
Published as a conference paper at ICLR 2023

GRAPH-BASED DETERMINISTIC POLICY GRADIENT
FOR REPETITIVE COMBINATORIAL OPTIMIZATION
PROBLEMS

Zhongyuan Zhao
Rice University
zhongyuan.zhao@
rice.edu

Ananthram Swami
DEVCOM Army Research Laboratory
ananthram.swami.civ@army.mil

Santiago Segarra
Rice University
segarra@rice.edu

ABSTRACT

We propose an actor-critic framework for graph-based machine learning pipelines
with non-differentiable blocks, and apply it to repetitive combinatorial optimization
problems (COPs) under hard constraints. Repetitive COP refers to problems to be
solved repeatedly on graphs of the same or slowly changing topology but rapidly
changing node or edge weights. Compared to one-shot COPs, repetitive COPs often
rely on fast (distributed) heuristics to solve one instance of the problem before the
next one arrives, at the cost of a relatively large optimality gap. Through numerical
experiments on several discrete optimization problems, we show that our approach
can learn reusable policies to reduce the optimality gap of fast (distributed) heuris-
tics for independent repetitive COPs, and can optimize the long-term objectives
for repetitive COPs embedded in graph-based Markov decision processes. Source
code at https://github.com/XzrTGMu/twin-nphard.

1 INTRODUCTION

In a general network setting, the network state is captured by a graph G = (V, E ,S), that comprises a
vertex set V , an edge set E , and a matrix S capturing the node features. A vector o ∈ R|V| captures
the outcomes on individual nodes of a non-differentiable network process, fnet(·), as:

o = fnet(G) . (1)

We aim to optimize the system-level objective fobj(o), where fobj : R|o| → R is a known linear
combination, by improving parts of the network process fnet(·). In particular, we are interested in
network processes that involve graph-based repetitive combinatorial optimization problems (R-COPs)
(Kraay & Harker, 1996) – COPs that need to be solved repeatedly on graphs of the same or slowly
changing topology (V or E) but rapidly changing node features (S), under hard constraints that must
be satisfied at all times (Kendall, 1975), which often make COPs NP-hard. R-COPs have many
real-world applications, such as task scheduling (Pinedo, 2012), route planning (Vogiatzis & Pardalos,
2013), link scheduling (Joo & Shroff, 2012; Paschalidis et al., 2015; Eisen et al., 2019; Zhao et al.,
2022a;b) and routing (Oliveira et al., 2011) in communication networks, and energy management in
smart grids (Chau et al., 2018), where a node or edge weight captures varying cost or utility.

In practice, solvers for R-COPs are often subject to restricted runtime and/or distributed execution.
For example, in scheduling, network routing, and multi-object tracking in computer vision, COPs
need to be solved within tens of milliseconds to a few seconds. Although memory-based approaches
can avoid solving each instance from scratch for some applications (Kraay & Harker, 1996; Wang,
2021), in general, R-COPs rely on fast heuristics to meet the strict time constraints, at the cost of
relatively large optimality gaps. Moreover, in real-time networked systems, such as communication
networks, smart grids, and robot swarms (Tolstaya et al., 2020), centralized solvers often suffer from
the large communication overhead of gathering the full network state, high computational complexity,
and risk of single point of failure. Therefore, distributed solutions (Moser & Tardos, 2010) are
preferred for better scalability and robustness, in which nodes across the network work in parallel to
collect and process the information of only their local neighborhoods for decision making.

Depending on the definition of fobj , R-COPs can be categorized as, 1) independent R-COPs, i.e.,
S(t1) and S(t2) are considered as independent if t1 ̸= t2, and 2) R-COPs embedded in a graph-based

1

https://github.com/XzrTGMu/twin-nphard

Published as a conference paper at ICLR 2023

Markov decision process (MDP). For example, in link scheduling for wireless multiple networks
(Zhao et al., 2022a;b), the network state G(t) = (V, E ,S(t)), where S(t) captures the packet backlogs
of all the links at time t, depends on the schedule of t − 1 found by solving a maximum weight
independent set (MWIS) problem defined on G(t− 1). Scheduling for maximum throughput (number
of data packets transmitted on the schedule) is equivalent to optimize each MWIS instance individually
(Zhao et al., 2022a), which is formulated as an independent R-COP. However, to minimize the average
backlog (packets left in the queues by the schedule) across links and over time, the transition of
network states must be considered and the scheduling is formulated as R-COP in a graph-based MDP
(Zhao et al., 2022b). Similar MDP formulations can also be found in wireless scheduling for battery
lifetime (Sikandar et al., 2020), vehicle routing for waste collection (Wu et al., 2020), and inventory
control in distribution networks (Çelebi, 2015). However, the 2nd type of R-COPs have rarely been
addressed, except in an ad-hoc manner for link scheduling (Zhao et al., 2022b). Therefore, a general
approach to R-COPs in graph-based MDPs would be of high interest.

1.1 EXISTING APPROACHES TO COPS

Centralized solvers: The general approach for exactly solving a COP is to formulate it as a mixed-
integer program, and solve it by branch-and-bound (Land & Doig, 1960) or dynamic programming.
Commercial Gurobi solvers (LLC, 2020) can exactly solve COPs on graphs of hundreds of nodes in
reasonable time. Although large real-world graphs with certain structural properties can be reduced
(Lamm et al., 2019) to find exact solutions, problems of large scale and/or stringent time limits often
rely on efficient heuristics to approximate the solutions; common strategies include greedy algorithms,
local search (Wang et al., 2018), tabu search, ant colony (Jovanovic et al., 2010), and simulated
annealing. In recent machine learning-based COP solvers, graph neural networks (GNNs) (Wu et al.,
2021) are trained to guide an algorithmic framework, which guarantees the constraints being always
followed; common frameworks include branching (Khalil et al., 2016; Gasse et al., 2019; Nair et al.,
2020; Zarpellon et al., 2021), tree search (Li et al., 2018), greedy algorithms (Khalil et al., 2017;
Zhao et al., 2022a), and local search (Hudson et al., 2022). In these approaches, a COP instance is
formulated as a finite episode of an MDP, with the residual graph of each intermediate step defined as
a state, based on which an action of adding one vertex in the residual graph to the partial solution is
generated by a GNN, and a solution is built from a sequence of such scalar actions. This formulation
has a time complexity of at least O(|V||E|), since a GNN of time complexity of O(|E|) (Wu et al.,
2021) is called in each intermediate step. (Drori et al., 2020; Hottung et al., 2022) lowered the time
complexity of vehicle routing problems to O(|E|) (typically, |E| > |V|) by encoding the graph by a
GNN only once per COP instance. However, for R-COPs, this formulation is limited by centralized
execution and the complexity of a GNN, and does not apply to R-COPs in graph-based MDPs.

Distributed solvers: Popular distributed approaches to COPs include Moser-Tardos algorithm
(Moser & Tardos, 2010) and dynamic programming. The complexity of distributed algorithms is
typically measured by local communication complexity, which refers to the rounds of message
exchanges between a node and its neighbors (Joo & Shroff, 2012; Zhao et al., 2022a). For example,
on MWIS, Moser-Tardos algorithm (Joo & Shroff, 2012; Moser & Tardos, 2010) can converge in
O(log∗ |V |) rounds, whereas distributed dynamic programming (Paschalidis et al., 2015) in O(|V |)
rounds. Distributed algorithms may have larger optimality gaps due to the lack of global information,
but topological metrics, such as edge betweenness for the Steiner tree problem(Fujita et al., 2016), can
help reduce the gap. Learning-based distributed COP solvers have received less attention compared
to their centralized counterparts. GCN-LGS (Zhao et al., 2022a) is an architecture proposed for a
repetitive MWIS problem, in which an L-layer graph convolutional neural network (GCNN) generates
a vector z for a topology (V, E), and a greedy heuristic solves modified instances (V, E , c(t)⊙ z),
rather than the original ones (V, E , c(t)), for the next N time slots t ∈ {1, . . . , N}, assuming the
topology would not change by t = N . GCN-LGS can reduce the optimality gap of greedy solvers
(Joo & Shroff, 2012) by 1/3 to 1/2, with a time complexity of O(L|E|/N + |V|), or can converge in
O(L/N + log |V |) iterations in a distributed setting. For large reusing factor N , the overhead of
GCNN is negligible. However, the training methods in (Zhao et al., 2022a;b) are ad hoc and specific
to MWIS problems, and may not be directly applicable to other types of R-COPs.

