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ABSTRACT

We propose a new transformer-based image and video tokenizer with Binary
Spherical Quantization (BSQ). BSQ projects the high-dimensional visual embed-
ding to a lower-dimensional hypersphere and then applies binary quantization.
BSQ is (1) parameter-efficient without an explicit codebook, (2) scalable to arbi-
trary token dimensions, and (3) compact: compressing visual data by up to 100×
with minimal distortion. Our tokenizer uses a transformer encoder and decoder
with simple block-wise causal masking to support variable-length videos as input.
The resulting BSQ-ViT achieves state-of-the-art visual reconstruction quality on
image and video reconstruction benchmarks with 2.4× throughput compared to
the best prior methods. Furthermore, by learning an autoregressive prior for adap-
tive arithmetic coding, BSQ-ViT achieves comparable visual compression results
with commonly used compression standards, e.g. JPEG2000/WebP for images
and H.264/H.265 for videos. BSQ-ViT also enables masked language models to
achieve competitive image synthesis quality to GAN and diffusion approaches.

1 INTRODUCTION

Learned discrete image and video tokenization allows for state-of-the-art visual compression (Daede
et al., 2016; Agustsson et al., 2017; El-Nouby et al., 2023), recognition (Yu et al., 2022; Bao et al.,
2022; Zhou et al., 2022; Wang et al., 2022) and generation (Van Den Oord et al., 2017; Esser
et al., 2021; Chang et al., 2022). These models follow a proven recipe from large language model-
ing (Brown et al., 2020; Achiam et al., 2023; Touvron et al., 2023): Tokenize input and outputs into
discrete units and learn an auto-regressive model to predict this tokenized stream one token at a time.
The most widely used approach for image encoding is Vector-Quantized Variational Auto-Encoder
(VQ-VAE) (Van Den Oord et al., 2017). They encode inputs in continuous latent embeddings and
map them to a learned codebook through nearest-neighbor lookup. However, VQ-VAE style ap-
proaches have two drawbacks: First, most image encoders are built upon convolutional networks
(CNN) (Esser et al., 2021; Podell et al., 2023). Adapting spatial convolution for images to spatial-
temporal convolution for videos requires non-trivial architectural changes (Ge et al., 2022; Yu et al.,
2023; 2024) with increased computational cost. Treating videos as a sequence of images leads to a
suboptimal quantization (Yu et al., 2023). Second, vector quantization (VQ) scales poorly with the
codebook size. The runtime scales linearly with the codebook size, and the codebook easily overfits
on smaller datasets (Yu et al., 2024). This is especially troubling for video inputs, as they rely on
larger codebooks to represent both static visual patterns and dynamic motion patterns.

This paper proposes a unified visual tokenizer based on a Vision Transformer and Binary Spher-
ical Quantization (BSQ). The Transformer-based encoder-decoder leverages a block-wise causal
mask and uses only visual tokens from the current or past timestamps for reconstruction (Figure 3).
BSQ first projects the high-dimensional visual embedding of the encoder to a lower-dimensional
hypersphere and then applies binary quantization. The transformer encoder, decoder, and BSQ are
seamlessly integrated into the VQ-GAN (Esser et al., 2021) framework and trained end-to-end.

Our proposed visual tokenizer features several advantages. First, the Transformer-based encoder-
decoder shows a Pareto improvement in visual reconstruction quality and computational efficiency
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compared to standard CNNs. Second, the block-wise causal design unifies images and videos as
input at training and supports variable-length videos at inference. BSQ constructs an implicit code-
book whose effective vocabulary grows exponentially with the spherical dimension with no learned
parameters. The increasing codebook size consistently yields better reconstruction results. Com-
pared to Lookup-free Quantization (LFQ) (Yu et al., 2024), a recent technique that also builds an
implicit codebook based on scalar quantization (SQ), BSQ has a bounded quantization error and
is easier to train. Furthermore, we show that the soft quantization probability in BSQ reduces to a
simple product of multiple channel-independent Bernoulli distributions, leading to efficient entropy
regularization during training. Specifically, we show how a factorized approximation to the entropy
for soft quantization of L bits reduces the theoretical computation complexity from O(2L × L) to
O(L) with minimal approximation error, and negligible performance degradation in practice.

We validate the effectiveness of BSQ-ViT on visual reconstruction and compression benchmarks.
On image reconstruction, our model archives a state-of-the-art visual reconstruction quality by both
pixel-level and semantic metrics. In particular, our best-performing BSQ-ViT achieves a recon-
struction FID of 0.41 on ImageNet-1k val, a 43% reduction compared to the runner-up (SDXL-
VAE (Podell et al., 2023)), while being 2.4× faster. On video reconstruction, our best model
reduces FVD on UCF-101 by more than half (8.62 → 4.10). By further learning an autoregres-
sive prior for adaptive arithmetic coding, BSQ-ViT achieves comparable results on video compres-
sion with conventional compression standards, e.g. H.264 and HEVC. By learning a masked lan-
guage model, BSQ-ViT enables image generation with similar quality to BigGAN (Brock et al.,
2018) and ADM (Dhariwal & Nichol, 2021). Code is available at https://github.com/
zhaoyue-zephyrus/bsq-vit.

2 RELATED WORK

Visual Tokenization. VQ-VAE (Van Den Oord et al., 2017) introduced the concept of discrete
tokenized bottlenecks in auto-encoder architectures. Recent improvements include better training
objectives (Ramesh et al., 2021; Esser et al., 2021), increasing VQ codebook usage (Yu et al., 2022;
Zheng & Vedaldi, 2023), replacing VQ with product quantization (PQ) (El-Nouby et al., 2023) or
scalar quantization (SQ) (Mentzer et al., 2024), and employing stronger generative models (Esser
et al., 2021; Chang et al., 2022). Image tokenizers are trivially extended to video by tokenizing
individual frames (Blattmann et al., 2023). However, this ignores dynamic motions and leads to
suboptimal tokenization: The same visual information is compressed repeatedly across frames.
Video Tokenization. Dedicated video tokenizers make better use of temporal correlations in the
input signal. Yan et al. (2021) proposes 3D (de-)convolutions in VQ-VAE for video generation.
TATS (Ge et al., 2022) replaces zero padding with replicate padding to mitigate the temporal cor-
ruption when video length varies. Yu et al. (2023) introduce central inflation of pretrained 2D
convolutional filters to 3D and further make them causal (Yu et al., 2024). Phenaki (Villegas et al.,
2022) adopts a factorized causal video vision Transformer (Arnab et al., 2021) (C-ViViT), which
improves efficiency but sacrifices modeling complex motion across time. All these methods focus
on generation while we demonstrate that a good video tokenizer can perform well in compression.
Neural Compression. Since Shannon established the fundamental source coding theorem (Shan-
non, 1948), it has formed the basis of lossless compression (Huffman, 1952; Pasco, 1976; Rissanen
& Langdon, 1979; Duda, 2009) with probabilistic models including RNN (Mikolov, 2012; Goyal
et al., 2019), CNN (Van den Oord et al., 2016; Van Den Oord et al., 2017), VAE (Townsend et al.,
2019; 2020), and Transformers (Bellard, 2019; Delétang et al., 2024). Mentzer et al. (2019) presents
a fast hierarchical probabilistic model (L3C) for lossless image compression. Delétang et al. (2024)
show that LLMs trained primarily on text, e.g. Llama 2 (Touvron et al., 2023) and Chinchilla (Hoff-
mann et al., 2022), are general-purpose compressors for text, images, and audio. However, these
LLMs are too big and slow to make this compression practical. Our tokenizer presents a lighter-
weight alternative: Tokenization performs initial local lossy compression, while a lightweight and
thus computationally efficient sequence model (∼300M) compresses the global video structure.
Video compression. Most high-performing modern video compression methods rely on hybrid
coders that combine transform coding (Goyal, 2001; Ballé et al., 2020) and motion compensa-
tion (Wiegand et al., 2003; Sullivan et al., 2012). Such belief continues in most of the recently
popularized learning-based solutions (Lu et al., 2019; Rippel et al., 2019; Agustsson et al., 2020; Li
et al., 2021). VCT (Mentzer et al., 2022) proposes a Transformer-based temporal entropy model to
learn motion implicitly. However, VCT requires a heavily-engineered image compression model (He
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et al., 2022) and has a short temporal context window. In this work, we show that a learned video
tokenizer combined with an arithmetic coder modeled by a sequence model achieves competitive
compression results without explicitly modeling motion.

