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Abstract

Acoustic foundation models, fine-tuned for Au-001
tomatic Speech Recognition (ASR), suffer from002
performance degradation in wild acoustic test003
settings when deployed in real-world scenar-004
ios. Stabilizing online Test-Time Adaptation005
(TTA) under these conditions remains an open006
and unexplored question. Existing wild vi-007
sion TTA methods often fail to handle speech008
data effectively due to the unique character-009
istics of high-entropy speech frames, which010
are unreliably filtered out even when contain-011
ing crucial semantic content. Furthermore, un-012
like static vision data, speech signals follow013
short-term consistency, requiring specialized014
adaptation strategies. In this work, we pro-015
pose a novel wild acoustic TTA method tailored016
for ASR fine-tuned acoustic foundation mod-017
els. Our method, Confidence-Enhanced Adap-018
tation, performs frame-level adaptation using019
a confidence-aware weight scheme to avoid fil-020
tering out essential information in high-entropy021
frames. Additionally, we apply consistency022
regularization during test-time optimization to023
leverage the inherent short-term consistency of024
speech signals. Our experiments on both syn-025
thetic and real-world datasets demonstrate that026
our approach outperforms existing baselines027
under various wild acoustic test settings, in-028
cluding Gaussian noise, environmental sounds,029
accent variations, and sung speech.030

1 Introduction031

Deep learning-based acoustic models have exhib-032

ited remarkable performance in scenarios where the033

training and test sets adhere to the independent and034

identically distributed (i.i.d) assumption. However,035

real-world applications frequently involve domain036

shifts between training and test sets, such as noise037

variations due to environmental sounds (Reddy038

et al., 2019), and timbre variations due to accent039

or pronunciation changes (Yang et al., 2023b).040

While recent acoustic foundation models, such as041
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Figure 1: Robustness analysis of Wav2vec2 Base and
Large under wild acoustic test settings including 1)
Noise (N): additive noises on LibriSpeech test-other
set, 2) Accent (A): accents of L2 learners on L2-Arctic
subset 3) Singing (S): sung speech on DSing test set. In-
Domain (ID) indicates the performance on LibriSpeech
test-other set without additive noises. WER is short for
Word Error Rate.

Wav2vec2 (Baevski et al., 2020), fine-tuned on 042

Automatic Speech Recognition (ASR) achieve ex- 043

cellent performances, they exhibit notable perfor- 044

mance degradation when confronted with the test- 045

time speech in the wild, as depicted in Figure 1. 046

Consequently, there exists an emergent demand 047

to adapt these acoustic foundation models in wild 048

acoustic test settings when deployed in the real 049

world. 050

Prior methods for mitigating domain shifts re- 051

quire access to domain-specific source data under 052

the unsupervised domain adaptation setting (Bell 053

et al., 2020), limiting the application to online sce- 054

narios where speech data come from the wild world 055

with mixed distribution shifts. Test-Time Adap- 056

tation (TTA) emerges as a critical paradigm for 057

addressing distribution shifts at inference time, en- 058

abling online updates of models on test data in a 059

source-free way. Recent work, SUTA (Lin et al., 060

2022), presents a pilot study on TTA for ASR mod- 061

els by applying entropy minimization to speech 062

frame adaptation, demonstrating impressive perfor- 063

mance on single-utterance TTA. However, SUTA 064
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focuses on mild test settings, e.g., testing on speech065

