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Abstract

Large Language Models (LLMs) have recently demonstrated
strong reasoning and communication abilities, motivating re-
search into their potential as autonomous agents in multi-
agent systems. In this work, we introduce Communicative
SMAC (CoSMAC), a benchmark designed to systemati-
cally evaluate the communication and coordination capabil-
ities of LLM-based agents. Built upon the well-established
SMAC multi-agent reinforcement learning (MARL) environ-
ment, CoOSMAC features a set of scenarios requiring vary-
ing degrees of micromanagement and communication, where
agents must exchange information through natural language
to achieve shared goals. We evaluate § state-of-the-art open-
source and proprietary LLMs in zero-shot settings, analyz-
ing model properties that are critical for communicative and
cooperative behaviors. Based on these results, we then dis-
till the Qwen2.5-7B model on the resulting dataset via su-
pervised fine-tuning. We further compare the performance
of LLM-based agents against a well-known MARL base-
line trained without communication. Experimental results
show that while LLMs struggle in scenarios demanding fine-
grained micromanagement and spatial coordination, they can
outperform the MARL baseline in tasks that rely more heav-
ily on effective communication.

Code — https://anonymous.4open.science/r/cosmac-DC03

Datasets — https://anonymous.4open.science/r/cosmac-
DCO03/datasets/

Introduction

Large Language Models (LLMs) have shown promise in
multi-agent systems, enabling agents to reason (Ferrag, Ti-
hanyi, and Debbah 2025), plan (Huang et al. 2024), and
communicate using natural language. As LLM capabili-
ties advance, there is growing interest in using LLM-based
agents to solve complex cooperative tasks that require effec-
tive communication and coordination.

Most existing LLM-agent systems focus on relatively
simple workflows, such as decomposing coding tasks across
multiple agents with minimal interaction (Dong et al. 2024;
Huang et al. 2023). While some environments explore
more complex social or cooperative interactions (Xie et al.
2024; Vezhnevets et al. 2023; Park et al. 2023), they often
lack well-defined goals, clear performance metrics, or re-
quire only one-way communication. This limits their useful-

ness for studying emergent communication and coordination
strategies.

In this paper, we introduce Communicative SMAC (CoS-
MAC), an LLM-powered Multi-Agent System (LLM-MAS)
benchmark focused on the communication aspect of agents.
The benchmark is built on the popular multi-agent reinforce-
ment learning (MARL) environment SMAC and features
novel scenarios centered on communication. Using SMAC
as the base environment allows for rigorous performance
evaluation of different models through episode returns and
win rate. The proposed scenarios contain groups of allied
agents scattered across the map in a partially observable en-
vironment, making communication essential for coordinat-
ing actions, as messages are visible to all allied agents. Par-
tial observability and randomized initial states in each sce-
nario make generalization essential for solving tasks, even
after fine-tuning for a specific scenario.

We conduct zero-shot evaluations of various pre-trained
LLMs, including both open-source and closed-source mod-
els. Using the resulting dataset, we fine-tune the Qwen2.5-
7B (Team 2024) model and evaluate it as well. We also
train a popular MARL algorithm QMIX (Rashid et al. 2020)
on the proposed scenarios, enabling analysis of the ability
of traditional MARL methods to solve these tasks without
agent communication.

To summarize, our contributions are as follows:

* We develop Communicative SMAC (CoSMAC), an
LLM-MAS benchmark focused on agent communica-
tion, featuring nine scenarios that require agents to ex-
change information to coordinate their actions.

* We evaluate a range of pre-trained LLMs in zero-shot set-
tings and a single fine-tuned model, covering both open-
source and closed-source models, to assess their commu-
nication and coordination capabilities. We compare these
LLM-based approaches with a traditional MARL method
that does not use communication.

* We publicly release the results of our LLM evaluations
as a publicly available dataset to support future research.

Related Work

In this section, we provide an overview of various systems
based on LLM agents. Many studies focus on agent sys-
tems with relatively simple interactions, where each agent



represents a specific function, and agents work sequentially
to solve complex tasks, such as coding. Other research ex-
plores environments with more complex interactions be-
tween agents, such as communication, which is required to
solve cooperative tasks.