3 PRELIMINARIES

A tokenization-based compression algorithm has three basic steps: A visual tokenizer, i.e. VQ-VAE
or LFQ, translates raw visual inputs to a discrete set of tokens. A sequence model then predicts
an auto-regressive probability distribution over these discrete tokens. Finally, arithmetic coding
converts this distribution into a compressed representation.
Visual Tokenization. VQ-VAE (Van Den Oord et al., 2017) introduced the concept of learning
discrete visual representation with an auto-encoder architecture and a bottleneck module in between
with vector quantization (VQ). Given a video X ∈ RT×H×W×3, an encoder E produces a set of d-
dimensional latent embeddings Z = E(X) ∈ R(

T
r ×H

p ×W
p )×d with a spatial-temporal downsample

factor of r× p× p. The bottleneck module q then transforms the real-valued latent embeddings into
some discrete tokens ẑ = q(z). In VQ, the quantizer qV Q assigns each z ∈ Z to the closest entry
in a learnable code in a codebook C = [c1 · · · cK ] ∈ RK×d

ẑ = qV Q(z) = ck = argmin
ck̂∈C

∥z − ck̂∥2. (1)

Here, K is the vocabulary size of the codebook and the integer k is the discretized token represen-
tation of z which can be stored in ⌈log(K)⌉ bits. A decoder G maps the discretized tokens back
into a visual representation X̂ = G(Ẑ). The entire network (E , G, and q) is end-to-end trainable
and minimizes an MSE loss LMSE = ∥X̂ − X∥2 using STE (Bengio et al., 2013) to propagate
gradients through the quantization bottleneck. More recent quantizers rely on a perceptual LLPIPS

and adversarial LGAN loss for better visual quality (Zhang et al., 2018; Esser et al., 2021),

minimize
E,G,q

EX [LVQ(E ,G, q) + ηLLPIPS(E ,G, q) + λLGAN(E ,G, q)] , (2)

where the quantization loss term LVQ emulates online clustering to learn ck. The main issue with
VQ-VAE is that Vector Quantization scales poorly with increasing vocabulary size K (Yu et al.,
2024). Remedies include using a smaller code dimension (Yu et al., 2022), introducing stochastic-
ity (Takida et al., 2022), reviving “dead” codevectors (Zheng & Vedaldi, 2023), and regularizing
with a commitment loss (Van Den Oord et al., 2017):

Lcommit(ẑ, z) = ∥ sg(ẑ)− z∥, (3)

where sg(·) denotes the stop-gradient operation.
Lookup-Free Quantization (LFQ) (Yu et al., 2024) uses a fixed implicit codebook CLFQ =

{−1, 1}L as corners of a hypercube in L dimensional space. The best vector quantizer for this
implicit codebook is the binary quantization qLFQ(z) = sign(z). To optimize for an effective
latent code and encourage code usage, they use an additional entropy objective (Jansen et al., 2020):

Lentropy = E [H(q(z))]− γH [E [q(z)]] , (4)

where both entropy terms rely on a soft quantization (Agustsson et al., 2017)

q̂(c|z) = exp(−τ(c− z)2)∑
c∈CLFQ

exp(−τ(c− z)2)
(5)

to guarantee the loss is differentiable. The final loss LLFQ is a combination of LMSE, Lcommit,
LLPIPS, LGAN, and Lentropy. The main computational bottleneck in LFQ is the entropy optimiza-
tion of a higher-dimensional codebook, as it involves summation over 2L implicit codebook entries.

Both VQ-VAE and LFQ lossily compress visual inputs into N discrete tokens [k1, . . . , kN ], where
ki ∈ {1, . . .K}, in N⌈logK⌉ bits. Neither tokenization strategy exploits the global image or video
structure well. A sequence model with lossless arithmetic coding better fits this global structure.
Arithmetic Coding (AC) (Pasco, 1976; Rissanen & Langdon, 1979; Witten et al., 1987) offers a
way of constructing a bitstream with near-optimal length by leveraging the statistical property of the
coding distribution. Given a distribution over token streams Pt : {1, · · · ,K}n 7→ (0, 1], arithmetic
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x̂

(b) VQ-VAE.

encoder
E project

binary
quantize

project
decoder

G

Lookup Free Quantization (LFQ)

x
z v v̂ ẑ
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Figure 1: Variational Auto-Encoders (VAE) with different bottlenecks (BSQ, VQ, and LFQ).

coding looks to encode the token stream in (−⌈logPt(k1, . . . , kN )⌉ + 1) bits. The most common
token distribution is an auto-regressive model

Pt(k1, . . . , kN ) = Pt(k1)Pt(k2|k1) . . . Pt(kN |k1, . . . , kN−1) (6)

for which efficient incremental encoding and decoding algorithms exist (Mentzer et al., 2022).

4 TRANSFORMER-BASED VISUAL TOKENIZER WITH BSQ

Our video tokenizer follows an encoder-decoder architecture with a discretization bottleneck as il-
lustrated in Figure 1a. It combines a transformer-based encoder, a transformer-based decoder, and a
Binary Spherical Quantization (BSQ) layer. BSQ projects the latent code into a lower-dimensional
spherical space, applies binary quantization, and then projects the result back up into the decoder’s
latent space. This projection onto a low-dimensional spherical space has several theoretical advan-
tages: The approximation error of the quantizer is bounded and much of the entropy computation
factorizes along individual dimensions. These advantages result in experimental improvements as
well. BSQ converges quicker and to a better tokenizer than other quantization schemes.

4.1 BINARY SPHERICAL QUANTIZATION

Binary Spherical Quantization (BSQ) optimizes over an implicit codebook CBSQ = {− 1√
L
, 1√

L
}L,

a hypercube projected onto a unit sphere. Each corner ck ∈ CBSQ of a hypercube corresponds to a
unique token k. The quantizer works as follows: it projects some high-dimensional latent embedding
z to a lower-dimensional unit hypersphere u, applies binary quantization per axis û = sign(u),
and back-projects to the quantized vector in the original latent space x̂, as shown in Figure 1a.
Specifically, we start with an encoded visual input z = E(x) ∈ Rd. We first linearly project the
latent embedding to L dimensions v = Linear(z) ∈ RL, where L ≪ d. Next, we project v onto
the unit sphere u = v

|v| , and perform binary quantization to each dimension of u independently
û = 1√

L
sign(u), where sign(x) is the sign function. To keep outputs on the unit sphere, we map

sign(0) → 1. We use a Straight-Through Estimator (STE) (Bengio et al., 2013) to make the operator
differentiable, signSTE(x) = sg(sign(x)− x) + x, where sg(·) denotes the stop-gradient operation.
Finally, we back-project the quantized û to the d-dimensional space ẑ = Linear(û) ∈ Rd.

BSQ has a few appealing properties: As with LFQ, the implicit codebook entry is parameter-free and
easy to compute. Unlike LFQ, a soft quantization of BSQ has a simple probabilistic interpretation,
which leads to efficient entropy computation in an entropy loss Lentropy. Finally, BSQ’s quantization
error is bounded, which empirically leads to much faster and better convergence than LFQ.
Efficient implicit code assignment. At inference time, we map a projected embedding v to a token
through simply binarization k =

∑L
i=1 1[vi>0]2

i−1, where 1[·] is the indicator function. The inverse
mapping uses the bitshift and the bitwise AND operations.
Soft BSQ and entropy. To best use the entire range of the implicit codebook CBSQ, we use
the entropy loss Lentropy = Eu [H(q(u))]− γH [Eu [q(u)]] (Jansen et al., 2020). To compute this
entropy loss we first derive a soft quantization scheme (Agustsson et al., 2017). Since both codebook
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Figure 2: Illustration of BSQ compared to LFQ and FSQ in the simplest case (L = 2). In FSQ, we
consider each channel to have 3 possible values {±1, 0}. The Voronoi diagram for both FSQ and LFQ looks like
hypercubes partitioning the entire space while BSQ’s looks like a hypersphere evenly divided by 2L centroids.

entries and inputs to the quantizer are unit vectors, the soft quantization is a distribution

q̂(c|u) = exp(τc⊤u)∑
c∈CBSQ

exp(τc⊤u)
=

L∏
d=1

σ (2τcdud) , (7)

where σ is a sigmoid function, and the overall soft quantizer is independent along each dimension.
See Section C.1 for a derivation. This allows for an efficient computation of the first entropy term

Eu [H(q̂(c|u))] = Eu

[
L∑

d=1

H(q̂(cd|ud))

]
. (8)

See Section C.2 for a derivation. Instead of reasoning over distributions over the entire codebook,
which is exponentially large, we instead treat each dimension independently. The resulting entropy
computation is linear to the dimension L of the bottleneck.