In this work, we generalize the GCN-LGS architecture in (Zhao et al., 2022a;b) to a wider range of
R-COPs, through a unified framework of problem formulation and actor-critic architecture. Unlike
previous works that solve a COP instance through a sequence of scalar actions, our actor network
generates a high-dimensional intermediate action to parameterize a given classical heuristic, h′(·),
which produces vectorized decisions by solving one or multiple instances of an R-COP. This formula-

2

Published as a conference paper at ICLR 2023

tion allows us to pick a fast and/or distributed classical heuristic h′(·) that adheres to various practical
restrictions, while guaranteeing the decisions always follow the hard constraints. For independent
R-COPs, an intermediate action encodes the underlying topology shared by N instances to improve
the average quality of their solutions, reducing the GNN overhead from O(|E|) (Drori et al., 2020;
Hottung et al., 2022) to O(|E|/N), which is arbitrarily small for a large N . In R-COPs embedded in
a graph-based MDP, an intermediate action for the optimal expected long-term objective is generated
based on the network state in each time step, serving as the cost vector of the corresponding COP
instance, which is later translated into a decision vector by h′(·). The challenge, however, is that our
policy network contains a non-differentiable block, e.g., h′(·).

1.2 LEARNING IN NON-DIFFERENTIABLE PIPELINES

Training with supervised or unsupervised learning methods is challenging in the presence of non-
differentiable blocks. Reinforcement learning (RL) (Sutton & Barto, 2018) addresses this problem by
treating the non-differentiable block as (part of) the environment (Silver et al., 2014; Khalil et al.,
2017; Zhao et al., 2022a). Compared to Q-learning (Watkins & Dayan, 1992) that is sequential,
policy gradient (Silver et al., 2014) is better suited for the high-dimensional action spaces in networks
of parallel and dynamic nature. A major issue in RL for networks is how to assign credit to individual
elements based on the system-level reward. Zeroth-order optimization (ZOO) (Liu et al., 2020) is the
last resort for non-differentiable pipelines, as it requires numerous evaluations of fnet(·), which can
be computationally prohibitive. In some scenarios, soft constraints (Kendall, 1975) can avoid the
use of non-differentiable pipeline, allowing a fully differentiable policy network being trained by
primal-dual optimization (Eisen et al., 2019) or imitation learning (Ross et al., 2011).

To address the aforementioned shortcomings, we propose GDPG-Twin, a graph-based deterministic
policy gradient method based on the actor-critic framework (Sutton & Barto, 2018, ch. 13). GDPG-
Twin trains a differentiable twin of the non-differentiable policy block in fnet(·), e.g., h′(·), as
part of the critic network to facilitate the training of the actor network. A similar differentiable
approximation bridges (DAB) (Ramapuram & Webb, 2020) can approximate the immediate behavior
of a non-differentiable block in standalone systems. We improve DAB from three aspects: we use a
twin network to predict the element-wise expected outcomes of the non-differentiable policy network,
use a GNN to account for the permutation equivariance in network settings, and use random policy
sampling for static policy parameters Z in a fixed topology. In addition, GDPG-Twin is more efficient
than ZOO. Although we focus on node-related problems, GDPG-Twin also applies to edge-related
problems, e.g., by using simplicial neural networks (Roddenberry et al., 2021).

1.3 CONTRIBUTIONS

In summary, our proposed framework: 1) can generalize to learning for different COPs without
handcrafting the credit assignment strategies as in other schemes of network-based RL (Eisen et al.,
2019; Zhao et al., 2022a;b), 2) works for R-COPs with hard constraints, 3) requires fewer evaluations
of fnet(·) than ZOO (Liu et al., 2020), and 4) has the advantage of RL schemes in not relying on
expensive data labeling as in supervised learning or a computationally intensive supervising algorithm
as in imitation learning (Ross et al., 2011). Our contribution contains the following three aspects:

• We propose a general approach to R-COPs under hard constraints and practical restrictions.
Our approach can reduce the optimality gap of fast and/or distributed heuristics for inde-
pendent R-COPs, at the cost of only an upfront computation and communication overhead.
Moreover, it can optimize the long-term objectives for R-COPs in a graph-based MDP by
embedding the future reward into the cost vector of COP instance at each time step.

• We propose GDPG-Twin, an actor-critic architecture for network settings. By using a twin
network that learns the element-wise expected outcomes o of a non-differentiable policy
network in fnet(·), the critic can leverage the knowledge of the linear combination of the
system-level objective fobj(o) to address the challenge of credit assignment across the
network, which is a major roadblock for discrete or mixed-integer network processes.

• We adopt a random policy sampling strategy in the training of the twin network, which
enables optimizing a static policy for R-COPs defined on fixed topologies. Moreover, our
approach requires significantly fewer evaluations of the network process fnet(·) than ZOO.

Notation. Upright bold lower(upper)-case symbols are used to denote column vectors, e.g., x
(matrices, e.g., X). xi denotes the ith element of vector x, Xi,j denotes the element at row i and

3

Published as a conference paper at ICLR 2023

column j of matrix X, Xi∗ (or X∗j) denotes row i (or column j) of matrix X. Unless otherwise
specified, calligraphic upper-case symbols (e.g., V) are used to denote sets. (·)⊤ and ⊙ denote
transpose and element-wise product, respectively.

2 PROBLEM FORMULATION

Many binary discrete COPs have the following formulation,
x∗ = min

x
c⊤x (2a)

s.t. xi ∈ {0, 1} ,∀i ∈ {1, . . . , |V|} , (2b)
other problem-specific constraints, (2c)

where x and c are respectively the vectors of decisions and weights on nodes, and constraints in (2c)
are often defined on the graph, e.g., xi + xj ≤ 1,∀{i, j} ∈ E . Without loss of generality, (2b) can be
of other arities and (2c) can be on a hypergraph or simplicial complex. Since many problems in (2)
are NP-hard, we seek to develop efficient heuristics to approximate x∗. Furthermore, we define the
function space F of valid heuristics, meaning that x = f(V, E , c) satisfies the constraints in (2) for
all f ∈ F . We also define the space P of practical functions, i.e., functions that satisfy pre-specified
practical restrictions, e.g., limited runtime and/or distributed execution.

2.1 INDEPENDENT REPETITIVE COPS

For independent R-COPs, the weight c of an instance is considered to be a random vector drawn from
its target sampling distribution Ωc. We formulate independent R-COPs as finding a valid heuristic
(policy) that optimizes the expectation of the objective function in (2a) under practical restrictions

h∗ = min
h∈(F∩P)

Ec∼Ωc(c⊤x) (3a)

s.t. x = h(V, E , c) . (3b)

2.2 REPETITIVE COPS IN A GRAPH-BASED MARKOV DECISION PROCESS

Given network state G(t) = (V(t), E(t),S(t)), where S(t) captures features on nodes at time t, our
objective is to find a valid heuristic h for a COP in (2) and a cost function Ψ, which together form a
policy that – subject to the practical restrictions – maps G(t) into x(t) and maximizes the expected
system-level value over time horizon T , as follows:

h∗,Ψ∗ = max
h∈(F∩P),Ψ∈P

EG(1)∼Ω1 [fobj (o(1))] , (4a)

s.t. o(t) = E{h,Ψ}

[
T−t∑
k=0

γkr(t+ k)

∣∣∣∣G(t)
]

, (4b)

r(t) = fr(V(t), E(t),S(t),x(t)) , (4c)
x(t) = h(V(t), E(t), c(t)) , (4d)
c(t) = Ψ(V(t), E(t),S(t)) , (4e)
S(t+ 1) = fs(V(t), E(t),S(t),x(t)) . (4f)

In (4), o(t) is the value vector of current state G(t) under policy {h,Ψ}, 0 ≤ γ ≤ 1 is the discount
factor, (4a) states that the system objective is the expectation of a known linear combination, fobj :
R|o| → R, of o(1) over the initial state distribution Ω1, capturing both average reward and start-state
formulations (Sutton et al., 1999), (4d) states that a decision vector x(t) is generated by a valid
heuristic h ∈ F of a COP based on the network topology (V(t), E(t)) and cost vector c(t), which is a
function of the network state G(t) as stated by (4e), and (4c) and (4f) define the MDP by respectively
stating that the reward vector r(t) and the next state S(t+1) depend on the current state S(t) and the
decisions x(t). In general, fr(·) and fs(·) in (4) are stochastic functions, capturing some stationary
random processes in the environment. The formulation in (4) can capture R-COPs with accumulative
objectives, such as latency and battery lifetime in wireless scheduling, waste level in vehicle routing
for waste collection, and inventory in distribution networks. Notice that if T = t, γ = 1, S(t) = c(t)
(Ψ is bypassed), r(t) = c(t) ⊙ x(t), fobj(o) = 1⊤o, and we set fs in (4f) as drawing a random
vector from Ωc, then (4) boils down to (3). Thus, (4) is a generalized form of all R-COPs. Appendix
A further illustrate (3) and (4) via exemplary formulations of two wireless scheduling problems.

