 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒 (𝑇, 𝑎′
𝑖
), and corresponds to descending the

tree by moving to 𝑇0.children[𝑎𝑖 ]. If the node is not already in
the tree, it is created, by calling the simulator to get 𝑠′ = 𝑃 (𝑠, 𝑎),
running the value network and policy network to produce 𝑣 ′ and 𝑝′,
and initializing 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛′ and 𝑢′. The node (𝑠′, 𝑣 ′, 𝑝′, 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛′, 𝑢′)
is then added to the tree, and the hints of all ancestor nodes are
updated. The Internal Agent also has the option to take the “reset”
action 𝑎′∗ ∈ A′ which moves it back to the root node.

As a succinct summarization of the tree, the Internal Agent
observes the search tree node it is currently at, and of the root
node.

A Thinker agent thus plans and acts using the following algo-
rithm:

(1) We observe the initial MDP state 𝑠0. Initialize an augmented
MDP state (𝑠,𝑇 ) := (𝑠0,𝑇0)

(2) query the Internal Agent for its search action 𝑎, conditioned
on the observation of (𝑠,𝑇 )

4In practice, we design rewards to shape the agent to search well, but they are only
for shaping and are decayed to 0 over the course of training.



(3) if 𝑎 is a planning action, then update the augmented MDP
state by traversing and updating the search tree (𝑇 = 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒 (𝑇, 𝑎)).
Repeat from Step 2.

(4) otherwise, 𝑎 is a real action, so take action 𝑎 in the real
environment. This will lead to a new real state 𝑠′, so we
transition the augmented MDP state to (𝑠′,𝑇0). Repeat from
Step 2.

2.3 Compute Costs
We can model the cost of compute as a constant penalty for each
planning step taken. That is, when the agent takes a planning action
𝑎 ∈ A′, the agent receives reward 𝜆.

We’ll call the rewards (returns) without the penalty compute-
independent rewards (returns), and the rewards (returns) includ-
ing the penalty the compute-dependent rewards (returns).

We can also model AlphaZero using the augmented MDP, and
calculate its compute-dependent returns.

3 DYNAMIC THINKER
Thinker uses a fixed number of planning actions before it takes a
real action. The number of planning actions, denoted 𝑘 , is a hyper-
parameter.

We instead modify Thinker so that its internal agent has an extra
action in its action space: “finish search.” If this action is taken, then
the agent’s next action is a real action. We call this modified algo-
rithm Dynamic Thinker. We will refer to the original, unmodified
Thinker algorithm as Fixed-𝑘 Thinker.

Formally, fixed Thinker must take a real action 𝑎 ∈ A on every
step 𝑖 where 𝑖 ≡ 0 mod 𝑘 , and must take a planning action 𝑎 ∈ A′

otherwise. Dynamic Thinker can use any action 𝑎 ∈ A𝑎𝑢𝑔 at any
step.

Since Dynamic Thinker can use a variable number of planning
actions for each real action, the set of possible holistic agents is
a compute-varying hypothesis class. Further, the optimization of
the holistic agent can then naturally be performed through deep
reinforcement learning, by simply training the internal agent to
maximize compute-dependent rewards. Importantly, it is dynamic:
it does not need to pre-allocate the amount of compute used for
planning, but can make decisions (such as finishing search) during
search itself.

4 EXPERIMENTS
We have argued that our objective function should contain a cost
for compute usage. However, for this idea to be of practical use,
we must be able to train compute-varying hypothesis classes of
agents. Towards this end, we implemented Dynamic Thinker and
trained it on a variety of environments and compute costs. We
implemented Dynamic Thinker by modifying Thinker using its
open-source code [7].

Although modifying Thinker into Dynamic Thinker is a small
change, one may be afraid that it causes learning to be much harder.
Fortunately, our experiments show that Dynamic Thinker is able
to learn well in small knapsack environments: It not only matches
the best baseline in terms of compute-dependent returns for each
penalty, but it also outperforms it in some cases (showing that
there is benefit to dynamically spending compute). Unexpectedly,

in some environments, with certain search penalties, Dynamic
Thinker also outperforms the best baselines in terms of the raw,
compute-independent returns. These positive results motivate the
continued investigation of learned, dynamic DTP agents.

4.1 Knapsack Environments
We performed experiments on three different versions of the classic
knapsack problem. In the problem, you are given a set of 𝑁 items
and their respective weights 𝑤𝑖 ∈ N and values 𝑣𝑖 ∈ N, as well
as a knapsack that can carry up to 𝑀 pounds, and your goal is
to pick some subset of the items with maximum total value, with
the constraint that the sum of the weights does not exceed the
knapsack’s capacity. In our environments, we use𝑀=20 and 𝑁=9.