Unfortunately, the second entropy term cannot directly use the same independence assumption, as
dimensions in the expected value Eu[q̂(c|u)] are correlated through the distribution of u. We find the
closest factorized distribution q̃(c) =

∏K
d=1 q̃(cd) to Eu[q̂(c|u)], and instead minimize the entropy

of the approximate distribution. As we will show in Section C.3 the best approximation in terms of
the KL-divergence q̃(cd) = Eud

[q̂(cd|ud)]. The final approximate entropy term to maximize is

H(Eu [q̂(c|u)]) ≈ H(q̃(c)) =

L∑
d=1

H(Eud
[q̂(cd|ud)]). (9)

As we will show in Section C.3 this approximation is an upper bound to the true entropy, but empir-
ically closely tracks the true entropy. This entropy term is again efficient for evaluation.
Quantization error in BSQ. Most quantizers use straight-through gradient estimates during train-
ing (Yu et al., 2024; Van Den Oord et al., 2017). Though simple to implement, it assumes that the
gradients for an unquantized u and quantized û bottleneck are almost the same, which only holds if
the quantization error d(u, û) = ∥u− û∥ is small. As we show in Section C.4, this is true for BSQ:

Eu [d(u, û)] <

√
2− 2/

√
L <

√
2. (10)

Relation to other quantization methods. BSQ is closely connected to many concepts introduced in
information and coding theories. LFQ (Yu et al., 2024) uses the same binarization technique as BSQ
but does not normalize its output. This leads to an unbounded quantization error and does not allow
for as simple of a soft quantization for entropy computation. A pictural comparison between LFQ
and BSQ is shown in Figure 2 and a summary is provided in Table 7. Spherical Vector Quantization
(SVQ) (Hamkins & Zeger, 2002) also ensures all code vectors have a pre-defined radius. However,
SVQ assumes a variety of radii, which have to be encoded by an additional gain quantizer. In our
case, the source code is the output of a learned encoder E . Therefore, the unit radius assumption is
sound, and the gain quantizer can be avoided. Pyramid Vector Quantization (PVQ) (Fischer, 1986)
assumes all code vectors have a constant ℓ1 norm, but the ℓ1 normalized centroids partition the
hypersphere less uniformly than ℓ2.
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4.2 TOKENIZATION NETWORK WITH CAUSAL VIDEO TRANSFORMER

We propose to use Vision Transformer (ViT) (Dosovitskiy et al., 2021) to model both the encoder
and decoder due to its better computational efficiency and higher reconstruction quality.

flatten flatten flatten

𝑡 𝑡 + 1 𝑡 + 2

……

BSQ Code 

Figure 3: Given an input video,
block-wise causal masked atten-
tion enables the Transformer en-
coder to only use patches from
current or past timestamps to en-
code each visual patch and later
translate it into a BSQ code.

Video Transformer. We start from ViT-VQGAN (Yu et al., 2022)
and extend it to take videos as input. We divide an input video
X ∈ RT×H×W×3 into non-overlapping patches of size 1× p× p.
These patches are flattened into a 1D sequence, linearly projected,
and passed through a stack of N Transformer Encoder layers to
yield the latent representation, (z1, · · · , zN ). The decoder takes the
same architecture, maps the latent embeddings ẑ back to the pixel
space, and regroups them into the original shape. (x̂1, · · · , x̂N ) =
MLP(TransformerDecoder(ẑ1, · · · , ẑN )), where MLP is a de-
coding head with a two-layer MLP, i.e. Linear ◦ Tanh ◦ Linear.
Blockwise Causal Attention. During training, we always assume
the input video has T frames, which might not hold at inference.
Padding shorter video segments to T frames works but wastes a
lot of bits, especially in the context of compression. To han-
dle variable-length videos, we propose a simple blockwise causal
masked attention analogous to causal attention in language model-
ing (Vaswani et al., 2017). It specifies that only those tokens at time
t or earlier are used to reconstruct the visual tokens at time t.

(z(t−1)×H
p

×W
p

+1, · · · ,zt×H
p

×W
p
) = TransformerEncoder

(
x1, · · · ,xt×H

p
×W

p

)
,

(ẑ(t−1)×H
p

×W
p

+1, · · · , ẑt×H
p

×W
p
) = qLFQ

(
z(t−1)×H

p
×W

p
+1, · · · ,zt×H

p
×W

p

)
,

(x̂(t−1)×H
p

×W
p

+1, · · · , x̂t×H
p

×W
p
) = MLP

(
TransformerDecoder

(
ẑ1, · · · , ẑt×H

p
×W

p

))
.

This can be efficiently implemented with a blockwise causal attention mask written in a blockwise
lower triangle matrix in Figure 3. When T = 1, the proposed encoder-decoder reduces to a ViT
with a full attention mask. Therefore, we can easily train it using a mixture of images and videos.

We use factorized spatial-temporal position embedding to encode the temporal information. Specif-
ically, we add a set of zero-initialized temporal position embeddings PEt ∈ RT×d to the original
spatial ones PEs ∈ RN×d in the image tokenizer, i.e. PE[i, :, :] = PEt[i,None, :]+PEs[None, :, :].
Training the Video Tokenizer from an Image Tokenizer. For training efficiency, we first train
an image tokenizer on image data and then fine-tune it to be a video tokenizer. Though previous
works (Wang et al., 2022; Blattmann et al., 2023) argue that a pre-trained image tokenizer can be
used for videos as is, we observe that the video tokenizer after fine-tuning demonstrates much higher
reconstruction quality on video benchmarks, see Section 5.1. The gain is further magnified when
the effective vocabulary size becomes larger. We hypothesize that such increased vocabulary size,
enabled by the proposed BSQ, is handy for learning video-specific motion and blur. In contrast,
vanilla VQ methods fail to maintain high codebook usage when the codebook size exceeds 16K.
Optimizing the Visual Tokenizer. Following VQGAN (Esser et al., 2021), we use a perceptual
loss (Zhang et al., 2018) and an adversarial loss (Goodfellow et al., 2014). We use StyleGAN (Karras
et al., 2019) as the discriminator since ViT-VQGAN (Yu et al., 2022) reports it is much easier to train
than PatchGAN (Isola et al., 2017). When we fine-tuned the tokenizer on videos, unlike MAGVIT
or TATS, we did not inflate StyleGAN to be a 3D discriminator. Instead, we pass all reconstructed
frames individually to the vanilla StyleGAN and sum up the losses.

5 EXPERIMENTS

We train the image tokenization model on the training set of ImageNet ILSVRC2012 (Russakovsky
et al., 2015) and evaluate the image reconstruction result on the validation set of MS-COCO (Lin
et al., 2014) and ImageNet, denoted by COCO 2017val and ImageNet-1k respectively. We fine-
tune the video tokenization model on UCF-101 (Soomro et al., 2012) and conduct video compres-
sion experiments on two standard benchmarks, i.e. MCL-JCV (Wang et al., 2016) and UVG (Mercat
et al., 2020). We leave dataset statistics and implementation details in Section E.
Evaluation metrics. For tokenization, we report perceptual metric (LPIPS-AlexNet) (Zhang et al.,
2018), PSNR, SSIM (Wang et al., 2004), and Fréchet Inception/Video Distance (FID/FVD) (Heusel
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Table 1: Image reconstruction results on COCO2017 and ImageNet-1K (256× 256). The “data” column
refers to the training data: CC for CC3M, YF for YFCC100M, OImg for OpenImages, LAION for LAION-5B,
IN for ImageNet, and “?” for unknown source. The “arch.” column shows the encoder/decoder architecture: C
for ConvNets with Self-Attention, and T-B for ViT-Base. The “# bits” column refers to the effective number of
bits per token defined in Section 5.1. # is obtained by multiplying the latent dimension with the precision. The
“TP” column means the inference throughput (images/second) per GPU. †The number is taken from the paper.
Note that STDs of PSNR, SSIM, and LPIPS are computed across samples instead of multiple runs.