Several works introduce different LLM agent approaches
for solving coding tasks. Dong et al. (Dong et al. 2024)
presents the Self-Collaboration framework, which consists
of three agents: an analyst, a coder, and a tester. The an-
alyst decomposes tasks for the coder to solve, while the
tester inspects the generated code and writes test reports,
which are then sent back to the coder for corrections. Agent-
Coder (Huang et al. 2023) introduces three agents: the pro-
grammer agent, the test case designer agent, and the test
executor agent. The test executor runs the test cases pro-
vided by the test case designer in a local environment, and
the feedback is sent back to the programmer agent. Some
domain-specific tasks can also be framed as coding tasks.
The CodeAct (Wang et al. 2024) framework introduces an
approach in which LLM agents generate actions as exe-
cutable Python code. For example, LLM-SMAC (Deng et al.
2024) is based on SMAC, a popular benchmark for multi-
agent reinforcement learning (MARL), and adapts it for
LLM usage. While SMAC focuses on MARL task, LLM-
SMAC, following the CodeAct approach, uses executable
Python code as the actions of LLM agnets. The LLM-SMAC
framework introduces three LLM agents: the planner, the
coder and the critic. The planner uses the scenario descrip-
tion in order to generate a strategy, the coder produces exe-
cutable code to control all the allied units according to that
strategy, and the critic analyses any exceptions raised dur-
ing code execution or the results of the executed code, if no
exceptions occur. Xie et al. (Xie and Zou 2024) propose a
framework for travel planning, where multiple agents take
on different roles to solve sequential subtasks. Human Sim-
ulacra (Xie et al. 2024) introduces a multi-agent LLM ar-
chitecture containing roles such as Memory Agent, Emotion
Agent, and Thinking Agent to produce personified responses
that align with the provided character description. These ap-
proaches introduce multi-agent systems with relatively lim-
ited interactions, as collaboration between agents is mostly
one-way, except for sending back error reports.

A number of environments for LLM agents focus on
the social role-playing aspect. Concordia (Vezhnevets et al.
2023) is a library for environment simulation, where multi-
ple LLM agents interact with each other to simulate social
situations. However, Concordia agents are not designed to
pursue clear goals with distinct rewards; instead, they are
intended to role-play characters in specific scenarios. While
agents may have practical objectives, these are not strictly
enforced. Park et al. (Park et al. 2023) introduce an interac-
tive environment for LLM agents to simulate believable hu-
man behavior. This environment simulates a small town with
multiple agents. Users can explicitly specify goals for an
agent, such as asking one to throw a party. However, this en-
vironment also lacks clear performance metrics, and agents
are evaluated solely on whether their behavior appears “’be-
lievable” based on common sense.

A number of works focus on text-based communication

games, such as the Werewolf game. In this game, players
are divided into two teams: werewolves and villagers. The
goal of the villagers is to uncover the identities of the were-
wolves, while the werewolves aim to hide their identities for
as long as possible and eliminate the villagers. Some play-
ers may perform special actions based on their roles, but the
main aspect of the game is communication between players.
Xu et al. (Xu et al. 2023) propose a framework for play-
ing the Werewolf game, with each player represented by
an LLM agent. In this implementation, players take turns
speaking once per in-game day. Werewolf Arena (Bailis,
Friedhoff, and Chen 2024) introduces a bidding system for
communication, allowing agents to express their desire to
speak. With this system, the speaking order of players is de-
termined dynamically, and each agent may speak multiple
times during each communication phase, enabling discus-
sions to coordinate with other agents and achieve their goals.
Another example of a communication-focused environment
is Collab-Overcooked (Sun et al. 2025). This environment
is a grid-based kitchen simulation divided into two sections,
each occupied by an agent. Each agent has access to certain
resources and utensils, as well as counters that allow them
to transfer materials between each other. The tasks require
the agents to collaboratively prepare a specific dish. Since
each agent has access to only a subset of the necessary re-
sources and utensils, they must communicate in natural lan-
guage to coordinate their actions, such as asking one another
to prepare or deliver specific ingredients. It should also be
noted that the cooking steps for the recipe are provided in
the agents’ inputs, and the initial state for each scenario is
always the same and fully observable to both agents. As a
result, each scenario has a single, consistent optimal solu-
tion.

