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Abstract

Musical instrument classification is essential for music information retrieval (MIR)
and generative music systems. However, research on non-Western traditions,
particularly Persian music, remains limited. We address this gap by introducing a
new dataset of isolated recordings covering seven traditional Persian instruments,
two common but originally non-Persian instruments (i.e., violin, piano), and vocals.
We propose a culturally informed data augmentation strategy that generates realistic
polyphonic mixtures from monophonic samples. Using the MERT model (Music
undERstanding with large-scale self-supervised Training) with a classification head,
we evaluate our approach with out-of-distribution data which was obtained by
manually labeling segments of traditional songs. On real-world polyphonic Persian
music, the proposed method yielded the best ROC-AUC (0.795), highlighting
complementary benefits of tonal and temporal coherence. These results demonstrate
the effectiveness of culturally grounded augmentation for robust Persian instrument
recognition and provide a foundation for culturally inclusive MIR and diverse
music generation systems. Code is available at: Github

1 Introduction

Musical instrument classification is a core task in music information retrieval (MIR), underpinning
applications such as automatic transcription, recommendation, audio analysis, and music generation,
where understanding instrument timbres enables models to synthesize realistic outputs and have better
captions for training text-to-music models [17, 8, 11, 16]. Despite significant progress in Western
music (e.g., classification of violin, piano, guitar via CNN/RNNs), non-Western traditions, particularly
modal systems like Persian Dastgāh, remain underrepresented in MIR research [6, 27, 23, 20, 1, 15].
Persian music features microtonal nuances, ornamentation, and heterophonic textures that pose
unique challenges for instrument identification. Recent works begin to address these gaps. The
Persian Piano Corpus (PPC) provides a Dastgāh-annotated dataset with instrument-level metadata,
expanding resources available for modal and instrument studies [24]. Nevertheless, most instrument
classification models remain monophonic and trained on Western datasets, with minimal attention
to polyphonic Persian music. To this end, we curated a dataset of isolated recordings of seven
traditional Persian instruments and two commonly used non-traditional instruments and vocals. We
then applied polyphonic augmentation (random mixing) to simulate real-world musical textures
[4]. Leveraging the Music undERstanding model with large-scale self-supervised Training (MERT)
[21], we demonstrate state-of-the-art multi-instrument classification accuracy in polyphonic Persian
settings.

The main contributions of this work are as follows: (1) A new publicly available dataset is
introduced, consisting of isolated recordings from seven traditional Persian instruments, supplemented
with violin, piano, and vocal samples. (2) A culturally informed data augmentation strategy is
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Figure 1: Dataset construction pipeline - more details at Appendix A.

proposed, designed to generate realistic polyphonic mixtures from monophonic samples through
alignment of both modal structure dastgāh and tempo. (3) Out-of-distribution generalization is
evaluated by assessing model performance on authentic Persian music recordings containing naturally
occurring and complex instrument combinations.

2 Related Work

Early musical instrument classification relied on hand-crafted features (e.g., MFCCs, spectral de-
scriptors) with classical models such as SVMs and KNNs, later surpassed by CNN/RNN approaches
on Western-focused datasets (e.g., IRMAS, MedleyDB) [28, 14, 6, 7, 5]. Recent progress is driven
by self-supervised and foundation models that learn robust audio representations from unlabeled
music, notably OpenL3, CLMR, and MERT [9, 26, 21]. These models report strong results for
multi-instrument tagging and are used as universal feature backbones across MIR tasks.

Despite these advances, coverage remains skewed toward Western instruments and monophonic
settings, limiting generalization to polyphonic mixtures and non-Western repertoires. For Persian
music, prior work addressed Radif/Dastgāh recognition and limited instrument identification from
solo recordings [20, 12, 3]. A recent study compared self-supervised models on the Nava dataset
and found MERT superior for Persian MIR tasks but only in single-label settings and without public
artifacts [2]. Newly released resources begin to close this gap: HamNava provides multi-label, crowd-
sourced annotations of Iranian classical music (instruments and vocals) and establishes baselines
for cross-cultural evaluation [22]. Beyond Persian music, fresh datasets and methods also target
non-Western traditions and long-form polyphonic recognition, including hierarchical detection for
minority/rare instruments and song-level aggregation of snippet predictions [25, 10, 18].

Data augmentation remains central when labeled data are scarce. Alongside time/pitch transforms
and mix-based strategies for polyphony [19], recent works emphasize domain-aware mixing and label
smoothing/soft-labeling for ambiguous overlaps, which are especially relevant in Persian ensembles
[22]. Building on these trends, we adapt MERT for multi-label classification of Persian instruments
and use polyphonic augmentation tailored to common Persian instrumentations.