COCO2017 val ImageNet-1k val

Method Data Arch. Quant. Param. # bits TP↑ PSNR↑ SSIM↑ LPIPS↓ rFID↓ PSNR↑ SSIM↑ LPIPS↓ rFID↓

DALL-E dVAE (Ramesh et al., 2021) CC+YF C VQ 98M 13 34.0 25.15 .7497 .3014 55.07 25.46 .7385 .3127 36.84
±3.49 ±.1124 ±.1221 ±3.93 ±.1343 ±.1480

MaskGIT (Chang et al., 2022) IN-1k C VQ 54M 10 37.6 17.52 .4194 .2057 8.90 17.93 .4223 .2018 2.23
±2.75 ±.1619 ±.0473 ±2.93 ±.1827 ±.0543

ViT-VQGAN (Yu et al., 2022) IN-1k T-B VQ 182M 13 †7.5 - - - - - - - †1.55
SD-VAE 1.x (Rombach et al., 2022) OImg C VQ 68M 10 22.4 21.78 .6139 .1042 6.79 22.12 .6046 .1039 1.52

±3.41 ±.1430 ±.0345 ±3.79 ±.1663 ±.0409
SD-VAE 1.x (Rombach et al., 2022) OImg C VQ 68M 14 22.4 22.54 .6470 .0905 6.07 22.82 .6354 .0912 1.23

±3.55 ±.1409 ±.0323 ±3.97 ±.1644 ±.0390

SD-VAE 1.x (Rombach et al., 2022) OImg C KL 68M #64 22.4 21.68 .6375 .0985 5.94 21.99 .6275 .0980 1.35
±3.32 ±.1375 ±.0309 ±3.74 ±.1600 ±.0371

SD-VAE 2.x (Podell et al., 2023) OImg+ C KL 84M #64 18.9 24.82 .7202 .0694 4.63 25.08 .7054 .0731 0.78
LAION ±3.64 ±.1241 ±.0344 ±4.11 ±.1469 ±.0448

SDXL-VAE (Podell et al., 2023) OImg+ C KL 84M #64 18.9 25.11 .7433 .0623 4.23 25.38 .7276 .0666 0.72
LAION+? ±3.91 ±.1240 ±.0289 ±4.41 ±.1469 ±.0373

Ours IN-1k T-B BSQ 174M 18 45.1 25.08 .7662 .0744 5.81 25.36 .7578 .0761 1.14
±3.57 ±.0993 ±.0295 ±4.02 ±.1163 ±.0358

Ours IN-1k T-B BSQ 174M 36 45.1 27.64 .8485 .0412 3.42 27.88 .8410 .0432 0.41
±3.74 ±.0704 ±.0199 ±4.26 ±.0821 ±.0253

Ours (w/. EMA) IN-1k T-B BSQ 174M 36 45.1 27.92 .8526 .0380 3.34 28.14 .0814 .0400 0.45
±3.78 ±.0698 ±.0187 ±4.32 ±.0814 ±.0237

et al., 2017; Unterthiner et al., 2019). To distinguish it from generation, we denote it as rFID/rFVD.
For generation, we report FID, Inception Score (IS) (Salimans et al., 2016), and improved precision
and recall (IPR, Prec, and Rec) (Kynkäänniemi et al., 2019). For compression, we report PSNR and
MS-SSIM (Wang et al., 2003) under different levels of bits per pixel (bpp).

5.1 MAIN RESULTS

Image Reconstruction. We first compare the image reconstruction result of BSQ on COCO and
ImageNet (256 × 256) with state-of-the-art image tokenizers, including DALL-E dVAE (Ramesh
et al., 2021), SD-VAE 1.x (Rombach et al., 2022), SD-VAE 2.x, SDXL-VAE (Podell et al., 2023),
MaskGIT (Chang et al., 2022), and ViT-VQGAN (Yu et al., 2022). To perform a comprehensive and
fair comparison, we rerun all models using the same augmentation on COCO 2017val and ImageNet-
1k val except the undisclosed ViT-VQGAN. From Table 1, we can see that our model outperforms
prior works on all metrics (PSNR, SSIM, LPIPS, and rFID), often by a big margin. In Figure 4
and Figure 9, we show reconstructed images produced compared to the best prior work, SDXL-VAE.
Our method preserves more details about high-frequency texture and fine-grained shape/geometry.

To compare the compression capability of different bottleneck modules, We study the effective
number of bits per token (# bits). For VQ-based models, # bits equals to log2(K), where K is the
codebook size; For KL-regularized models (SD-VAE 2.x and XL), since the latent is continuous,
we count # bits as the latent dimension multiplied by the numeric precision (here we use 16 since
the checkpoint is stored in FP16). For our BSQ, # bits is L because each latent channel is binary.
We summarize the key observations as follows. (1) BSQ efficiently compresses image patches into
a small amount of bits. It reconstructs images better in all metrics using fewer bits per token than
the second-best method (SDXL-VAE). (2) BSQ is also computationally efficient. Although the ViT-
based backbone doubles the parameters, our method yields a 2.4× higher throughput than SDXL-
VAE. MaskGIT runs at a comparable speed but reconstructs significantly worse because of a small
codebook size and more spatial downsampling. (3) BSQ is generalizable across different domains
of images. ImageNet is relatively object-centric while COCO is more scene-centric. Though trained
on ImageNet only, our method does well on the scene-centric COCO too. It even works better than
SD-VAE 1./2.x trained on the similarly scene-centric OpenImages dataset (Kuznetsova et al., 2020).
Video Reconstruction. We present the video reconstruction on both UCF-101 training and valida-
tion subsets in Table 2. First, we use the image tokenizer to reconstruct the video frame by frame.
BSQ works slightly better than VQ but neither is comparable to the specialized video tokenizers
fine-tuned on video data shown in the lower half of Table 2. Second, we finetune the image tok-
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Table 2: Video reconstruction results on UCF-101 (split 1).
UCF-101 train UCF-101 val

Method Backbone Quantizer Param. # bits PSNR↑ SSIM↑ LPIPS↓ rFVD↓ PSNR↑ SSIM↑ LPIPS↓ rFVD↓

(IMAGE TOKENIZER, W/O ADAPTING TO VIDEOS)
Ours ViT VQ 174M 14 25.64 .8142 .1120 357 25.58 .8120 .1146 382
Ours ViT BSQ 174M 18 25.86 .8273 .1089 326 25.83 0.8259 0.1108 342

(IMAGE TOKENIZER → VIDEO TOKENIZER)
MaskGIT (Chang et al., 2022) 2D CNN VQ 53M 10 21.5 .685 0.114 216 - - - -
TATS (Ge et al., 2022) 3D CNN VQ 32M 14 - - - 162
MAGVIT-L (Yu et al., 2023) 3D CNN VQ 158M 10 22.0 .701 .0990 25 - - - -
MAGVIT-v2 (Yu et al., 2024) C.-3D CNN LFQ 158M 18 - - .0694 16.12 - - - -
MAGVIT-v2 (Yu et al., 2024) C.-3D CNN LFQ N/A (>158M) 18 - - .0537 8.62 - - - -
Ours non-BC ViT VQ 174M 14 33.06 .9518 .0223 9.16 32.92 .9506 .0228 12.79
Ours BC ViT VQ 174M 14 32.81 .9496 .0236 10.76 32.68 .9484 .0241 14.17
Ours non-BC ViT BSQ 174M 18 32.43 .9479 .0213 7.34 31.88 .9410 .0254 10.57
Ours BC ViT BSQ 174M 18 32.08 .9421 .0244 8.08 31.49 .9357 .0276 11.62
Ours BC ViT BSQ 174M 36 33.80 .9606 .0159 4.10 33.55 .9588 .0167 6.21

Table 4: Visual compression results on Kodak and MCL-JCV (640× 360).
(a) Image Compression results on Kodak.

Method BPP PSNR↑ MS-SSIM (dB)↑ LPIPS↓

JPEG2000 0.2986 29.192 11.574 .1892
WebP 0.2963 29.151 12.193 .1655
MAGVIT2 0.2812 23.467 8.103 .1260
VQ 0.2812 26.987 12.580 .0944
Ours 0.2812 27.785 12.852 .0823
Ours (w/. AC) 0.2073 —"— —"— —"—

(b) Video compression results on MCL-JCV.