with synthetic and real noises. In the dynamic066

wild world, acoustic foundation models may face067

arbitrary test speech data with severe distribution068

shifts, such as sung speech. As such, stabilizing on-069

line TTA under wild acoustic test settings remains070

an open and unexplored question. Recent work,071

SAR (Niu et al., 2023), proposes an efficient op-072

timization scheme for stabling online TTA in the073

wild vision test settings. However, direct adoption074

of SAR to speech data is challenging because SAR075

characterizes high-entropy noisy speech samples as076

unreliable and potentially harmful for model adap-077

tation and proposes to filter them out for stabling078

under wild vision test settings.079

In this work, we empirically identify a sub-080

stantial proportion of noisy frames within non-081

silent speech segments under wild acoustic test082

settings. We observe that these frames contain vital083

semantic information crucial for accurate recog-084

nition and merely discarding these noisy frames085

may adversely affect model performance. Con-086

sequently, rather than excluding these noisy non-087

silent frames, we propose Confidence Enhanced088

Adaptation (CEA), which performs frame-level089

adaptation using a confident-aware weight scheme.090

CEA prioritizes uncertain frames and encourages091

models to focus more on these uncertain frames by092

‘denoising’ their intermediate representations. Ad-093

ditionally, we emphasize that frames within a short094

speech segment are temporally coherent, largely095

due to the consistent nature of phonemic content096

within such windows, thus proposing short-term097

consistency regularization to stabilize wild acoustic098

TTA. This contrasts with image samples in a batch,099

which are frequently treated as independent entities.100

We conduct a wide range of experiments for ASR101

fine-tuned acoustic foundation models on both syn-102

thetic and real-world datasets, systematically as-103

sessing the model’s robustness against Gaussian104

noises, environmental sounds, accents of second105

language (L2) learners, and singing (a.k.a. sung106

speech). The experimental results demonstrate the107

effectiveness of our method under wild acoustic108

test settings.109

In summary, our contributions are summarized110

as follows:111

• We are the first to address wild acoustic TTA112

and observe that in wild acoustic test settings113

high-entropy noisy speech frames are often114

located within non-silent segments crucial for115

semantic understanding. We introduce CEA 116

with a confidence-aware weight scheme to 117

efficiently adapt noisy non-silent frames. 118

• We highlight the consistent nature of phone- 119

mic content within short speech segments and 120

introduce short-term consistency regulariza- 121

tion to further stabilize acoustic wild TTA. 122

• We perform a wide range of experiments on 123

both synthetic and real-world datasets, in- 124

cluding new experiments on real-world sung 125

speech datasets for the first time. Empirical 126

results substantiate the efficacy of our method 127

under wild acoustic test settings. 128

2 Related Work 129

2.1 Test-Time Adaptation. 130

Test-time adaption plays an essential role in ad- 131

dressing distribution shifts encountered in test sam- 132

ples, enabling online updates of models during the 133

test phase using unsupervised objectives. Most 134

prior TTA methods in the computer vision do- 135

main rely on Batch Normalization layers (Ioffe 136

and Szegedy, 2015; Lim et al., 2023; Niu et al., 137

2022) and assume sample independence within the 138

same batch (Wang et al., 2022; Gong et al., 2022) 139

despite addressing non-i.i.d data streams in fluctu- 140

ating environments, rendering them less applica- 141

ble to speech data. Furthermore, real-world data 142

shifts encompassing both covariate and label shifts 143

pose challenges to real-world deployment (Koh 144

et al., 2021; Niu et al., 2023; Zhou et al., 2023). 145

Recent work provides a pilot study on TTA for 146

ASR models under mild test settings (Lin et al., 147

2022), and improves TTA for general ASR models 148

via sequence-level generalized entropy minimiza- 149

tion (Lin et al., 2022). Our work focuses more on 150

stabilizing online TTA for ASR models under wild 151

acoustic settings. We empirically analyze frame- 152

level entropy distribution and underscore the short- 153

term consistency nature of speech signals. 154

2.2 Robustness for ASR. 155

There is a long history of developing robust speech 156

recognition methods. Different from improving 157

model robustness by training with large-scale aug- 158

mented data (Radford et al., 2023), there are var- 159

ious adaptation approaches for acoustic distribu- 160

tion shifts. Recent works explore input repro- 161

gramming (Yang et al., 2021, 2023a) with super- 162

vised optimization targets. Unsupervised domain 163
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adaptation (UDA) approaches investigate the fea-164

ture alignment (Hou et al., 2021), data augmenta-165

tion (Hsu et al., 2017), domain adversarial train-166

ing (Sun et al., 2017, 2018), knowledge distilla-167

tion (Li et al., 2017), and self-training (Li et al.,168

2017). However, these methods require access to169

the source data with severe latency and heavy com-170

putation, and tackle distinct acoustic shifts, such171

as speaker (Deng et al., 2022) and accent adapta-172

tion (Yang et al., 2023b) in isolation, limiting their173

applications to online scenarios. Early test-time174

method for traditional acoustic models, LUHC,175

with parameterized activation functions (Swieto-176

janski and Renals, 2014; Swietojanski et al., 2016)177

also deals with specific acoustic shifts, lacking the178

generalization ability under wild acoustic test set-179

tings. Despite the success of prior adaptation meth-180

ods, the development of online TTA for modern181

ASR-fined acoustic foundation models under wild182

acoustic test settings remains an open and unex-183

plored question.184

3 Preliminary185

We center our focus on the fully Test-Time Adapta-186

tion framework, characterized by episodic model187

adaptation, where the model is reset after process-188

ing each utterance. We denote the ASR fine-tuned189

acoustic foundation model as fΘ(y|x). We investi-190

gate the popular acoustic foundation models such191

as Wav2vec2 (Baevski et al., 2020), HuBERT (Hsu192

et al., 2021), WavLM (Chen et al., 2022), which can193

be typically decomposed into two constituent com-194

ponents: a feature extractor gϕ(z|x), parameterized195

by ϕ, and a transformer encoder hθ(y|z), param-196

eterized by θ. This decomposition is expressed197

as:198

fΘ(y|x) = hθ(gϕ(x)) (1)199

where Θ = {θ, ϕ} represents the collective set of200

model parameters. The feature extractor gϕ takes as201

input waveform audio or log-mel spectrogram. The202

transformer encoder hθ serves as an audio encoder203

and outputs acoustic representations. Considering204

a test-time speech sequence x1:n of variable length205

n in the wild, typically with arbitrary domain shifts,206

the primary objective entails adapting the acoustic207

foundation model fΘ to enhance its performance208

for x1:n.209

4 Method210

In this section, we first analyze the common source211

of domain shifts in the wild acoustic test settings,212

and then provide our findings and methods for ad- 213

dressing the wild acoustic shifts. The overview of 214

our method is presented in Figure 2. 215

4.1 Wild Acoustic Test Settings 216

Wild acoustic distribution shifts encountered within 217

the speech domain may originate from several 218

sources, including: 219

Speaker Changes. Timbre variations in speech 220

stemming from changes in the speaker’s identity. 221

Environmental Noises. Perturbations intro- 222

duced by ambient noises in the recording environ- 223

ments. 224

Pronunciation Changes. Alteration in pronun- 225

ciation characteristics such as accent or singing. 226

Text-Domain Changes. Shifts in the linguistic 227

content or context of the speech data. 228

It is noteworthy that speaker changes, environ- 229

mental noises, and pronunciation changes are typi- 230

cally categorized as covariate shift, as they pertain 231

to variations in the input data distribution. In con- 232

trast, text-domain changes are categorized as label 233

shift, as they involve alterations in the output dis- 234

tribution. Furthermore, it is important to acknowl- 235

edge that real-world speech data often exhibit shifts 236

stemming from multiple sources simultaneously, 237

rendering the adaptation under wild acoustic test 238

settings complex and challenging. 239

4.2 Confidence Enhanced Adaptation 240

To gain insights into the behavior of ASR fine- 241

tuned acoustic foundation models under wild acous- 242

tic test settings, we empirically analyze the frame- 243

level entropy distribution of speech data in the 244

wild. We conducted experiments using both the 245

LibriSpeech test-other dataset, which was deliber- 246

ately corrupted by additive Gaussian noises, and 247

the sung speech dataset, DSing-test. These exper- 248

iments were performed with the ASR fine-tuned 249

Wav2vec2 Base model. We subsequently evaluated 250

the percentages of high-entropy and low-entropy 251

frames for both non-silent and silent speech seg- 252

ments. The classification of frames as silent or 253

non-silent was determined based on pseudo labels 254

derived from model predictions. 255

As illustrated in Figure 3, our findings reveal that, 256

prior to any adaptation (Step=0), within the non- 257

silent frames category, there exists a prevalence of 258

high-entropy frames compared to low-entropy ones 259

for Base models. Conversely, the opposite trend 260

is observed within the silent frames category. It 261

is worth noting that existing literature (Niu et al., 262
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Figure 2: The overall framework of the proposed method. The figure takes a Connectionist Temporal Classification
(CTC) based acoustic foundation model as an example. This framework involves two steps. The confidence enhanced
adaptation is first performed to boost the reliability of noisy frames. The temporal consistency regularization is
employed across the entire input sequence and jointly optimized with entropy minimization.
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Figure 3: Frame-Level Entropy Distribution in ASR
fine-tuned Acoustic Foundation Models: the entropy
distributions are computed for Wav2vec2 Base models
on the LibriSpeech noise-corrupted test-other and DS-
ing test datasets across adaptation steps. We employ a
threshold of 0.4 ∗ lnC, as recommended in Niu et al.
(2022), where C represents the number of task classes.
Frames with entropy values exceeding this threshold are
highlighted in red, indicating high-entropy (h) frames,
while low-entropy (l) frames are marked in blue. We
use • to denote non-silent (non-sil) frames and △ for
silent (sil) frames and take the blank symbol as an ap-
proximate indicator. The training steps range from 0 to
9, and the results presented in each subfigure are based
on the average of 100 random samples.

