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Abstract

Detecting an abrupt and persistent change in the
underlying distribution of online data streams is
an important problem in many applications. This
paper proposes a new robust score-based algo-
rithm called RSCUSUM, which can be applied to
unnormalized models and addresses the issue of
unknown post-change distributions. RSCUSUM
replaces the Kullback-Leibler divergence with the
Fisher divergence between pre- and post-change
distributions for computational efficiency in un-
normalized statistical models and introduces a no-
tion of the “least favorable” distribution for robust
change detection. The algorithm and its theoreti-
cal analysis are demonstrated through simulation
studies.

1 INTRODUCTION

In the problem of quickest change detection, the objective
is to detect an abrupt change in the statistical properties
of an observed stochastic process. This change in the dis-
tribution has to be detected with the minimum possible
delay, subject to a constraint on the rate of false alarms.
This problem has applications in sensor networks, cyber-
physical systems, biology, and neuroscience; see Veeravalli
and Banerjee [2014], Basseville et al. [1993], Poor and Had-
jiliadis [2008], Tartakovsky et al. [2014].

When the pre- and post-change distribution of the data
is known, a typical optimal algorithm in the literature is
a stopping rule. A sequence of statistics is calculated us-
ing the likelihood ratio of the observations, and a change
is declared when the sequence of statistics crosses a pre-
designed threshold. The threshold is chosen to meet a
constraint on false alarms; see Shiryaev [1963], Lorden
[1971], Pollak [1985], Moustakides [1986], Lai [1998],
Tartakovsky and Veeravalli [2005]. The three most impor-

tant algorithms in the literature are the Shiryaev algorithm
(Shiryaev [1963], Tartakovsky and Veeravalli [2005]), the
cumulative sum (CUSUM) algorithm (Page [1955], Lorden
[1971], Moustakides [1986], Lai [1998]), and the Shiryaev-
Roberts algorithm (Roberts [1966], Pollak [1985]).

The main challenge in implementing a change detection
algorithm in practice is that the pre- and post-change dis-
tributions are not precisely known. This challenge is am-
plified when the data is high-dimensional. Specifically, in
several machine learning applications, the data models may
not lend themselves to explicit distributions. For example,
energy-based models (LeCun et al. [2006]) capture depen-
dencies between observed and latent variables based on
their associated energy (an unnormalized probability), and
score-based deep generative models Song et al. [2020] gen-
erate high-quality images by learning the score function
(the gradient of the log density function). These models can
be computationally cumbersome to normalize themselves
as probabilistic density functions. Thus, optimal algorithms
from the change detection literature, which are likelihood
ratio-based tests, are computationally expensive to imple-
ment.

This issue is partially addressed in Wu et al. [2023] where
the authors have proposed the SCUSUM algorithm, a
Hyvärinen score-based (Hyvärinen [2005]) modification of
the CUSUM algorithm for quickest change detection. It is
shown in Wu et al. [2023] that the SCUSUM algorithm
is consistent and the authors also provide expressions for
the average detection delay and the mean time to a false
alarm. The Hyvärinen score is invariant to scale and hence
can be applied to unnormalized models. This makes the
SCUSUM algorithm highly efficient as compared to the
classical CUSUM algorithm for high-dimensional models.

The main drawback of the SCUSUM algorithm is that its
effectiveness is contingent on knowing the precise post-
change unnormalized model, i.e., knowing the post-change
model within a normalizing constant. In practice, due to
a limited amount of training data, the post-change model
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can only be learned within an uncertainty class. To detect
the change effectively, an algorithm must be robust against
these modeling uncertainties. The SCUSUM algorithm is
not robust in this sense. Specifically, if not carefully de-
signed, the SCUSUM algorithm can fail to detect several
(in fact, infinitely many) post-change scenarios.

In this paper, we propose a robust score-based variant of
the CUSUM algorithm for the quickest change detection.
We refer to our algorithm as the RSCUSUM algorithm. Un-
der the assumption that the post-change uncertainty class
is convex and compact, we show that the RSCUSUM
algorithm is robust, i.e., can consistently detect changes
for every possible post-change model. This consistency is
achieved by designing the RSCUSUM algorithm using the
least favorable distribution from the post-change class.

The problem of optimal robust quickest change detection is
studied in Unnikrishnan et al. [2011]. In a minimax setting,
the optimal algorithm is the CUSUM algorithm designed
using the least favorable distribution. The robust CUSUM
test in Unnikrishnan et al. [2011] may suffer from two draw-
backs: 1) It is a likelihood ratio-based test and hence may
not be amenable to implementation in high-dimensional
models. 2) The notion of least favorable distribution is de-
fined using stochastic boundedness, which may be difficult
to verify for high-dimensional data.

In contrast with the work in Unnikrishnan et al. [2011], we
define the notion of least favorable distribution using Fisher
divergence and provide a method to effectively identify the
least favorable distribution for the post-change model.

1.1 OUR CONTRIBUTIONS

We now summarize our contributions in this paper.

• We propose a new robust score-based quickest change
detection algorithm that can be applied to unnormalized
models, namely, statistical models whose density involves
an unknown normalizing constant. Specifically, we use the
Hyvärinen score (Hyvärinen [2005]) to propose a robust
score-based variant of the SCUSUM algorithm from Wu
et al. [2023], which we refer to as RSCUSUM. In this vari-
ant and its subsequent theory, the role of Kullback-Leibler
divergence in classical change detection is replaced with
the Fisher divergence between the pre-and post-change dis-
tributions. Please see Section 3.

