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Abstract

Existing methods for unsupervised domain adaptation often rely on minimizing
some statistical distance between the source and target samples in the latent space.
To avoid the sampling variability, class imbalance, and data-privacy concerns
that often plague these methods, we instead provide a memory and computation-
efficient probabilistic framework to extract class prototypes and align the target
features with them. We demonstrate the general applicability of our method on a
wide range of scenarios, including single-source, multi-source, class-imbalance,
and source-private domain adaptation. Requiring no additional model parameters
and having a moderate increase in computation over the source model alone, the
proposed method achieves competitive performance with state-of-the-art methods.

1 Introduction

In many real-world applications, such as healthcare and autonomous driving, data labeling can be
expensive and time-consuming. To make predictions on a new unlabeled dataset, one may naively
use an existing supervised model trained on a large labeled dataset. However, even subtle changes
in the data-collection conditions, such as lighting or background for natural images, can cause a
model’s performance to degrade drastically [1]. This shift in the input data distribution is referred to
in the literature as covariate shift [2]. By leveraging the labeled samples from the source domain and
unlabeled samples from the target domain, unsupervised domain adaptation aims to overcome this
issue, making the learned model generalize well in the target domain [3].

Ben-David et al. [4, 5] provide an H-divergence based theoretical upper bound on the target error.
Ganin [6] popularizes learning an invariant representation between the source and target domains
to minimize this divergence. Numerous prior methods [7–12] follow this trend, focusing on using
the source and target samples for feature alignment in the latent space. While this approach can
reduce the discrepancy between domains, directly using the source and target samples for feature
alignment has the following problems. First, several commonly used methods that can be used to
quantify the difference between two empirical distributions, such as maximum mean discrepancy
(MMD) [13] and Wasserstein distance [14, 15], are sensitive to outlier samples in a mini-batch when
used to match the source and target marginal distributions [16, 17]. We attribute this problem to the
sampling variability of both the source and target samples. Second, while we typically assume that
the two domains share the same label space, we cannot guarantee that the samples drawn from the
source and target domains will cover the same set of classes in each mini-batch. Especially, if the
label proportions shift between domains, learning domain invariant representation might not lead
to improvements over using the source data alone to train the model [18]. If we pull the support of
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Figure 1: This figure exhibits a diagram of Prototype-oriented Conditional Transport (PCT). Unlike existing
methods that align the target and source features, our method aligns the target features with class prototypes.
The gray arrow indicates that the gradients of the prototypes do not back-propagate through the transport loss.

the source and target feature representations from different classes closer together, the classifier will
be more likely to misclassify those examples. Finally, aligning the target features to source features
means that we need access to both the source and target data simultaneously. In applications such as
personal healthcare, we may not have access to the source data directly during the adaptation stage;
instead, we may only be given access to the target data and the model trained on the source data.

We propose an algorithm that constructs class prototypes to represent the source domain samples in
the latent space. Using the prototypes instead of source features avoids the previously mentioned
problems: 1) sampling variability in the source domain, 2) instance class-mismatching in a mini-batch,
and 3) source-data privacy concerns. As we expect the classifier to make better predictions on the
target data in regions where the source density is sufficiently high [19], it is natural to consider
encouraging the feature encoder to map the target data close to these prototypes. Motivated by the
cluster assumption [20] (decision boundaries should not cross high-density regions of the data), we
provide a method to transport the target features to these class prototypes and vice versa. We further
extend our bi-directional transport to address the potential shift in label proportions, a common
problem that has been studied [21–25] but that has been often overlooked in prior works [6, 7, 26].

Compared to existing methods, the proposed one has several appealing aspects. First, it does not
rely on adversarial training to achieve competitive performance, making the algorithm robust and
converge much faster. Moreover, learnable prototypes not only avoid expensive computation but also
bypass the need to directly access the source data. This attribute makes our algorithm applicable to
the settings where preserving the source data privacy is a major concern. Unlike clustering-based
approaches that typically require multiple forward passes before an update, our algorithm processes
data in mini-batches for each update and is trained in an end-to-end manner.

We highlight the main contributions of the paper as follows: 1) We utilize the linear classifier’s weights
as class prototypes and propose a general probabilistic framework to align the target features to these
prototypes. 2) We introduce the minimization of the expected cost of a probabilistic bi-directional
transport for feature alignment, and illustrate its superior performance over related methods. 3) We
test the proposed method under multiple challenging yet practical settings: single-source, multi-
source, class-imbalance, and source-private domain adaptation. In comparison to state-of-the-art
algorithms, the proposed prototype-oriented method achieves highly competitive performance in
domain adaptation, while requiring no additional model parameters and only having a moderate
increase in computation over the source model alone.