3 Method

3.1 Data Preparation

3.1.1 Dataset Construction

Our dataset is based on a monophonic dataset consisting of 5 second solo performances of ten
diffrent instruments- Ney, Tar, Santur, Kamancheh, Daaf, Tonbak, Piano, Violin, Sitar and Avaz
(Vocal - with focus on male vocals in persian traditional style). Non percussion instruments in this
dataset are labeled with their key in persian music system (dastgah). These audio clips, originating
in open-source performances of various artists, include a broad spectrum of timbral and technical
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Table 1: Comparison of constructed Polyphonic (P) samples and Monophonic (M) samples per
instrument. Columns represent dastgah. Dastgah (key) is not defined for percussive instruments
(Tonbak and Daaf).

Chahargah Homayoon Mahur Nava Rast-Panjgah Segah Shur Total

P M P M P M P M P M P M P M P M
Avaz 2326 396 2365 62 2287 75 2357 125 0 0 2341 102 2304 180 13980 940
Daaf - - - - - - - - - - - - - - 1 1302
Kaman 1423 248 1504 339 1493 245 1416 260 1418 148 1453 199 1445 254 10152 1693
Ney 1945 365 1971 165 1990 166 1914 130 1885 306 1951 390 1976 256 13632 1778
Piano 1665 299 1790 449 1706 151 1645 97 0 0 1775 266 1664 492 10245 1754
Santur 3017 240 3179 323 3064 378 3104 422 3089 269 3089 284 3040 312 21582 2228
Sitar 1942 184 2040 213 1961 157 1928 82 1942 302 2011 218 1910 355 13734 1511
Tar 4041 319 4222 205 4054 305 4168 477 4031 242 3961 63 4048 283 28525 1894
Tonbak - - - - - - - - - - - - - - 1 1572
Violin 2780 360 2915 253 2786 126 2965 412 2600 163 2887 642 2836 169 19769 2125

Total 19139 2411 19986 2009 19341 1603 19497 2005 14965 1430 19468 2164 19223 2301 131621 16797

characteristics as well as diverse acoustic settings. Capturing natural variability in audio recordings
is crucial for MIR tasks, as it improves the generalization of models to real-world conditions [13].
The inclusion of vocal tracks (avaz) is particularly significant, as Persian music often features highly
stylized vocal performances that are central to its cultural context. For the construction of the dataset
we used solo performances and split the tracks from traditional Persian pieces. To ensure uniformity
across the dataset, we removed silent sections from each track before splitting them into 5-second
segments. This approach ensured consistency across the samples, making the dataset suitable for
various machine-learning tasks. The final dataset comprises 9 classes of instruments plus vocal for a
total of nearly 16790 audio clips, categorized in terms of key. The exact number of samples per class
is detailed in Table 1.

3.1.2 Data Augmentation Strategy

Given the relatively small size of the initial dataset, we employed a systematic data augmentation
strategy, specifically tailored to Persian music. To simulate realistic polyphonic Persian music, we
developed a method in which multiple monophonic clips are combined based on a shared dastgah and
a similar tempo (BPM). This approach ensures that the synthesized tracks closely mimic authentic
performances, where instruments follow both the same modal structure and a coherent rhythmic pace.
For each augmented sample, a target dastgah is first selected, and all non-percussion clips are drawn
from that dastgah. The BPM of the candidate clips is then estimated using librosa, one value is chosen
as the base tempo, and the remaining clips are time-stretched to match it. Finally, the selected clips
are mixed to create polyphonic audio containing multiple instruments and, in some cases, vocals.

In addition to this main augmentation strategy, which combines both dastgah and tempo constraints,
two alternative datasets were generated to evaluate the contribution of each factor independently. In the
dastgah-only configuration, clips share the same dastgah but are not constrained to a common tempo.
Conversely, in the tempo-only configuration, clips share the same tempo but may belong to different
dastgahs. The final main dataset contains approximately 50,000 synthesized polyphonic samples,
created predominantly using the combined dastgah and tempo approach. Figure 1 demonstrates the
dataset construction pipeline.

3.2 Training

We employed the MERT-v1-330M model to classify Persian and Western musical instruments. The
model extracts rich musical representations from audio inputs using multi-layer features. For multi-
label classification, the original architecture was adapted by adding a classification head on top of the
MERT embeddings, consisting of a fully connected layer that outputs probabilities for each instrument
class. Instead of relying solely on the final layer, the model utilized hidden states from all layers,
combining them via a learnable weighted aggregation mechanism. This dynamic approach allows
the model to determine which layers contribute most to classification, improving multi-instrument
recognition by leveraging both early and late-layer features.