Method BPP PSNR↑ MS-SSIM↑ LPIPS↓

MAGVIT 0.0391 23.70 0.846 .144
MAGVIT-v2 0.0508 27.83 0.92 .104
H.264 0.1373 35.415 0.9796 .0949
H.265 0.1373 35.670 0.9807 .0908
Ours (w/o. AC) 0.2333 33.698 0.9818 .0501
Ours (w/. AC) 0.1373 33.698 0.9818 .0501

enizer on videos and see significant improvements. For example, our 18-bit BSQ with causal ViT
reduces rFVD from 342 to 11.62 and improves PSNR from 25.83 to 31.49 dB. The compared prior
methods include: (1) MaskGIT (Chang et al., 2022) which is a fine-tuned 2D-CNN based tokenizer,
(2) TATS (Ge et al., 2022) which uses a 3D CNN with replicated padding, (3) MAGVIT (Yu et al.,
2022) whose 3D CNN is initialized by zero-inflating a 2D filter, and (4) MAGVIT-v2 (Yu et al.,
2024) which makes 3D CNN causal. We take their reported numbers directly. Our models with all
configurations outperform MAGVIT-v2 with a comparable number of parameters (174M vs. 158M)
by a large margin. The best-performing MAGVIT-v2 uses a larger backbone and achieves a rFVD
of 8.62. Our causal BSQ-ViT with L = 18 achieves an 8.08 rFVD and halves the LPIPS. For BSQ
with L = 36, our method further improves the reconstruction metrics.

We also show the effect of using block-wise causal masks. The non-causal variant (non-BC) works
slightly better on all metrics because now the model can look at all visual patches within the temporal
context window. This result resembles the observations in video compression that using bidirectional
predicted pictures (B-frames) benefits compression quality given the same group of pictures (GoP).

Table 3: Image generation results on ImageNet-1K (128 ×
128). †The number is taken from the paper.

Category Method # steps FID↓ IS↑ Prec↑ Rec↑

GAN BigGAN (Brock et al., 2018) 1 6.02 145.8 0.86 0.35

Diffusion ADM (Dhariwal & Nichol, 2021) 1,000 5.91 93.3 0.70 0.65

Masked LM
VQ 12 †9.4 - - -
FSQ (Mentzer et al., 2024) 12 †8.5 - - -
BSQ (Ours) 12 5.69 48.5 0.85 0.42
BSQ (Ours) 32 5.44 139.6 0.80 0.50

Image Generation. Our BSQ-ViT
tokenizer can be seamlessly inte-
grated into existing generative mod-
els for visual generation. We fol-
low MaskGIT (Chang et al., 2022),
a masked language modeling ap-
proach. Unlike MaskGIT with a VQ-
VAE with K = 1024, BSQ-ViT has
an effective vocabulary size of 2L and
L = 18, resulting in a slow embed-
ding lookup. We fix it by dividing each token into groups and treating sub-tokens independently with
a similar rationale in Section 4.1. We increase the number of decoding steps accordingly. Table 3
shows that the masked LM with BSQ outperforms those with VQ and FSQ reported in (Mentzer
et al., 2024). Our method achieves comparable results with other generation paradigms such as
GAN-based (Brock et al., 2018) and diffusion-based (Dhariwal & Nichol, 2021) approaches. We
show qualitative results in Figure 5.
Image and Video Compression. We compare BSQ with two image compression standards includ-
ing JPEG2000 and WebP on the Kodak image dataset in Table 4a. we can see that BSQ without
entropy coding outperforms JPEG2000 and WebP in terms of MS-SSIM with a slightly smaller bpp.
We show a detailed RD Curve in Figure 12 in Sec G.2. We compare the video compression result
on MCL-JCV in Table 4b. More results with detailed discussions on MCL-JCV and UVG can be
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Table 5: Abalation studies on ImageNet-1k val 128×128.
Method ℓ2-norm # bits (K × d or L) PSNR↑ SSIM↑ LPIPS↓ rFID↓ Code usage

VQ
✓ 10 (1024×32) 23.61±3.21 .6873±.1211 .1214±.0434 7.05 57.5%
✓ 14 (16384×8) 25.76±3.46 .7834±.0988 .0669±.0282 4.27 100.0%
✓ 16 (65536×8) 25.67±3.36 .7851±.0962 .0706±.0283 6.61 100.0%

BSQ
✓ 10 24.11±3.25 .7250±.1121 .0919±.0338 4.51 100.0%
✓ 14 25.26±3.31 .7710±.0992 .0784±.0293 4.60 99.8%
✓ 18 25.97±3.37 .7990±.0906 .0629±.0261 2.66 93.8%

LFQ ✗ 18 18.58±2.10 .4828±.1340 .2951±.0806 30.7 0.6%

Table 6: Ablation studies of the loss design.
(a) Leave-one-out ablations for training losses.

Lcommit Lentropy LLPIPS rFID Code
H(p(c|u)) −H(E[p(c|u)]) usage

✓ ✓ ✓ ✓ 2.95 45.6%
✗ ✓ ✓ ✓ 2.83 93.8%
✓ ✗ ✓ ✓ 2.44 78.3%
✓ ✓ ✗ ✓ 13.8 13.3%
✓ ✓ ✓ ✗ 19.2 6.9%

(b) Group size. (L = 18)

group rFID Code Speed
size ↓ usage (ms)

g = 18 (OOM) 70.0
g = 9 2.83 93.8% 0.335
g = 6 2.76 95.2% 0.232
g = 3 3.32 96.0% 0.233
Ours (g = 1) 2.86 95.1% 0.212

found in Figure 8 in Section G.3. Simply flattening the video token sequence to a bitstream achieves
an MS-SSIM of 0.9818 at 0.2333 bpp. Although this is not great, we use an auto-regressive model
to predict the conditional probability such that the bpp is reduced by 41%. This leads to a better
tradeoff than standard video codecs including H.264 and HEVC.

5.2 ABLATION STUDIES

For ablation studies, we train an ImageNet image tokenizer with resolution 128×128 with p = 8,
although our conclusions generally hold for higher resolution, e.g. 256×256 in Sec. 5.1.
BSQ vs VQ. Table 5 shows that BSQ and VQ follow a similar trend: better reconstruction for
increased L. Since K = 218 results in an out-of-memory issue, we try a smaller K = 216 = 65536
for VQ. The gain for VQ already diminishes even though the small bottleneck dimension of 8 still
guarantees full code usage. In contrast, BSQ consistently works better on all metrics when L = 18.
Importance of ℓ2 normalization in BSQ. We remove the ℓ2 normalization in BSQ, which is equiv-
alent to LFQ, and show results in the last rows of Table 5. We see much lower code usage and worse
rFID, indicating that LFQ does not work well with a ViT-based tokenization encoder.
Contribution of losses. We study the effect of each loss in Table 6a. Although it is computationally
prohibitive to enumerate all combinations of loss terms and their associative weights, we conduct
a simple “leave-one-out” setting where one of the losses is removed at a time. BSQ works slightly
better after removing Lcommit and H(p(c|u)). However, the code usage varies greatly. The best
configuration is to keep the minimal entropy term while dropping the commitment loss. The commit
loss is unnecessary because of the strictly bounded quantization error in BSQ. On the contrary, the
dataset entropy maximization term and perceptual term do matter. Without −H(Eu[p(c|u)]), rFID
increases to 13.8 while the code usage in the validation set significantly drops to 13.3%. We also
observe that the perceptual loss is important for low FID and high code usage. However, a deeper
look into its role is beyond the scope of this paper.
Approximating the dataset entropy term. We now show the efficacy of approximating the dataset
entropy term using Equation 9. We compare with the approximation method in (Yu et al., 2024)
that computes entropy in sub-groups of dimensions with varying group size g ∈ {9, 6, 3}. Our
approximation method can also be interpreted as a group size of g = 1. From Table 6b, we conclude
that our approximation achieves a similar level of rFID and code usage compared to other setups
while running the fastest.

6 CONCLUSIONS

We present a new transformer-based image and video tokenizer with Binary Spherical Quantiza-
tion (BSQ). The transformer-based architecture effortlessly integrates image and video tokenization
over an arbitrary time horizon. The Binary Spherical Quantization allows for efficient and effective
training of the quantized bottleneck. Our results indicate that the proposed tokenizer runs at a faster
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speed, reconstructs with higher fidelity, and in combination with a sequence model offers a strong
baseline for lossy video compression and image synthesis.