We formulate the problem as a sequential decision-making prob-
lem by defining an MDP where the agent picks items to add to the
knapsack sequentially. The agent starts with an empty knapsack,
and at each state, can pick one item to add to the knapsack. An
episode terminates when no further items can be added to the knap-
sack. The agent receives a reward of 𝑣𝑖 when it adds item 𝑖 to the
knapsack. If the selected item is illegal (either it has already been
used, or it would exceed the capacity of the knapsack), then the
agent receives a negative reward and the episode continues. These
rewards are normalized by dividing by the maximum achievable
total weight for the instance, so that the optimal policy will receive
a cumulative reward of 1.

In these experiments, we choose the number of internal agent
actions (both search tree traversals and real actions) as our unit of
compute. We model planning cost as a constant negative reward
for each internal agent action. Each time the internal agent takes
an action—that is, it traverses a node in its search tree, or it decides
on a real action—it incurs a 𝜆 reward.

The three versions are:
• Knapsack: Standard environment.
• Knapsack Bonus (1) for Optimal Solve: On the last step of
the episode, if the agent has achieved an optimal knapsack
value, then it receives an additional reward of 1.

• Knapsack Bonus (2) for Optimal Solve: Same as above, but
with a reward of 2.

Formal Environment Description: Let I be the set of items
and let𝑤𝑖 be the reward for legally adding item 𝑖 to the knapsack.
We model the knapsack problem as an MDP:

• The state space S = 2I is the set of all possible sets of items
in the knapsack.

• The action space A = I includes an action for adding each
item to the knapsack.

• At a state 𝑆 and action 𝑖 , the transition function places item
𝑖 into the knapsack, if the item can be legally added: 𝑆 ∪ {𝑖}.
Otherwise, the knapsack is unchanged: 𝑆 .

• The reward function returns𝑤𝑖 if item 𝑖 can be legally placed
into the knapsack, or 𝑐 if 𝑖 is illegal.

We model the cost of compute as a penalty of 𝜆 added to the
reward of the metalevel MDP for each planning step taken.

We do not sort the items in the representation, and illegal actions
are penalized, not masked. These difficulties mean that learning an
optimal policy for this environment is not trivial, despite its small
size. Learned tree search can be very useful: an agent can easily



Figure 2: Compute-dependent returns during training on Knapsack Bonus (1) environment, when each agent receives a penalty
of 𝜆 = −0.002 for each search step they use. The y-axis shows the cumulative compute-dependent rewards (R) per episode. The
colored lines are Fixed-𝑘 Thinker, where the agent is forced to use 𝑘 steps of search for each real step. Dynamic Thinker learns
to outperform Fixed-𝑘 Thinker for any 𝑘 .

learn to use even 1-step lookahead to avoid illegal actions. However,
doing more search is not always useful: for example, if search finds
a set of items that results in maximum capacity (10) by taking the
items with highest value-to-weight ratio, then no further search is
necessary.

Setup:We trained Dynamic Thinker on each environment, with
penalties ranging from 0 to −0.008 per search step. We run all
methods for 6.4 million real steps. We used 1 GPU and 10 to 12 CPUs
for training. We compare Dynamic Thinker with the following
baselines:

(1) Unmodified, Fixed-𝑘 Thinker with search length per step set
to 𝑘 ∈ {3, 4, 6, 9, 13, 19}.

(2) AlphaZero-styleMonte Carlo tree searchwith various amounts
of fixed search per decision (𝑘 ∈ {12, 25, 50}).

(3) Model-free actor-critic RL agent (IMPALA) (𝑘 = 1) (this is
the same actor-critic algorithm as the internal agent).

Although we don’t vary the search penalty of the baselines5, we
can calculate what its compute-dependent returns would be for
any value of 𝜆 by subtracting 𝑁𝑘𝜆 from the compute-independent
returns, where 𝑁 is the number of real steps in the episode.

Results: Table 1 shows the performance of Dynamic Thinker
compared to Fixed-𝑘 Thinker on each environment and penalty. For
each environment and penalty, we calculate the compute-dependent
returns of Fixed-𝑘 Thinker for that penalty for each 𝑘 , and pick the
𝑘 with the highest compute-dependent returns, as the best baseline.
We note the compute-dependent returns (Best Thinker Score) and
the value of 𝑘 (Best Thinker Search Length) in the table. All values

5Different penalty values shouldn’t affect the baselines, since they use a fixed amount
of search. Only when the penalty is extremely high would a baseline’s behavior change,
since it could benefit from ending episodes as early as possible to avoid additional
search. For these experiments, we use a penalty of 0.001 for the baselines, although a
penalty of 0 yields the same results.

are averaged over multiple runs. We indicate superior performance
in the table by bolding the value.