For final classification, a two-layer neural network was used: The first layer aggregates MERT
representation and the second layer outputs logits for the 10 instrument classes, with a sigmoid
activation applied to produce probabilities, since multiple instruments can coexist in a sample.
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Table 2: Performance comparison of different augmentation strategies on the Persian instrument
recognition task, evaluated on the test set comprising authentic Persian music recordings.

Data Augmentation Accuracy ROC-AUC F1-score
Random 0.794 0.750 0.606
BPM 0.807 0.764 0.617
Dastgah 0.841 0.780 0.669
Dastgah+BPM 0.823 0.795 0.652

For an input sample, let yi ∈ {0, 1} represent the true label for the i-th class, and ŷi be the predicted
logit for the same class. The loss for a single sample is given by:

L = − 1

C

C∑
i=1

[yi · log (σ(ŷi)) + (1− yi) · log (1− σ(ŷi))] (1)

where C is the number of classes and σ is the sigmoid function applied to the predicted logit.

3.3 Experimental Setup

For training, we fine-tuned MERT-v1-330M model on our custom dataset of Persian and Western
musical instruments. The dataset contains approximately 50,000 5-second audio samples spanning 10
instrument classes, along with vocals. To evaluate performance in both simple and complex musical
contexts, we used polyphonic samples. In the multi-label polyphonic setting, 50,000 samples were
used for training, 108 samples for evaluation. To assess real-world generalization, we compiled a
test set of 491 five-second excerpts from authentic, unedited Persian music recordings containing
naturally occurring and often complex instrument combinations. All labels in this set were manually
verified by two independent annotators. All models were trained with a batch size of 16 for 10 epochs,
using Binary Cross-Entropy with Logits Loss (as described in Section 3), the AdamW optimizer,
and a learning rate of 1× 10−4. Model performance was assessed using ROC-AUC, Accuracy, and
F1-score metrics.

3.4 Results

Table 2 reports the performance of the three augmentation strategies, along with a random-mixing
baseline, on the Persian instrument recognition task. Among the evaluated methods, the Dastgah-only
configuration achieved the highest accuracy (0.841) and F1-score (0.669) when tested on real-world
polyphonic recordings. In contrast, the Dastgah+BPM strategy yielded the highest ROC-AUC (0.795),
indicating superior ranking capability across label thresholds. The BPM-only variant underperformed
compared to the other augmentation schemes, suggesting that tonal coherence (shared dastgah) has a
stronger impact on recognition than rhythmic alignment alone. Overall, these results demonstrate
that constraining augmented samples to share a common dastgah is a key factor for improving
generalization to authentic music, while the addition of tempo alignment offers further benefits in
ROC-AUC, highlighting complementary effects between tonal and temporal consistency. Further
analyses are presented in Appendix C.

4 Conclusion

We presented a Persian instrument classification framework built on the MERT architecture and
trained using a newly constructed dataset enriched through culturally informed polyphonic data
augmentation. By systematically evaluating three augmentation strategies, shared dastgah, shared
tempo, and the combination of both, we showed that dastgah is the dominant factor for improving
accuracy and F1, while the combination of dastgah and tempo alignment yields the highest ROC-AUC.
This study highlights the importance of culturally grounded augmentation methods for enhancing
model robustness in low-resource MIR scenarios. The proposed dataset and augmentation techniques
have potential applications in automatic music tagging, and data-efficient music generation.
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Appendix A: Dataset Construction Procedure

Each dataset sample was constructed according to the following procedure:

1. Selection of Dastgāh:
A base modal system (dastgāh) was chosen at random from the seven canonical Persian
music systems: Nava, Shur, Homayoon, Segāh, Rāst-Panjgāh, Māhur, and Chahārgāh.

2. Partitioning by Ensemble Prior:
The dataset was divided into five equally sized partitions, each corresponding to a distinct
ensemble prior:

• small ensembles,
• medium ensembles,
• orchestral tracks,
• tracks with vocals,
• random instrument combinations.

Each partition contained the same number of samples, ensuring balanced representation
across ensemble types.

3. Instrument Selection and Sampling:
Within each partition, a specific instrument combination was selected according to its prior.
For every instrument in the chosen combination, an audio sample was drawn in the specified
dastgāh.