Figure 4: Reconstruction results of BSQ-ViT (right) compared to the original image (left) and SDXL-
VAE (Podell et al., 2023) (middle). See Figure 9 for more visualization.

BigGAN ADM BSQ-ViT+Masked-LM (Ours) Groundtruth

Figure 5: Sampled generation results of BSQ-ViT + Masked-LM (second column from left) compared to
BigGAN (Brock et al., 2018) (right), ADM (Dhariwal & Nichol, 2021) (second column from right) and the
original images (left). Classes are 1: goldfish, 279: arctic fox, 323: monarch butterfly, 417: balloon.
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Table 7: Comparing BSQ and LFQ.

LFQ (Yu et al., 2024) BSQ (Ours)

Quantized output v̂ = sign(v) û = 1√
L
sign(u) = 1√

L
sign( v

|v| )

STE gradient ∂v̂i
∂vi

= 1 ∂ûi
∂vi

= 1√
L
(1− v2i /|v|2)

Quantization Error Ev [d(v, v̂)] = ∞ Eu [d(u, û)] <
√

2− 2√
L
<

√
2

Unbounded Upper-bounded (See Section C.4)

Training objective LMSE, Lcommit, LLPIPS, LGAN, LMSE, LLPIPS, LGAN,
Lentropy = H[p(c|v)]−H[Eu[p(c|v)]] Lentropy = H[p(c|u)]− Ĥ[Eu[p(c|u)]]
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A ARITHMATIC CODING DETAILS

Starting from the initial interval I0 = [0, 1), the AC encoder recursively partitions the interval into a
series of sub-interval In = [ln, un) such that In ⊂ In−1 ⊂ · · · ⊂ I0, and In is determined by In−1

and ρ(y|x<n).

In(y) =

[
ln−1 + (un−1 − ln−1)

xn−1∑
y=1

ρ(y|x<n), ln−1 + (un−1 − ln−1)

xn∑
y=1

ρ(y|x<n)

)
. (11)

Any number in the final interval IN can sufficiently represent the encoded sequence. To obtain
the final bit stream, we take a binary fraction λ =

∑C
i=1 bi × 2−i, bi ∈ {0, 1} in IN such that

lN ≤ λ < uN . The bit stream {b0, . . . , bC} is the encoding result with a length of C bits.

The AC decoder takes in λ, starts with I0, and performs a similar interval partitioning process. At
the n-th step, the decoder queries the model ρn(y|x<n), calculate the sub-intervals for all possible
values of y using Equation 11, and decodes output xn that leads to λ ∈ In(xn). The decoder can
recover the encoded token sequence by continuing with In+1 based on the decoded xn and repeating
for step n+ 1 for N steps.

In practice, the encoder and the decoder can be implemented efficiently with fixed-length integer
numbers and operate incrementally for arbitrarily long input sequences.

B COMPARISON BETWEEN BSQ AND LFQ

In Section 4.1, we have introduced the mechanism of BSQ and briefly discussed the connections and
differences with LFQ. We summarize them in Table 7. Note that STE gradient in BSQ is anisotropic
and is more likely to be a good estimation because of an upper-bounded quantization error regardless
of L. This property explains why a commitment loss like Lcommit(û,u) is not needed in BSQ but
useful for LFQ.

C PROOFS

C.1 PROOF OF EQUATION 7

Before proving Equation 7, we will first prove the following identity:
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Let u ∈ RL, C = ΩL ∈ RL×2L for Ω = {− 1√
L
, 1√

L
},

∑
c∈C

eτu
⊤c =

∑
c∈C

L∏
d=1

eτudcd =

L∏
d=1

∑
cd∈Ω

eτudcd . (12)

Proof. With τ dropped for simplicity of notation.

∑
c∈C

eu
⊤c =

∑
c∈C

L∏
k=1

eukck

=
∑
c1∈Ω

∑
c2∈Ω

. . .
∑
cL∈Ω

L∏
d=1

eudcd

=
∑
c1∈Ω

∑
c2∈Ω

. . .
∑
cL∈Ω

euLcL

L−1∏
d=1

eudcd

=
∑
c1∈Ω

∑
c2∈Ω

. . .
∑

cL−1∈Ω

(
L−1∏
d=1

eudcd

)(∑
cL∈Ω

euLcL

)
= . . .

=

(∑
c1∈Ω

euLcL

)(∑
c2∈Ω

eu2c2

)
. . .

(∑
cL∈Ω

euLcL

)
=

L∏
d=1

∑
cd∈Ω

eudcd .□

Therefore, the probability of u being assigned to ci can be written as:

q̂(ĉ|u) = eτu
⊤ĉ∑

c∈C eτu⊤c
=

∏L
d=1 e

τudĉd∏L
d=1

∑
cd∈{− 1√

L
, 1√

L
} e

τudcd
(Using Equation 12)

=

L∏
d=1

eτudĉd

eτudĉd + e−τudĉd
(since cd = ± 1√

L
= ±ĉd)

=

L∏
d=1

σ(2τudĉd).

C.2 PROOF OF EQUATION 8

Since q̂(ĉ|u) =∏L
d=1 σ(2τudĉd) each variable cd is independent of each other. Thus by definition

H[q̂(c|u)] =
L∑

d=1

H(σ(2τudcd)). □

C.3 PROOF OF EQUATION 9

Now we look at H[Eu[q̂(c|u)]]. We first compute Q(c) = Eu [q̂(c|u)].

Q(c) = Eu [q̂(c|u)] = 1

N

∑
u

q̂(c|u) = 1

N

∑
u

L∏
k

σ(2ukck).

Unlike c, u does not factorize like Equation 12. This would require us to compute Q(c) as a full
distribution over 2L states, which is slow (O(L× 2L)) and easily overfits. Instead, we approximate
Q(c) by a factorized distribution q̃(c) =

∏L
d=1 q̃d(cd), where cd ∈ Ω for Ω = {− 1√

L
, 1√

L
}, using
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an M-projection. We again omit τ for notational brevity.

D(Q∥q̃) = H(Q, q̃)−H(Q)

= −
2L∑
i=1

Q(ci) log q̃(ci)−H(Q)

= −
2L∑
i=1

Q(ci)
∑
d

log q̃d(cd)−H(Q)

= −
∑
d

2L∑
i=1

Q(ci) log q̃d(cd)︸ ︷︷ ︸−H(Q)

= −
∑
d

log q̃d(cd = 1)
∑
c−d

Q(ci) + log q̃d(cd = −1)
∑
c−d

Q(ci)

−H(Q)

= −
∑
d

∑
cd∈{−1,1}

log q̃d(cd)
∑
c−d

Q(c)−H(Q), where c−d sums over all dimensions except d.

The minimizer of the above projection ∂
∂q̃d

D(Q∥q̃) = 0

q̃d(cd)
∗ =

∑
c−d

Q(c) = Eu

∑
c−d

q̂(c|u)


= Eu

∑
c−d

∏
k

σ(2ukck)

 = Eu

∑
c−d

σ(2udcd)
∏
k ̸=d

σ(2ukck)



= Eu

σ(2udcd)
∑
c−d

∏
k ̸=d

σ(2ukck)

 = Eu

σ(2udcd)
∏
k ̸=d

∑
c−d

σ(2ukck)︸ ︷︷ ︸
=1

 = Eu [σ(2udcd)]

Therefore, the entropy term is simplified to:

H(q̃) =
∑
d

H(q̃d(cd)) =
∑
d

H (Eu[σ(2udcd)]) .

By the nature of the above derivation the cross entropy H(Q, q̃) = H(q̃) equals the entropy of the
approximation. This means that D(Q∥q̃) = H(q̃)−H(Q) ≥ 0, and the entropy of the approxima-
tion is an upper bound H(q̃) ≥ H(Q) to the true entropy.

In practice, this bound is relatively tight. The most adversarial distribution P (u) is P ( 1√
L
1⃗) = 1

2

and P (− 1√
L
1⃗) = 1

2 , where all inputs are maximally correlated, but the factorized distribution is not.
Figure 6 shows an empirical estimate of this approximation error for various values of τ . In practice,
we use τ = 1

100 , which has little to no approximation error.