We note that Dynamic Thinker outperforms Fixed-𝑘 Thinker
in many scenarios. In the Knapsack environment, Dynamic Thinker
achievesmore compute-dependent returns than any Fixed-𝑘 Thinker,
for all tested search penalties. In Knapsack Bonus (1), Dynamic
Thinker achieves more compute-dependent returns than any Fixed-
𝑘 Thinker, for all search penalties except the very large 0.008, where
it performs very little search and achieves very low returns. In
Knapsack Bonus (2), Dynamic Thinker outperforms all Fixed-𝑘
Thinker when the penalty is moderate, but it underperforms when
the penalty is very small or very large.

Figure 2 shows the training curves corresponding to one row
of the table (Knapsack Bonus (1), 𝜆 = 0.002). In this environment,
among all Fixed-𝑘 Thinker agents, 𝑘 = 13 makes the most optimal
trade-off between raw returns and amount of search. Ideally, we
would like Dynamic Thinker to match this performance automati-
cally via training, without having to choose a hyperparameter like
𝑘 . As the figure shows, Dynamic Thinker not only matches this
performance, it significantly exceeds it.

Figure 3 plots raw (compute-independent) performance on the
y-axis and average amount of compute on the x-axis for Dynamic
Thinker and Fixed-𝑘 Thinker. (Additional baselines are shown in
Figure 4.) Each Fixed-𝑘 Thinker run is an orange dot, and each
Dynamic Thinker run is a colored star. As the value of 𝑘 increases
for Fixed-𝑘 Thinker, we observe that raw performance increases,
forming a Pareto curve of the compute/returns trade-off (orange
line). If a Dynamic Thinker run is up and to the left of the Pareto
curve, then it is using less compute to achieve at least the same raw
performance as some Fixed-𝑘 Thinker, and it is achieving higher
performance using at most the same compute as some Fixed-𝑘
Thinker run.



(a) Knapsack

(b) Knapsack Bonus (1)

(c) Knapsack Bonus (2)

Figure 3: Raw (Compute-Independent) Returns plotted
against Compute (Number of Planning Steps per Real Step)
for Fixed and Dynamic Thinker

Search
Penalty

𝜆

Dynamic
Thinker
Returns
(Ours)

Best
Thinker
Returns

Dynamic
Thinker
Search
Length

Best
Thinker
Search
Length

Knapsack
-0.0001 0.981 0.962 7.9 19
-0.00025 0.971 0.956 5.7 9
-0.0005 0.960 0.948 4.5 9
-0.001 0.954 0.932 3.4 9
-0.0015 0.944 0.916 3.2 9
-0.002 0.933 0.900 3.0 9

Knapsack Bonus (1)
0 1.938 1.933 7.2 13

-0.00025 1.936 1.921 7.4 13
-0.0005 1.930 1.909 7.1 13
-0.001 1.921 1.886 7.2 13
-0.0015 1.909 1.862 6.9 13
-0.002 1.899 1.839 6.9 13
-0.004 1.767 1.745 7.3 13
-0.008 1.212 1.600 3.8 9

Knapsack Bonus (2)
0 2.672 2.767 19.8 19

-0.0001 2.718 2.760 17.1 19
-0.00025 2.717 2.749 19.5 19
-0.0005 2.789 2.731 9.8 19
-0.001 2.731 2.696 14.0 19
-0.0015 2.768 2.669 8.7 13
-0.002 2.710 2.643 8.8 13
-0.004 2.611 2.538 7.9 13
-0.008 2.108 2.389 7.3 9

Table 1: Experimental Results. For each row, Best Thinker is
the Fixed-𝑘 Thinker with highest average returns. All values
are averages over multiple runs.

We would expect that by decreasing 𝜆, the amount of planning
increases and the raw performance of Dynamic Thinker increases.
In the Knapsack environment, this is true, and the Dynamic Thinker
runs form their own Pareto curve. However, in the environments
with bonuses for optimal solves, Dynamic Thinker tends to con-
verge to a certain amount of planning steps, unless the penalty is set
to a very high or very low amount. Surprisingly, when the penalty is
set very low in these settings, Dynamic Thinker will perform more
search, but its raw performance will decrease. This suggests that
the search behavior that Dynamic Thinker converges to otherwise
is close to optimal. Indeed, we unexpectedly observe that Dynamic
Thinker achieves higher raw returns for these penalty values than
even the best Fixed-𝑘 Thinker.