• Our developed RSCUSUM algorithm can address un-
known post-change models. Specifically, assuming that the
post-change law belongs to a known family of distribu-
tions that is convex and compact, we identify a least fa-
vorable distribution that is closest in terms of Fisher diver-
gence from the pre-change family. We then show that the
RSCUSUM algorithm can consistently detect each post-
change distribution from the family, and is robust in this

sense. Please see Section 4.

• We provide an effective method to identify the least fa-
vorable post-change distribution in a post-change family.
This is in contrast to the setup in Unnikrishnan et al. [2011]
where a stochastic boundedness characterization makes it
harder to identify the least favorable distribution. Please see
Section 5.

• From a theoretical perspective, unlike the CUSUM al-
gorithm that leverages the fact that the likelihood ratios
form a martingale under the pre-change model Lai [1998],
Woodroofe [1982], the RSCUSUM algorithm is a score-
based algorithm where cumulative scores do not enjoy a
standard martingale characterization. Our analysis of the
delay and false alarm analysis for RSCUSUM is based on
new analysis techniques. Pleas see Section 4.

• We demonstrate the effectiveness of the RSCUSUM algo-
rithm through simulation studies on Gaussian and Gauss-
Bernoulli Restricted Boltzmann Machine (RBM) models.
Please see Section 6.

2 PROBLEM FORMULATION

Let {Xn}n≥1 denote a sequence of independent random
variables defined on the probability space (Ω,F , Pν). Let
Fn be the σ−algebra generated by random variables
X1, X2, . . . , Xn, and let F = σ(∪n≥1Fn) be the
σ−algebra generated by the union of sub-σ-algebras. Un-
der Pν , X1, X2, . . . , Xν−1 are i.i.d. according to a den-
sity p∞ and Xν , Xν+1, . . . are i.i.d. according to a density
p1. We think of ν as the change point, p∞ as the pre-change
density, and p1 as the post-change density. We use Eν and
Varν to denote the expectation and the variance associated
with the measure Pν , respectively. Thus, ν is seen as an un-
known constant and we have an entire family {Pν}1≤ν≤∞
of change-point models, one for each possible change point.
We use P∞ to denote the measure under which there is no
change, with E∞ denoting the corresponding expectation.

A change detection algorithm is a stopping time T with
respect to the data stream {Xn}n≥1:

{T ≤ n} ∈ Fn.

If T ≥ ν, we have made a delayed detection; otherwise,
a false alarm has happened. Our goal is to find a stopping
time T to optimize the trade-off between well-defined met-
rics on delay and false alarm. We consider two minimax
problem formulations to find the best stopping rule.

To measure the detection performance of a stopping rule,
we use the following minimax metric (Lorden [1971]), the
worst-case averaged detection delay (WADD):

LWADD(T )
∆
= sup

ν≥1
ess supEν [(T − ν + 1)+|Fν ],



where (y)+
∆
= max(y, 0) for any y ∈ R. Here ess sup is

the essential supremum, i.e., the supremum outside a set
of measure zero. We also consider the version of minimax
metric introduced in Pollak [1985], the worst conditional
averaged detection delay (CADD):

LCADD(T )
∆
= sup

ν≥1
Eν [T − ν|T ≥ ν].

For false alarms, we consider the average running length
(ARL), which is defined as the mean time to false alarm:

ARL ∆
= E∞[T ].

We now formulate a robust quickest change detection
problem; see Unnikrishnan et al. [2011]. We assume that
pre- and post-change distributions are not precisely known.
However, each is known within an uncertainty class:

P∞ ∈ G∞

P1 ∈ G1.

For simplicity, in this paper, we will assume that the pre-
change class is a singleton:

G∞ = {P∞}.

Our proposed method can also be extended to the case of
composite G∞. The objective is to find a stopping rule to
solve the following problem:

min
T

sup
P1∈G1

LWADD(T ) subject to E∞[T ] ≥ γ, (1)

where γ is a constraint on the ARL. The delay LWADD in
the above problem is a function of the true post-change law
P1 and should be designated as LP1

WADD. We will, however,
suppress this notation and simply refer to LP1

WADD by LWADD.
Thus, the goal in this problem is to find a stopping time
T to minimize the worst-case detection delay, subject to a
constraint γ on E∞[T ].

We are also interested in the version with the minimax met-
ric introduced in Pollak [1985]:

min
T

sup
P1∈G1

LCADD(T ) subject to E∞[T ] ≥ γ. (2)

If the post-change family is also singleton, G1 = {P1}, then
the above formulations are the classical minimax formu-
lations from the quickest change detection literature; see
Veeravalli and Banerjee [2014], Tartakovsky et al. [2014],
Poor and Hadjiliadis [2008]. The optimal algorithm (ex-
actly optimal for (1) and asymptotically optimal for (2)) is
the CUSUM algorithm given by

TCUSUM = inf{n ≥ 1 : Λ(n) ≥ τ},

where Λ(n) is defined using the recursion

Λ(0) = 0,

Λ(n)
∆
=

(
Λ(n− 1) + log

p1(Xn)

p∞(Xn)

)+

, ∀n ≥ 1, (3)

which leads to a computationally convenient stopping
scheme. We recall that here p1 is the post-change density
and p∞ is the pre-change density.