2023) provides heuristic insights suggesting that263

high-entropy samples may be unreliable and could264

potentially have a detrimental impact on model265

adaptation. However, it is crucial to recognize that266

these noisy frames contain essential content infor-267

mation that is critical for speech recognition. While268

prior research suggests that filtering out such un-269

reliable samples may aid in stabilizing adaptation270

under wild vision test settings and improving per-271

formance, this approach proves infeasible in our 272

specific case. 273

In response, rather than dropping these high- 274

entropy noisy frames, we propose a learning- 275

based approach, Confidence Enhanced Adaptation 276

(CEA), which performs frame-level adaptation us- 277

ing a confident-aware weight scheme. CEA pri- 278

oritizes uncertain frames and encourages models 279

to focus more on these uncertain frames by ‘de- 280

noising’ their intermediate representations. Denot- 281

ing ŷci = fΘ(c|x1:n) as the predicted probability 282

of class c for i-th frame, we quantify uncertainty 283

through entropy, defined as: 284

E(xi) = −
∑
c

ŷci log ŷ
c
i (2) 285

Instead of heuristically relying on manually set 286

thresholds for filtering out data samples of high 287

entropy, CEA utilizes pseudo labels ŷi assigned 288

to each frame xi and applies entropy minimiza- 289

tion with a confidence-aware weight scheme on 290

these non-silent noisy frames, without the need 291

for setting thresholds. Specifically, we define the 292

confidence-aware optmization scheme as follows: 293

min
Θ′={ϕ,θLN}

n∑
i=1

S(xi)E(xi) (3) 294

where θLN denotes the affine parameters asso- 295

ciated with layer normalization in the transformer 296

encoder h, and S(xi) represents confidence-aware 297

frame-level weights, defined as: 298
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S(xi) =
1

1 + exp(−E(xi))
Iŷi̸=c0(xi) (4)299

where c0 signifies the index corresponding to300

silent frames, and I is an indicator function. Such301

design empowers the model to assign greater impor-302

tance to frames where it exhibits lower confidence.303

The increased weight encourages the model to fo-304

cus more on these uncertain frames during adapta-305

tion, potentially leading to heightened model con-306

fidence on such frames. Note that this adaptation307

process entails an update of the feature extractor308

gϕ. This empowers models with the capability to309

adapt to wild acoustic shifts, even in the presence310

of substantial covariate shifts. As evidenced in Fig-311

ure 3, the count of high-entropy frames diminishes312

while low-entropy frame counts increase with each313

adaptation step, underscoring the effectiveness of314

CEA.315

4.3 Short-Term Consistency Regularization316

In the domain of speech signal processing, a salient317

characteristic is the short-term stability, where318

successive speech frames often convey the same319

phoneme or speech unit. This intrinsic temporal320

correlation is a defining attribute of speech data,321

making it essential for stabilizing online TTA un-322

der wild acoustic test settings. Nevertheless, prior323

TTA methods largely overlook this inherent tempo-324

ral correlation within individual speech sequences.325

To address this limitation, we propose a feature-326

wise short-term consistency regularization tech-327

nique. We perform this regularization step after328

the confidence enhanced adaptation process. This329

sequencing is deliberate as introducing temporal330

regularization over representations of noisy frames331

can potentially confuse models and yield undesir-332

able optimization outcomes. Concretely, the reg-333

ularization is jointly optimized alongside entropy334

minimization, as represented by the following equa-335

tion:336

min
ΘLN

n∑
i=1

E(xi)+α
n−k+1∑
i=1

||z′k+i−1−z′i||2Iŷi ̸=c0(xi)

(5)337

where α denotes the weight assigned to the reg-338

ularization loss, and ΘLN represents the affine pa-339

rameters associated with layer normalization across340

the entire acoustic foundation model. Here, zi sig-341

nifies the feature representation of i-th frame ob-342

tained from the fine-tuned feature extractor, and343

z′i represents the modified feature representation 344

achieved through a parameter-free self-attention 345

operation. The parameter k denotes the size of the 346

window considered as the neighborhood of frame 347

xi. This regularization technique effectively cap- 348

tures the inherent temporal consistency found in 349

speech data by compelling the representation of xi 350

to closely resemble that of its neighboring frames 351

within a predefined window. Despite the possible 352

peaky behavior of CTC, the proposed temporal con- 353

sistency can be treated as introducing the inductive 354

bias of "short-term stability" in the adaptation (Ra- 355

biner et al., 2007). 356

5 Experiments 357

In this section, we undertake an evaluation of the 358

robustness of ASR fine-tuned acoustic foundation 359

models under wild acoustic test settings. We dis- 360

cuss the robustness against synthetic noises includ- 361

ing Gaussian noises and real-world environmental 362

sounds in Section 5.2, real-world data shifts includ- 363

ing L2 accents and singing voice (sung speech) in 364

Section 5.3, and decoding strategy pertaining to 365

language models in Section 5.4. We provide more 366

evaluation results using various acoustic models in 367

Appendix A.6. 368

5.1 Experimental Setup 369

Datasets. Our experiments involve the utiliza- 370

tion of four distinct datasets: two synthetic and 371

two real-world datasets. The first synthetic dataset, 372

named LS-C, represents the LibriSpeech (Panay- 373

otov et al., 2015) test-other set Corrupted by ad- 374

ditive Gaussian noises. We introduce five levels 375

of severity to simulate various degrees of corrup- 376

tion as per (Hendrycks and Dietterich, 2019) for 377

evaluating the trend of model robustness. Higher 378

levels indicate more severe corruption although 379

heavily corrupted speech data may not be common 380

cases in the real world. Subsequently, the second 381

synthetic dataset, named LS-P, is the LibriSpeech 382

test-other set Perturbed by real-world environmen- 383

tal sounds. This dataset encompasses eight diverse 384

types of environmental sound, including Air Condi- 385

tioner, Babble, Munching, Shutting Door, Vacuum 386

Cleaner, Airport Announcements, Copy Machine, 387

and Typing. These environmental sounds are from 388

the MS-SNSD noise test set (Reddy et al., 2019). 389

Each type is added to the original audio with five 390

distinctive signal-to-noise ratios (SNRs) represent- 391

ing five levels of severity. Our study further extends 392
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Method Level 0 Level 1 Level 2 Level 3 Level 4 Level 5 Average

δ 0 0.005 0.01 0.015 0.02 0.03

Source 8.6 13.9 24.4 39.5 54.5 75.7 31.6
Tent 7.7 11.6 19.7 32.2 46.3 69.2 31.1
SAR 8.2 12.7 21.5 35.0 49.2 72.0 33.1
TeCo 7.6 13.6 19.7 32.2 46.3 69.3 31.5
SUTA 7.3 10.9 16.7 24.6 34.7 56.5 25.1
Ours 7.3 10.7 16.2 24.0 34.1 56.5 24.8