4.2 Qualitative Observations
So far, we have seen that Dynamic Thinker can outperform Fixed-
𝑘 Thinker, achieving greater compute-dependent returns by effi-
ciently trading off between raw returns and amount of compute. In



(a) Knapsack

(b) Knapsack Bonus (1)

(c) Knapsack Bonus (2)

Figure 4: Raw (Compute-Independent) Returns plotted
against Compute (Number of Planning Steps per Real Step)
for all methods

this section, we seek to gain some insight into how it does this, by
examining its behavior.

Figure 5 shows how the amount of search performed changes
over the course of an episode. Note that the episodes are variable
length but often end after just 3 or 4 steps. Note that the search
behavior is drastically different between Figure 5a and Figure 5b.
This suggests that Dynamic Thinker does not just happen to use
compute well, but that it learns how to use compute well in different
environments. Specifically, in Knapsack with 𝜆 = −0.0005, Dynamic
Thinker learns to perform no search on the first step, and to use
more as the episode progresses. On the other hand, in the Knapsack
Bonus (2) environment, one misstep on the first action can preclude
the agent from earning the important bonus, so it often performs
the maximum amount of search (20 steps) on the first step and
performs less as the episode continues, since it may have already
found the optimal solution.

(a) Knapsack, 𝜆 = 0.0005

(b) Knapsack Bonus (2), 𝜆 = 0.0015

Figure 5: Heat map and mean of search steps plotted as a
function of step number.

Figure 6 shows the amount of search used as the agent gets
closer to the end of the episode. As before, note that in Knapsack
Bonus (2), where getting a precise answer is important, the agent
often performs the maximum amount of search. However, there is
a general trend of using less search towards the end of the episode.
This is expected, since when the episode end is imminent, the agent
should be confident in its next few actions, especially if it has already
searched and found the optimal solution. However, in Knapsack, the
agent performs more search as the episode end nears. Perhaps this
is because the remaining optimization problem becomes tractable
near the end of an episode, as the number of possible actions shrinks
significantly, and so each marginal search step yields significant
gains. Regardless, it is clear that Dynamic Thinker learns behavior
more complex than just using a fixed amount of search in each
step, and that it is capable of learning drastically different search
behavior for different environments.

5 RELATEDWORKS
The mismatch in RL between MDPs and the time-dependent real
world has been noted before[27, 29, 42, 43]. In addition, any re-
searcher of decision-time planning algorithms knows that compute



(a) Knapsack, 𝜆 = 0.0005

(b) Knapsack Bonus (2), 𝜆 = 0.0015

Figure 6: Heat map and mean of search steps plotted as a
function of step number until the end.

costs matter, at least implicitly. However, the aspect in which search
algorithms use more or less time to search is typically (A) controlled
by hand-crafted heuristics, not learned parameters or (B) simplistic
and either static or semi-dynamic, not dynamic.

Other metareasoning techniques have been developed that use
deep learning andMDPs [6, 30], and that concern lookahead search [24,
29], but generally do not condition neural-network-controlled search
behavior on rich search-tree information. There has been existing
research on dynamic versions of AlphaZero, such as Ye et al. [45].

In this paper, we base our experiments and discussions on the
existing search algorithm Thinker [7]. MCTSNets [13] are similar to
Thinker and could potentially be modified in the same way, but did
not result in empirical state-of-the-art performance. Imagination-
based Planner [26] is similar to Thinker, and includes a penalty for
computation (termed a resource cost), but also did not result in
state-of-the-art performance.

Many previous works have explored using less compute by train-
ing neural nets: [3, 14, 15]. In particular, Rosenberg et al. [28] ex-
plores adaptively learning a horizon length for planning, and Lan
et al. [19] learns a dynamic stopping strategy.

Simple, extremely general algorithms such as DRC [9, 12] or
autoregressive large language models (LLMs) [25, 44] could also be

modified into dynamic, learned DTP agents. Research on LLMs[8,
20] are similar to this work, in that they seek to use inference-time
compute efficiently. However, they either do not rigorously define
a goal or utility to maximize[20], or they use a more complex, hand-
coded system to allocate compute, instead of allowing an RL agent
to learn when and where to use marginal compute by itself [8].

6 CONCLUSION
In this work, we addressed the critical but often overlooked issue
that decision-time planning comes with real computational costs
that should be factored into an agent’s objective function. We in-
troduced Dynamic Thinker, which extends the Thinker algorithm
by allowing the agent to adaptively control how much search it
performs at decision time, based on the specific context of each
decision.