In Lorden [1971] and Lai [1998], the asymptotic perfor-
mance of the CUSUM algorithm is also characterized.
Specifically, it is shown as γ → ∞,

LWADD(TCUSUM) ∼ LCADD(TCUSUM) ∼
log γ

DKL(P1‖P∞)
.

Here DKL(P1‖P∞) is the Kullback-Leibler divergence be-
tween the post-change distribution and pre-change distribu-
tion:

DKL(P1‖P∞) =

∫
p1(x) log

p1(x)

p∞(x)
dx,

and the notation g(c) ∼ h(c) as c → c0 indicates that
g(c)
h(c) → 1 as c → c0 for any two functions c 7→ g(c) and
c 7→ h(c).

Since the CUSUM algorithm uses likelihood ratio to com-
pute its statistic, it is not amenable to implementation for
high-dimensional models (see Wu et al. [2023]), where of-
ten the densities p1 or p∞ are only known within a normal-
izing constant.

3 ROBUST QUICKEST CHANGE
DETECTION FOR UNNORMALIZED
MODELS

In this section, we propose a robust score-based CUSUM
(RSCUSUM) algorithm. We first review the SCUCUM al-
gorithm proposed by Wu et al. [2023] to address the is-
sues with likelihood ratio-based CUSUM for unnormal-
ized models. The SCUSUM is defined based on Hyvärinen
Score (Hyvärinen [2005]), which circumvents the compu-
tation issue of the normalization constant. Similar to the
schemes of SCUSUM, we use the Hyvärinen score and pro-
pose a robust variant that releases the knowledge of the true
post-change distribution, where we assume the true post-
change distribution is unknown but its uncertainty class is
known.

Recall from Section 2 that under the measure P∞, there is
no change, and the density for each random variable is p∞.
In the rest of the paper, we refer to the probability measure
of X1 under P∞, also by P∞. Similarly, we refer to the law
of X1 under P1 also by P1. The differences will always be
clear from the context.

We provide the definition of the Hyvärinen Score below.

Definition 3.1 (Hyvärinen Score). The Hyvärinen score of
any measure P (with density p) is a mapping (X,P ) 7→
SH(X,P ) given by

SH(X,P )
∆
=

1

2
‖∇X log p(X)‖22 +∆X log p(X)



whenever it can be well defined. Here, ‖ · ‖2 denotes the
Euclidean norm, ∇X and ∆X =

∑d
i=1

∂2

∂x2
i

respectively
denote the gradient and the Laplacian operators acting on
X = (x1, · · · , xd)

⊤.

By using the Hyvärinen Score in our algorithm, the role of
Kullback-Leibler divergence in the theoretical analysis of
the algorithm is replaced by the Fisher divergence.

Definition 3.2 (Fisher Divergence). The Fisher divergence
between two probability measures P to Q (with densities p
and q) is defined by

DF(P‖Q)
∆
= EX∼P

[
‖∇X log p(X)−∇X log q(X)‖22

]
,

whenever the integral is well defined.

Clearly, ∇X log p(X), ∇X log q(X), and ∆X log q(X) re-
main invariant if p and q are scaled by any positive con-
stant with respect to X . Hence, the Fisher divergence and
the Hyvärinen Score remain scale-variant concerning an
arbitrary constant scaling of density functions.

The SCUSUM [Wu et al., 2023] assumes that the true pre-
and post-chagne distributions P∞ and P1 are known. It de-
fines the detection score by

z̃λ(X)
∆
= λ

(
SH(X,P∞)− SH(X,P1)

)
. (4)

However, it is impractical, in particular for online data
streams, to know the true post-change distribution. We as-
sume that pre-change data is available. This data and a
model class G∞ are used to model/learn the pre-change dis-
tribution P∞. The post-change distribution P1 is assumed
to be modeled by an unknown element of a parametric fam-
ily G1 = {Gθ : θ ∈ Θ1}. We note that our framework
readily extends to the case of non-parametric families but
for simplicity, we present our results only in the parametric
case.

We define the notion of least favorable distribution. This
approach to defining the least favorable distribution for the
quickest change detection is novel.

Definition 3.3 (Least Favorable Distribution (LFD)). As-
sume that the family G1 = {Gθ : θ ∈ Θ1} is convex and
compact. We define

Q1 = arg min
Gθ∈G1

DF (Gθ‖P∞). (5)

The existence of Q1 is guaranteed by the compactness of
G1 and the continuity of the Fisher divergence as a function
of its arguments. Thus, Q1 is the closest element of G1 to
P∞ in the Fisher-divergence sense.

Given the pre-change law P∞ (with density p∞), we now
use Q1 and its density q1 to design the RSCUSUM algo-
rithm. We define the instantaneous RSCUSUM score func-
tion X 7→ zλ(X) by

zλ(X)
∆
= λ

(
SH(X,P∞)− SH(X,Q1)

)
, (6)

where λ > 0 is a pre-selected multiplier, SH(X,P∞) and
SH(X,Q1) are respectively the Hyvärinen score functions
of P∞ and Q1. If the post-change model is precisely known,
then the Q1 in the above equation will be replaced by
the known post-change law and RSCUSUM is identical to
SCUSUM [Wu et al., 2023]. In Section 4, we will provide
more discussion on the role of λ in the RSCUSUM algo-
rithm.

Our proposed stopping rule is given by

TRSCUSUM = inf{n ≥ 1 : Z(n) ≥ τ}, (7)

where τ > 0 is a stopping threshold that is pre-selected
to control false alarms, and Z(n) can be computed recur-
sively:

Z(0) = 0,

Z(n)
∆
= (Z(n− 1) + zλ(Xn))

+, ∀n ≥ 1.