Table 1: WER (%) results on LS-C over five severity levels δ of Gaussian noises using Wav2vec2 Base with greedy
decoding. δ = 0 represents the uncorrupted case. The best results are bold.

to two real-world datasets. The L2-Arctic (Zhao393

et al., 2018) dataset comprises speech data from394

second language (L2) learners originating from six395

countries with different first languages (L1): Ara-396

bic, Mandarin, Hindi, Korean, Spanish, and Viet-397

namese. Furthermore, we broaden our investiga-398

tion to encompass music datasets, DSing (Dabike399

and Barker, 2019) and Hansen (Hansen and Fraun-400

hofer, 2012), featuring singing voice (sung speech).401

More details of dataset statistics can be found in402

Appendix A.1 and details of implementation can403

be found in Appendix A.2.404

Baselines. To assess the adaptation performance405

of our proposed method, we consider the follow-406

ing TTA baselines. Tent (Wang et al., 2020) adapt407

transformation layers with the objective of entropy408

minimization. Despite it being initially proposed409

for batch normalization, we refer to updating the410

affine parameters of layer normalization as Tent411

in our work. In addition, we involve the base-412

line TeCo (Yi et al., 2023), originally proposed413

for video classification with temporal coherence414

regularization, due to its applicability to sequential415

data. Our comparison also includes the SAR (Niu416

et al., 2023), specifically designed to address data417

shifts in the dynamic wild world. Furthermore, we418

also introduce comparisons with SUTA (Lin et al.,419

2022) using entropy minimization and minimum420

class confusion, and SGEM (Kim et al., 2023) us-421

ing sequential-level generalized entropy minimiza-422

tion in conjunction with beam search employing423

language models.424

5.2 Robustness to Synthetic Noises425

Gaussian Noises. In the initial phase of our ex-426

periments, we focus on synthetic data and assess427

the robustness in the presence of various levels of428

Gaussian noise injected into the test speech audio.429

10 5 0 -5 -10

Source 28.1 43.9 65.0 83.4 94.2
Tent 22.6 36.1 56.6 77.9 91.4
SAR 24.5 39.1 59.9 79.9 92.1
TeCo 22.5 36.2 56.6 77.9 91.3
SUTA 17.7 26.1 41.2 62.7 82.7
Ours 17.5 25.6 40.6 61.6 82.2

Table 2: WER (%) results on Air Conditioner sound
over five severity levels using Wav2vec2 Base with
greedy decoding. SNRs (dB) are listed in the first row.
The best results are bold.

10 5 0 -5 -10

Source 26.2 34.0 44.4 56.4 69.0
Tent 21.0 27.9 37.0 49.2 63.0
SAR 23.0 30.3 39.7 52.1 65.3
TeCo 21.0 27.8 37.0 49.1 63.0
SUTA 17.9 23.3 30.4 41.0 53.4
Ours 17.5 22.8 29.9 40.4 52.6

Table 3: WER (%) results on Typing sound over five
severity levels using Wav2vec2 Base with greedy de-
coding. SNRs (dB) are listed in the first row. The best
results are bold.

The outcomes are reported in Table 1. It is observed 430

that our proposed method consistently outperforms 431

existing baseline approaches across five levels of 432

noise. Notably, our approach achieves a relative im- 433

provement of 21.5% on average in terms of WER, 434

when compared to using the source model without 435

adaptation. 436

Furthermore, it is imperative to note that SAR, 437

designed for addressing wild vision data shifts, 438

demonstrates comparatively less improvement 439

compared with the Tent method. This observation 440

underscores the limitations of filtering noisy frames 441
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Method
DSing-dev DSing-test Hansen Average

Base Large Base Large Base Large Base Large

Greedy Search

Source 61.8 40.6 60.1 38.8 64.3 43.7 62.1 41.0
Tent 55.7 34.8 56.1 33.2 60.2 39.1 57.3 35.7
SAR 58.8 40.6 57.2 38.2 62.7 42.7 59.6 40.5
TeCo 56.2 35.0 55.6 33.1 60.0 39.1 57.3 35.7
SUTA 53.9 34.9 51.3 33.6 58.0 39.3 54.4 35.9
Ours 53.5 34.0 50.1 31.2 58.0 37.9 53.9 34.4

Beam Search

Source+LM 58.6 41.1 55.3 37.6 60.1 43.5 58.0 40.7
SGEM 54.4 34.4 50.8 33.0 57.8 38.6 54.3 35.3

Ours+LM 53.2 33.3 50.0 30.3 57.7 37.5 53.6 33.7

Table 4: WER (%) results on DSing-dev, DSing-test, and Hansen with greedy search and beam search. Base and
Large denote Wav2vec2 Base and Wav2vec2 Large respectively. The best results are bold.