4

Published as a conference paper at ICLR 2023

3 GRAPH-BASED DETERMINISTIC POLICY GRADIENT

Our downstream pipeline follows the existing methodology of using a neural network to guide a
discrete operation, which guarantees the hard constraints, but keeps the neural network outside the
iterations of the algorithmic framework for lower complexity (Zhao et al., 2022a). In this section, we
provide the main solution, whereas the full procedures of optimization for Sections 3.1 and 3.2 are
given by Algorithms 1 and 2 in Appendix D. Since (3) and (4) are functional optimization problems,
we seek to approximately solve them by parameterizing the policy (h or {h,Ψ}) and reformulating
(3) and (4) as finding the optimal set of parameters. To meet the practical restrictions, we rely on
manual selections (or design) of a baseline heuristic h′ ∈ F and the parameterizations.

3.1 LEARNING FOR INDEPENDENT REPETITIVE COP

For independent R-COPs, we reformulate (3) as
Z∗ = min

Z∈R|c|×g
1⊤o (5a)

s.t. o = Ec∼Ωc (c⊙ x) (5b)

x = h′(V, E ,w) , (5c)
wi = floc(ci;Zi∗) ,∀i ∈ {1, . . . , |c|} . (5d)

The objectives in (3a) and (5a) are equal due to the linearity of expectation, i.e., Ec∼Ωc(c⊤x) =

Ec∼Ωc(
∑|c|

i=1 cixi) =
∑|c|

i=1 Ec∼Ωc(cixi) = 1⊤o. Constraints (5c) and (5d) further break the
parameterized policy in (3b), h(·;Z), into a baseline heuristic h′(·) ∈ (F ∩ P) given in advance and
a parameterized local function floc(·;Zi∗), where Zi∗ ∈ R1×g captures the g local parameters for
node i ∈ V . The local function floc(·;Zi∗) can be chosen as, e.g., a multiplier, a single neuron, or
even a small neural network, and depends on node-specific parameters Zi∗.

To solve the problem formulated in (5), we employ deterministic policy gradient reinforcement
learning, where the policy parameters are Z. However, the gradient ∇Z1

⊤o is not available since
h′(·) is non-differentiable. To address this problem, we introduce a trainable and differentiable twin
network ftwin(·;Θc) to learn the element-wise expected outcome of h(·;Z). In contrast to the critic
in a typical standalone setting, which directly predicts the system-level objective, the twin network
works for network settings, where the policy parameters and outcome are supported on graphs. The
twin can be implemented by a graph or a simplicial neural network, depending on the specific COP.
The expected behavior of the twin can be described by

o ≈ ô = ftwin(V, E , c̄,Z;Θ∗
c), where c̄ = EΩc(c) . (6)

Based on (5a) and (6), we can estimate the system objective as 1⊤ô. Based on (6) and the chain rule
∂1⊤ô
∂Z = 1⊤ ∂ô

∂Z , the policy gradient is estimated as (Silver et al., 2014)

∇̂Z1
⊤o ≈ ∇Z1

⊤ô = ∇Zftwin(V, E ,EΩc(c),Z;Θc)1 . (7)
Given a policy learning rate 0≤αp≤1, we can update the policy parameters as, Z←Z−αp∇Z1

⊤ô.
For applications on static topologies, we can optimize Z directly with stochastic gradient descent.

For R-COPs on dynamic networks, we want the policy parameters to be a function of the topology,
implemented as an actor, Z = Ψ(V, E , c̄;Θp). In this case, we can estimate the gradient ∇Θp1

⊤ô =

∇Θp
Ψ(V, E , c̄;Θp)∇Z1

⊤ô, and update the actor parameters as, Θp←Θp−αp∇Θp
1⊤ô. From the

perspective of the actor Ψ(·;Θp), its input is (V, E , c̄) instead of the instantaneous network state
(V, E , c), and its output is an intermediate action Z, which is used as the policy parameters.

Given a learning rate 0 ≤ αc ≤ 1, the twin network can be updated by the following gradient descent,

Θc ← Θc − αc∇Θc
ℓmse(ô,o) , (8)

where the loss function ℓmse(ô,o) is the mean-square-error (MSE) between ô and o. Since o is an
expectation over sampling space Ωc, we can implement the following stochastic gradient descent

Θc ← Θc − αc∇Θc
ℓmse(ô, c⊙ x), ℓmse(ô, c⊙ x) =

1

|x|

|x|∑
i=1

(ôi − cixi)
2
, c ∈ Ω|c| , (9)

by minimizing the MSE loss in (9) with an off-the-shelf optimizer. Notice that we need to evaluate
h′(·) and floc(·;Z) to get x in (9). A detailed derivation of (9) is given in Appendix B.

5

Published as a conference paper at ICLR 2023

3.1.1 RANDOM SAMPLING AROUND CURRENT POLICY

For applications based on static topologies, i.e., (V, E , c̄) are constant, we no longer need an actor
to generate Z. In this case, the twin is likely to be overfitted if we only feed it with a static Z
during training. To address this problem, we feed the twin ftwin(·) and h(·;Z) with random samples
around the current policy parameters Z(j) = Z+N(j),N

(j)
m,n ∈ U(−ϵ, ϵ) where ϵ is the sampling

radius. The loss in (9) then becomes ℓmse(ô
(j), c⊙ x(j)). This random sampling strategy enables

the critic, comprising the twin ftwin(·;Θc) and system-level objective function fobj(ô), to learn the
loss landscape around the current Z, thus improve the quality of gradient in (7).

In ZOO, a policy gradient is estimated from at least two random samples around the current Z
(including Z itself) (Liu et al., 2020). While fewer policy samples requires fewer evaluations
of h(·;Z), which could be computationally expensive in many applications, it could degrade the
convergence by raising the noise floor of the gradient estimate. Compared to ZOO, our twin-based
critic can continuously learn, refine, and memorize the loss landscape around the current policy as new
samples coming in, leading to better gradient estimate in backpropagation (improved convergence as
shown in Figure. 1), and higher policy sampling efficiency, as shown in Sections 4.2 and 4.3.

3.2 LEARNING FOR REPETITIVE COP IN A GRAPH-BASED MARKOV DECISION PROCESS

For R-COP in a graph-based MDP, we parameterize the policy in (4), {h,Ψ}, with a given baseline
heuristic h′ ∈ F , and a parameterized cost function Ψ(·;Θp). We then reformulate (4) as:

Θ∗
p = max

Θp∈R|Θp|
EG(1)∼Ω1 [fobj (o(1))] , (10a)

s.t. o(t) = EΘp

[
T−t∑
k=0

γkr(t+ k)

∣∣∣∣G(t)
]

, (10b)

r(t) = fr(V(t), E(t),S(t),x(t)) , (10c)

x(t) = h′(V(t), E(t), c(t)) , (10d)
c(t) = Ψ(V(t), E(t),S(t);Θp) , (10e)
S(t+ 1) = fs(V(t), E(t),S(t),x(t)) . (10f)

By fixing h in the policy {h,Ψ} to a given baseline heuristic h′ in (10d), we only need to optimize
the actor network Ψ(·;Θp) that generates the intermediate action c(t) based on G(t) in (10e). Similar
to (7), we estimate the gradient ∇c(t)EG(1)∼Ω1 [fobj (o(1))] through a twin network that predicts
the value vector in (10b) as o(t) ≈ ô(t) = ftwin(V(t),E(t),S(t),c(t);Θc). Based on linearity of
expectation and the policy gradient theorem–the policy gradient does not depend on the gradient of
the state distribution (Sutton et al., 1999), the policy gradient estimate is (Silver et al., 2014)

∇̂ΘpEG(1)∼Ω1 [fobj (o(1))] ≈ EG(1)∼Ω1

[
∇Θp

ô(t)∇ô(t)fobj(ô(1))
]
. (11)

Then, we can update the policy network as Θp ← Θp + αp∇Θp
ô(t)∇ô(t)fobj(ô(1)) with G(1)

sampled from Ω1. According to the derivation in Appendix C, the twin network can be trained via
stochastic gradient descent, i.e., by minimizing the following loss with an off-the-shelf optimizer:

ℓmse(ô(t), r(t) + γô(t+ 1)) , where ô(t+ 1) = 0, ∀t ≥ T . (12)

4 NUMERICAL RESULTS
4.1 INDEPENDENT R-COPS

We demonstrate the effectiveness of GDPG-Twin on four types of independent R-COPs by showing
that it can improve the quality of solutions of fast and/or distributed heuristics with minimal overhead.
These problems are maximum weighted independent set (MWIS), minimum weighted dominating
set (MWDS), node weighted Steiner tree (NWST), and minimum weighted connected dominating set
(MWCDS). They are all NP-hard, and need to be solved repetitively in a wide range of applications.
For example, the MWIS problem appears in various schedulers (Pinedo, 2012; Joo & Shroff, 2012;
Zhao et al., 2022a) and multi-object tracking in computer vision (Brendel et al., 2011). The MWDS
problem is encountered in wireless network clustering (Shahraki et al., 2020). Multicast routing in
communication networks involves the NWST problem (Sun et al., 2020). The MWCDS problem can
establish a virtual backbone network in wireless multihop networks, that covers all the nodes with

6

Published as a conference paper at ICLR 2023

100 150 200 250 300
Graph Size

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Ap
pr

ox
. R

at
io

 w
.r.

t.
Op

tim
al

GCNN(3)-LGS-adhoc
GCNN(3)-LGS-Twin
GCNN(3)-LGS-ZOO
MP [Paschalidis15]
LGS [Joo12]

Figure 1: Approximation ratios (Larger is better) of the
vanilla and GCNN-enhanced distributed heuristics for
MWIS problem (max), w.r.t. the optimal solver.