The statistic Z(n) is referred to as the detection score of
RSCUSUM at time n. The RSCUSUM algorithm is sum-
marized in Algorithm 1.

Algorithm 1: RSCUSUM Detection Algorithm
Input: Hyvarinen score functions SH(·, P∞) and

SH(·, Q1) of pre-change distribution and least
favorable distribution in G1, respectively.

Data: m previous observations X[−m+1,0] and the
online data stream {Xn}n≥1

Initialization:
Current time k = 0, λ > 0, τ > 0, and Z(0) = 0

while Z(k) < τ do
k = k + 1
Update zλ(Xk) = λ(SH(Xk, P∞)− SH(Xk, Q1))
Update Z(k) = max(Z(k − 1) + zλ(Xk), 0)

Record the current time k as the stopping time
TRSCUSUM

Output: TRSCUSUM

4 DELAY AND FALSE ALARM
ANALYSIS OF THE RSCUSUM
ALGORITHM

In this section, we provide delay and false alarm analysis of
the RSCUSUM algorithm. We introduce two assumptions:
1) P∞ /∈ G1, and 2) the same mild regularity conditions
introduced in Hyvärinen [2005] so that the Hyvärinen score
is well-defined.

We first prove an important lemma for our problem. If the
Fisher divergence is seen as a measure of distance between
two probability measures, then the following lemma pro-
vides a reverse triangle inequality for this distance, under



the mild assumption that the order of integrals and deriva-
tives can be interchanged.

Lemma 4.1. Let P∞ be the pre-change distribution, Q1 ∈
G1 be the least-favorable distribution (as defined in Equa-
tion 5), and Q2 ∈ G1 be any other post-change distribution.
Then

DF (Q1‖P∞) ≤ DF (Q2‖P∞)− DF (Q2‖Q1) .

Proof. Consider a convex set of densities{
y 7→ qξ(x) : qξ(x) = ξq1(x) + (1− ξ)q2(x), ξ ∈ [0, 1]

}
,

where q1 and q2 are densities of Q1 and Q2, respectively.
Let Qξ denote the distribution characterized by density
qξ. We note that Qξ ∈ G1 due to the convexity assump-
tion on G1. We use L(ξ) to denote the Fisher divergence
DF (Qξ‖P∞), and

L(ξ) =
∫ ∥∥∇ log qξ −∇ log p∞

∥∥2qξdx
=

∫ ∥∥∇ log
(
ξq1 + (1− ξ)q2

)
−∇ log p∞

∥∥2(
ξq1 + (1− ξ)q2

)
dx.

Clearly L(ξ) is minimized at ξ = 1, and ∂L(ξ)
∂ξ |ξ=1−≤ 0.

Let L′(ξ) = ∂L(ξ)
∂ξ , we have

L′(ξ) =

∫ (
q1 − q2

)∥∥∇ log qξ −∇ log p∞
∥∥2dx

+

∫
2qξ∇

(
q1 − q2

qξ

)T (
∇ log qξ −∇ log p∞

)
dx.

This implies

L′(1−) =

∫ (
q1 − q2

)∥∥∇ log q1 −∇ log p∞
∥∥2dx

+

∫
2q1∇

(
q1 − q2

q1

)T (
∇ log q1 −∇ log p∞

)
dx

= DF (Q1‖P∞)−
∫

q2
∥∥∇ log q1 −∇ log p∞

∥∥2︸ ︷︷ ︸
term 1

+ 2q1∇
(
q1 − q2

q1

)T (
∇ log q1 −∇ log p∞

)
︸ ︷︷ ︸

term 2

dx.

(8)

For term 1, we have

q2
∥∥∇ log q1 −∇ log p∞

∥∥2
= q2

∥∥∇ log q1 −∇ log q2
∥∥2 + q2

∥∥∇ log q2 −∇ log p∞
∥∥2

+ 2q2
(
∇ log q1 −∇ log q2

)T (∇ log q2 −∇ log p∞
)︸ ︷︷ ︸

term 1(a)

.

(9)

We note that,∫
x

q2
∥∥∇ log q1 −∇ log q2

∥∥2dx = DF(Q2‖Q1), (10)∫
x

q2
∥∥∇ log q2 −∇ log p∞

∥∥2dx = DF(Q2‖P∞). (11)

For term 2, we note that

∇
(
q1 − q2

q1

)
=

q2
q1

(
∇ log q1 −∇ log q2

)
.

Therefore,

2q1∇
(
q1 − q2

q1

)T (
∇ log q1 −∇ log p∞

)
= 2q2

(
∇ log q1 −∇ log q2

)T (∇ log q1 −∇ log p∞
)
.

(12)

Combining the last term in Equation (9) with Equation
(12),

− term 1(a) + term 2

= 2q2
(
∇ log q1 −∇ log q2

)T(
∇ log q1 −∇ log p∞ −∇ log q2 +∇ log p∞

)
= 2q2‖∇ log q1 −∇ log q2‖2. (13)

Plugging Equations (10), (11), and (13) into Equation (8),

L′(1−) = DF (Q1‖P∞) + DF (Q2‖Q1)− DF (Q2‖P∞) .

The results follows since ∂L(ξ)
∂ξ |ξ=1−≤ 0.