Our key contributions include:

(1) Modifying Thinker to create Dynamic Thinker, enabling
learned, dynamic control of search depth through the addi-
tion of a "stop search" action.

(2) Demonstrating that Dynamic Thinker outperforms Thinker
and AlphaZero in knapsack environments when optimizing
for an objective that accounts for computational costs.

(3) Showing that Dynamic Thinker learns interesting emergent
behaviors, such as varying its search depth based on the stage
of the episode and the characteristics of the environment.

These results demonstrate that incorporating compute costs into
the reward function leads to more efficient agents that can make
reasonable trade-offs between performance and compute usage.
Dynamic Thinker learns to search more when the marginal benefit
of search is high, and less when further search provides diminishing
returns or when the outcome is already determined. Our work
represents a step toward the goal of limited rationality in RL agents:
optimizing the behavior of decision-making agents under objective
functions that account for the cost of computation. By making the
cost of computation explicit in the objective function and allowing
agents to learn how to manage this cost, we can develop more
efficient and practical RL systems for real-world applications.

REFERENCES
[1] Thomas William Anthony. 2021. Expert iteration. Doctoral. UCL (University

College London). https://discovery.ucl.ac.uk/id/eprint/10123580/ Conference
Name: UCL (University College London) Meeting Name: UCL (University College
London) Publication Title: Doctoral thesis, UCL (University College London).

[2] Hendrik Baier and Mark H. M. Winands. 2016. Time Management for Monte
Carlo Tree Search. IEEE Transactions on Computational Intelligence and AI in
Games 8, 3 (Sept. 2016), 301–314. https://doi.org/10.1109/TCIAIG.2015.2443123

[3] Andrea Banino, Jan Balaguer, and Charles Blundell. 2021. PonderNet: Learning
to Ponder. https://doi.org/10.48550/arXiv.2107.05407 arXiv:2107.05407 [cs].

[4] Noam Brown, Anton Bakhtin, Adam Lerer, and Qucheng Gong. 2020. Combining
Deep Reinforcement Learning and Search for Imperfect-Information Games.
http://arxiv.org/abs/2007.13544 arXiv:2007.13544 [cs].

[5] Noam Brown and Tuomas Sandholm. 2019. Superhuman AI for multiplayer poker.
Science 365, 6456 (Aug. 2019), 885–890. https://doi.org/10.1126/science.aay2400
Publisher: American Association for the Advancement of Science.

[6] Matthew Budd, Bruno Lacerda, and Nick Hawes. 2024. Stop! planner time:
metareasoning for probabilistic planning using learned performance profiles.
In Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence
and Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence
and Fourteenth Symposium on Educational Advances in Artificial Intelligence
(AAAI’24/IAAI’24/EAAI’24, Vol. 38). AAAI Press, 20053–20060. https://doi.org/
10.1609/aaai.v38i18.29983

https://discovery.ucl.ac.uk/id/eprint/10123580/
https://doi.org/10.1109/TCIAIG.2015.2443123
https://doi.org/10.48550/arXiv.2107.05407
http://arxiv.org/abs/2007.13544
https://doi.org/10.1126/science.aay2400
https://doi.org/10.1609/aaai.v38i18.29983
https://doi.org/10.1609/aaai.v38i18.29983


[7] Stephen Chung, Ivan Anokhin, and David Krueger. 2023. Thinker: Learning
to Plan and Act. Advances in Neural Information Processing Systems 36 (Dec.
2023), 22896–22933. https://proceedings.neurips.cc/paper_files/paper/2023/hash/
4761fab863f0900d90cf601fce6d5155-Abstract-Conference.html

[8] Mehul Damani, Idan Shenfeld, Andi Peng, Andreea Bobu, and Jacob Andreas. 2024.
Learning How Hard to Think: Input-Adaptive Allocation of LM Computation.
http://arxiv.org/abs/2410.04707 arXiv:2410.04707 [cs].

[9] Adrià Garriga-Alonso, Mohammad Taufeeque, and Adam Gleave. 2024. Planning
behavior in a recurrent neural network that plays Sokoban. https://doi.org/10.
48550/arXiv.2407.15421 arXiv:2407.15421 [cs] version: 1.

[10] Google Deepmind. 2024. AI achieves silver-medal standard solving International
Mathematical Olympiad problems. https://deepmind.google/discover/blog/ai-
solves-imo-problems-at-silver-medal-level/

[11] Jean-Bastien Grill, Florent Altché, Yunhao Tang, Thomas Hubert, Michal Valko,
Ioannis Antonoglou, and Remi Munos. 2020. Monte-Carlo Tree Search as Regu-
larized Policy Optimization. In Proceedings of the 37th International Conference
on Machine Learning. PMLR, 3769–3778. https://proceedings.mlr.press/v119/
grill20a.html ISSN: 2640-3498.