4. Tempo Alignment:
The beats per minute (BPM) of all selected samples were computed. One of these BPM
values was designated as the baseline tempo. All other samples were time-stretched to match
this baseline, thereby standardizing tempo across the ensemble.

5. Polyphonic Mixing:
The tempo-aligned samples were subsequently mixed, producing a polyphonic audio sample
representative of the given dastgāh and ensemble prior.

This process ensured systematic variation along two key axes: (i) modal diversity (through the seven
dastgāhs) and (ii) ensemble texture (through balanced priors). The resulting dataset exhibits both
stylistic authenticity and structural balance, making it suitable for downstream tasks in computational
ethnomusicology and generative modeling.

Appendix B: Beat Tracking with librosa.beat.beat_track

To estimate tempo and beat positions, we employed the librosa.beat.beat_track function, a
widely used algorithm for beat tracking in music information retrieval. The method combines onset
detection, tempo estimation, and dynamic programming to provide both the global tempo (in beats
per minute) and the sequence of beat times.

Algorithm overview. First, the audio signal is transformed into a spectral representation, from which
an onset strength envelope is derived. This one-dimensional curve highlights moments of increased
spectral energy corresponding to note or drum onsets. Next, the periodicity of the envelope is
analyzed to estimate the most likely tempo. The algorithm applies a bias towards musically plausible
tempos, while accounting for common ambiguities such as half- and double-tempo errors. Finally,
beat positions are selected using a dynamic programming procedure that balances two criteria: (i)
alignment with strong onsets and (ii) regularity consistent with the estimated tempo. This produces
an optimal sequence of beat times.

Motivation for use. This approach is computationally efficient, generalizes well across a wide range
of musical genres, and requires no training data. It provides a robust foundation for higher-level tasks
such as feature synchronization, music segmentation, remixing, or time-aligned annotation.
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Figure 2: Accuracy of different models across varying decision thresholds. Each curve represents a
distinct model configuration.

Appendix C: Experiments

To evaluate the trained models more precisely and analyze the recognition performance of individual
instruments, Table 3 reports the per-label accuracy for all ten instrument classes. This detailed
breakdown provides a clear view of how each model performs across both Persian (non-Western)
and Western instruments. Although Western instruments such as piano and violin generally achieve
slightly higher detection accuracy, the results indicate that Persian instruments like kamanche, daaf,
and santur are also recognized with strong reliability. Overall, the table demonstrates that the
proposed models achieve balanced performance across culturally diverse instrument categories.

Table 3: Per-label accuracy for four models in the multi-label setting.

Label Dastgah+BPM Dastgah BPM Random

kaman 0.866 0.882 0.849 0.835
ney 0.776 0.788 0.794 0.752
santur 0.859 0.823 0.794 0.823
sitar 0.711 0.859 0.701 0.760
tar 0.715 0.737 0.747 0.707
tonbak 0.768 0.804 0.798 0.798
daaf 0.870 0.847 0.813 0.715
avaz 0.908 0.929 0.894 0.898
piano 0.849 0.821 0.782 0.821
violin 0.906 0.923 0.898 0.835

Figure 2 illustrates how the classification accuracy of each model varies with different decision
thresholds. This analysis helps determine the optimal trade-off between sensitivity and precision
for multi-label prediction. As the threshold increases, accuracy generally stabilizes, revealing the
robustness of the proposed models across a wide range of cutoff values.

Table 4 reports the results of the ablation study comparing two training strategies: freezing the MERT
encoder (and training only the classifier head) versus applying LoRA fine-tuning with a rank of
16. Overall, both settings achieve reasonable performance, with the LoRA configuration slightly
improving over the frozen encoder in most cases—for example, the Dastgah+BPM model increases
its ROC–AUC from 0.757 to 0.777 and accuracy from 0.779 to 0.795. However, when compared
to full fine-tuning of both the MERT encoder and classifier head, these partial adaptation strategies
still underperform. Full fine-tuning consistently achieves the highest ROC–AUC and accuracy across
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Table 4: Ablation study on training strategy. Comparison between freezing the MERT encoder
(training only the classifier head) and fine-tuning with LoRA (rank = 16).

Model Frozen MERT Encoder LoRA (rank = 16)

ROC–AUC Accuracy ROC–AUC Accuracy

Dastgah + BPM 0.757 0.779 0.777 0.795
Dastgah 0.754 0.733 0.757 0.713
BPM 0.768 0.782 0.776 0.749
Random 0.772 0.786 0.770 0.773

all model configurations, indicating that updating the entire encoder provides better task-specific
representation learning than either freezing or parameter-efficient adaptation methods.
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