C.4 PROOF OF THE QUANTIZATION ERROR BOUND OF BSQ (EQUATION 10)

We consider ℓ2-distance d(u, û) = ∥u− û∥. A simple (but loose) bound is:

Eu [d(u, û)] = Eu [dmax(u, û)] <

√
2− 2√

L
<

√
2, (13)

where dmax is attained if u is at any axis, u = [0, · · · , 0︸ ︷︷ ︸
n

, 1, 0, · · · , 0︸ ︷︷ ︸
L−1−n

].
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Figure 6: Empirical estimation of the approximation error with respect to τ at different bottleneck
dimensions L.

Proof of Equation 13. The sketch of derivation to dmax(u, û) is as follows. For an arbitrary
vector u residing on the unit hypersphere (|u|2 = 1) and its quantized counterpart û also on the
unit hypersphere, we can write the quantization error as d(u, û) =

√
2− 2u · û. The maximum

of d(u, û) is therefore attained when the minimum of u · û =
∑

uiûi is achieved, where ui and
ûi are elements of u and û, respectively. In BSQ the quantization law is that ûi = 1√

L
sign(ui).

This leads to uiûi = 1√
L
|ui| and u · û =

∑
|ui|√
L

= |u|1√
L

. Minimizing u · û is then equivalent to
finding an ℓ2 unit vector with the minimal ℓ1 norm, which is known to be achieved only if the vector
u is a one-hot vector and the minimal ℓ1 norm is 1. This leads to the maximum of d(u, û) being√
2− 2√

L
.

To achieve a tighter bound, we first expand the definition,

Eu [d(u, û)] =

∫
· · ·
∫

︸ ︷︷ ︸
SL−1

dSL−1V d(u, û)

∫
· · ·
∫

︸ ︷︷ ︸
SL−1

dSL−1V

, (14)

where SL−1 = {x ∈ RL : ∥x∥ = 1} denotes the unit L-sphere of radius 1 and dSL−1V denotes its
surface area element. We further define a hyperspherical coordinate system that is analogous to the
spherical coordinate system for 3D Euclidean space or the polar coordinate system for 2D space to
represent the surface area element.

u1 = cos(φ1),

u2 = sin(φ1) cos(φ2),

u3 = sin(φ1) sin(φ2) cos(φ3),

· · ·
uL−1 = sin(φ1) sinφ2 · · · sin(φL−2) cos(φL−1),

uL = sin(φ1) sinφ2 · · · sin(φL−2) sin(φL−1),

(surface area element) dSL−1V = sinL−2(φ1) sin
L−3(φ2) · · · sin(φL−2)dφ1 · · · dφL−1,

(surface area) SL−1 =

∫
· · ·
∫

︸ ︷︷ ︸
SL−1

dSn−1V =
2πL/2

Γ(L2 )
.

Due to symmetry, we assume the subarea AL−1 where ∀i ∈ {1, · · · , L}, ui > 0, and it will be quan-
tized to c1 = û1 = 1√

L

−→
1 . The unit hypersphere SL−1 has 2L of such subareas interchangeably.
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Computing Equation 14 is equivalent to

Eu [d(u, û)] =

∫
· · ·
∫

︸ ︷︷ ︸
AL−1

dSL−1V d(u, û)

∫
· · ·
∫

︸ ︷︷ ︸
AL−1

dSL−1V

. (15)

We expand the the numerator in Equation 15 as follows:

=

∫ π
2

0

· · ·
∫ π

2

0

dSL−1V {[cos(φ1)−
1√
L
]2 + [sin(φ1) cos(φ2)−

1√
L
]2 + · · ·

+ [sin(φ1) sin(φ2) · · · sin(φL−2) cos(φL−1)−
1√
L
]2

+ [sin(φ1) sin(φ2) · · · sin(φL−2) sin(φL−1)−
1√
L
]2} 1

2

(16)

It is composed of L square terms. It is easy to see that the sum of constant terms leads to 1. Next,
let’s sum over all quadratic terms and keep on using sin2(θ) + cos2(θ) = 1:

cos2(φ1) + sin2(φ1) cos
2(φ2) + · · ·+

L−2∏
j=1

sin2(φj) sin
2(φL−1) +

L−2∏
j=1

sin2(φj) cos
2(φL−1) = 1

So the distance function to be integrated simplifies to2− 2√
L
cos(φ1)−

2√
L
sin(φ1) cos(φ2)− · · · − 2√

L

L−2∏
j=1

sin(φj) cos(φL−1)−
2√
L

L−2∏
j=1

sin(φj) sin(φL−1)

 1
2

<

(
2− 2√

L
cos(φ1)

) 1
2

.

Plug into the numerator in Equation 15 and continue simplifying:∫
· · ·
∫

︸ ︷︷ ︸
AL−1

dSL−1V

(
2− 2√

L
cos(φ1)

) 1
2

(17)

=

∫
· · ·
∫

︸ ︷︷ ︸
AL−1

dSL−2V

︸ ︷︷ ︸
SL−2

2L−1

∫ π
2

0

(
2− 2√

L
cos(φ1)

) 1
2

sinL−2(φ1)dφ1. (18)

Therefore, we have

Eu [d(u, û)] <
2Γ(L2 )√
πΓ(L−1

2 )

∫ π
2

0

(
2− 2√

L
cos(φ1)

) 1
2

sinL−2(φ1)dφ1, (19)

where RHS can be numerically computed and plotted in Figure 7.

D DATASET OVERVIEW

ImageNet-1k has 1.28M training images and 50,000 validation images; COCO 2017val has 5,000
images.
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Figure 7: Quantization error with vocabulary size L.

UCF101 has 13,320 video clips and three train-val splits. Following prior works (Yu et al., 2023),
we consider split-1 which has 9,537 clips for training and 3,783 for validation.

The MCL-JCV dataset (Wang et al., 2016) consists of thirty 1080P (1,920×1,080) video sequences
with 24∼30 FPS. The Open Ultra Video Group (UVG) dataset (Mercat et al., 2020) consists of six-
teen 4K (3,840×2,160) test video sequences captured at 50/120 FPS. Following prior works (Agusts-
son et al., 2020), we report the performance on a subset of seven videos in YUV 8bit format at 120
FPS under the resolution of 1,920×1,080.

E IMPLEMENTATION DETAILS

Training Image Tokenizers. We train the image tokenizer with a batch size of 32 per GPU. We use
AdamW optimizer (Loshchilov & Hutter, 2019) with (β1, β2) = (0.9, 0.99) with 1 × 10−4 weight
decay. The base learning rate is 4 × 10−7 (or a total learning rate of 1 × 10−4) and follows a half-
period cosine annealing schedule. The model is trained for 1M steps which amounts to 200 epochs
over the entire ImageNet-1k training set. We did not heavily study the effect of loss weights. Instead,
we keep γ = 1 in the entropy terms. We use a perceptual loss weight of 0.1 and an adversarial loss
weight of 0.1 throughout the experiments.
Evaluating Image Tokenizers. We observe that reconstruction metrics vary with many factors,
especially preprocessing (e.g. interpolation), input resolution, and downsample scales (Section D.2
in (Rombach et al., 2022)). we resize all images such that the smaller edge is 256 pixels using
Lánczos interpolation in Table 1 and bilinear interpolation in Table 8, take the center crop (H ×
W ) = (256× 256), and ensure all models have the same spatial downsample ratio of p = 8 (except
for MaskGIT, p = 16). We rerun all models on COCO 2017val and ImageNet-1k val except the
undisclosed ViT-VQGAN.
Training Video Tokenizers. We finetune the video tokenizer with a batch size of 32 per GPU.
The optimization schedule follows the image-based one but trains for fewer iterations. The network
is initialized from the ImageNet-pretraining checkpoint and undergoes another 500K steps which
amounts to 1600 epochs over UCF-101 split-1 train.
Training a Masked Language Model for Generation. The masked LM is a standard post-LN
Transformer with 24 layers and a hidden dimension of 768 following MaskGIT (Chang et al., 2022).
We train the masked LM on 2 nodes of 8× GPUs (16 in total) with a total batch size of 1024 for 1M
steps. We use AdamW optimizer with (β1, β2) = (0.9, 0.96) with 0.045 weight decay. At inference
time, we use a cosine unmasking schedule in MaskGIT (Chang et al., 2022) and set the sampling
temperature to 15. We use classifier-free guidance (Ho & Salimans, 2022): At training, we replace
20% of the class condition labels with the mask token so that the model learns an unconditional
distribution simultaneously. Let ℓc be class-conditioned logits and ℓ∅ be unconditional logits. During
inference, we interpolate logits using ℓ′ = ℓc + α(ℓc − ℓ∅), where α = 0.5.
Training an Auto-Regressive Model for Arithmetic Coding. The auto-regressive model is a
Transformer with 24 layers and a hidden dimension 768. We train this model on 8× GPUs with
a total batch size of 64. We use AdamW optimizer with (β1, β2) = (0.9, 0.96) with 0.045 weight
decay.
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Table 8: Image reconstruction results on COCO2017 and ImageNet-1K (256× 256). The settings strictly
follow Table 1 except that all images are resized with bilinear interpolation.