[12] Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sebastien Racaniere,
Theophane Weber, David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles,
GregWayne, David Silver, and Timothy Lillicrap. 2019. An Investigation of Model-
Free Planning. In Proceedings of the 36th International Conference on Machine
Learning. PMLR, 2464–2473. https://proceedings.mlr.press/v97/guez19a.html
ISSN: 2640-3498.

[13] Arthur Guez, Théophane Weber, Ioannis Antonoglou, Karen Simonyan, Oriol
Vinyals, Daan Wierstra, Rémi Munos, and David Silver. 2018. Learning to Search
with MCTSnets. https://doi.org/10.48550/arXiv.1802.04697 arXiv:1802.04697 [cs,
stat].

[14] Jaromír Janisch, Tomáš Pevný, and Viliam Lisý. 2019. Classification with Costly
Features Using Deep Reinforcement Learning. Proceedings of the AAAI Conference
on Artificial Intelligence 33, 01 (July 2019), 3959–3966. https://doi.org/10.1609/
aaai.v33i01.33013959 Number: 01.

[15] Jaromír Janisch, Tomáš Pevný, and Viliam Lisý. 2024. Classification with costly
features in hierarchical deep sets. Machine Learning (May 2024). https://doi.org/
10.1007/s10994-024-06565-4

[16] Kristopher T. Jensen, Guillaume Hennequin, and Marcelo G. Mattar. 2024. A
recurrent network model of planning explains hippocampal replay and human
behavior. Nature Neuroscience 27, 7 (July 2024), 1340–1348. https://doi.org/10.
1038/s41593-024-01675-7 Publisher: Nature Publishing Group.

[17] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa. 2023. Large Language Models are Zero-Shot Reasoners. http://arxiv.
org/abs/2205.11916 arXiv:2205.11916 [cs].

[18] Vojtěch Kovařík, Martin Schmid, Neil Burch, Michael Bowling, and Viliam Lisý.
2021. Rethinking Formal Models of Partially Observable Multiagent Decision
Making. http://arxiv.org/abs/1906.11110 arXiv:1906.11110 [cs].

[19] Li-Cheng Lan, Meng-Yu Tsai, Ti-Rong Wu, I.-Chen Wu, and Cho-Jui Hsieh.
2020. Learning to Stop: Dynamic Simulation Monte-Carlo Tree Search. https:
//doi.org/10.48550/arXiv.2012.07910 arXiv:2012.07910 [cs].

[20] Lucas Lehnert, Sainbayar Sukhbaatar, DiJia Su, Qinqing Zheng, Paul Mcvay,
Michael Rabbat, and Yuandong Tian. 2024. Beyond A*: Better Planning with
Transformers via Search Dynamics Bootstrapping. https://doi.org/10.48550/
arXiv.2402.14083 arXiv:2402.14083 [cs].

[21] Shaul Markovitch and Yaron Sella. 1996. Learning of Resource Allo-
cation Strategies for Game Playing. Computational Intelligence 12, 1
(1996), 88–105. https://doi.org/10.1111/j.1467-8640.1996.tb00254.x _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8640.1996.tb00254.x.

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing Atari with
Deep Reinforcement Learning. https://doi.org/10.48550/arXiv.1312.5602
arXiv:1312.5602 [cs].

[23] Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisý, Dustin Morrill, Nolan
Bard, Trevor Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. 2017.
DeepStack: Expert-level artificial intelligence in heads-up no-limit poker. Science
356, 6337 (May 2017), 508–513. https://doi.org/10.1126/science.aam6960

[24] Dylan O’Ceallaigh and Wheeler Ruml. 2015. Metareasoning in Real-Time Heuris-
tic Search. Proceedings of the International Symposium on Combinatorial Search 6,
1 (2015), 87–95. https://doi.org/10.1609/socs.v6i1.18362 Number: 1.

[25] OpenAI. [n.d.]. Introducing OpenAI o1. https://openai.com/index/introducing-
openai-o1-preview/

[26] Razvan Pascanu, Yujia Li, Oriol Vinyals, Nicolas Heess, Lars Buesing, Sebastien
Racanière, David Reichert, Théophane Weber, DaanWierstra, and Peter Battaglia.
2017. Learning model-based planning from scratch. https://doi.org/10.48550/
arXiv.1707.06170 arXiv:1707.06170 [cs].