100 150 200 250 300 350 400 450 500
Graph Size

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ap
pr

ox
. R

at
io

 w
.r.

t.
Gr

ee
dy

-M
W

DS

BA
ER
GRP
WS

Figure 2: Approximation ratio (Smaller is better) of the
GCNN-enhanced w.r.t. the vanilla Greedy-MWDS for
MWDS problem (min) on 4 sets of random graphs.

100 150 200 250 300
Graph Size

0

1

2

3

4

5

Lo
ca

l C
om

m
un

ica
tio

n
Co

m
pl

ex
ity GCNN(3)+LGS

Vanilla LGS

Figure 3: Average rounds of local message exchange
for GCNN-enhanced and vanilla LGS-MWIS solvers
to solve an instance, excluding the GCNN (N = ∞).

100 150 200 250 300 350 400 450 500
Graph Size

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Ce
nt

ra
liz

ed
 R

un
tim

e
(s

)

Graph
BA
ER
GRP
WS

Reusing
N = 1
N =

Figure 4: Average runtime of GCNN-enhanced Greedy-
MWDS per instance by graph size, in seconds, no
reusing N = 1 and infinity reusing N = ∞ of Z.

the lowest cost in energy consumption or security vulnerability (Oliveira et al., 2011). We refer the
readers to Appendix F for more detailed descriptions of the aforementioned applications.

We develop four similar ML pipelines respectively for the four R-COPs, in which the actor and twin
networks are implemented by L-layer and 5-layer GCNNs, respectively, the baseline heuristics h(·)
in (5c) are selected as centralized or distributed greedy solvers. The details of the four ML pipelines
are in Appendix E for the equations of GCNN, Appendix F for the detailed training configurations,
and Appendix H for the hyperparameters of GCNNs and brief descriptions of the chosen baseline
heuristics. We aim to demonstrate the effectiveness of our proposed learning framework in closing
the optimality gaps of some widely used fast heuristics for R-COPs, at the cost of negligible overhead,
e.g., an additional computational complexity of O(L|E|/N) or local communication complexity of
O(L/N) per instance on sparse graphs. We do not claim smaller optimality gaps than the state-of-the-
art (slower and centralized) heuristics, nor that GCNN is the best candidate graph neural architecture
for these problems. An appealing characteristic of our framework is its modularity, which allows the
GCNNs being replaced by any other (non-convolutional) GNN while our approach is still valid.

The four COPs are widely applied in various wireless networks, involving graphs of up to hundreds of
nodes, and restricted runtimes from tens of milliseconds to a few seconds. Due to the dynamic nature
and the lack of real-world datasets of wireless network topologies, we follow the norm of wireless
research by running our experiments on four sets of synthetic random graphs: Erdős–Rényi (ER)
(Erdős & Rényi, 1959), Barabási–Albert (BA) (Albert & Barabási, 2002), Gaussian Random Partition
(GRP), and connected Watts-Strogatz small-world (WS) graphs. Each test dataset contains 2000
random graphs generated by a graph model with parameters detailed in Appendix F. The optimality
of a heuristic is evaluated by the average approximation ratio, EΩ′(c⊤x(h)/c⊤x(b)), on a test set
Ω′, where x(h) and x(b) are respectively the solutions from the heuristic of interests and a reference
algorithm. Only in MWIS, the optimal solutions from (Zhao et al., 2022a) are used as reference, in
other COPs, greedy heuristics are the references.

MWIS: An independent (vertex) set for a graph is a subset of vertices not connected by any edges.
The MWIS problem is to find an independent set on a vertex weighted graph that maximizes the total
weight. The baseline heuristic is a distributed local greedy solver (LGS-MWIS) (Joo & Shroff, 2012),

7

Published as a conference paper at ICLR 2023

100 150 200 250 300
Graph Size

0.90

0.92

0.94

0.96

0.98

1.00

Ap
pr

ox
. R

at
io

 w
.r.

t.
SP

H-
NW

ST

Graph
BA
ER
GRP
WS

Figure 5: Approximation ratio (Smaller is better) of
the GCNN-enhanced w.r.t. vanilla K-SPH-NWST for
NWST problem on 4 sets of random graphs. NWST is
a minimization (min) problem.

100 150 200 250 300 350
Graph Size

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Ap
pr

ox
. R

at
io

 w
.r.

t.
Ce

nt
ra

l G
re

ed
y

Graph
BA
ER
GRP
WS

Solver
GCNN(5)+Dist.Greedy
Dist.Greedy

Figure 6: Approximation ratios (Smaller is better) of
the vanilla and GCNN-enhanced distributed heuristics
w.r.t. a centralized heuristic for MWCDS problem on 4
sets of random graphs. MWCDS is a min. problem.

with a local communication complexity of O(log |V|). We test multiple distributed MWIS solvers,
including the GCNN-enhanced and vanilla LGS-MWIS, and a message passing (MP) algorithm
(Paschalidis et al., 2015) on a set of 500 random ER graphs from (Zhao et al., 2022a). 3 GCNNs are
respectively trained by ad hoc RL (Zhao et al., 2022a), GDPG-Twin, and ZOO (Liu et al., 2020), on a
set of 6000 ER graphs. The approximation ratios of the tested solvers w.r.t. the optimal solver are
shown in Figure 1. GDPG-Twin (93.1%) works equally well as the ad hoc RL (93.2%), and slightly
outperforms ZOO (92.7%) with only 1/3 to 1/2 evaluations of fnet(·;Z) (see Section 4.3). The GCNN
can reduce the optimality gap of LGS-MWIS (89.7%) by 1/3, beating the MP algorithm (90.7%).
Figure 3 shows that GCNN-enhanced and vanilla LGS-MWIS converge in 3 ∼ 4 rounds in this test
(MP algorithm converges in 2|V| rounds), where the former is slightly faster for a large N .

MWDS: A dominating set for a graph G = (V, E) is a subset D of V such that every vertex not in
D is adjacent to at least one member of D. In the MWDS problem, every node is associated with
a non-negative weight, and the objective is to find a dominating set of minimum total weight. The
baseline heuristic is a centralized greedy algorithm, Greedy-MWDS, as detailed in Appendix H. The
approximation ratio of the GCNN-enhanced Greedy-MWDS w.r.t. the vanilla Greedy-MWDS on
the 4 sets of random graphs described earlier, are shown in Figure 2. On average, GCNN improves
the performance of Greedy-MWDS by 11.42% on BA graphs, 6.8% on ER graphs, 3.0% on GRP
graphs, and 2.6% on WS graphs. The improvement is more pronounced on larger graphs. As shown
in Figure 4, the average runtime of the GCNN-enhanced Greedy-MWDS on a laptop of 4 CPUs no
GPU (detailed in Appendix I) ranges from 32 to 78 milliseconds per instance, and is linear to the
graph size, which can be further cut to 2-17 milliseconds for a large reusing factor N .

NWST: In the NWST problem, we are given an undirected graph G with node cost (non-negative
weight) and a subset of nodes called terminals. The goal is to find a minimum cost subgraph of G that
connects the terminals. In the test, the terminals are selected by randomly removing 10% ∼ 50%
nodes from a maximal independent set (MIS) on the graph. The baseline heuristic is a distributed
greedy algorithm, Kruskal’s shortest path heuristic (K-SPH-NWST) (Matsuyama, 1980; Bauer &
Varma, 1996). The approximation ratio of the GCNN-enhanced K-SPH-NWST w.r.t. the vanilla
K-SPH-NWST on the 4 sets of random graphs, are shown in Figure 5. GCNN can improve K-SPH-
NWST by 6.8% on BA graphs, 1.2% on GRP graphs, 1.4% on ER graphs, 0.9% on WS graphs, and
0.9% on a real-world dataset of Internet backbone topology (Knight et al., 2011) with |V| = 31.23
on average. The noticeable gain on BA graphs is meaningful to large real-world networks, such as
the Internet, World Wide Web, and social networks (Posfai & Barabasi, 2016, Ch. 5).