2 Prototype-oriented conditional transport

In this section, we propose Prototype-oriented Conditional Transport (PCT), a holistic method for
domain adaption consisting of three parts: learning class prototypes, aligning the target features
with learned prototypes using a probabilistic bi-directional transport framework of Zheng and Zhou
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Figure 2: Visualization of different methods on a synthetic dataset, where darker points marked with “·” and
lighter points marked with “×” denote the source and target samples, respectively, and the red and green colors
denote two different classes. For each method, the left plot shows the data space whereas the right plot exhibits
the output of the feature encoder in the latent space. Letters A and B correspond to the two class prototypes in
the latent space. When there is clear class imbalance, DANN, a representative algorithm whose strategy is to
match the marginal feature distributions between the source and target, fails to adapt to the target domain.

[27], and estimating the target class proportions. Our method does not introduce additional model
parameters for aligning domain features, and the model can be learned in an end-to-end manner. We
provide a motivating example of the application of our method on a synthetic dataset in Figure 2.

In domain adaptation, we are given a labeled dataset from the source domain, {(xsi , ysi )}
ns
i=1 ∼ Ds,

and an unlabeled dataset from the target domain, {xtj}
nt
j=1 ∼ Dxt . We focus on the closed-category

domain adaptation and assume that the source and target domains share the same label space, i.e.,
ysi , y

t
j ∈ {1, 2, . . . ,K}, where K denotes the number of classes. The goal of domain adaptation is to

learn a model with low risk on the target samples. The model typically consists of a feature encoder,
Fθ : X → Rdf , parameterized by θ, and a linear classification layer Cµ : Rdf → RK , parameterized
by µ. In prior works [6, 7, 26], the feature encoder is a pre-trained neural network, and the classifier
is a randomly initialized linear layer. To simplify the following notation, we denote fsi = Fθ(xsi )
and f tj = Fθ(xtj) as the feature representations of the source data xsi and target data xtj , respectively.

2.1 Learning class prototypes

Most existing works [6, 7, 26] focus on aligning the source and target features in a latent space. By
contrast, we propose to characterize the features of each class with a class prototype and align the
target features with these class prototypes instead of the source features. This approach has several
advantages. First, the feature alignment between two domains would be more robust to outliers in
the source domain as we avoid using the source samples directly. Second, we do not need to worry
about the missing classes in the sampled mini-batch in the source domain like we do when we align
the features of source and target samples. Prototypes ensure that every class is represented for each
training update. Last but not least, using the inferred prototypes instead of source features allows
adapting to the target domain even without accessing the source data during the adaptation stage,
which is an appealing trait when preserving the source data privacy is a concern (see Table 6).

Previous methods [28–31, 12, 32] construct each class prototype as the average latent feature for
that class extracted by the feature encoder, which is computationally expensive due to the forward
passing of a large number of training samples. We propose to construct class prototypes in the same
latent space but with learnable parameters: [µ1,µ2, . . . ,µK ] ∈ Rdf×K , where the dimension of
each prototype, df , is the same as the hidden dimension after the feature encoder Fθ. This strategy
has been successfully applied by Saito et al. [33] in a semi-supervised learning setting. We learn each
class prototype in a way that encourages the prototype to be close to the source samples associated
with that class in the feature space. In particular, given the prototypes and source samples xsi with
features fsi and labels ysi , we use the cross-entropy loss to learn the prototypes:

Lcls = E(xs
i ,y

s
i )∼Ds

[∑K
k=1− log psik1{ysi=k}

]
, psik :=

exp(µT
k f

s
i+bk)∑K

k′=1
exp(µT

k′f
s
i+bk′ )

, (1)

where bk is a bias term and psik is the predictive probability for xsi to be classified to class k. We
note that this way of learning the class prototypes is closely connected to learning the standard linear
classification layer Cµ on source-only data with the cross-entropy loss. The neural network weights
in the classification layer can be interpreted as the class prototypes. Therefore, compared with source-
only approaches, constructing prototypes in this way introduce no additional parameters. As we show
in Figure 4a, our method requires much fewer parameters than other domain-adaptation methods.
Moreover, it requires much less computation than other prototype-based methods by avoiding the
need to average the latent features for each class.
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2.2 Bi-directional prototype-oriented conditional transport

In this section, we will discuss how we encourage the feature encoder to align the target data with class
prototypes. Our approach is motivated by the cluster assumption, which has been widely adopted
in both semi-supervised learning [20, 34, 35] and domain-adaptation literature [36, 37, 31, 38].
The cluster assumption states that the input data distribution consists of separated clusters and that
instances belonging to the same cluster tend to have the same class labels. This means that the
decision boundaries should not cross data high-density regions. To achieve this goal, we minimize
the expected pairwise cost between the target features and prototypes with respect to two differently
constructed joint distributions. By minimizing the expected costs under these two different joint
distributions, the target feature will be close to the prototypes, far from the decision boundaries.