Background

We formalize our environment as a decentralized partially
observable Markov decision process (Dec-POMDP), de-
fined by the tuple G = (S, A, U, P,r,Z,0,n,~). The true
state s € .S represents the complete state of the environ-
ment, while each agent a € A = 1,...,n receives a partial
observation z € Z, determined by the observation function
O(s,a): Sx A— Z.

At each time step, each agent a selects an action u € U.
Once all agents have selected their actions u at timestep £,
the joint action u € U = U™ is executed, and the environ-
ment transitions to a new state s’ according to the transition
function P(s'|s,u) : S x U x S — [0,1].

The environment provides a shared reward, computed by
the reward function r(s,u) : S x S — R, andy € [0,1) is
the discount factor.

Setting

In this work, we focus on settings that involve communica-
tion between LLM agents. At each timestep ¢, the observa-
tion z{, received by agent a, is transformed by a preprocess-
ing function ¢ (2%, ny, Ny, ). This transformation produces a
natural language description that includes: the agent’s role,
environmental information (i.e., visible agents’ health and



Multi-agent LLM systems Task Communication  Verification Protocol
Self-Collaboration framework(Dong et al. 2024) Coding Limited v
AgentCoder(Huang et al. 2023) Coding Limited v
LLM-SMAC(Deng et al. 2024) Strategy Game as Coding Limited v
A Human-Like Reasoning Framework(Xie and Zou 2024) Travel Planning Limited v
Human Simulacra Role-Playing(Xie et al. 2024) Limited X
Concordia(Vezhnevets et al. 2023) Role-Playing Full X
Generative Agents(Park et al. 2023) Role-Playing Full X
An Empirical Study on Werewolf(Xu et al. 2023) Communication Game Limited v
Werewolf Arena(Bailis, Friedhoff, and Chen 2024) Communication Game Full v
Collab-Overcooked(Sun et al. 2025) Cooking Simulator Full v
CoSMAC(ours) Strategy Game Full v

Table 1: Environments comparison.

global positions) over the past n, steps, the last n,, mes-
sages sent by other agents, the set of currently available ac-
tions, and a template illustrating the expected format of the
agent’s output.

The parameters n, and n,, are essential in this setting, as
we assume agents do not possess memory. Therefore, they
must rely solely on the information contained in the current
preprocessed observation ¢(z§, 1, Ny ).

Upon receiving a preprocessed observation, each agent
selects two actions: an environment action v € U, which af-
fects the environment, and a communication action m € M,
which is broadcast to all other agents but does not directly
influence the environment or reward. While environment ac-
tions are executed only after all agents have selected their
actions for the current timestep ¢, communication messages
are sent immediately. This design enables real-time messag-
ing and coordination among agents within each environment
step.

Environment

We introduce CoOSMAC, a benchmark for LLM-based multi-
agent systems, built upon the SMAC (Samvelyan et al. 2019)
and SMACv2 (Ellis et al. 2024) environments. The SMAC
benchmark focuses on micromanagement tasks in the Star-
Craft IT video game. In each SMAC scenario, there are mul-
tiple allied and enemy units, where each allied unit is con-
trolled by a distinct agent. The environment is partially ob-
servable, requiring agents to act based on their own limited
observations while coordinating with allies to defeat all en-
emy units.

SMACV2 extends the original SMAC environment by
incorporating procedural content generation, which intro-
duces variability by randomizing initial unit positions and
the types of units present in each episode.

CoSMAC introduces modified SMACvV2 scenarios, as
well as entirely new custom SMAC scenarios that focus
on the communication aspect. It modifies the agents’ ob-
servations — originally provided by SMAC and SMACV2 —
and transforms them into natural language text. The agent’s

prompt example template is provided at Table 2, and the
overall diagram of the environment is provided at Figure 1.

Following the SMACv2 approach, CoOSMAC employs
procedural content generation in its scenarios and random-
izes the initial positions of units, spreading allied agents
across the map. This makes communication crucial for
agents to regroup. The find, find_double and find_complex
scenarios also incorporate terrain modifications, creating
isolated ground sections that prevent allied agents from see-
ing each other.

Using StarCraft II and SMAC as the base environ-
ment makes CoSMAC more object-based compared to
purely communication-focused games such as Werewolf.
In SMAC, agents interact with objects that are fully gov-
erned by the game’s rules — for example, the map’s ter-
rain and enemy units — and these interactions are con-
strained to the set of actions provided by the game. More-
over, SMAC introduces stochastic and partially observable
scenarios with randomized initial states, in contrast to the
Collab-Overcooked (Sun et al. 2025) benchmark. Compar-
ison of CoOSMAC with other LLM-MAS is provided at Ta-
ble 1.