MWCDS: In MWCDS problem, we are given an undirected and connected graph, and our goal is to
find a minimum weighted dominating set that is connected. Our baseline heuristic is a distributed
greedy algorithm (Dist.Greedy), whereas the reference algorithm is a centralized greedy heuristic.
Both MWCDS heuristics are implemented in two steps (Sun et al., 2019): 1) find a MWDS, 2)
connect the MWDS by solving a NWST problem where the terminals are the solution of step 1. The
approximation ratios of the vanilla and GCNN-enhanced distributed heuristics w.r.t. the centralized
greedy heuristic on 4 sets of random graphs, each with 2000 graphs, are shown in Figure 6. Despite the
large gap between distributed and centralized greedy algorithms, GCNN can improve the distributed
greedy by 17.8% on GRP graphs, 16.0% on ER graphs, 6.6% on WS graphs, and 4.0% on BA graphs.

The average centralized runtimes of GCNN-enhanced distributed solvers for the MWIS, NWST,
MWCDS problems are respectively 0.017 ∼ 0.05, 0.07 ∼ 1.5, 0.08 ∼ 2.0 seconds per instance, as

8

Published as a conference paper at ICLR 2023

0.6

0.8

1.0

1.2

M
ed

ia
n

Ba
ck

lo
g

ER
2.056

BA-mix
4.848

BA-m2
5.307

Star10
5.5

Tree
5.669

BA-m1
8.004

Star20
10.5

Star30
15.5

0.6

0.8

1.0

1.2
M

ea
n

Ba
ck

lo
g

train
Lookahead RL [Zhao22]
GDPG-Twin

Figure 7: GDPG-Twin achieves similar network-wide
mean and medium backlogs (smaller is better) of looka-
head RL (Zhao et al., 2022b) in training a distributed
link scheduler, using only 1/5 evaluations of h(·) of it.

0 5000 10000 15000 20000 25000 30000 35000
Evaluations of h()

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

Ap
pr

ox
. R

at
io

 to
 V

an
illa

 L
GS

-M
W

IS

train
GDPG-Twin-1 point
ZOO-2 points
ZOO-11 points

type
Training
Validation

Figure 8: Performance trajectories of GCNN-enhanced
LGS-MWIS trained by GDPG-Twin and ZOOs with
2-point and 11-point gradient estimations. Larger is
better. GDPG-Twin needs fewer evaluations of h(·).

reported in Appendix I, along with their estimated computational time (not the execution time) in
distributed execution, as less than 0.18, 5.1, and 5.8 milliseconds, respectively.

4.2 REPETITIVE MWIS IN A GRAPH-BASED MARKOV DECISION PROCESS

Next, we compare GDPG-Twin to an ad-hoc training method (Zhao et al., 2022b) in the context of
delay-oriented distributed wireless link scheduling, demonstrating its effectiveness and efficiency
in long-term goal-seeking for R-COPs in a graph-based MDP. The distributed scheduler contains a
1-layer GCNN and LGS in both methods, and a 5-layer GCNN is used as the twin in GDPG-Twin.
The node feature matrix, S(t) = [q(t); l(t)], encloses the packet backlogs q(t) and stochastic data
rates l(t) on all links (nodes in conflict graph). The state transition in (4f) is based on q(t + 1) =
q(t)+a(t)−min(q(t), l(t)⊙x(t)), where a(t) captures random packets arrivals, and x(t) captures
binary scheduling decisions. The objective is to minimize the average backlog, Ei∈V,t≤T [qi(t)], see
Appendix A for detailed formulation. As shown in Figure 7, two distributed schedulers respectively
trained by 5-step lookahead RL (Zhao et al., 2022b) and GDPG-Twin achieve similar performance in
terms of the mean and median backlogs on conflict graphs with different levels of centralization, as
indicated by the number on the x-axis. However, GPDG-Twin is 5 times faster than lookahead RL, as
the former needs only 2 evaluations of h(·) per t, whereas the latter needs 10.

4.3 COMPARISON WITH ZEROTH-ORDER OPTIMIZATION IN TRAINING

The trajectories of relative performances of GCNN-enhanced LGS-MWIS (as detailed in Section 4.1)
w.r.t. vanilla LGS-MWIS, under different training methods, are illustrated in Figure 8, where x-axis
is the number of evaluations of the non-differentiable h(·) (LGS-MWIS). Each point on the curve
is the average value of 100 instances. During training, random weights are generated on-the-fly
for a training graph, whereas the weights on a validation graph are unchanged. GDPG-Twin and
ZOO are configured with the same sampling radius and learning rate. In training, GDPG-Twin
converges within only 1/3 to 1/2 evaluations of h(·) required by the fastest ZOO based on 2-point
gradient estimation, showing a better sampling efficiency than ZOO, by a factor of 2 to 3.

5 CONCLUSION

We address repetitive combinatorial optimization problems under practical restrictions in run-
time and/or distributed execution, by introducing a non-differentiable policy network based on
a hand-picked, fast and/or distributed heuristic, which is parameterized by a continuous-valued high-
dimensional intermediate action from an actor GNN. The actor GNN is optimized by graph-based
deterministic policy gradient with the help of a critic based on a twin network that can predict the
node-wise expected outcomes of the policy network. Through 5 examples, we demonstrate that
our approach can: 1) leverage the shared underlying topology of independent R-COPs, to reduce
the average optimality gap of the fast and/or distributed heuristics, and 2) optimize the long-term
objectives for R-COPs in a graph-based Markov decision process. In terms of limitations, our work
has not addressed the variance and worst-case of the optimality gap, which are important for many
real-world applications. Our evaluation is based on synthetic rather than real-world graphs. Moreover,
the actor and critic networks in our framework would need further design for broader tasks, e.g., edge
related R-COPs. In addition, we do not expect our work to have any impact on social equality.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

This research was sponsored by the Army Research Office and was accomplished under Cooperative
Agreement Number W911NF-19-2-0269. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies, either expressed
or implied, of the Army Research Office or the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation
herein.

REFERENCES

R. Albert and A.-L. Barabási. Statistical mechanics of complex networks. Rev. Mod. Phys., 74:47–97,
Jan 2002. doi: 10.1103/RevModPhys.74.47.

Fred Bauer and Anujan Varma. Distributed algorithms for multicast path setup in data networks.
IEEE/ACM Transactions on networking, 4(2):181–191, 1996.

William Brendel, Mohamed Amer, and Sinisa Todorovic. Multiobject tracking as maximum weight
independent set. In CVPR 2011, pp. 1273–1280. IEEE, 2011.

Sid Chi-Kin Chau, Khaled Elbassioni, Majid Khonji, et al. Combinatorial optimization of alternating
current electric power systems. Now Publishing Incorporated, 2018.

Denis Cornaz, Fabio Furini, and Enrico Malaguti. Solving vertex coloring problems as maximum
weight stable set problems. Discrete Applied Mathematics, 217:151–162, 2017.

Edsger W Dijkstra et al. A note on two problems in connexion with graphs. Numerische mathematik,
1(1):269–271, 1959.

Iddo Drori, Anant Kharkar, William R Sickinger, Brandon Kates, Qiang Ma, Suwen Ge, Eden Dolev,
Brenda Dietrich, David P Williamson, and Madeleine Udell. Learning to solve combinatorial
optimization problems on real-world graphs in linear time. In 19th IEEE International Conference
on Machine Learning and Applications (ICMLA), pp. 19–24. IEEE, 2020.

Mark Eisen, Clark Zhang, Luiz F. O. Chamon, Daniel D. Lee, and Alejandro Ribeiro. Learning
optimal resource allocations in wireless systems. IEEE Transactions on Signal Processing, 67(10):
2775–2790, 2019. doi: 10.1109/TSP.2019.2908906.

P. Erdős and A. Rényi. On random graphs I. Publ. Math. Debrecen 6, pp. 290–297, 1959.

Misa Fujita, Takayuki Kimura, and Kenya Jin’no. An effective construction algorithm for the steiner
tree problem based on edge betweenness. Journal of Signal Processing, 20(4):145–148, 2016.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combina-
torial optimization with graph convolutional neural networks. Advances in Neural Information
Processing Systems, 32:1–13, 2019.

André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial
optimization problems. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=nO5caZwFwYu.

Benjamin Hudson, Qingbiao Li, Matthew Malencia, and Amanda Prorok. Graph neural network
guided local search for the traveling salesperson problem. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=ar92oEosBIg.

C. Joo and N. B. Shroff. Local greedy approximation for scheduling in multihop wireless networks.
IEEE Trans. on Mobile Computing, 11(3):414–426, 2012.