2.2.1 Moving from target domain to class prototypes

To define the expected cost of moving from the target domain to the class prototypes, we first use
the chain rule to factorize the joint distribution of the class prototype µk and target feature f tj
as p(f tj)πθ(µk |f

t
j), where drawing from the target feature distribution p(f tj) can be realized by

selecting a random target sample xtj ∼ Dxt to obtain f tj = Fθ(xtj). The conditional distribution,
representing the probability of moving from target feature f tj to class prototype µk, is defined as

πθ(µk |f
t
j) =

p(µk) exp(µ
T
k f

t
j)∑K

k′=1
p(µk′ ) exp(µT

k′f
t
j)
, k ∈ {1, . . . ,K}, (2)

where, through the lens of Bayes’ rule, p(µk) is the discrete prior distribution over the K classes
for the target domain, and exp(µTk f

t
j) plays the role of an unnormalized likelihood term, measuring

the similarity between class prototypes and target features. Intuitively, the target features are more
likely to be moved to the prototypes which correspond to dominant classes in the target domain or
which are closer to the target features (or both). Note that in practice we often do not have access
to the target class distribution p(µk). We can use a uniform prior distribution for p(µk). However,
this could be sub-optimal, especially when classes are seriously imbalanced in the target domain. To
address this issue, we propose a way to estimate {p(µk)}Kk=1 in Section 2.3.

We now define the expected cost of moving the target features to class prototypes as:

Lt→µ = Ext
j∼Dxt Eµk∼πθ(µk | ft

j)

[
c(µk,f

t
j)
]

= Ext
j∼Dxt

[∑K
k=1 c(µk,f

t
j)

p(µk) exp(µ
T
k f

t
j)∑K

k′=1
p(µk′ ) exp(µT

k′f
t
j)

]
, (3)

where c(·, ·), a point-to-point moving cost, is defined with the cosine dissimilarity as

c(µk,f
t
j) = 1− µT

k f
t
j

||µk||2||ft
j ||2

. (4)

We also consider other point-to-point costs and present the results in Section 4.2. With Eq. (3), it is
straightforward to obtain an unbiased estimation of Lt→µ with a mini-batch from target domain Dxt .

In this target-to-prototype direction, we are assigning each target sample to the prototypes according
to their similarities and the class distribution. Intuitively, minimizing this expected moving cost
encourages each target feature to get closer to neighboring class prototypes, reducing the violation
of the cluster assumption. If we think of each prototype as the mode of the distribution of source
features for a class, this loss encourages a mode-seeking behavior [27]. Still, this loss alone might
lead to sub-optimal alignment. The feature encoder can map most of the target data to only a few
prototypes. We connect this loss to entropy minimization to elucidate this point.

Connection with entropy minimization. The expected cost of moving from the target domain to
prototypes can be viewed as a generalization of entropy minimization [20], an effective regularization
in many prior domain-adaptation works [39, 33, 40, 17]. If the point-to-point moving cost is

defined as c(µk,f
t
j) = − log ptjk = − log

exp(µT
k f

t
j)∑K

k′=1
exp(µT

k′f
t
j)

and the conditional probability is

πθ(µk |f
t
j) = ptjk =

exp(µT
k f

t
j)∑K

k′=1
exp(µT

k′f
t
j)

(with a uniform prior), then the expected moving cost

becomes: Lt→µ = −Ext
j∼Dxt

[∑K
k=1 p

t
jk log ptjk

]
, which is equivalent to minimizing the entropy on

the target samples. Entropy minimization alone also has a mode-seeking behavior and has the same
tendency to drop some modes (class prototypes). In other words, one trivial solution is to assign the
same one-hot encoding to all the target samples [41, 42].
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2.2.2 Moving from class prototypes to target domain

To ensure that each prototype has some target features located close by and avoid dropping class
prototypes, we propose to add a cost of the opposite direction [27], i.e., moving from the prototypes
to target features. Given a mini-batch, {xtj}Mj=1, of target samples of size M , denoting p̂(f t) =∑M
j=1

1
M δft

j
as the empirical distribution of the target features in this mini-batch, the probabilities of

moving from a prototype µk to the M target features is defined as a conditional distribution:

πθ(f tj |µk) =
p̂(ft

j) exp(µ
T
k f

t
j)∑M

j′=1
p̂(ft

j′ ) exp(µ
T
k f

t
j′ )

=
exp(µT

k f
t
j)∑M

j′=1
exp(µT

k f
t
j′ )
, f tj ∈ {f

t
1, . . . ,f

t
M}. (5)

As opposed to the probabilities of moving a target feature to different class prototypes πθ(µk |f
t
j),

πθ(f tj |µk) normalizes the probabilities across the M target samples for each prototype, which
ensures that each prototype will be assigned to some target features. Then, the expected cost of
moving along this prototype-to-target direction is defined as:

Lµ→t = E{xt
j}Mj=1∼Dxt Eµk∼p(µk)

Eft
j∼πθ(ft

j |µk)

[
c(µk,f

t
j)
]

= E{xt
j}Mj=1∼Dxt

[∑K
k=1 p(µk)

∑M
j=1 c(µk,f

t
j)

exp(µT
k f

t
j)∑M

j′=1
exp(µT

k f
t
j′ )

]
, (6)

which can be estimated by drawing a mini-batch of M target samples.