We now use Lemma 4.1 to prove a result on the consistency
of our proposed RSCUSUM algorithm.

Lemma 4.2 (Positive and Negative Drifts). Consider the
instantaneous RSCUSUM score function X 7→ zλ(X) as
defined in Equation (6). Recall that P1 ∈ G1 is the true
(but unknown) post distribution. Then,

E∞ [zλ(X)] = −λDF(P∞‖Q1) < 0, and

E1 [zλ(X)] ≥ λDF(Q1‖P∞) > 0.

Proof. Under some mild regularity conditions, Hyvärinen
[2005] proved that

DF(P‖Q) = EX∼P

[
1

2
‖∇X log p(X)‖22 + SH(X,Q)

]
.

We use CP to denote the term EX∼P

[
1
2 ‖∇X log p(X)‖22

]
.

Then

E∞[SH(X,P∞)− SH(X,Q1)]

= DF(P∞‖P∞)− CP∞ − DF(P∞‖Q1) + CP∞

= −DF(P∞‖Q1),



and

E1[SH(X,P∞)− SH(X,Q1)]

= DF(P1‖P∞)− CP1
− DF(P1‖Q1) + CP1

≥ DF(Q1‖P∞),

where we applied Lemma 4.1.

Since λ > 0, the results follow.

Lemma 4.2 shows that, prior to the change, the expected
mean of instantaneous RSCUSUM score zλ(X) is negative.
Consequently, the accumulated score has a negative drift at
each time n prior to the change. Thus, the RSCUSUM de-
tection score Z(n) is pushed toward zero before the change
point. This intuitively makes a false alarm unlikely. In con-
trast, after the change, the instantaneous score has a posi-
tive mean, and the accumulated score has a positive drift.
Thus, the RSCUSUM detection score will increase toward
infinity and leads to a change detection event.

Next, we discuss the values of the multiplier λ in the the-
oretical analysis. Obviously, with a fixed stopping thresh-
old, a larger value of λ results in a smaller detection delay
because the increment of the SCUSUM detection score is
large, and the threshold can be easily reached. However, a
larger value of λ also causes SCUSUM to stop prematurely
when no change occurs, leading to a larger false alarm prob-
ability. Hence, the value of λ cannot be arbitrarily large
(except in the degenerate case where P∞(SH(X,Q1) −
SH(X,P∞) ≤ 0) = 1). It needs to satisfy the following
key condition:

E∞[exp(zλ(X))] ≤ 1. (14)

We will present a technical lemma that guarantees the exis-
tence of such a λ to satisfy inequality (14).

Lemma 4.3 (Existence of appropriate λ). There exists λ >
0 such that Inequality (14) holds. Moreover, either 1) there
exists λ⋆ ∈ (0,∞) such that the equality of (14) holds, or
2) for all λ > 0, the inequality of (14) is strict. As noted in
Wu et al. [2023], the second case is of no practical interest.

Proof. We give proof in the supplementary material.

From now on, we consider a fix λ > 0 that satisfies Inequal-
ity (14) to present our core results. In practice, it is possible
to use m past samples X[−m+1,0] to determine the value of
λ. In particular, λ can be chosen as the positive root of the
function λ → h̃(λ) given by

h̃(λ)
∆
=

1

m

m∑
i=1

[exp(zλ(Xi−m))]− 1.

By Lemma 4.3 and its related technical discussions, the
above equation has a root greater than zero with a high

probability if m is sufficiently large. In the case that λ is
not chosen properly, the algorithm remains implementable
but optimal performance of detection delay is not guaran-
teed. We discuss this situation further in the supplementary
material.

Theorem 4.4. Consider the stopping rule TRSCUSUM defined
in Equation (7). Then, for any τ > 0,

E∞[TRSCUSUM] ≥ eτ .

To satisfy the constraint of E∞[TRSCUSUM] ≥ γ, it is enough
to set the threshold τ = log γ.

Proof. We give proof in the supplementary material.

Theorem 4.4 implies that the ARL increases at least expo-
nentially as the stopping threshold increases.

The following theorem gives the asymptotic performance
of the RSCUSUM algorithm in terms of the detection delay
under the control of the ARL.

Theorem 4.5. Subject to E∞[TRSCUSUM] ≥ γ > 0, the stop-
ping rule TRSCUSUM satisfies

LWADD(TRSCUSUM) ∼ LCADD(TRSCUSUM) ∼ E1[TRSCUSUM]

∼ log γ

λ(DF(P1‖P∞)− DF(P1‖Q1))

≲ log γ

λDF(Q1‖P∞)
, as γ → ∞.

Proof. We give proof in the supplementary material.

In the above theorem, we have used the notation g(c) ≲
h(c) as c → c0 to indicate that lim sup g(c)

h(c) ≤ 1 as c → c0
for any two functions c 7→ g(c) and c 7→ h(c).

Theorems 4.4 and 4.5 imply that the expected detection
delay (EDD) increases linearly as the stop threshold τ in-
creases subject to a constraint on ARL.

5 IDENTIFICATION OF THE LEAST
FAVORABLE DISTRIBUTION

Consider a general parametric distribution family P de-
fined on X . We use Pm to denote a set of a finite number
of distributions belonging to P , namely

Pm = {Pi, i = 1, . . . ,m : Pi ∈ P}, m ∈ N+.