Raka Jovanovic, Milan Tuba, and Dana Simian. Ant colony optimization applied to minimum weight
dominating set problem. In Proceedings of the 12th WSEAS International Conference on Automatic
Control, Modelling & Simulation, Catania, Italy, pp. 29–31, 2010.

JW Kendall. Hard and soft constraints in linear programming. Omega, 3(6):709–715, 1975.

10

https://openreview.net/forum?id=nO5caZwFwYu
https://openreview.net/forum?id=ar92oEosBIg

Published as a conference paper at ICLR 2023

E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song. Learning combinatorial optimization algorithms
over graphs. In Advances in Neural Info. Process. Systems, pp. 6348–6358, 2017.

Elias Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning to branch
in mixed integer programming. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 30, 2016.

S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. The internet topology zoo.
Selected Areas in Communications, IEEE Journal on, 29(9):1765 –1775, october 2011. ISSN
0733-8716. doi: 10.1109/JSAC.2011.111002.

David R Kraay and Patrick T Harker. Case-based reasoning for repetitive combinatorial optimization
problems, part i: Framework. Journal of Heuristics, 2(1):55–85, 1996.

Sebastian Lamm, Christian Schulz, Darren Strash, Robert Williger, and Huashuo Zhang. Exactly
solving the maximum weight independent set problem on large real-world graphs. In Proc. of the
21st Workshop on Algo. Engr. and Exper. (ALENEX), pp. 144–158. SIAM, 2019.

Ailsa H. Land and Alison G. Doig. An automatic method for solving discrete programming problems.
Econometrica, 28(3):105–132, 1960. doi: 10.1007/978-3-540-68279-0_5.

Z. Li, Q. Chen, and V. Koltun. Combinatorial optimization with graph convolutional networks and
guided tree search. In Advances in Neural Info. Process. Systems, pp. 539–548, 2018.

Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O Hero III, and Pramod K
Varshney. A primer on zeroth-order optimization in signal processing and machine learning:
Principals, recent advances, and applications. IEEE Signal Process. Mag., 37(5):43–54, 2020.

Gurobi Optimization LLC. Gurobi optimizer reference manual, 2020. URL http://www.gurobi.
com.

A Matsuyama. An approximate solution for the steiner problem in graphs. Math. Japonica, 24:
573–577, 1980.

Robin A Moser and Gábor Tardos. A constructive proof of the general lovász local lemma. Journal
of the ACM (JACM), 57(2):1–15, 2010.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov, Brendan
O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving mixed
integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

Carlos AS Oliveira, Panos M Pardalos, et al. Mathematical aspects of network routing optimization.
Springer, 2011.

I. C. Paschalidis, F. Huang, and W. Lai. A message-passing algorithm for wireless network scheduling.
IEEE/ACM Trans. Netw., 23(5):1528–1541, October 2015. ISSN 1063-6692. doi: 10.1109/TNET.
2014.2338277.

Michael L Pinedo. Scheduling, volume 29. Springer, 2012.

Marton Posfai and Albert-Laszlo Barabasi. Network science. Cambridge University Press, 2016.

Jason Ramapuram and Russ Webb. Improving discrete latent representations with differentiable
approximation bridges. In 2020 International Joint Conference on Neural Networks (IJCNN), pp.
1–10, 2020. doi: 10.1109/IJCNN48605.2020.9207581.

T Mitchell Roddenberry, Nicholas Glaze, and Santiago Segarra. Principled simplicial neural networks
for trajectory prediction. In International Conference on Machine Learning, pp. 9020–9029.
PMLR, 2021.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference Proceedings,
2011.

11

http://www.gurobi.com
http://www.gurobi.com

Published as a conference paper at ICLR 2023

Amin Shahraki, Amir Taherkordi, Øystein Haugen, and Frank Eliassen. Clustering objectives in
wireless sensor networks: A survey and research direction analysis. Computer Networks, 180:
107376, 2020.

Ajay Sikandar, Rajeev Agrawal, Manoj Kumar Tyagi, AL Rao, Mukesh Prasad, and Muhammad
Binsawad. Toward green computing in wireless sensor networks: prediction-oriented distributed
clustering for non-uniform node distribution. EURASIP Journal on Wireless Communications and
Networking, 2020(1):1–17, 2020.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning (ICML),
pp. 387–395. PMLR, 2014.

Xuemei Sun, Yongxin Yang, and Maode Ma. Minimum connected dominating set algorithms for ad
hoc sensor networks. Sensors, 19(8):1919, 2019.

Yahui Sun, Daniel Rehfeldt, Marcus Brazil, Doreen Thomas, and Saman Halgamuge. A physarum-
inspired algorithm for minimum-cost relay node placement in wireless sensor networks. IEEE/ACM
Transactions on Networking, 28(2):681–694, 2020. doi: 10.1109/TNET.2020.2971770.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
Cambridge, MA, 2018.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for
reinforcement learning with function approximation. Advances in Neural Information Processing
Systems, 12:1057–1063, 1999.

Ekaterina Tolstaya, Fernando Gama, James Paulos, George Pappas, Vijay Kumar, and Alejandro
Ribeiro. Learning decentralized controllers for robot swarms with graph neural networks. In
Conference on robot learning, pp. 671–682. PMLR, 2020.

Chrysafis Vogiatzis and Panos M Pardalos. Combinatorial optimization in transportation and logistics
networks. In Handbook of combinatorial optimization, pp. 673–722. Springer New York, 2013.

Qing Wang. Knowledge-based approach for dimensionality reduction solving repetitive combinatorial
optimization problems. Expert Systems with Applications, 184:115502, 2021. ISSN 0957-4174.
doi: https://doi.org/10.1016/j.eswa.2021.115502.

Yiyuan Wang, Shaowei Cai, Jiejiang Chen, and Minghao Yin. A fast local search algorithm for mini-
mum weight dominating set problem on massive graphs. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence, IJCAI-18, pp. 1514–1522. IJCAI Organization, 7 2018.
URL https://doi.org/10.24963/ijcai.2018/210.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3):279–292, 1992.

Hailin Wu, Fengming Tao, and Bo Yang. Optimization of vehicle routing for waste collection and
transportation. International Journal of Environmental Research and Public Health, 17(14):4963,
2020.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):4–24, 2021. doi: 10.1109/TNNLS.2020.2978386.

Giulia Zarpellon, Jason Jo, Andrea Lodi, and Yoshua Bengio. Parameterizing branch-and-bound
search trees to learn branching policies. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 3931–3939, 2021.

Zhongyuan Zhao, Gunjan Verma, Chirag Rao, Ananthram Swami, and Santiago Segarra. Link
scheduling using graph neural networks. In arXiv preprint arXiv:2109.05536, 2022a. URL
https://arxiv.org/pdf/2109.05536.pdf.

Zhongyuan Zhao, Gunjan Verma, Ananthram Swami, and Santiago Segarra. Delay-oriented dis-
tributed scheduling using graph neural networks. In ICASSP 2022 - 2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8902–8906, 2022b. doi:
10.1109/ICASSP43922.2022.9746926.

12

https://doi.org/10.24963/ijcai.2018/210
https://arxiv.org/pdf/2109.05536.pdf

Published as a conference paper at ICLR 2023

Dilay Çelebi. Inventory control in a centralized distribution network using genetic algorithms: A
case study. Computers & Industrial Engineering, 87:532–539, 2015. ISSN 0360-8352. doi:
https://doi.org/10.1016/j.cie.2015.05.035.

A APPENDIX: TWO EXEMPLARY FORMULATIONS OF REPETITIVE COPS

For link scheduling in wireless multiple networks (Joo & Shroff, 2012; Zhao et al., 2022a;b),
the network state is G(t) = (V(t), E(t),S(t)), where (V(t), E(t)) is the underlying topology of
the conflict graph, in which a vertex i ∈ V(t) represents a wireless link, and an undirected edge
{i, j} ∈ E(t) captures the conflicting relationship between two links i and j. The underlying topology
of the conflict graph is supposed to change slowly compared to node features S(t).

The node feature matrix S(t) = [q(t); l(t)] encloses vectors of packet backlogs (queue lengths), q(t),
and predicted link rates l(t) on all the links at time t. The backlog vector q(t) evolves according to
the scheduling decisions x(t), and the state transition function fs(·) in (4f) is

q(t+ 1) = q(t) + a(t)−min(q(t), l(t)⊙ x(t)),

where a(t) captures random packets arrivals, and l(t) follows a stationary random distribution.

The scheduling decision is subjective to a binary constraint, xi ∈ {0, 1},∀i ∈ V , and a constraint of
independent set as, xi + xj ≤ 1,∀{i, j} ∈ E , corresponding to (2b) and (2c), respectively.