Finally, combining the classification loss in Eq. (1), target-to-prototype moving cost in Eq. (3), and
prototype-to-target moving cost in Eq. (6), our loss is expressed as

Lcls + Lt→µ + Lµ→t. (7)

Note that we treat µ as fixed in both Lt→µ and Lµ→t. This strategy allows us to apply our method
in the source-data-private setting where we only have access to the source model. We also find
empirically that this leads to more stable training.

2.3 Learning class proportions in the target domain

We propose to infer the class proportions {p(µk)}Kk=1 in the target domain by maximizing the log-
likelihood of the unlabeled target data while fixing the class prototypes µ. Directly optimizing the
marginal likelihood is intractable, so we use the EM algorithm [43–45] to derive the following iterative
updates (see the derivation in Appendix B). We first initialize with a uniform prior: p(µk)0 = 1

K ,
and obtain new estimates at each update step l (starting from 0):

p(µk)l+1 = 1
M

∑M
j=1 π

l
θ(µk |f

t
j), where πlθ(µk |f

t
j) =

p(µk)
l exp(µT

k f
t
j)∑K

k′=1
p(µk′ )l exp(µT

k′f
t
j)
. (8)

Intuitively, the average predicted probabilities over the target examples for each class are used to
estimate the target proportions, with p(µk)l+1 shown above providing an estimate based on a single
mini-batch of M target samples. To estimate it based on the full dataset, we iteratively update it with
p(µk)l+1 ← (1− βl)p(µk)l + βlp(µk)l+1, where we follow the decaying schedule of the learning
rate of the other parameters to set βl = β0(1 + γl)−α, in which γ = 0.0002, α = 0.75. The inintial
value β0 is a hyper-parameter that can be set as either 0 to indicate a uniform prior, or a small value,
such as 0.001, to allow the class proportions to be inferred from the data.

3 Related work

Feature distribution alignment. Most works on domain adaptation with deep learning focus on
feature alignment to align either the marginal distributions [46, 6, 8, 47, 48] or the joint distributions
[7, 26] of the deep features of neural networks. Early works use adversarial-based objectives, which
are equivalent to minimizing the Jensen–Shannon (JS) divergence [49]. When the source and target
domains have non-overlapping supports, the JS divergence fails to supply useful gradients [50, 51]. To
remedy this issue, researchers propose using the Wasserstein distance, which arises from the optimal
transport problem [52]. Courty et al. [9] develop Joint Distribution Optimal Transport (JDOT),
defining the transport cost to be the joint cost in the data and prediction spaces. Several works [10, 12]
extend this framework for deep neural networks. However, solving for the optimal couplings without
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any relaxation is a linear programming problem, which has a complexity of O(M3 logM) [53].
Computing the transport probabilities in our algorithm has a complexity of O(dfMK), which is
the same complexity as computing the predictive probabilities that need to be computed by most
algorithms. In this category, all the works focus on aligning the target features with source features,
whereas we align the target features with prototypes.

Prototype-based alignment. We make two distinctions to existing works in this area. First, prior
domain-adaptation works for classification [29–31] and segmentation [54, 55] utilize prototypes for
pseudo-label assignments. By contrast, we use prototypes to behave as representative samples of the
source features to define the loss. Second, all of these works use some form of average latent features
to construct class prototypes, which is computationally expensive. We instead adopt a parametric
approach to learn the prototypes, avoiding that costly computation.

Learning under shifted class proportions. Although a shift in class proportions between two
domains is a common problem in many applications, it is still largely under-explored. Over the years,
researchers have viewed the question through different lenses: applying kernel distribution embedding
[56, 57, 21], using an EM update [43, 58], placing a meta-prior over the target proportions [59], and
casting the problem under causal and anti-causal learning [21–25]. Recently, Tachet des Combes
et al. [18] propose aligning the target feature distribution with a re-weighted version of the source
feature distribution. While this method achieves consistent improvements over feature-alignment
algorithms, it still relies on learning domain-invariant representations. As we have discussed, this
approach suffers from the problems of sampling variability and class-mismatching in a mini-batch,
whereas the proposed method uses class prototypes and proportion estimation to avoid these issues.

Source-private adaptation. Finally, the proposed method can also be applied to a source-private
setting where without seeing the raw source data, we only have access to the source model and target
data while adapting to the target domain [31, 47, 60–63]. Liang et al. [31] introduce a clustering-based
approach to generate pseudo-labels for the target data. That approach requires constructing class
centers using a weighted average of the latent features. Different from that work, our prototypes
behave as class centers and are more amenable to mini-batch stochastic gradient based training.