Scenarios

In this section, we describe the proposed CoSMAC scenar-
ios that emphasize the role of communication. These scenar-
ios require agents to communicate in order to coordinate fo-
cused fire on specific enemies, locate allies across the map,
and regroup effectively. Screenshots of the terrain of maps
are shown at Figure 2.

Micromanagement Scenarios

In the Micromanagement group of scenarios, several allied
units are randomly scattered across the map at the beginning
of each episode, while enemy units are placed together at a
random location. Although the allied agents have a numer-
ical advantage, if they fail to regroup before being discov-
ered, the enemy can eliminate them one by one. These sce-
narios do not involve unit-type randomization, but they are
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Figure 1: CoOSMAC Environment structure. An LLM-based agent receives a text prompt, which is constructed using the current
SMAC observation, messages history and observations history. In a response to that prompt, the LLM-agent generates an
answer, containing both selected action and a message sent to other agents.

Figure 2: Screenshot examples of the proposed SMAC scenarios: (left) support and support_double; (center) find and

find_double; (right) find_consequent.

the closest to the SMACv2 scenarios among all groups, since
units start from fully randomized positions across the map.
Even with successful cooperation, agents must demonstrate
strong micromanagement skills in order to achieve victory.

In the 3m_vs_2m scenario, all units are Marines — a basic
ranged combat unit — with three allied Marines and two en-
emy Marines. The 4m_vs_3m scenario, which features four
allied Marines against three enemy Marines, is a more chal-
lenging version of 3m_vs_2m, as the allies’ numerical advan-
tage is smaller.

The 3z_vs_Ic scenario introduces mixed unit types: the al-
lied side controls three Zealots, while the enemy controls a
single Colossus, a highly powerful ranged unit. Despite be-
ing outnumbered, the Colossus poses a serious threat due to
its superior stats.

Communication-Micromanagement Scenarios

The group of Communication-Micromanagement scenar-
ios requires agents both to communicate effectively and
to demonstrate strong micromanagement skills in order to
achieve victory. Scenarios in this group feature randomized
starting positions for units; however, these positions are se-
lected from a fixed set of predefined configurations. Also,
the environment’s step length is increased for these scenar-
ios in order to decrease the number of steps required for
finishing each episode: the SMAC’s parameter step_mul is
increased from the default value 8 to 25.

In the support scenario, there are two allied units: a Medi-
vac, placed at the center of the map, and a Marauder, posi-
tioned at one of four possible locations (top, bottom, left,
or right edge of the map). The Marauder is surrounded by
cliffs, making it immobile. Nearby, a group of three en-
emy Marines is placed. Since the Marauder cannot defeat
all three enemies alone, it requires timely support from the



You are an agent, controlling a unit in the StarCraftIl
game. This is a modified version of the game, turned into
a turn-based strategy. Each turn you must choose an ac-
tion: to wait, to move, or to shoot an enemy. You may also
communicate with your allies, for example, to coordinate
attack on enemies.

Your unit type is {unit_type}. Your name is
{unit_name}.

Allies observation history:

Ally {unit_name}: x: {posx}; y: {pos.y}; health:
{unit_health}.

Ally...

Enemies observation history:
Enemy...

Allies messages history:
Step 0, Agent {unit_name}: ...

Current step number: {t}. Your available actions are:
{available_actions}

Select an action with a JSON object with the following
format:
{response_format}

Table 2: Agent’s prompt example template.

Medivac. To secure victory, the Medivac must locate the Ma-
rauder and provide assistance, which demands communica-
tion between the units, as the Marauder starts outside the
Medivac’s vision range.

The support_double scenario extends the support scenario
by introducing two Medivacs at the center of the map and
two separate groups, each consisting of a Marauder and
three enemy Marines, positioned at different map edges. To
succeed, each Medivac must locate and support one of the
Marauders.