In link scheduling for throughput maximization (Joo & Shroff, 2012; Zhao et al., 2022a), (4e) is
defined as utility function c(t) = q(t)⊙ l(t) to prioritize wireless links with large backlogs and high
link rates. The heuristic h(·) in (4d) is a distributed MWIS solver, e.g., LGS in (Joo & Shroff, 2012)
and GCN-LGS in (Zhao et al., 2022a). The reward vector in (4c) is defined as r(t) = c(t)⊙ x(t),
and the expected return o(t) = Et≤T [r(t)] for (4b). Since throughput maximization is equivalent
to optimize MWIS instances individually without considering their inter-dependencies, (4e) and
(4f) together can be simplified as a sampling process c ∼ Ωc. Therefore, t can be dropped, and
the expected return becomes o(t) = Ec∼Ωc [c⊙ x], and the objective function in (4a) becomes
fobj(o(t)) = 1⊤o = Ec∼Ωc

(
c⊤x

)
. The formulation is then simplified as (3) with c = −q⊙ l.

For delay-oriented link scheduling (Zhao et al., 2022b), the objective is to minimize the average back-
log across the network and time, Ei∈V,t≤T [qi(t)], and the inter-dependencies between network states
cannot be ignored. This objective can be formulated as an average reward objective, implemented by
setting the discount factor as γ = 1 and defining fobj(o(t)) =

1
T Ei∈V [oi(t)]. The heuristic solver

h(·) in (4d) is LGS, and the reward vector in (4c) is r(t) = q′(t)− q(t), where q′(t) is the backlog
vector under LGS with a baseline cost vector c′(t− 1) = q(t− 1)⊙ l(t− 1). The objective function
in (4a) can then be transformed to Ei∈V,t≤T [q′

i(t)]− Ei∈V,t≤T [qi(t)], in which the first component
is a constant. The cost vector in (4e) is obtained by a GCN as c(t) = Ψ (V(t), E(t),q(t)⊙ l(t); Θp),
which is trained to maximize the objective function.

These two examples show that independent R-COP is a special case of R-COP in graph-based MDP,
and problems under similar settings can be formulated differently based on their objectives.

B APPENDIX: SGD FOR TWIN NETWORK IN INDEPENDENT REPETITIVE COPS

Give MSE loss,

ℓmse(ô,o) =
1

|o|

|o|∑
i=1

(ôi − oi)
2 , (13)

the partial derivative of ℓmse(ô,o) w.r.t. the parameters of the twin network is

∂ℓmse(ô,o)

∂Θc
=

∂ℓmse(ô,o)

∂ô

∂ô

∂Θc
(14a)

=
2

|o|
[ô− EΩ|c|(c⊙ x)]

⊤ ∂ô

∂Θc
(14b)

= EΩ|c|

(
2

|o|
(ô− c⊙ x)

⊤ ∂ô

∂Θc

)
, (14c)

13

Published as a conference paper at ICLR 2023

where from (14b) to (14c) is based on the linearity of expectation. Based on (14c), by drawing
c ∼ Ωc, we have the following unbiased stochastic gradient estimation:

∂ℓmse(ô,o)

∂Θc
= EΩc

[
̂∂ℓmse(ô,o)

∂Θc

]
, (15)

where
̂∂ℓmse(ô,o)

∂Θc
=

2

|o|
(ô− c⊙ x)

⊤ ∂ô

∂Θc
(16a)

=
∂ℓmse(ô, c⊙ x)

∂Θc
. (16b)

Therefore, the stochastic gradient estimation for the parameters of the twin network is
̂∇Θcℓmse(ô,o) = ∇Θcℓmse(ô, c⊙ x) . (17)

C APPENDIX: SGD FOR TWIN NETWORK IN R-COPS IN GRAPH-BASED MDP

We define a return vector supported on the nodes of the graph as

g(t) =

T−t∑
k=0

γkr(t+ k) , (18)

which can be expressed in a recursive form
g(t) = r(t) + γg(t+ 1) , where g(t) = 0 , ∀t > T . (19)

The outcome (value) vector of state G(t) is the expected return vector under policy Θp,
o(t) = EΘp

[g(t)|G(t)] . (20)
The gradient ∇Θc

ℓmse(ô(t),o(t)) can be found by the following partial derivative
∂ℓmse(ô(t),o(t))

∂Θc
=

∂ℓmse(ô(t),o(t))

∂ô(t)

∂ô(t)

∂Θc
(21a)

=
2

|o(t)|

(
ô(t)− EΘp

[g(t)|G(t)]
)⊤ ∂ô(t)

∂Θc
(21b)

= EΘp

(
2

|o(t)|
[ô(t)− g(t)|G(t)]⊤ ∂ô(t)

∂Θc

)
, (21c)

where from (21b) to (21c) is based on the linearity of expectation, and that ô(t) is a function of G(t),
generated by the twin network, as defined in (12). Based on (19), we have the following unbiased
estimation of the partial derivative in (21a)

∂ℓmse(ô(t),o(t))

∂Θc
= EΘp

[
̂∂ℓmse(ô(t),o(t))

∂Θc

]
, (22)

where
̂∂ℓmse(ô(t),o(t))

∂Θc
=

2

|o(t)|
[ô(t)− g(t)|G(t)]⊤ ∂ô(t)

∂Θc
(23a)

=
2

|o(t)|
[ô(t)− r(t)− γg(t+ 1)|G(t)]⊤ ∂ô(t)

∂Θc
. (23b)

In (23b), r(t) is the reward vector collected under current state G(t), as defined in (10c), and
g(t+1)|G(t) is the return of the next state G(t+1), evolved from the current state G(t) according to
(10f). The return of the next state G(t+ 1) is estimated as g(t+ 1) ≈ ô(t+ 1) by the twin network,
as defined in (12). As a result, we have the following approximation

r(t) + γg(t+ 1)|G(t) ≈ r(t) + γô(t+ 1) . (24)
Plugging (24) to (23b), we have

̂∂ℓmse(ô(t),o(t))

∂Θc
≈ ∂ℓmse(ô(t), r(t) + γô(t+ 1))

∂Θc
. (25)

Therefore, the stochastic gradient estimation for the parameters of the twin network is
̂∇Θcℓmse(ô(t),o(t)) ≈ ∇Θcℓmse(ô(t), r(t) + γô(t+ 1))) . (26)

14

Published as a conference paper at ICLR 2023

D APPENDIX: ALGORITHMIC PROCEDURES OF GDPG-TWIN

Algorithm 1 GDPG-Twin for R-COPs with Independent Instances
Input: Ωc,ΩG , h(·), αp, αc, E,B, ϵ
Output: Z or Θp,Θc

1: Initialize Z or Θp,Θc randomly or as pretrained models, c̄ = EΩc(c)
2: for e ∈ {1, 2, . . . , E} do
3: Qp = ∅,Qc = ∅ /* Clear gradient buffers */
4: for b ∈ {1, . . . , B} do
5: Draw G(V, E) ∈ ΩG , c ∈ Ωc /* Draw data from training dataset or target distribution */
6: if Actor network is used then
7: Z = Ψ(V, E , c̄;Θp)
8: end if
9: Z(j) = Z+N(j),N(j) ∈ U(−ϵ, ϵ) /* Random policy sampling */

10: ô = ftwin(V, E , c̄,Z(j);Θ∗
c)

11: x = fnet(V, E , c;Z(j)) based on h(·) in (5c) and floc(·) in (5d)
12: Estimate gradient∇Θc

ℓmse(ô, c⊙ x) for critic
13: Qc ← Qc ∪ {∇Θcℓmse(ô, c⊙ x)}
14: Estimate policy gradient∇Z1

⊤ô based on (7)
15: if Actor network is used then
16: Estimate gradient∇Θp

1⊤ô = ∇Θp
Ψ(V, E , c̄;Θp)∇Z1

⊤ô for actor
17: Qp ← Qp ∪ {∇Θp1

⊤ô}
18: else
19: Qp ← Qp ∪ {∇Z1

⊤ô}
20: end if
21: end for
22: Θc ← Θc − αcEQc

[∇Θc
ℓmse(ô, c⊙ x)]

23: Z← Z− αpEQc

(
∇Z1

⊤ô
)

or Θp ← Θp − αpEQp

(
∇Θp1

⊤ô
)

24: end for
25: Output Z or Θp,Θc

For the four demonstrated R-COPs with independent instances, we set the hyperparameters of training
procedure in Algorithm 1 as follows: αp = αc = 0.0001, E = 25, B = 100, ϵ = 0.15.