4 Experiments

In this section, we evaluate our method under four practical settings: single-source, multi-source,
class-imbalance, and source-private domain adaptation. We present the setup, the results, and the
analysis of the results in the upcoming sections.

Datasets. We use the following three datasets of varying sizes in our experiment: 1) Office-31 [3]
consists of 4652 images coming from three domains: Amazon (A), Webcam (W), and DSLR (D).
The total number of categories is 31. 2) Office-Home [64], a more challenging dataset than Office-31,
consists of 15,500 images over 65 classes and four domains: Artistic images (Ar), Clip art (Cl),
Product images (Pr), and Real-world (Rw). 3) DomainNet [65] is a large-scale dataset for domain
adaptation. It consists of about 569,010 images with 345 categories from six domains: Clipart,
Infograph, Painting, Quickdraw, Real, and Sketch. We further perform experiments on Cross-Digits,
ImageClef, Office-Caltech, and VisDA datasets and provide the details in Appendix E.2.

Implementation details. We implement our method on top of the open-source transfer learning
library (MIT license) [66], adopting the default neural network architectures for both the feature
encoder and linear classifier. For the feature encoder network, we utilize a pre-trained ResNet-50 in
all experiments except for multi-source domain adaptation, where we use a pre-trained ResNet-101.
We fine-tune the feature encoder and train the linear layers from random initialization. The linear
layers have the learning rate of 0.01, 10 times that of the feature encoder. The learning rate follows
the following schedule as ηiter = η0(1 + γiter)−α, where η0 is the initial learning rate. We set η0 to
0.01, γ to 0.0002, and α to 0.75. We utilize a mini-batch SGD with a momentum of 0.9. We set the
batch size for the source data asN = 32 and that for the target data asM = 96. We use all the labeled
source samples and unlabeled target samples [6, 7, 26]. We set β0 to 0 (a uniform prior) in all settings
except for the sub-sampled target datasets. We perform a sensitivity analysis (see Appendix E) and
set β0 empirically to 0.001 for the sub-sampled target version of Office-31 and 0.0001 for that of
Office-Home. We report the average accuracy from three independent runs. All experiments are
conducted using a single Nvidia Tesla V100 GPU except for the DomainNet experiment, where we
use four V100 GPUs. More implementation details can be found in Appendix D.
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4.1 Main results

Single-source setting. We perform single-source domain adaptation on the Office-31 and Office-
Home datasets. In each experiment, one domain serves as the source domain and another as the
target domain. We consider all permutations, leading to 6 tasks for the Office-31 dataset and 12
tasks for the Office-Home dataset. We compare our algorithm with state-of-the-art algorithms for
domain adaptations from three different categories: adversarial-based, divergence-based, and optimal
transport-based. We report the results on Office-31 in Table 1. PCT significantly outperforms the
baselines, especially on the more difficult transfer tasks (D→A and W→ A). Although MDD [67],
the best baseline domain-adaptation method, uses a bigger classifier, PCT still has 1.1% higher
average accuracy. In Figure 4a, we visualize the number of parameters versus the average accuracy
on the Office-31 dataset. While PCT uses fewer parameters than most methods, it still achieves the
highest average accuracy. We report the average accuracies on the Office-Home dataset in Table 2.
PCT outperforms baseline methods on 10 of the 12 transfer tasks, yielding 3.7% improvement on the
average accuracy over MDD. The results in this setting demonstrate that aligning the target features
with prototypes is more effective than directly aligning them with the source features.

Table 1: Accuracy (%) on Office-31 for unsupervised domain adaptation (ResNet-50).
Category Method A→W D→W W→ D A→ D D→ A W→ A Avg

ResNet-50 [68] 68.4± 0.2 96.7± 0.1 99.3± 0.1 68.9± 0.2 62.5± 0.3 60.7± 0.3 76.1

Adversarial DANN [6] 82.0± 0.4 96.9± 0.2 99.1± 0.1 79.7± 0.4 68.2± 0.4 67.4± 0.5 82.2
ADDA [47] 86.2± 0.5 96.2± 0.3 98.4± 0.3 77.8± 0.3 69.5± 0.4 68.9± 0.5 82.9
CDAN [26] 94.1± 0.1 98.6± 0.1 100.0± 0.0 92.9± 0.2 71.0± 0.3 69.3± 0.3 87.7
MDD [67] 94.5± 0.3 98.4± 0.1 100.0± 0.0 93.5± 0.2 74.6± 0.3 72.2± 0.1 88.9

Divergence JAN [7] 85.4± 0.3 97.4± 0.2 99.8± 0.2 84.7± 0.3 68.6± 0.3 70.0± 0.4 84.3
TPN [29] 91.2± 0.3 97.7± 0.2 99.5± 0.1 89.9± 0.2 70.5± 0.2 73.5± 0.1 87.1