In the choice scenario, thee allies — two Marauders and a
Marine — are placed in the three points of map. At the be-
ginning of each episode, the agents are placed at fixed po-
sitions: the central agent — a Marauder — always starts at
the center of the map, while the other two agents randomly
switch between two predefined locations. A group of two en-
emy Marines is placed near the not central Marauder, while
a group of three enemy Marines is positioned near the al-
lied Marine. The starting positions of the allied groups are
widely separated, such that the central unit cannot observe
the positions of the other allies. However, the distance be-
tween the units still allows the central Marauder to reach and
support the second Marauder before this unit is eliminated,
enabling them to regroup and coordinate an attack against
the stronger enemy group. Successful coordination is key to
defeating the group of five enemy Marines.

Communication Scenarios

Group of Communication Scenarios contains maps that fo-
cus exclusively on the communication aspect of the game,
while minimizing the role of unit micromanagement. This

Hyper-parameter Value
Number of epochs 3
Optimizer AdamW
AdamW (3, 0.9
AdamW (2 0.999
LoRA « 32
LoRA dropout 0.1

r 16

Table 3: The hyper-parameters used for model fine-tuning.

is achieved by modifying unit types in the StarCraft II Edi-
tor: enemy units are set to deal no damage, and allied units
can eliminate an enemy unit with a single attack. We in-
troduce three scenarios in this group: find, find_double, and
find_consequent.

In the find scenario, there are two allied units: a single Ma-
rine positioned at the center of the map and a single Medi-
vac placed randomly at either the top, bottom, left, or right
edge of the map. Near the Medivac, a single enemy Marine
is placed so that they see each other at the beginning of the
episode. Both the Medivac and the enemy Marine are immo-
bile. To achieve victory, the allied Marine must determine
which edge of the map contains the Medivac and the enemy
Marine. Due to time constraints, the Marine cannot explore
multiple edges within a single episode, making it essential
for the Medivac to communicate the enemy’s location. This
coordination is necessary for the agents to achieve high per-
formance in the scenario.

The find_double scenario is a simple modification of find.
It features two allied Marines at the center of the map and
two Medivac-enemy Marine pairs, each placed randomly at
two different edges. To win, each allied Marine must move
to a different edge where enemies are located.

The find_consequent scenario is another variation of find.
It still begins with a single allied Marine at the center of
the map, but at the start of the episode, an additional Medi-
vac—enemy Marine pair is placed in a corner near the first
pair. For example, if the first pair is placed at the top edge,
then the second pair is randomly placed either at the top-left
or top-right corner.

Experiments

In this section, we evaluate several zero-shot large language
models (LLMs), both proprietary and open-source, and train
a multi-agent reinforcement learning (MARL) approach —
QMIX (Rashid et al. 2020) — in which agents cannot com-
municate with each other. This comparison allows us to as-
sess the performance limits of traditional MARL approaches
on the proposed scenarios relative to zero-shot LLMs. We
trained QMIX for 2,050,000 steps on each scenario with ar-
chitecture and the parameters as in (Rashid et al. 2020), with
the Adam (Kingma 2014) optimizer with the learning rate
parameter set to 0.001.

We also used the episodes generated by the evaluated
LLMs as a training dataset for fine-tuning the Qwen2.5-
7B (Team 2024) model using LoRA‘(Hu et al. 2022). For
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Step 6 | Andrew

Bob, still holding at (24,32) due
to your immobility warnings. Can
you finally move this turn? We
need you mobile to heal and
converge on Marine@ at (4,35). If Waits
immobilized again, we must
reassess strategy..

Figure 3: Example of order obedience resulting in defeat. Model used: Deepseek R1, scenario: find. In that scenario Agent
Bob is immobile. Bob decides to wait until mobility is restored and instructs Agent Andrew to not approach an enemy, which

ultimately results in a defeat due to timeout.

training, we included only the episodes in which the agents
achieved victory and removed the reasoning parts from the
models’ responses. The hyperparameters used for training
are shown in Table 3.

Since agents have access to their own global coordinates
and the coordinates of all visible units, and can communi-
cate globally with all other agents (even those outside their
field of vision), the primary advantage of communication
lies in enabling agents to share positional information. This
facilitates efficient regrouping. However, this requires that
an agent be capable not only of determining when its coordi-
nates are important to share with allies, but also of correctly
interpreting received coordinates, comparing them with its
own position, and determining the optimal movement tra-
jectory based on that information and the current state of the
environment.