for speech recognition. Instead, the learning-based442

adaptation adopted in our method shows superi-443

ority. Moreover, we discover that TeCo provides444

marginal improvement compared to Tent, indicat-445

ing that coherence regularization is limited in the446

context of noisy frames. In contrast, our confi-447

dence enhanced adaptation yields further benefits448

for temporal consistency regularization.449

Environmental Sounds. We further evaluate450

the robustness on LS-P, which introduces eight451

common environmental sounds in the test audio452

at five levels of severity. The results of adding Air453

Conditioner sound and Typing sound are reported454

in Table 2 and Table 3 respectively (Full experi-455

mental results can be found in Appendix A.9). It456

is noticeable that our method can yield over 30%457

relative improvements in low-SNR scenarios. No-458

tably, for the case with 5 dB SNR in Table 2, our459

method demonstrates a substantial 41.7% relative460

improvement, suggesting its efficacy in mitigating461

the impact of real-world environmental sound cor-462

ruption.463

5.3 Robustness to Real-World Data Shifts464

L2 Accents. Data shifts resulting from accent465

variations are a common occurrence in real-world466

scenarios, arising from differences in dialects or467

non-native speech patterns. Another pertinent in-468

stance of such shifts is encountered in children’s469

speech, which is also a common pronunciation470

change and one type of accent in the real world. In471

order to assess the robustness to such pronunciation472

variations, we undertake the test-time adaptation 473

to accents exhibited by L2 learners using the L2- 474

Arctic dataset. To comprehensively evaluate the 475

performance, we evaluate all speakers for each L1 476

and present the speaker-level results for each L1 in 477

Appendix A.10. The experimental findings consis- 478

tently underscore the superiority of our proposed 479

method across different L1 categories. 480

Singing Voice. In this session, we discuss the 481

robustness of ASR fine-tuned acoustic foundation 482

models to singing voice for the first time. Singing, 483

also referred to as sung speech, is characterized 484

by a distinctive pronunciation pattern. Notably, 485

it encompasses various frequency fluctuations, in- 486

cluding the apparent pitch variations along with 487

the melody. This constitutes a tremendous covari- 488

ate shift, rendering the adaptation from speech to 489

singing more challenging than that from speech to 490

speech. Moreover, the existence of professional 491

singing techniques further compounds the chal- 492

lenges associated with adaptation. For instance, 493

the elongation of word pronunciation, a common 494

occurrence in singing, is a departure from typical 495

speech patterns. 496

To evaluate the adaptation performance under 497

shifts from singing voice, we conduct experiments 498

on three datasets, utilizing both Wav2vec2 Base 499

and Wav2vec2 Large models. The outcomes are 500

presented in Table 4. The results indicate that our 501

proposed method consistently attains the best per- 502

formances for both Base and Large models. In 503

addition, the Wav2vec2 Large model exhibits supe- 504

7



Method Conformer Transducer

Source 62.2 48.8
SUTA 55.9 44.8
SGEM 55.7 44.5
Ours 55.4 43.0

Table 5: WER (%) results on DSing-test using
Conformer-CTC and Conformer-Transducer.

rior robustness than the Base model. Nevertheless,505

it still experiences a noticeable performance degra-506

dation when compared with adaptation in noise507

and accent robustness evaluations, suggesting the508

limited ability of acoustic foundation models under509

wild acoustic test settings.510

5.4 Decoding Strategies511

We discuss the decoding strategies employed in512

experiments in this session. In our preceding exper-513

iments, we mainly utilize greedy decoding, which514

does not explicitly tackle the text-domain changes.515

In the subsequent analysis, we compare our pro-516

posed method with SGEM, which leverages beam517

search for decoding. The results are presented in518

Table 4. Notably, our findings reveal that even in519

the absence of explicit adaptation for the language520

model, our approach still consistently outperforms521

SGEM. We also observe that the results achieved522

by our method using greedy search can, on aver-523

age, surpass those of SGEM. We conjecture that524

our proposed short-term consistency regularization525

addresses the label shift implicitly by fostering la-526

bel coherency among neighbor frames. Moreover,527

it is discovered that the enhancements facilitated528

by adaptation are more pronounced compared to529

the ones achieved through beam search, indicating530

the significance of test-time adaptation for acoustic531

foundation models.532

6 Analysis533

6.1 Generalization on Different ASR Models534

We examine the robustness of CTC-based acous-535

tic foundation models in our main experiments536

and Appendix A.6. To verify the efficacy of our537

method on other end-to-end ASR models such as538

Conformer and Transducer, we conducted experi-539

ments on Conformer-CTC (Gulati et al., 2020) and540

Conformer-Transducer (Burchi and Vielzeuf, 2021)541

as per Kim et al. (2023). For consistent setting and542

fair comparison, we experimented with DSing-test543

and reported the results in Table 5. The empirical544

Method Noise Accent Singing

Ours 24.0 23.0 50.1
w/o STCR 25.1 23.4 51.0
w/o CEA 35.9 26.9 54.5

Table 6: Ablation study of core components proposed
in our work. WER (%) results are reported.

results illustrate that our proposed method can be 545

generalized to different end-to-end ASR models 546

and outperform SUTA and SGEM baselines. 547

6.2 Ablation Study 548

We conduct the ablation study on Noise, Accent, 549

Singing shifts respectively using Wav2vec2 Base 550

with greedy search to dissect the individual impact 551

of two core components proposed in our methods. 552

The results presented in Table 6 illustrate that the 553

removal of short-term consistency regularization 554

(STCR) leads to a relatively modest decline in per- 555

formance, in contrast to the more substantial dete- 556

rioration observed upon the removal of confidence 557

enhanced adaptation (CEA). This observation un- 558

derscores the significance of our proposed CEA. 559

Furthermore, the introduction of STCR yields ad- 560

ditional performance gains when employed in con- 561

junction with CEA. These experimental findings 562

also indicate a pronounced efficacy of our method 563

in mitigating noise shifts as opposed to accent and 564

singing shifts. We conjecture the reason could be 565

that the shift caused by Gaussian noises for each 566

frame is consistent while other shifts such as accent 567

shift could be different within frames. 568

7 Conclusions 569

In this paper, we study the Test-Time Adaptation 570

of ASR fine-tuned acoustic foundation models 571

under wild acoustic test settings. By investigat- 572

ing the role of high-entropy noisy frames within 573

non-silent speech segments, we introduce Con- 574

fidence Enhanced Adaptation with a confidence- 575

aware weight optimization scheme to prioritize 576

these noisy frames for efficient adaptation via de- 577

noising their intermediate representations rather 578

than discarding them. Moreover, our emphasis 579

on short-term stability of speech signals leads us 580

to apply consistency regularization, yielding fur- 581

ther improvement for stable online TTA. Extensive 582

experiments on synthetic and real-world datasets 583

demonstrate the efficacy of our approach under 584

wild acoustic test settings. 585

8



Limitations586

Our work is subject to several limitations. Firstly,587

further research endeavors could encompass a588

broader exploration of adaptation techniques for589

the decoder model, particularly for text-domain590

adaptation. It remains challenging to adapt lan-591

guage models to address text-domain shifts due to592

the unavailability of target domain texts in the TTA593

setting. Consequently, we consider incorporating594

large language foundation models into the recog-595

nition decoding process as a promising direction596

in future work for tackling wild text-domain shifts.597

Additionally, we mainly experiment with ASR fine-598

tuned acoustic foundation models. The broader599

applicability of our method to diverse speech tasks,600

including but not limited to speaker-level tasks, spo-601

ken language understanding tasks, and general au-602

dio classification tasks remains unexplored. There-603

fore, we consider adapting our approach to these604

tasks under wild acoustic test settings as the future605

work.606
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A Appendix809

A.1 Dataset Details810

We show the statistics of datasets used in our work811

in Table 7 where # Utt. indicates the total number812

of utterances. We build our synthetic datasets on813

LibriSpeech test-other set. For LS-C, we add the814

Gaussian noises when preparing the data loader815

and use the amplitudes {0.005, 0.01, 0.015, 0.02,816

0.03} as level 1-5 severity. For LS-P, we use the817

AirConditioner_6, Typing_2, Babble_4, Munch-818

ing_3, ShuttingDoor_6, VacuumCleaner_1, Airpor-819

tAnnouncements_2, CopyMachine_2 wave files820

from MS-SNSD 1 as the environmental sounds and821

synthesize audios with signal-to-noise ratios {10,822

5, 0, -5, -10} seperately. For L2-Arctic, we use823

the default splits of 24 non-native speakers with824

a balanced gender and L1 distribution. For music825

datasets, we use the default DSing dev and test sets826

and the full Hansen set (no split).