OT DeepJDOT [10] 88.9± 0.3 98.5± 0.1 99.6± 0.2 88.2± 0.1 72.1± 0.4 70.1± 0.4 86.2
ETD [69] 92.1 100.0 100.0 88.0 71.0 67.8 86.2

PCT (Ours) 94.6± 0.5 98.7± 0.4 99.9± 0.1 93.8± 1.8 77.2± 0.5 76.0± 0.9 90.0

Table 2: Accuracy (%) on Office-Home for unsupervised domain adaptation (ResNet-50).
Method Ar→ Cl Ar→ Pr Ar→ Rw Cl→ Ar Cl→ Pr Cl→ Rw Pr→ Ar Pr→ Cl Pr→ Rw Rw→ Ar Rw→ Cl Rw→ Pr Avg

ResNet-50 [68] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN [6] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN [26] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
MDD [67] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
JAN [7] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
TPN [29] 51.2 71.2 76.0 65.1 72.9 72.8 55.4 48.9 76.5 70.9 53.4 80.4 66.2
DeepJDOT [10] 48.2 69.2 74.5 58.5 69.1 71.1 56.3 46.0 76.5 68.0 52.7 80.9 64.3
ETD [69] 51.3 71.9 85.7 57.6 69.2 73.7 57.8 51.2 79.3 70.2 57.5 82.1 67.3

PCT (Ours) 57.1 ±0.3 78.3 ±1.2 81.4 ±0.4 67.6 ±0.3 77.0 ±1.2 76.5 ±0.5 68.0 ±0.5 55.0 ±0.6 81.3 ±0.2 74.7 ±0.5 60.0 ±0.5 85.3 ±0.3 71.8

Multi-source setting. In this setting, we evaluate our method using Office-Home and DomainNet
datasets [65]. For each task, we select one domain as the target domain and use the remaining
five domains as the source. We use the same data splitting scheme as the original paper [65]. We
compare against source-combined and multi-source algorithms introduced in Venkat et al. [70] for
Office-Home and in Peng et al. [65] for DomainNet. Multi-source algorithms use domain labels and
a classifier for each source domain, whereas source-combined algorithms combine all the source
domains into a single source domain and perform single-source adaptation. We adopt a single
classifier and do not use domain labels. Thus, PCT falls under the source-combined category. We
report the results in Tables 3 and 4. While PCT is not designed specifically for multi-source domain
adaptation, our method still outperforms those multi-source algorithms in both datasets. Since there
are more variations of the data in the source domain in this setting, the increase in performance gain
verifies our intuition that prototypes help mitigate the problem of sampling variability.

Table 3: Accuracy (%) on Office-Home for ResNet50-based MSDA methods.
Category Models R → Ar R → Cl R → Pr R → Rw Avg

Source- DAN [8] 68.5 59.4 79.0 82.5 72.4
combined D-CORAL [71] 68.1 58.6 79.5 82.7 72.2

RevGrad [6] 68.4 59.1 79.5 82.7 72.4

Multi-source MFSAN [72] 72.1 62.0 80.3 81.8 74.1
SImpAl [70] 70.8 56.3 80.2 81.5 72.2

PCT (Ours) 76.3± 0.5 64.1± 0.4 84.9± 0.8 84.3± 0.5 77.4
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Table 4: Accuracy (%) on DomainNet for ResNet101-based MSDA methods.
Category Models R → Clipart R → Infograph R → Painting R → Quickdraw R → Real R → Sketch Avg

DCTN [73] 48.6± 0.7 23.5± 0.6 48.8± 0.6 7.2± 0.4 53.5± 0.6 47.3± 0.5 38.2± 0.6
Multi-source M 3 SDA [65] 57.2± 1.0 24.2± 1.2 51.6± 0.4 5.2± 0.5 61.6± 0.9 49.6± 0.6 41.5± 0.7

M 3 SDA- β [65] 58.6± 0.5 26.0± 0.9 52.3± 0.6 6.3± 0.6 62.7± 0.5 49.5± 0.8 42.6± 0.6
ML-MSDA [74] 61.4± 0.8 26.2± 0.4 51.9± 0.2 19.1± 0.3 57.0± 1.0 50.3± 0.7 44.3± 0.6

ResNet-101 [24] 47.6± 0.5 13.0± 0.4 38.1± 0.5 13.3± 0.4 51.9± 0.9 33.7± 0.5 32.9± 0.5
DAN [8] 45.4± 0.5 12.8± 0.9 36.2± 0.6 15.3± 0.4 48.6± 0.7 34.0± 0.5 32.1± 0.6
RTN [75] 44.2± 0.6 12.6± 0.7 35.3± 0.6 14.6± 0.8 48.4± 0.7 31.7± 0.7 31.1± 0.7