In the Communication scenarios, this ability to exchange
and follow positional information is crucial. These scenar-
ios are highly constrained in terms of agent actions and have
strict time limits. Furthermore, because enemies in these

scenarios do not deal damage and are eliminated with a
single attack, the main challenge lies in finding enemies
quickly. The limited time window leaves almost no room
for error.

The comparison of winrates for the Communication sce-
narios is shown in Table 4. Models such as Gemini 2.5
Flash (Comanici et al. 2025), DeepSeek R1 (DeepSeek-
Al 2025), o4-mini, and GLM 4.5 (Zeng et al. 2025)
demonstrated the best communication abilities. The gpt-
0ss-120b (Agarwal et al. 2025) model occasionally shared
agents’ coordinates but did so inconsistently, resulting in
relatively poor performance. The Llama 3.3 70B model
also tended to exchange coordinate information, but typi-
cally failed to analyze it correctly, often choosing the wrong
movement direction.

While the find scenario is relatively straightforward (as it
contains only a single enemy unit), the find_double scenario
poses greater difficulty for LLM agents. Here, both attack-
ing units start at the center of the map and must split in dif-
ferent directions to locate enemies. Most models fail to do



Model find find_double find_consequent
Gemini 2.5 Flash 0.860 +0.100  0.040 £0.056  0.460 + 0.143
Deepseek R1 0.660 +£0.136  0.220 =0.119  0.180 £0.110
04-mini 0.680 £0.134 0.020£0.040  0.140 £ 0.100
GLM 4.5 0.500 +0.144 0.060 +0.068  0.180 £0.110
gpt-0ss-120b 0.240 £0.123  0.000 = 0.000  0.020 £ 0.040
Llama 3.3 70B 0.260 +0.126  0.000 & 0.000  0.040 £ 0.056
Qwen3 Coder 480B A35B  0.220 £0.119  0.000 £ 0.000  0.080 £+ 0.078

Qwen3 235B A22B 0.360 £ 0.138  0.000 £ 0.000  0.040 £ 0.056
Qwen2.5 7B Fine-Tuned 0.220+0.119  0.040 £0.056  0.040 £ 0.056
QMIX 0.160 £ 0.105 0.180 +0.110  0.400 + 0.141

Table 4: Communication scenarios, Winrate.

Model Micromanagement ~Micromanagement-Communication ~Communication
Gemini 2.5 Flash 0.213 £ 0.066 0.053 £ 0.036 0.453 £+ 0.081
Deepseek R1 0.351 & 0.098 0.160 £ 0.059 0.353 £ 0.077
04-mini 0.147 £ 0.057 0.080 £ 0.044 0.280 £ 0.073
GLM 4.5 0.160 £ 0.059 0.113 £ 0.051 0.247 £ 0.070
gpt-0ss-120b 0.047 £0.034 0.013 £0.019 0.087 £ 0.046
Llama 3.3 70B 0.207 £ 0.066 0.020 £ 0.023 0.100 £ 0.049
Qwen3 Coder 480B A35B 0.060 £ 0.038 0.000 £ 0.000 0.100 £ 0.049
Qwen3 235B A22B 0.147 £ 0.057 0.067 £ 0.040 0.133 £ 0.055
Qwen2.5 7B Trained 0.153 £0.058 0.060 £+ 0.038 0.100 £ 0.049
QMIX 0.647 £ 0.077 0.473 £ 0.081 0.280 £ 0.073

Table 5: Winrate across all groups of scenarios.

so, keeping both agents together and thus losing due to the
time limit. Only the DeepSeek R1 model achieved results
comparable to QMIX in this scenario. The final scenario in
this group, find_complex, featuring a single attacking agent
and two enemy units, remained very challenging for all LLM
agents. The QMIX algorithm, by contrast, exploited the time
constraint effectively, checking different edges of the map
within a single episode and achieving a relatively high 40%
winrate, which is still below the Gemini 2.5 Flash winrate of
46%.

The Micromanagement-Communication scenarios proved
to be the most challenging for LLM agents, as they almost
completely failed on the support_double and choice maps.
These scenarios require near-perfect micromanagement, and
even when LLM agents communicated correctly, they still
failed to achieve victory due to insufficient micromanage-
ment skills.

Conversely, the Micromanagement scenarios provided
more tolerance for mistakes, allowing LLM agents to
achieve higher scores — though still below QMIX perfor-
mance. The overall win rates across all scenario groups are
shown in Table 5.