COCO2017 val ImageNet-1k val

Method Data Arch. Quant. Param. # bits TP↑ PSNR↑ SSIM↑ LPIPS↓ rFID↓ PSNR↑ SSIM↑ LPIPS↓ rFID↓

DALL-E dVAE (Ramesh et al., 2021) CC+YF C VQ 98M 13 34.0 26.97 .0837 .2544 48.60 27.31 .7943 .2544 32.63
±3.41 ±.0922 ±.1057 ±3.81 ±.1114 ±.1057

MaskGIT (Chang et al., 2022) IN-1k C VQ 54M 10 37.5 18.21 .4596 .1930 8.47 18.63 .4619 .1884 1.98
±2.74 ±0.1606 ±.0444 ±2.90 ±.1812 ±.0497

ViT-VQGAN (Yu et al., 2022) IN-1k T-B VQ 182M 13 †7.5 - - - - - - - †1.55
SD-VAE 1.x (Rombach et al., 2022) OImg C VQ 68M 10 22.4 23.29 .6705 .0949 6.49 23.65 .6615 .0940 1.40

±3.34 ±.1316 ±.0313 ±3.69 ±.1540 ±.0367
SD-VAE 1.x (Rombach et al., 2022) OImg C VQ 68M 14 22.4 24.17 .7042 .0814 5.75 24.48 .6931 .0814 1.13

±3.50 ±.1276 ±.0289 ±3.98 ±.1502 ±.0289
SD-VAE 1.x (Rombach et al., 2022) OImg C KL 68M 64 22.4 23.21 .6930 .0908 5.94 23.54 .6835 .0899 1.22

±3.24 ±.1249 ±.04282 ±3.62 ±.1465 ±.0337
SD-VAE 2.x (Podell et al., 2023) OImg+ C KL 84M 64 18.9 26.62 .7722 .0584 4.26 26.90 .7592 .0609 0.70

LAION ±3.64 ±.1086 ±.0273 ±4.09 ±.1300 ±.0349
SDXL-VAE (Podell et al., 2023) OImg+ C KL 84M 64 18.9 27.08 .7953 .0541 3.93 27.37 .7814 .0574 0.67

LAION+? ±3.88 ±.1066 ±.0250 ±4.36 ±.1282 ±.0320
Ours IN-1k T-B BSQ 174M 18 45.1 26.89 .8133 .0652 5.41 27.78 .8171 .0633 0.99

±3.47 ±.0851 ±.0255 ±3.99 ±.0987 ±.0307
Ours IN-1k T-B BSQ 174M 36 45.1 29.85 .8862 .0341 3.07 30.12 .8803 .0355 0.36

±3.65 ±.0570 ±.0163 ±4.13 ±.0670 ±.0207
Ours (w/. EMA) IN-1k T-B BSQ 174M 36 45.1 30.19 .8904 .0314 3.07 30.45 .8843 .0329 0.42

±3.69 ±.0561 ±.0153 ±4.19 ±.0661 ±.0194

Hardware. The hardware for training is 8×GPU-servers with NVIDIA A5000 (24GB). Pre-training
an image tokenizer and fine-tuning a video tokenizer in the full schedule is done across two servers
with distributed training and takes around 5 days. Training the AR model for AC is done on an
8×GPU server and takes around 1 week. When measuring the tokenizer’s throughput and the com-
pression runtime, we use a server with 4× A5000 GPU and 1× AMD Ryzen Threadripper PRO
5975WX 32-Core CPU (64 threads).

F BASELINES FOR VIDEO COMPRESSION

Following SSF (Agustsson et al., 2020), we used FFmpeg1 to produce the evaluation metrics for
H.264 and HEVC. We use the commands provided in CompressAI (Bégaint et al., 2020).

ffmpeg -y -s:v $RESOLUTION -i $FILE.yuv -c:v h264 -crf $CRF \
-preset medium -bf 0 -pix_fmt yuv420p -threads 4 $FILE.mp4

where $Resolution ∈ {1920x1080,640x360}, and $CRF ∈ {17, 20, 22, 27, 32, 37, 42, 47}.

G MORE EXPERIMENTAL RESULTS

G.1 IMAGE RECONSTRUCTION

In Table 8, we compare the image reconstruction results under bilinear interpolation. We conclude
that varying interpolation changes the values but unalts the order of all methods.

G.2 IMAGE COMPRESSION

In Figure 12, we compare the rate-distortion (RD) curve in terms of MS-SSIM vs. bpp (bits per pixel)
on Kodak. We see BSQ consistently improves MS-SSIM with increasing BPP while VQ-based AE
shows diminishing gain at higher BPP.

G.3 VIDEO COMPRESSION

We compare the compression result on MCL-JCV and UVG in Figure 8. On UVG 1080P, our model
is comparable to H.264 while being worse than HEVC and VCT (Mentzer et al., 2022). Note that our

1https://ffmpeg.org/
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Figure 8: Video compression results on MCL-JCV 640×360 and UVG 1920×1080.
Table 9: Comparisons of encoding/decoding speed. †The number did not include the image encoder ac-
cording to (Mentzer et al., 2022).

Method Resolution Encode EC Decode FPS

VCT (Mentzer et al., 2022) 1920×1080 †494 ms 30.5 ms 168 ms 1.4
H.264 1920×1080 - - - 2.6
Ours 1920×1080 55.8 ms 42.2 ms 64.8 ms 6.1

VCT (Mentzer et al., 2022) 640×360 †22.2 ms 4.24 ms 10.1 ms 27.3
H.264 640×360 - - - 22.4
Ours 640×360 6.2 ms 4.69 ms 7.2 ms 55.2

model trains on UCF-101 which only has 9K 320×240 video clips encoded in MPEG-4 while VCT
has been trained on a million high-resolution Internet video clips. We hypothesize that the gap will
be mitigated by adding more diverse videos and removing compression artifacts from the training
videos. Nevertheless, we show the potential advantage of our method in encoding and decoding
speed in Table 9. Due to the simplicity of the Transformer-based encoder and decoder, our method
runs faster than VCT.

H QUALITATIVE RESULTS

In Figure 9, we show reconstructed images produced by the proposed BSQ-ViT in comparison to
the best prior work, SDXL-VAE (Podell et al., 2023). We can see that our method is able to preserve
more details about high-frequency texture and fine-grained shape/geometry. BSQ-ViT often shows
better reconstruction results for characters.

In Figure 10, we show sampled results produced by a Masked LM with the proposed BSQ-ViT
in comparison to existing methods, BigGAN (Brock et al., 2018) and ADM (Dhariwal & Nichol,
2021). We also plot the samples from the ground-truth ILSVRC2012 validation set for reference.
Our method produces competitive results with state-of-the-art methods.

In Figure 11, we show the compressed image produced by different methods under the same BPP
used in Table 4a.
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Figure 9: Reconstruction results of BSQ-ViT (right) compared to the original image (left) and SDXL-
VAE (Podell et al., 2023) (middle). The three images are taken from COCO 2017val which are more scene-
centric compared to ImageNet data that our model is trained on.
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BigGAN ADM BSQ-ViT+Masked-LM (Ours) Groundtruth

Figure 10: Sampled generation results of BSQ-ViT + Masked-LM (second column from left) compared to
BigGAN (Brock et al., 2018) (right), ADM (Dhariwal & Nichol, 2021) (second column from right) and the
original images (left). Classes are 1: goldfish, 279: arctic fox, 323: monarch butterfly, 417: balloon.
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(a) Original image (b) JPEG2000 (c) WebP (d) BSQ (Ours)

Figure 11: Compression results of BSQ-ViT (d) compared to JPEG2000 (b), WebP (c) and the original
images (a). The images are from Kodak (kodim01, kodim15, and kodim23).
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Figure 12: Image compression results on Kodak.
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