Source- JAN [7] 40.9± 0.4 11.1± 0.6 35.4± 0.5 12.1± 0.7 45.8± 0.6 32.3± 0.6 29.6± 0.6
combined DANN [6] 45.5± 0.6 13.1± 0.7 37.0± 0.7 13.2± 0.8 48.9± 0.7 31.8± 0.6 32.6± 0.7

ADDA [47] 47.5± 0.8 11.4± 0.7 36.7± 0.5 14.7± 0.5 49.1± 0.8 33.5± 0.5 32.2± 0.6
SE [38] 24.7± 0.3 3.9± 0.5 12.7± 0.4 7.1± 0.5 22.8± 0.5 9.1± 0.5 16.1± 0.4

MCD [76] 54.3± 0.6 22.1± 0.7 45.7± 0.6 7.6± 0.5 58.4± 0.7 43.5± 0.6 38.5± 0.6

PCT (Ours) 67.2± 0.5 26.1± 0.2 55.0± 0.2 16.2± 0.2 67.1± 0.2 53.7± 0.6 47.6± 0.1

Sub-sampled setting. In many cases, the label proportions could significantly change from one
dataset to another, resulting in a decrease in a model’s performance. To test our algorithm under this
setting, we follow the experimental protocol in Tachet des Combes et al. [18]. We keep only thirty
percent of the first bK/2c classes to simulate class imbalance. We directly take their results for the
sub-sampled source data and perform additional experiments using the same sub-sampling scheme
on the target data. The baselines in this setting are standard domain adaptation methods (DAN, JAN,
and CDAN) and their importance weighted versions introduced in Tachet des Combes et al. [18]. We
present the results in Table 5. On the sub-sampled source data, PCT with uniform prior outperforms
the second-best method (IWCDAN) by 4% on Office-31 and 6.6% on Office-Home. Learning the
prior distribution on the target domain does not improve the result, as this setting does not have a
serious imbalance issue in the target domain. On the sub-sampled target data, PCT with a uniform
prior already outperforms the baselines, 1.9% and 5.2% higher average accuracy than IWCDAN’s
on Office-31 and Office-Home, respectively. Using a learnable prior further improves upon using a
uniform prior by 1.0% on Office-31 and by 0.4% on Office-Home. The improvements confirm our
intuition that prototypes help with the class imbalance in both the source and target domain while
estimating the target proportion further boosts the performance in the target domain sub-sampled
setting. We visualize the estimated proportions on the target data in Figure 3, verifying that the
proportions are inferred correctly.

Table 5: Average accuracy (%) on sub-sampled version of Office-31 and Office-Home (ResNet-50).
Method sub-S O-31 sub-T O-31 sub-S O-H sub-T O-H

ResNet-50 [68] 75.7 76.1 51.4 58.2
DANN [8] 76.2 75.9 51.8 58.3
JAN [7] 78.2 78.1 53.9 61.4
CDAN [26] 81.6 83.0 56.3 63.1
IWDAN [18] 82.6 79.2 57.6 58.6
IWJAN [18] 82.6 82.8 55.9 62.0
IWCDAN [18] 83.9 83.5 61.2 64.6

PCT-Uniform (Ours) 87.9± 0.4 85.4± 0.3 67.8± 0.3 69.8 ±0.2
PCT-Learnable (Ours) 87.9± 0.4 86.4± 0.2 67.8± 0.3 70.2± 0.2

Source-data-private setting. In many practical applications, practitioners might not directly have
access to the source data in the adaptation stage. Instead, a trained model on the source data is
provided. In this setting, the goal is to adapt to the target domain while only operating on the
given model. We compare our method with Source Hypothesis Transfer (SHOT) [31], a state-of-
the-art method proposed specifically for this setting. SHOT contains two losses: an information
maximization (IM) loss and a pseudo-labeling loss. We follow their experimental protocol by first
training the model on the source data alone. During the adaptation stage, we only use the target
data to perform model adaptation. We use the transport losses to update the feature encoder while
fixing the prototypes. We report the results in Table 6. From the standard setting where we have
access to source data in Table 1, the average accuracy drops by 1.6% for Office-31 and by 0.8% for
Office-Home. On the Office-31 dataset, our bi-directional loss outperforms the IM loss by 1.1% and
the pseudo label loss by 0.8%. While the average accuracy for our method is 0.2% lower than both of
their losses combined, the p-value for the independent two-sample t-test on the accuracies of different
runs is 0.32, which is not statistically significant. On the Office-Home dataset, our approach performs
1.9% and 0.5% better than the pseudo label and IM losses, respectively. While their combined loss
achieves 0.8% accuracy higher than that of our method, the pseudo-labeling loss in SHOT requires
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Figure 3: Visualization of the estimated target proportions versus true class proportions for the task
A→ sD on the Office-31 dataset. The dotted line represents a uniform proportion. It is clear that
each orange bar (the learned proportions) is close to its adjacent blue bar (the true proportion). To
quantify this observation, we measure the L1 loss between the true and learned proportions. The
estimated proportions achieve lower L1 loss than the uniform distribution (0.16 vs 0.58), illustrating
the effectiveness of our estimation strategy.