Type Datasets # Utt. Duration

Noise
LS-C 14695 25.5 h
LS-P 117560 204 h

Accent L2-Arctic 26867 27.1 h

Music
DSing-dev 482 41 min
DSing-test 480 48 min

Hansen 634 34 min

Table 7: Statistics of evaluation datasets.
827

A.2 Implementation Details828

In our experimental evaluations, we mainly em-829

ploy the acoustic foundation model, Wav2vec2.830

Specifically, we utilize its Connectionist Temporal831

Classification (CTC) variants with different model832

sizes, Wav2vec2 Base and Wav2vec2 Large. We833

involve the usage of publicly available Wav2vev2834

Base 2 and Wav2vec2 Large 3 models fine-tuned835

on speech recognition tasks. The detailed struc-836

ture of the CTC model is a single fully-connected837

1https://github.com/microsoft/MS-SNSD
2https://huggingface.co/facebook/wav2vec2-base-960h
3https://huggingface.co/facebook/wav2vec2-large-960h-

lv60-self

layer and softmax on top of the foundation model. 838

Given that CTC-based models do not explicitly 839

model silences, we take those with the pseudo la- 840

bel <BLANK> as silent frames and the rest as non- 841

silent frames as per (Kürzinger et al., 2020; Wei 842

et al., 2022). We are interested in those frames car- 843

rying important semantic information so we take 844

the blank indicator as an approximation. The ad- 845

vantage is to directly utilize the test-time inference 846

output without additional computation such as a 847

VAD module. Moreover, we found taking the blank 848

symbol as an indicator has already achieved good 849

performance in existing work (Yoshimura et al., 850

2020) which serves as a good support. We mainly 851

conduct experiments on these two models despite 852

the applicability of our method to other transformer- 853

based architectures of acoustic foundation models. 854

To make a fair comparison with methods employ- 855

ing beam search, we utilize the same 4-gram lan- 856

guage model 4 as SGEM. Since our test-time set- 857

ting requires no access to the target text, we use 858

the language model trained on the speech dataset 859

despite the text-domain shift. For the Conformer 860

and Transducer, we employ Conformer-CTC 5 and 861

Conformer-Transducer 6. All speech inputs are 862

sampled or resampled at 16Khz. 863

We use Pytorch and Huggingface Transformers 864

in our implementation. All experiments are run on 865

a single NVIDIA A5000 GPU (24G). We evaluate 866

the performance of all baselines after adaptation for 867

ten steps. We use the AdamW optimizer as default 868

for all experiments. The weight α of consistency 869

regularization is set to be 0.3. We consider the 870

learning rate in {2e-4, 5e-4, 8e-4} for tuning affine 871

parameters of layer normalization and consider the 872

learning rate in {2e-5, 5e-5} for tuning feature ex- 873

tractor. Since the TTA setting has no validation 874

set, we follow SUTA and use the hyperparameters 875

obtained from Librispeech test-other set with noise 876

level δ = 0.01 as the default for the experiments. 877

For singing data experiments, we use the hyperpa- 878

rameters obtained from DSing-dev as the default 879

for experiments on DSing-test and Hansen. 880

A.3 Latency Analysis 881

We did the adaptation with a single coming utter- 882

ance and counted the difference between the time 883

4https://huggingface.co/patrickvonplaten/wav2vec2-base-
100h-with-lm

5https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/
models/stt_en_conformer_ctc_small_ls

6https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/
models/stt_en_conformer_transducer_small
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when the utterance has ended and the time when884

the adaptation process has ended. We calculate885

the average latency over all samples of Librispeech886

test-other set on Wav2vec2 Base and obtain the887

latency of 1.07 seconds. The average recognition888

run-time on A5000 is 1.20 seconds. We believe this889

could be an acceptable delay due to large parameter890

sizes for acoustic foundation models.891

A.4 More Ablation Study892

Strategies for Frame Selection We proceed to893

analyze strategies utilized for the selection of894

speech frames optimized within the CEA frame-895

work. We investigate three pseudo-label-based896

strategies, namely a) selection of non-silent frames897

(as used in our method), b) selection of silent898

frames, and c) selection of all frames. The results899

are detailed in Table 8. The empirical findings re-900

veal that the optimization of silent frames or all901

frames within CEA yields inferior performance902

compared to the optimization of non-silent frames.903

Moreover, it is observed that the degradation is not904

so substantial, as optimizing silent or all frames905

may also contribute to enhancing the reliability of906

noisy frames.907

Strategy DSing-dev DSing-test

Non-Silent 53.5 50.1
Silent 54.9 51.7

All 54.9 50.6

Table 8: Ablation study of strategies for frame selection.
WER (%) results are reported.

Efficacy of STCR on SUTA To further validate908

the efficacy of short-term consistency regulariza-909

tion, we did one more ablation study using SUTA910

+ STCR on the DSing-test set, and observed that911

the proposed SCTR can enhance SUTA with WER912

decreasing from 51.3 to 50.9. However, the per-913

formance of SUTA + STCR still lags behind our914

method CEA + STCR with WER 50.1, which915

demonstrates that our proposed CEA also con-916

tributes to the final improvement.917

A.5 Analysis on Large Vocabulary Size918

Our proposed method can be generalizable to mod-919

els with large vocabulary sizes. Theoretically, the920

maximum entropy for non-silent frames is expected921

to increase due to the larger number of classes.922

Practically, this might also depend on the test input923

and models. To analyze the entropy distribution for924

non-silent and silent frames, we conduct an addi- 925

tional experiment using the Conformer-CTC model 926

with BPE tokenization, which has a larger vocab- 927

ulary size than the one of the Wav2vec2 model. 928

We observed an increase in entropy for non-silent 929

frames from 59.4% to 70.0%, as illustrated in Table 930

9. 931

Wav2vec2 Base Conformer-CTC

n-sil-h 0.594 0.700
n-sil-l 0.406 0.300
sil-h 0.362 0.497
sil-l 0.638 0.503

Table 9: Entropy Distribution at Step 0 for models with
different vocabulary sizes. "non-sil" and "sil" refer to
non-silent and silent frames, respectively. "h / l" indi-
cates frames with high or low entropy.