We use pi to denote the density of each distribution Pi, i =
1, . . . ,m. Then, we define a convex set of densities

Am
∆
=

{
x 7→

m∑
i=1

αipi(x) :

m∑
i=1

αi = 1, αi ≥ 0

}
. (15)



We further define a set of functions

Bm
∆
=

{
x 7→

m∑
i=1

βi(x)∇x log pi(x) :

m∑
i=1

βi(x) = 1, βi(x) ≥ 0, pi ∈ Pm

}
. (16)

Consider the pre-change distribution P∞ (with density p∞)
such that P∞ ∈ P and P∞ /∈ Am. We use E∞ to denote
its corresponding expectation with p∞. Next, we provide
a result to identify the LFD in Am in terms of the Fisher-
divergence (as defined in Definition 3.3).

Theorem 5.1. Assume that there exists an element P0 ∈
Am (with density p0) such that

Ep0

{
‖∇x log p0(X)−∇x log p∞(X)‖22

}
= min

p∈Am,ϕ∈Bm

Ep

{
‖ϕ(X)−∇x log p∞(X)‖22

}
. (17)

Then, we have

Ep0

{
‖∇x log p0(X)−∇x log p∞(X)‖22

}
= min

p∈Am

Ep

{
‖∇x log p(X)−∇x log p∞(X)‖22

}
.

Proof. For any p ∈ Am, there exist wi such that p =∑m
i=1 wipi, where wi ≥ 0 and

∑m
i=1 wi = 1. Direct calcu-

lations give

Ep

{
‖∇x log p(X)−∇x log p∞(X)‖22

}
= Ep

{∥∥∥∥∇xp(X)

p(X)
−∇x log p∞(X)

∥∥∥∥2
2

}
= Ep

{∥∥∥∥∑m
i=1 wi∇xpi(X)∑m
i=1 wipi(X)

−∇x log p∞(X)

∥∥∥∥2
2

}
= Ep

{∥∥∥∥ m∑
i=1

ui(X)∇x log pi(X)−∇x log p∞(X)

∥∥∥∥2
2

}
,

where ui(X) = wipi(X)∑m
i=1 wipi(X) for all i = 1, . . . ,m, and∑m

i=1 ui(X) = 1. Clearly ∇x log ui(x)−∇x log uj(x) =
∇x log pi(x)−∇x log pj(x) for all 1 ≤ i, j ≤ m.

Using Condition (17), the quantity above is minimized at
p = p0, which concludes the proof.

Theorem 5.1 provides an efficient way to identify the LFD
in a convex set with only knowledge of the gradient of the
log density functions.

Next, we provide a method to find the LFD in a class of
Gaussian mixture models.

Theorem 5.2. Let Gθ denote the d-dimensional Gaussian
distribution centered at θ ∈ Rd with a constant covari-
ance matrix V ∈ Rd×d. Let the set Θ1 ⊆ Rd be compact
and convex. Consider the pre-change distribution Gθ∗ and
post-change distribution class G1 defined as all Gaussian
mixture models given by the convex hull of {Gθ : θ ∈ Θ1}.
For any vector v ∈ Rd, let ‖v‖V = (vTV −2v)1/2. Assume
that θ∗ 6∈ Θ1, and θ0 ∈ Θ1 is the closest to θ∗ under the
‖ · ‖V norm, namely ‖θ0 − θ∗‖V = minθ∈Θ1

‖θ − θ∗‖V .
Then, Gθ0 is the closest to Gθ∗ among G1 under the Fisher
divergence.

Proof. Let gθ0 and gθ∗ denote the densities of Gθ0 and Gθ∗ ,
respectively. Clearly,

min
gθ∈G1

Egθ

{
‖∇x log gθ(X)−∇x log gθ∗(X)‖22

}
≤ Egθ0

{
‖∇x log gθ0(X)−∇x log gθ∗(X)‖22

}
We will prove the equality by proving the reverse inequality.
To this end, consider an arbitrary element of G1. By defini-
tion of convex hull, this element can be written as G1 =∑m

i=1 wiGθi(X) for some m ≥ 1, wi ≥ 0, i = 1, · · · ,m
with

∑m
i=1 wi = 1 and θi ∈ Θ1 for i = 1, · · · ,m. As

proved in the above theorem

Eg1

{
‖∇x log g1(X)−∇x log gθ∗(X)‖22

}
= Eg1

{∥∥∥∥ m∑
i=1

βi(X)∇x log gθi(X)−∇x log gθ∗(X)

∥∥∥∥2
2

}
,

where βi(X) =
wigθi (X)∑m
i=1 wigθi (X) for all i = 1, . . . ,m.

Thus, we have

Eg1

{
‖∇x log g1(X)−∇x log gθ∗(X)‖22

}
= Eg1

∥∥∥∥ m∑
i=1

βi(X)(X − θi)− (X − θ∗)

∥∥∥∥2
V

= Eg1

∥∥∥∥ m∑
i=1

βi(X)(θ∗ − θi)

∥∥∥∥2
V

.

Using the assumption that ‖θ0 − θ∗‖V = minθ∈Θ1 ‖θ −
θ∗‖V , we have

= Eg1

∥∥∥∥ m∑
i=1

βi(X)(θ∗ − θi)

∥∥∥∥2
V

= Eg1

∥∥∥∥θ∗ − m∑
i=1

βi(X)θi

∥∥∥∥2
V

≥ Egθ‖θ∗ − θ0‖2V

= Egθ0

{
‖∇x log gθ0(X)−∇x log gθ∗(X)‖22

}
.

This concludes the proof.