We observed that agents make different types of errors
depending on the degree of a model’s understanding of the
situation it is in. Models that performed better on the bench-
mark — namely Gemini 2.5 Flash, DeepSeek R1, 04-mini,
and GLM 4.5 — tend to communicate correctly and infor-
matively: they provide allies with information about their
own unit types, observed enemies, coordinates, and selected

actions. However, these models sometimes confuse cardinal
directions — for example, moving south when the enemy is to
the north — and may continue moving in the wrong direction
even as the distance between coordinates increases.

These higher-performing models also tend to follow or-
ders from other agents, even when doing so leads to defeat.
Figure 3 illustrates an example of such an agent conversation
in the find scenario using GLM 4.5. In this case, a Medivac
unit is immobile and repeatedly instructs a Marine unit to
wait until its mobility is restored. The Marine complies, re-
sulting in a defeat by timeout. GLM 4.5 also shows a ten-
dency, in communication-based scenarios, to ignore oppor-
tunities to attack: the agent may continue to move or wait,
and sometimes reports that an enemy is out of range even
when the observation explicitly states that the enemy can be
shot.

Models that performed worse on the benchmark — such
as Llama 3 70B, Qwen3 Coder 480B A35B, Qwen3 235B
A22B, and the fine-tuned Qwen 2.5 7B - tend not to com-
municate coordinates or fail to interpret coordinates shared
by other agents. These models appear to lack the compre-
hension necessary to process spatial information correctly.
Despite this limitation, they still tend to be consistent in
their action selection, allowing them to explore the map and
achieve results competitive with QMIX on the find scenario.



Conclusion

In this paper, we introduced Communicative SMAC (CoS-
MAC) — a new benchmark designed to evaluate the com-
munication and coordination capabilities of large lan-
guage model (LLM)-based agents in multi-agent environ-
ments. By extending the widely adopted SMAC framework
with communication-centric scenarios, CoOSMAC provides
a structured and reproducible testbed for studying emergent
communication behaviors and cooperative strategies under
partial observability. We proposed three groups of scenarios
within this benchmark, namely Communication, Microman-
agement, and Micromanagement-Communication, which
enable the analysis of different aspects of LLM agents’ per-
formance.

We conducted experiments comparing several LLMs,
both open-source and closed-source, and additionally
trained the QMIX algorithm without inter-agent communi-
cation to assess the performance of traditional MARL ap-
proaches on the proposed benchmark. The results show that
while LLM-based agents generally outperform QMIX in the
Communication scenarios, the micromanagement aspects of
the environment remain highly challenging for them, lead-
ing to poorer performance in scenarios that require precise
control and coordination.

References

Agarwal, S.; Ahmad, L.; Ai, J.; Altman, S.; Applebaum,
A.; Arbus, E.; Arora, R. K.; Bai, Y.; Baker, B.; Bao, H.;
et al. 2025. gpt-0ss-120b & gpt-0ss-20b model card. arXiv
preprint arXiv:2508.10925.

Bailis, S.; Friedhoff, J.; and Chen, F. 2024. Werewolf arena:
A case study in llm evaluation via social deduction. arXiv
preprint arXiv:2407.13943.

Comanici, G.; Bieber, E.; Schaekermann, M.; Pasupat, I.;
Sachdeva, N.; Dhillon, L.; Blistein, M.; Ram, O.; Zhang,
D.; Rosen, E.; et al. 2025. Gemini 2.5: Pushing the fron-
tier with advanced reasoning, multimodality, long context,
and next generation agentic capabilities. arXiv preprint
arXiv:2507.06261.

DeepSeek-Al. 2025. DeepSeek-R1: Incentivizing Rea-
soning Capability in LLMs via Reinforcement Learning.
arXiv:2501.12948.

Deng, Y.; Ma, W,; Fan, Y.; Song, R.; Zhang, Y.; Zhang, H.;
and Zhao, J. 2024. Smac-rl: The emergence of intelligence
in decision-making tasks. arXiv preprint arXiv:2410.16024.
Dong, Y.; Jiang, X.; Jin, Z.; and Li, G. 2024. Self-
collaboration code generation via chatgpt. ACM Transac-
tions on Software Engineering and Methodology, 33(7): 1-
38.