A.6 Results on More Acoustic Foundation 932

Models 933

In an extension of the main experiments, we delved 934

into the adaptation performance across diverse 935

acoustic foundation models. Specifically, our addi- 936

tional experiments utilize various models including, 937

Hubert-Base 7, Hubert-Large 8, WavLM-Base 9, 938

and WavLM-Large 10 from Huggingface. These 939

experiments are conducted to assess the adaptation 940

performance ain relation to different model sizes, 941

and training data sources. The outcomes on the 942

LS-C and DSing-test datasets are reported in Ta- 943

ble 10 and Table 11 respectively. We employ the 944

word error rate reduction (WERR) to measure the 945

relative improvement brought by our adaptation 946

method. We summarize the findings as follows: 947

Model Sizes. A comparative analysis is con- 948

ducted between the base and large versions of each 949

model. The findings reveal that large models con- 950

sistently surpass base models. Furthermore, our 951

proposed approach uniformly improves both base 952

and large models. A notable observation is that our 953

method elicits a greater average improvement in 954

base models compared to large models within the 955

LS-C dataset. This trend is particularly pronounced 956

under lower noise levels ranging from 1 to 3. In 957

7https://huggingface.co/danieleV9H/hubert-base-libri-
clean-ft100h

8https://huggingface.co/facebook/hubert-large-ls960-ft
9https://huggingface.co/patrickvonplaten/wavlm-libri-

clean-100h-base-plus
10https://huggingface.co/patrickvonplaten/wavlm-libri-

clean-100h-large
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Size Level 1 Level 2 Level 3 Level 4 Level 5 Avg

Wav2vec2

Source
Base 13.9 24.4 39.5 54.5 75.7 41.6
Large 5.0 8.1 14.6 24.9 46.9 19.9

Ours
Base 10.7 16.2 24.0 34.1 56.5 28.3
Large 4.3 6.1 9.7 15.1 31.1 13.3

WERR (%)
Base 23.0 33.6 39.2 37.4 25.4 31.7
Large 14.0 24.7 33.6 39.4 33.7 29.1

Hubert

Source
Base 26.1 32.7 40.6 49.0 63.4 42.4
Large 5.0 6.4 8.9 12.8 24.3 11.5

Ours
Base 19.3 23.7 28.9 35.0 47.5 30.9
Large 4.3 5.2 6.9 9.1 16.1 8.3

WERR (%)
Base 26.1 27.5 28.8 28.6 25.1 27.2
Large 14.0 18.8 22.5 28.9 33.7 23.6

WavLM

Source
Base 24.1 35.9 48.2 59.8 76.7 48.9
Large 14.4 17.5 21.5 26.1 36.1 23.1

Ours
Base 15.1 19.8 25.9 32.8 47.6 28.2
Large 10.7 12.4 14.5 17.1 23.9 15.7

WERR (%)
Base 37.3 44.8 46.3 45.2 37.9 42.3
Large 25.7 29.1 32.6 34.5 33.8 31.1

Table 10: WER (%) results on LS-C over five severity levels of Gaussian noises using both base and large models of
Wav2vec2, Hubert, WavLM with greedy decoding. WERR stands for word error rate reduction.

Wav2vec2 Hubert WavLM

Base Large Base Large Base Large

Source 60.1 38.8 71.5 43.9 76.1 66.2
Ours 50.1 31.2 62.4 32.4 59.6 51.1

WERR (%) 16.6 19.6 12.7 26.2 21.7 22.8

Table 11: WER (%) results on DSing-test using both base and large models of Wav2vec2, Hubert, WavLM with
greedy decoding. WERR stands for word error rate reduction.
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contrast, within the DSing-test set, the enhance-958

ment for large models is more significant than for959

base models. The phenomenon may be attributed to960

the fact that large models already exhibit commend-961

able performance under minor corruptions, even962

without adaptation, thus providing limited scope963

for further improvement. However, in scenarios964

involving significant shifts, the expansive parame-965

terization of large models facilitates more effective966

adaptation, whereas base models face challenges.967

Training Data Sources. A comparative eval-968

uation of models trained with different datasets,969

including Wav2vec2-Large trained with 960h Lib-970

riSpeech set, Hubert-Large trained with 960h Lib-971

riSpeech set, and WavLM-Large trained with 100h972

LibriSpeech clean set, indicates that the larger-size973

data set establish a stronger foundation for test-time974

adaptation. A similar inference can be drawn when975

comparing Wav2vec2-Base trained with 960h Lib-976

riSpeech set, Hubert-Base trained with 100h Lib-977

riSpeech clean set, and WavLM-Base trained with978

100h LibriSpeech clean set.979

In summary, our proposed unsupervised TTA980

method demonstrates a considerable benefit across981

diverse acoustic foundation models, reflecting sub-982

stantial improvements for different model sizes and983

training data sources.984

A.7 Connection with Existing Frozen Model985

Adaptation986

Our TTA-based method also exhibits parameter987

efficiency. It is essential to emphasize that our988

approach does not introduce additional layers of989

normalization. Instead, we adapt the affine param-990

eters (the scale γ and the shift β) of the existing991

layer normalization from the pre-training phase,992

which means no new trainable parameters are intro-993

duced. It is noteworthy to highlight the difference994

between our method and existing frozen model995

adaptation methods, such as P-tuning, LoRA, and996

Adapter. Unlike these techniques, our method con-997

ducts source-free unsupervised adaptation using a998

single utterance. Furthermore, our primary objec-999

tive of adaptation is to address open-world acoustic1000

data shifts, rather than task adaptation.1001

A.8 Results on Different Parameterizations1002

In order to further evaluate the effectiveness of our1003

proposed method across diverse parameterizations,1004

we conduct additional experiments on the DSing-1005

test set using Wav2vec2 Base and Large models.1006

Specifically, we explore four distinct parameteri-1007

Type
Base Large

WER Params WER Params

Bias-Only 52.5 0.10M 31.8 0.28M
LNs 52.4 0.04M 31.4 0.11M

FE+LNs 50.1 4.63M 31.2 4.84M

Full 51.2 89.7M 31.9 307M

Table 12: Results with different parameterizations on
DSing-test using Wav2vec2 Base and Large models. We
consider (1) Bias-Only: all bias terms, (2) LNs: all scale
and shift terms of Layer Normalization, 3) FE+LNs:
parameters of the feature extractor and all scale and
shift terms of Layer Normalization, and (4) Full: all
parameters. Word Error Rate (%) and the number of
parameters (Params) are reported.