For a general parametric family of potential post-change
distributions, it may be difficult to identify the LFD. In Sec-
tion 6.1, we propose a method to find the LFD in parameter
space.

6 NUMERICAL RESULTS

In this section, we present numerical results for both
synthetic and real data demonstrating the robustness of
RSCUSUM. Specifically, we identify the LFD in G1 de-
fined as convex hull of given distributions Pi(x), i =
1, 2, · · · ,m. To this end, we minimize the Fisher diver-
gence over the set Bm defined in Equation (16) and in-
voke Theorem 5.1. In general, we can then estimate the
∇x log p0(x) for LFD by

∑m
i=1 βi(x)∇x log pi(x).

6.1 EXAMPLE OF THE LEAST FAVORABLE
DISTRIBUTION

We consider the parametric family P as the multivari-
ate Normal distribution (MVN), a subfamily [Yu et al.,
2016] of the exponential family (EXP), and the Gauss-
Bernoulli Restricted Boltzmann Machine (RBM) [LeCun
et al., 2006]. For example, in the case of MVN,

G∞ = {N (µ∗, V∗)},

G1 =

{
m∑
i=1

αiN (µi, Vi) :

m∑
i=1

αi = 1, ∀ αi ≥ 0

}
.

Here the pre-change distribution P∞ = N (µ∗, V∗) and
the uncertainty class G1 is constructed from a finite basis
Pm = {N (µi, Vi), i = 1, . . . ,m} (see Equation (15)).
Each basis element Pi is parameterized by the correspond-
ing vector θi = (µi, Vi). Without loss of generality, we
assume θ1 to be the closest to θ∗ = (µ⋆, V⋆) in L2 (Eu-
clidean) norm.

By Theorem 5.1, it is sufficient to find P0 such that Condi-
tion (17) holds. Any ϕ(x) ∈ Bm is characterized by coeffi-
cients βj(·), j = 1, . . . ,m (see Equation (16)).

We use a neural network Softmaxj ◦fNN(x) to estimate
βj(·), specifically,

βj(x) = Softmaxj ◦fNN(x),

where fNN is given by the feature extractor part of a multi-
layer neural network corresponding to hidden layer sizes
[128 − 64 −m], with Softmax the last layer all ReLU ac-
tivation functions in hidden layers. Note that Softmaxj de-
notes the j-th element of the Softmax function. The use of
Softmax function ensures

∑m
i=1 βi(x) = 1 and βi(x) ≥ 0

for all 1 ≤ i ≤ m.

To identify P0, we learn fNN by minimizing the following

loss function over the training sample X1, · · · , XN ∼ P :

L =
1

N

N∑
i=1

∥∥∥∥ m∑
j=1

βj(Xi)∇ log pj(Xi)−∇ log p∞(Xi)

∥∥∥∥2
2

,

where P is updated at each epoch based on the learned co-
efficients βi(x) by

∇x log p(x) =

m∑
i=1

βi(x)∇x log pi(x).

To generate samples from the unnormalized density func-
tion ∇x log p(x), standard Markov Chain Monte Carlo
(MCMC) techniques (such as MALA) are employed. Fur-
thermore, the neural network is trained using the Adam op-
timizer.

In Table 1, we report the average value 1
M

∑M
i=1 βj(Yi)

over the test sample Y1, · · ·YM ∼ P respectively in cases
where the basis elements of Pm are MVNm (with mean
shifts), MVNc (with covariance shifts), EXP, and RBMs.
Details of P∞ and basis elements of Pm are given in the
Supplementary Material. In all cases the average value of
β1(y) (respectively βj(y), j = 2, 3, 4) is extremely close
to 1 (respectively to 0). This gives strong evidence that the
LFD is achieved by one of the basis Pm, and Theorem 5.1
can be invoked to give the LFD.

j 1 2 3 4
MVNm 1.00e+00 4.90e-09 2.43e-11 6.29e-12
MVNc 9.99e-01 7.47e-06 3.23e-08 3.55e-08
EXP 9.99e-01 2.84e-05 1.37e-09 1.01e-09
RBM 1.00e+00 3.18e-33 0.00e+00 0.00e+00

Table 1: Empirical average values of βj(x) over 10000 test
sample for MVN, EXP, and RBM models.

6.2 SYNTHETIC DATA

As in Subsection 6.1, we simulate synthetic data streams
from MVNs and RBMs to evaluate the performance of
RSCUSUM. The LFD in the uncertainty class is identified
as in Subsection 6.1. We also report the performance of the
SCUSUM (which is not robust) Wu et al. [2023] for arbi-
trary wrong distributions in the uncertain class.

We consider a change detection scenario where the pre-
and post-distributions are modeled by MVN (respectively
RBM) models with m = 4. Both P∞ and the elements
of the uncertainty class are created according to detailed
descriptions in the supplementary material. We use Gibbs
sampling method with 1000 iterations for RBMs. In each
trial, we treat one of Pi ∈ Pm, i = 1, 2, 3, 4 as the true
post-change distribution. For each trial, we perform the ex-
periment for 1000 runs.



In all experiments, we set the change point as ν = 50, and
we set the total length of each data stream as 10000 to as-
sure the generated data stream is long enough for detection.
We evaluate the detection delay for ARL values ranging
from 100 to 3000.