Ellis, B.; Cook, J.; Moalla, S.; Samvelyan, M.; Sun, M.; Ma-
hajan, A.; Foerster, J.; and Whiteson, S. 2024. Smacv2: An
improved benchmark for cooperative multi-agent reinforce-
ment learning. Advances in Neural Information Processing
Systems, 36.

Ferrag, M. A.; Tihanyi, N.; and Debbah, M. 2025. From
llm reasoning to autonomous ai agents: A comprehensive
review. arXiv preprint arXiv:2504.19678.

Hu, E. J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang,
S.; Wang, L.; Chen, W.; et al. 2022. Lora: Low-rank adapta-
tion of large language models. /ICLR, 1(2): 3.

Huang, D.; Bu, Q.; Zhang, J. M.; Luck, M.; and Cui,
H. 2023. Agentcoder: Multi-agent-based code generation
with iterative testing and optimisation. arXiv preprint
arXiv:2312.13010.

Huang, X.; Liu, W.; Chen, X.; Wang, X.; Wang, H.; Lian,
D.; Wang, Y.; Tang, R.; and Chen, E. 2024. Understand-
ing the planning of LLM agents: A survey. arXiv preprint
arXiv:2402.02716.

Kingma, D. P. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980.

Park, J. S.; O’Brien, J.; Cai, C. J.; Morris, M. R.; Liang, P.;
and Bernstein, M. S. 2023. Generative agents: Interactive
simulacra of human behavior. In Proceedings of the 36th
annual acm symposium on user interface software and tech-
nology, 1-22.

Rashid, T.; Samvelyan, M.; De Witt, C. S.; Farquhar, G.; Fo-
erster, J.; and Whiteson, S. 2020. Monotonic value function
factorisation for deep multi-agent reinforcement learning.
The Journal of Machine Learning Research, 21(1): 7234—
7284.

Samvelyan, M.; Rashid, T.; De Witt, C. S.; Farquhar, G.;
Nardelli, N.; Rudner, T. G.; Hung, C.-M.; Torr, P. H.; Fo-
erster, J.; and Whiteson, S. 2019. The starcraft multi-agent
challenge. arXiv preprint arXiv:1902.04043.

Sun, H.; Zhang, S.; Niu, L.; Ren, L.; Xu, H.; Fu, H.; Zhao, F.;
Yuan, C.; and Wang, X. 2025. Collab-Overcooked: Bench-
marking and evaluating large language models as collabora-
tive agents. arXiv preprint arXiv:2502.20073.

Team, Q. 2024. Qwen2.5: A Party of Foundation Models.
Vezhnevets, A. S.; Agapiou, J. P.; Aharon, A.; Ziv, R;
Matyas, J.; Duéfiez-Guzman, E. A.; Cunningham, W. A;
Osindero, S.; Karmon, D.; and Leibo, J. Z. 2023. Gener-
ative agent-based modeling with actions grounded in physi-
cal, social, or digital space using Concordia. arXiv preprint
arXiv:2312.03664.

Wang, X.; Chen, Y.; Yuan, L.; Zhang, Y.; Li, Y.; Peng, H.;
and Ji, H. 2024. Executable code actions elicit better 1lm
agents. In Forty-first International Conference on Machine
Learning.

Xie, C.; and Zou, D. 2024. A Human-Like Reasoning
Framework for Multi-Phases Planning Task with Large Lan-
guage Models. arXiv preprint arXiv:2405.18208.

Xie, Q.; Feng, Q.; Zhang, T.; Li, Q.; Zhang, Y.; Feng, R.;
and Gao, S. 2024. Human Simulacra: A Step toward the
Personification of Large Language Models. arXiv preprint
arXiv:2402.18180.

Xu, Y.; Wang, S.; Li, P.; Luo, F.; Wang, X.; Liu, W.; and Liu,
Y. 2023. Exploring large language models for communica-
tion games: An empirical study on werewolf. arXiv preprint
arXiv:2309.04658.

Zeng, A.; Lv, X.; Zheng, Q.; Hou, Z.; Chen, B.; Xie, C.;
Wang, C.; Yin, D.; Zeng, H.; Zhang, J.; et al. 2025. Glm-
4.5: Agentic, reasoning, and coding (arc) foundation models.
arXiv preprint arXiv:2508.06471.