zation schemes and compute their corresponding 1008

number of parameters: (1) Bias-Only refers to fine- 1009

tuning only bias terms as per Zaken et al. (2021). 1010

(2) LNs encompasses the adjustment of all scale 1011

and shift terms associated with layer normalization. 1012

(3) FE+LNs involves the parameters of the feature 1013

extractor in addition to all scale and shift terms of 1014

layer normalization. (4) Full entails the fine-tuning 1015

of all parameters within the model. It is important 1016

to note that all other experimental settings except 1017

for parameterization have remained consistent. The 1018

experimental results are presented in Table 12. Our 1019

findings reveal that our method exhibits compat- 1020

ibility with different parameterizations, yielding 1021

comparable performances. Among these parame- 1022

terizations, LNs demonstrate the smallest number 1023

of parameters adjusted, thereby illustrating the pa- 1024

rameter efficiency of our method. 1025

A.9 Full Results for LS-P 1026

We present the full WER results for eight environ- 1027

mental sounds of five severity levels in Table 13 - 1028

20. The first row denotes signal-to-noise ratios. 1029

A.10 Full Results for L2-Arctic 1030

We present the full speaker-level WER results for 1031

each L1 in Table 21 - 26. The first row denotes the 1032

speaker ID. The details of the speaker ID can be 1033

found in the L2-Arctic 11. 1034

11https://psi.engr.tamu.edu/l2-arctic-corpus/
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10 5 0 -5 -10

Source 28.1 43.9 65.0 83.4 94.2
Tent 22.6 36.1 56.6 77.9 91.4
SAR 24.5 39.1 59.9 79.9 92.1
TeCo 22.5 36.2 56.6 77.9 91.3
SUTA 17.7 26.1 41.2 62.7 82.7
Ours 17.5 25.6 40.6 61.6 82.2

Table 13: Air Conditioner.

10 5 0 -5 -10

Source 26.2 34.0 44.4 56.4 69.0
Tent 21.0 27.9 37.0 49.2 63.0
SAR 23.0 30.3 39.7 52.1 65.3
TeCo 21.0 27.8 37.0 49.1 63.0
SUTA 17.9 23.3 30.4 41.0 53.4
Ours 17.5 22.8 29.9 40.4 52.6

Table 14: Typing.

10 5 0 -5 -10

Source 50.4 62.8 74.6 83.8 90.1
Tent 44.8 57.6 71.1 82.7 90.5
SAR 47.3 57.8 72.1 82.5 89.6
TeCo 44.8 57.6 71.1 82.7 90.5
SUTA 39.7 51.9 64.4 76.4 85.2
Ours 39.3 51.5 64.1 76.3 85.3

Table 15: Munching.

10 5 0 -5 -10

Source 19.2 23.6 29.7 37.0 45.0
Tent 16.4 20.5 26.0 33.0 41.5
SAR 17.7 22.0 27.7 35.0 42.7
TeCo 16.3 20.5 26.0 32.9 41.5
SUTA 14.9 18.5 23.6 29.9 37.7
Ours 14.8 18.3 23.4 29.7 37.4

Table 16: Shutting Door.

10 5 0 -5 -10

Source 57.8 76.6 91.5 98.2 99.9
Tent 49.7 69.2 87.2 97.0 99.6
SAR 52.6 72.7 88.5 96.9 99.8
TeCo 49.7 69.2 87.2 96.9 99.6
SUTA 39.8 56.7 76.6 93.2 98.6
Ours 39.3 56.0 76.0 93.0 98.6

Table 17: Vacuum Cleaner.

10 5 0 -5 -10

Source 40.9 54.3 66.3 75.8 83.4
Tent 36.1 49.3 62.8 73.7 82.4
SAR 38.2 51.0 64.0 74.3 82.2
TeCo 36.1 49.2 62.8 73.7 82.3
SUTA 31.2 43.8 58.3 70.4 79.3
Ours 31.2 43.7 58.1 70.5 79.7

Table 18: Airpoint Announcements.

10 5 0 -5 -10

Source 49.8 63.5 76.6 86.9 93.5
Tent 44.4 58.9 74.2 86.3 93.7
SAR 46.6 60.7 74.8 86.2 93.2
TeCo 44.4 58.8 74.2 86.2 93.7
SUTA 39.3 52.7 67.4 80.8 89.7
Ours 38.9 52.3 67.3 81.0 89.8

Table 19: Copy Machine.

10 5 0 -5 -10

Source 66.6 81.6 94.7 104.3 111.2
Tent 62.0 77.8 92.0 102.2 109.4
SAR 62.8 77.7 90.5 102.1 106.9
TeCo 61.9 77.8 91.9 102.2 109.4
SUTA 55.5 73.0 88.6 101.1 109.2
Ours 55.5 73.0 89.1 102.0 110.3

Table 20: Babble.
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ABA SKA YBAA ZHAA

Source 21.0 32.5 16.7 17.3
Tent 18.4 28.4 14.5 14.4
SAR 19.4 30.3 15.7 15.3
TeCo 18.4 28.4 14.5 14.4
SUTA 17.8 27.2 13.7 14.0
Ours 17.7 26.8 13.5 13.9

Table 21: Arabic.

BWC LXC NCC TXHC

Source 28.5 33.5 26.9 21.1
Tent 24.1 29.2 22.8 18.1
SAR 26.3 30.9 25.0 19.5
TeCo 24.1 29.3 22.9 18.0
SUTA 23.3 27.6 21.5 17.4
Ours 23.0 27.7 21.3 17.3

Table 22: Mandarin.

ASI RRBI SVBI TNI

Source 14.3 15.7 19.8 18.6
Tent 11.7 12.9 15.7 15.6
SAR 12.7 14.0 17.6 16.7
TeCo 11.7 13.0 15.8 15.6
SUTA 11.3 12.5 14.3 14.9
Ours 11.3 12.2 14.3 14.8

Table 23: Hindi.

HJK HKK YDCK YKWK

Source 11.8 23.3 17.2 17.0
Tent 9.7 20.8 15.0 14.5
SAR 10.9 21.7 15.8 15.5
TeCo 9.8 20.8 15.0 14.5
SUTA 9.5 19.8 14.2 13.8
Ours 9.5 19.7 13.9 13.7

Table 24: Korean.

EBVS ERMS MBMPS NJS

Source 35.7 24.2 14.1 14.6
Tent 31.7 20.0 12.7 12.4
SAR 33.5 21.7 13.4 13.2
TeCo 31.7 20.0 12.7 12.4
SUTA 29.7 18.7 12.3 12.1
Ours 29.5 18.5 12.3 12.1

Table 25: Spanish.

HQTV PNV THV TLV

Source 41.6 18.5 38.1 41.1
Tent 38.0 16.4 34.4 38.1
SAR 40.3 17.6 36.2 39.4
TeCo 38.0 16.4 34.4 38.0
SUTA 36.5 15.5 33.2 36.8
Ours 36.3 15.5 32.9 36.8

Table 26: Vietnamese.
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