[27] Simon Ramstedt and Christopher Pal. 2019. Real-Time Reinforcement Learning.
https://doi.org/10.48550/arXiv.1911.04448 arXiv:1911.04448 [cs, stat].

[28] Aviv Rosenberg, Assaf Hallak, Shie Mannor, Gal Chechik, and Gal Dalal. 2023.
Planning and Learning with Adaptive Lookahead. https://doi.org/10.48550/
arXiv.2201.12403 arXiv:2201.12403 [cs].

[29] Stuart Russell and Eric H. Wefald. 2003. Do the Right Thing: Studies in Limited
Rationality. The MIT Press. https://doi.org/10.7551/mitpress/2474.001.0001

[30] C. Nicolò De Sabbata, Theodore R. Sumers, and Thomas L. Griffiths. 2024. Rational
Metareasoning for Large Language Models. https://doi.org/10.48550/arXiv.2410.
05563 arXiv:2410.05563 [cs] version: 2.

[31] Martin Schmid, Matej Moravčík, Neil Burch, Rudolf Kadlec, Josh Davidson, Kevin
Waugh, Nolan Bard, Finbarr Timbers, Marc Lanctot, G. Zacharias Holland, Elnaz
Davoodi, Alden Christianson, and Michael Bowling. 2023. Student of Games: A
unified learning algorithm for both perfect and imperfect information games.
Science Advances 9, 46 (Nov. 2023), eadg3256. https://doi.org/10.1126/sciadv.
adg3256 Publisher: American Association for the Advancement of Science.

[32] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,
Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis,
Thore Graepel, Timothy Lillicrap, and David Silver. 2020. Mastering Atari, Go,
chess and shogi by planning with a learned model. Nature 588, 7839 (Dec. 2020),
604–609. https://doi.org/10.1038/s41586-020-03051-4 Number: 7839 Publisher:
Nature Publishing Group.

[33] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. https://doi.org/10.48550/arXiv.
1707.06347 arXiv:1707.06347 [cs].

[34] L. S. Shapley. 1953. Stochastic Games*. Proceedings of the National Academy of
Sciences 39, 10 (Oct. 1953), 1095–1100. https://doi.org/10.1073/pnas.39.10.1095
Publisher: Proceedings of the National Academy of Sciences.

[35] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalch-
brenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,
Thore Graepel, and Demis Hassabis. 2016. Mastering the game of Go with
deep neural networks and tree search. Nature 529, 7587 (Jan. 2016), 484–489.
https://doi.org/10.1038/nature16961 Publisher: Nature Publishing Group.

[36] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. 2018. A general rein-
forcement learning algorithm that masters chess, shogi, and Go through self-play.
Science 362, 6419 (Dec. 2018), 1140–1144. https://doi.org/10.1126/science.aar6404
Publisher: American Association for the Advancement of Science.

[37] David Silver, Satinder Singh, Doina Precup, and Richard S. Sutton. 2021. Reward
is enough. Artificial Intelligence 299 (Oct. 2021), 103535. https://doi.org/10.1016/
j.artint.2021.103535

[38] Samuel Sokota, Hengyuan Hu, David J. Wu, J. Zico Kolter, Jakob Nicolaus Foerster,
and Noam Brown. 2021. A Fine-Tuning Approach to Belief State Modeling.
https://openreview.net/forum?id=ckZY7DGa7FQ

[39] Rich Sutton. 2019. The Bitter Lesson :#:
http://www.incompleteideas.net/IncIdeas/BitterLesson.html. http:
//www.incompleteideas.net/IncIdeas/BitterLesson.html

[40] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning, second
edition: An Introduction. MIT Press. Google-Books-ID: uWV0DwAAQBAJ.

[41] David Sychrovský, Michal Šustr, Elnaz Davoodi, Michael Bowling, Marc Lanctot,
and Martin Schmid. 2024. Learning not to Regret. https://doi.org/10.48550/arXiv.
2303.01074 arXiv:2303.01074 [cs].

[42] Pierre Thodoroff, Wenyu Li, and Neil D. Lawrence. 2022. Benchmarking Real-
Time Reinforcement Learning. InNeurIPS 2021Workshop on Pre-registration inMa-
chine Learning. PMLR, 26–41. https://proceedings.mlr.press/v181/thodoroff22a.
html ISSN: 2640-3498.

[43] Jaden B. Travnik, Kory W. Mathewson, Richard S. Sutton, and Patrick M. Pilarski.
2018. Reactive Reinforcement Learning in Asynchronous Environments. Fron-
tiers in Robotics and AI 5 (June 2018). https://doi.org/10.3389/frobt.2018.00079
Publisher: Frontiers.