In Figure 1(a) and (b), we respectively report the detection
scores versus time in cases for MVNm and RBM experi-
ments. The results demonstrate that the average increment
of detection scores is positive for RSUCUM, while nega-
tive for the non-robust SCUSUM. This means that a non-
robust CUSUM fails to detect this post-change scenario but
the RSCUSUM algorithms detects it.

(a) MVNm (𝝐𝝁 = 0.6)

(b) RBM (𝝈𝝐 = 𝟎. 𝟎𝟎𝟐)

RSCUSUM: blueline Non-robust SCUSUM: blueline Changepoint: blueline.     Threshold: blueline.    

Figure 1: Detection score versus Time.

In Figure 2(a) and (b), we respectively demonstrate the
empirical EDD against log-scaled ARL for both MVNm

and RBM experiments. The results demonstrate that
RSCUSUM is robust and performs competitively in terms
of detection delay. In particular, we observe that the EDD
of RSCUSUM (subplot in left rows) increases at a linear
rate for all cases, while some EDD of non-robust SCUSUM
(subplot in right rows) may increase at an exponential rate
(compare the y-axis labels for the plots).

7 CONCLUSIONS

In this work, we proposed the RSCUSUM algorithm, a ro-
bust score-based algorithm for quickest change detection
when the post-change distribution is not precisely known.
We defined the least favorable distribution in the sense of
Fisher divergence. Using asymptotic analysis, we also ana-
lyzed the delay and false alarms of RSCUSUM in the sense
of Lorden’s and Pollak’s metrics. We provided both the-
oretical and algorithmic methods for computing the least
favorable distribution for unnormalized models. Numerical

(a) MVNm

(b) RBM

RSCUSUM Non-robust SCUSUM

RSCUSUM Non-robust SCUSUM

𝑃!: bluelineblueline 𝑃": bluelineblueline 𝑃#: bluelineblueline 𝑃$: bluelineblueline

Figure 2: EDD versus log-scaled ARL.

simulations were provided to demonstrate the performance
of our robust algorithm.

Acknowledgements

Suya Wu and Vahid Tarokh were supported in part by Air
Force Research Lab Award under grant number FA-8750-
20-2-0504. Jie Ding was supported in part by the Office
of Naval Research under grant number N00014-21-1-2590.
Taposh Banerjee was supported in part by the U.S. Army
Research Lab under grant W911NF2120295.

References

Michele Basseville, Igor V Nikiforov, et al. Detection
of abrupt changes: theory and application, volume 104.
prentice Hall Englewood Cliffs, 1993.

Aapo Hyvärinen. Estimation of non-normalized statistical
models by score matching. J. Mach. Learn. Res., 6(4),
2005.

Tze Leung Lai. Information bounds and quick detection
of parameter changes in stochastic systems. IEEE Trans.
Inf. Theory, 44(7):2917–2929, 1998.

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and
F Huang. A tutorial on energy-based learning. In Pre-
dicting structured data, volume 1. The MIT Press, 2006.

Gary Lorden. Procedures for reacting to a change in distri-
bution. Ann. Math. Stat., pages 1897–1908, 1971.

George V Moustakides. Optimal stopping times for de-
tecting changes in distributions. Ann. Stat., 14(4):1379–
1387, 1986.



ES Page. A test for a change in a parameter occurring at an
unknown point. Biometrika, 42(3/4):523–527, 1955.

Moshe Pollak. Optimal detection of a change in distribu-
tion. Ann. Stat., pages 206–227, 1985.

H Vincent Poor and Olympia Hadjiliadis. Quickest detec-
tion. Cambridge University Press, 2008.

SW Roberts. A comparison of some control chart proce-
dures. Technometrics, 8(3):411–430, 1966.

Albert N Shiryaev. On optimum methods in quickest detec-
tion problems. Theory Probab. Appl., 8(1):22–46, 1963.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-
based generative modeling through stochastic differen-
tial equations. arXiv preprint arXiv:2011.13456, 2020.

Alexander Tartakovsky, Igor Nikiforov, and Michele Bas-
seville. Sequential analysis: Hypothesis testing and
changepoint detection. CRC Press, 2014.

Alexander G Tartakovsky and Venugopal V Veeravalli.
General asymptotic bayesian theory of quickest change

detection. Theory of Probability & Its Applications, 49
(3):458–497, 2005.

Jayakrishnan Unnikrishnan, Venugopal V Veeravalli, and
Sean P Meyn. Minimax robust quickest change detection.
IEEE Transactions on Information Theory, 57(3):1604–
1614, 2011.

Venugopal V Veeravalli and Taposh Banerjee. Quickest
change detection. In Academic press library in signal
processing, volume 3, pages 209–255. Elsevier, 2014.

Michael Woodroofe. Nonlinear renewal theory in sequen-
tial analysis. SIAM, 1982.

Suya Wu, Enmao Diao, Taposh Banerjee, Jie Ding, and
Vahid Tarokh. Score-based change point detection for
unnormalized models. International Conference on Arti-
ficial Intelligence and Statistics (AISTATS), 2023.

Ming Yu, Mladen Kolar, and Varun Gupta. Statistical in-
ference for pairwise graphical models using score match-
ing. Advances in Neural Information Processing Systems
(NeurIPS), 29, 2016.


	Introduction
	Our Contributions

	Problem Formulation
	Robust Quickest Change Detection for Unnormalized Models
	Delay and False Alarm Analysis of the RSCUSUM Algorithm
	Identification of the least favorable distribution
	Numerical Results
	Example of the Least Favorable Distribution
	Synthetic Data

	Conclusions