Table 6: Average Accuracy (%) on the source-private Office-31 and Office-Home (ResNet-50).
Source Model Only SHOT-Pseudo Label [31] SHOT-IM [31] SHOT [31] PCT (Ours)

Office-31 79.3 87.6 ±0.5 87.3 ±0.5 88.6± 0.4 88.4 ±0.6
Office-Home 60.2 69.1 ±0.6 70.5±0.3 71.8± 0.4 71.0 ±0.6

constructing class centers, which does not scale well with large datasets. Our approach uses the
classifier’s weights as class prototypes to avoid this issue.

4.2 Analysis of results

Ablation study. To examine the effect of each component in our framework, we perform ablation
studies and present the results in Table 7. 1) Alignment strategy. Next, we present the result using
optimal transport as the alignment strategy. We consider two variants of Prototype-oriented Optimal
Transport (POT): exact linear program (POT) and Sinkhorn relaxation (POT-Sinkhorn). In each
variant, we solve for the optimal couplings using the optimal transport formulation. After obtaining
the transport probabilities, we update the feature encoder using the obtained probabilities as the
weights for the transport cost. We can see that POT performs 1.7% better than DeepJDOT in Table 1,
showing the effectiveness of using prototypes to define the transport costs with the target features.
Still, both versions of POT underperforms PCT by 2.1% and 1.7%, respectively. 2) Effect of each
loss in PCT. We examine the effect of each loss on the average test accuracy on the Office-31 dataset.
We remove each transport loss while keeping the cross-entropy loss. The bi-directional loss leads
to the best accuracy, while the drop in accuracy is more significant if we remove Lµ→t. This result
is not surprising because, without Lµ→t, the model can map target data to only a few prototypes,
leading to a degenerate solution. 3) Gradient stopping. We also show the algorithm’s performance
without stopping the gradient of µ in the transport loss. PCT gains an additional 1.0% in accuracy
with the gradient stopping strategy. The performance gain is consistent with the finding in recent
work by Chen and He [77], where the authors apply the gradient stopping strategy to avoid degenerate
solutions in contrastive learning. 4) Cost function. Finally, we explore the cost function inspired by
the radial basis kernel. We can see that the cosine distance in PCT gives 3.1% higher average accuracy.
In short, the choice of the probabilistic bi-directional transport framework, gradient-stopping strategy,
and point-to-point cost function all contribute to the success of the proposed PCT method.
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Table 7: Average accuracy (%) of PCT on Office-31 under different variants (ResNet-50).
POT POT-Sinkhorn PCT w/o (Lt→µ) PCT w/o (Lµ→t) w/o stop-grad c(µk,f

t
j) = exp(−µTk f

t
j) PCT (Ours)

87.9± 0.8 88.3± 0.9 88.6± 0.2 84.3± 0.9 89.0± 0.3 86.9± 0.4 90.0± 0.5

(a) (b) (c)
Figure 4: (a) Analysis of parameter efficiency, (b) comparison of convergence, and (c) a t-SNE
visualization of the output of the feature encoder trained with PCT on the task A→W. In plot (c),
prototypes (?), source features (·), and target features (×) are tightly clustered together for each class.

Convergence comparison. We plot test accuracy versus iteration number on the task (A→W) in
Figure 4b to compare the convergence rate of different algorithms. We also visualize test accuracy
versus convergence time in minutes in Appendix E. In both plots, PCT quickly converges within
the first one thousand iterations, and the test accuracy does not fluctuate much thereafter. This
phenomenon is not surprising since we use prototypes instead of the source features to align with the
target features. We expect the prototypes to behave as representative samples of the source features,
making the model converge quickly and stably.

Visualization. We visualize in Figure 4c the t-SNE plot of the source and target features as well as
the prototypes for the task A→W. Figure 4c shows that both the source (dots ·) and target (crosses
×) features are close to the prototypes (black stars ?), indicating that our algorithm is learning
meaningful prototypes and successfully align the target features with the prototypes.

5 Conclusion

We offer a holistic framework for unsupervised domain adaptation through the lens of a probabilistic
bi-directional transport between the target features and class prototypes. With extensive experiments
under various application scenarios of unsupervised domain adaptation, we show that the proposed
prototype-oriented alignment method works well on multiple datasets, is robust against class imbal-
ance, and can perform domain adaptation with no direct access to the source data. Without adding
additional model parameters, our memory and computation-efficient algorithm achieves competitive
performance with state-of-the-art methods on several widely used benchmarks.
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