[44] JasonWei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia,
Ed Chi, Quoc Le, and Denny Zhou. 2023. Chain-of-Thought Prompting Elicits
Reasoning in Large Language Models. https://doi.org/10.48550/arXiv.2201.11903
arXiv:2201.11903 [cs].

[45] Weirui Ye, Pieter Abbeel, and Yang Gao. 2022. Spending Thinking Time Wisely:
Accelerating MCTS with Virtual Expansions. https://doi.org/10.48550/arXiv.
2210.12628 arXiv:2210.12628 [cs].

[46] Shuo Yin, Weihao You, Zhilong Ji, Guoqiang Zhong, and Jinfeng Bai. 2024.
MuMath-Code: Combining Tool-Use Large Language Models with Multi-
perspective Data Augmentation for Mathematical Reasoning. https://doi.org/10.
48550/arXiv.2405.07551 arXiv:2405.07551 [cs].

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation CISE Graduate Fellowships under Grant No. 2313998.

https://proceedings.neurips.cc/paper_files/paper/2023/hash/4761fab863f0900d90cf601fce6d5155-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/4761fab863f0900d90cf601fce6d5155-Abstract-Conference.html
http://arxiv.org/abs/2410.04707
https://doi.org/10.48550/arXiv.2407.15421
https://doi.org/10.48550/arXiv.2407.15421
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://proceedings.mlr.press/v119/grill20a.html
https://proceedings.mlr.press/v119/grill20a.html
https://proceedings.mlr.press/v97/guez19a.html
https://doi.org/10.48550/arXiv.1802.04697
https://doi.org/10.1609/aaai.v33i01.33013959
https://doi.org/10.1609/aaai.v33i01.33013959
https://doi.org/10.1007/s10994-024-06565-4
https://doi.org/10.1007/s10994-024-06565-4
https://doi.org/10.1038/s41593-024-01675-7
https://doi.org/10.1038/s41593-024-01675-7
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/1906.11110
https://doi.org/10.48550/arXiv.2012.07910
https://doi.org/10.48550/arXiv.2012.07910
https://doi.org/10.48550/arXiv.2402.14083
https://doi.org/10.48550/arXiv.2402.14083
https://doi.org/10.1111/j.1467-8640.1996.tb00254.x
https://doi.org/10.48550/arXiv.1312.5602
https://doi.org/10.1126/science.aam6960
https://doi.org/10.1609/socs.v6i1.18362
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
https://doi.org/10.48550/arXiv.1707.06170
https://doi.org/10.48550/arXiv.1707.06170
https://doi.org/10.48550/arXiv.1911.04448
https://doi.org/10.48550/arXiv.2201.12403
https://doi.org/10.48550/arXiv.2201.12403
https://doi.org/10.7551/mitpress/2474.001.0001
https://doi.org/10.48550/arXiv.2410.05563
https://doi.org/10.48550/arXiv.2410.05563
https://doi.org/10.1126/sciadv.adg3256
https://doi.org/10.1126/sciadv.adg3256
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.1073/pnas.39.10.1095
https://doi.org/10.1038/nature16961
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1016/j.artint.2021.103535
https://doi.org/10.1016/j.artint.2021.103535
https://openreview.net/forum?id=ckZY7DGa7FQ
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
https://doi.org/10.48550/arXiv.2303.01074
https://doi.org/10.48550/arXiv.2303.01074
https://proceedings.mlr.press/v181/thodoroff22a.html
https://proceedings.mlr.press/v181/thodoroff22a.html
https://doi.org/10.3389/frobt.2018.00079
https://doi.org/10.48550/arXiv.2201.11903
https://doi.org/10.48550/arXiv.2210.12628
https://doi.org/10.48550/arXiv.2210.12628
https://doi.org/10.48550/arXiv.2405.07551
https://doi.org/10.48550/arXiv.2405.07551


Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not neces-
sarily reflect the views of the National Science Foundation.

We thank David Wu for his insight and useful feedback. We
thank George Konidaris, Nihal Nayak, Arjun Prakash, and David
Tao for helpful conversations.


	Abstract
	1 Introduction
	2 Modeling Compute Costs
	2.1 Traditional MDPs and Policies
	2.2 Thinker Augmented MDP
	2.3 Compute Costs

	3 Dynamic Thinker
	4 Experiments
	4.1 Knapsack Environments
	4.2 Qualitative Observations

	5 Related Works
	6 Conclusion
	References
	Acknowledgments