15

Published as a conference paper at ICLR 2023

Algorithm 2 GDPG-Twin for R-COPs in a graph-based MDP
Input: Ω1,ΩG , h(·), αp, αc, T, E
Output: Θp,Θc

1: Initialize Θp,Θc randomly or as pretrained models
2: for e ∈ {1, 2, . . . , E} do
3: Qe = ∅,Qp = ∅,Qc = ∅ /* Clear experience & gradient buffers */
4: Initialize state G(1) = (V(1), E(1),S(1)) ∼ Ω1 (or ΩG for ergodic MDP)
5: for t ∈ {1, . . . , T} do
6: c(t) = Ψ(V(t), E(t),S(t);Θp)
7: ô(t) = ftwin(V(t), E(t),S(t), c(t);Θ∗

c)
8: Obtain decision vector x(t) based on (10d)
9: Observe reward vector r(t) according to (10c)

10: Update state feature S(t+ 1) according to (10f)
11: Estimate stochastic policy gradient∇Θpfobj (ô(t)) based on (11)
12: Qp ← Qp ∪ {∇Θpfobj (ô(t))}
13: Qe ← Qe ∪ {< r(t), ô(t) >}
14: end for
15: for t ∈ {1, . . . , T} do
16: Fetch r(t), ô(t), ô(t+ 1) from Qe

17: Estimate stochastic gradient∇Θc
ℓmse(ô(t), r(t) + γô(t+ 1)) for critic

18: Qc ← Qc ∪ {∇Θc
ℓmse(ô(t), r(t) + γô(t+ 1))}

19: end for
20: Θc ← Θc − αcEQc [∇Θcℓmse(ô(t), r(t) + γô(t+ 1))]
21: Θp ← Θp + αp∇Θpfobj (ô(1)) /* Objective maximization */
22: end for
23: Output Θp,Θc

For the demonstrated delay-oriented link scheduling (Zhao et al., 2022b), we use the following
hyperparameters in training described in Algorithm 2: αp = αc = 0.0001, T = 64, E = 200. The
types and mixture of the training graphs, random processes, etc., are identical to (Zhao et al., 2022b).

E APPENDIX: GRAPH CONVOLUTIONAL NEURAL NETWORKS

An L-layer GCNN is implemented as follows: Given the input feature S(0) = S supported on a graph
G, the output is Z = S(L) = fGCN (G,S;Θ), where an intermediate lth layer of the GCNN is

Sl = σl

(
Sl−1Θl

0 +LSl−1Θl
1

)
, l ∈ {1, . . . , L} . (27)

In (27), L is the normalized Laplacian of graph G, Θl
0,Θ

l
1 ∈ Rgl−1×gl are the trainable parameters,

gl−1 and gl are the dimensions of the output features of layers l − 1 and l, respectively, and σl(.) is
an element-wise activation function.

In a distributed system, (27) can be implemented by the following local operation on node v ∈ V ,

Sl
v∗ = σl

Sl−1
v∗ Θl

0 +

Sl−1
v∗ −

∑
u∈N (v)

Sl−1
u∗√

d(v)d(u)

Θl
1

 , (28)

where Sl
v∗ ∈ R1×gl is the vth row of matrix Sl, which captures the features on node v, d(v) is the

degree of node v, and N (v) is the set of neighboring nodes of node v.

F APPENDIX: CONFIGURATIONS OF RANDOM GRAPHS FOR TRAINING AND
TESTING

p ∈ U(0.15, 0.35), k ∈ ⌊U(10, 30)⌉. Training graph size |V| ∈ {100, 150, 200, 250, 300}. Testing
graph size |V| ∈ {100, 150, 200, 250, 300, 350, 400, 450, 500} (varies by problem).

16

Published as a conference paper at ICLR 2023

ER: size |V|, edge probability |V|/k. BA: size |V|, number of edges to attach from a new node
to existing nodes m = ⌊pk⌉. WS: size |V|, each node is joined with its k nearest neighbors in a
ring topology, p: the probability of rewiring each edge. GRP: size |V|, mean cluster size k, shape
parameter min(7, k), probability of intra-cluster connection p, probability of inter cluster connection
max(0.1, p/3). For MWIS problem in Section 4.1, the test set of 500 ER graphs and the corresponding
optimal solutions are from https://github.com/zhongyuanzhao/distgcn (Zhao et al.,
2022a).

G APPENDIX: APPLICATIONS OF THE FOUR EXEMPLARY R-COPS

G.1 MWIS IN SCHEDULING AND COMPUTER VISION

Definition: An independent (vertex) set for a graph is a subset of vertices not connected by any edges.
The MWIS problem is to find an independent set on a vertex weighted graph that maximizes the total
weight.

MWIS for wireless scheduling: MWIS can be applied to link scheduling in wireless multihop
networks with orthogonal multiple access (Joo & Shroff, 2012; Zhao et al., 2022a). In a wireless
multihop network, a wireless link refers to a pair of nearby wireless transceivers that can directly
talk to each other. In orthogonal multiple access, two links would conflict with each other if they
share the same transceiver (which can only be tuned to one link at a time), or they would block out
each other if activated simultaneously (e.g., any transceiver(s) of a link are located too close to any
transceiver(s) of the other link to interfere the reception of wireless signal). In each time slot, a link
scheduler (Max-Weight scheduler) would determine a set of non-interfering links to be activated, so
that it would maximize the total utility of the wireless network. Max-Weight scheduling is essentially
finding a MWIS on the conflict graph of the wireless network, which is defined as follows: each vertex
in the conflict graph is a link in the wireless network, and an edge captures the conflict relationship
between two links. For example, with a per-link utility function based on the length of backlogged
data packets of each link, Max-Weight scheduling can achieve the maximum throughput (the amount
of data packets transmitted in a time slot) of the wireless network. The typical length of a time slot in
various wireless communication protocols ranges from 1 ∼ 100 milliseconds, which means that a
Max-Weight scheduler needs to solve an MWIS instance every 1 ∼ 100 milliseconds. Meanwhile,
the topology of the conflict graph in wireless scheduling (determined by the topology of the wireless
networks and physical locations of transceivers) evolves at much lower pace, such as seconds to
minutes for mobile wireless networks, or remain the same if all the transceivers (such as microwave
towers and wireless sensors) are static.

Graph coloring problems are also applied to wireless scheduling, especially, multi-channel wireless
scheduling. The conflict graph is formulated similarly in the previous single-channel scheduling, but
instead of finding a MWIS, each node in the conflict graph (link in the wireless network) is assigned
a color representing a particular channel, so that neighboring nodes (conflicting links) will never have
the same color (channel). In Cornaz et al. (2017), the four types of graph coloring problems: Vertex
coloring problem (VCP), equitable vertex coloring problem (ECP), Max-coloring (Max-Col) which
can be seen as the weighted version of VCP, and Bin Packing Problem with Conflict (BPPC), can be
converted to solving MWIS on an associated graph.

MWIS for multiobject tracking in computer vision: In multiobject tracking (Brendel et al.,
2011), a detector first identifies a set of objects in a video frame, records the following properties
of the corresponding bounding box of each object: location, size, the histograms of color, intensity
gradients, and optical flow. Next, the detected objects across different video frames needs to be linked
according to their properties to maintain their unique identities. The second step is formulated as
finding a MWIS on a graph, in which nodes represent candidate matches (of two objects) from every
two consecutive frames, referred as tracklets; node weights encode the similarity of the corresponding
matches; and edges connect nodes whose corresponding tracklets violate the hard constraints that
no two matches share the same object. If there are 10 objects in each of the two consecutive frames,
there would be 100 tracklets. The MWIS on such a graph is a set of matches that maximize the
total similarities of tracklets, resulting in the most plausible tracking of multiple objects. In this
formulation, a MWIS instance needs to be solved every video frame (24, 30 frames per second),
while the topology of the graphs of consecutive MWIS instances would be similar since consecutive
frames in a typical video stream would remain similar.

17

https://github.com/zhongyuanzhao/distgcn

Published as a conference paper at ICLR 2023

G.2 MWDS IN WIRELESS SENSOR NETWORKS AND COVERING CODES

Definition: A dominating set for a graph G = (V, E) is a subset D of V such that every vertex not in
D is adjacent to at least one member of D. In the MWDS problem, every node is associated with a
non-negative weight, and the objective is to find a dominating set of minimum total weight.

MWDS for clustering in wireless sensor networks: Wireless sensor networks are a type of ad-hoc
network for monitoring purposes. It usually include a large number of sensor nodes, which are
resource-constrained (such as battery power), but can connect to other nodes of the network for
transmitting sensed data. Each node can also forward data from neighbors to the sink (or gateway,
base station, server, etc.) (Shahraki et al., 2020). Clustering is one of the most popular techniques for
the topology management of wireless sensor networks . It organizes sensor nodes into a set of groups
called clusters, each cluster has one or more cluster heads which gathers data from other members of
the cluster and send the (fused) data to the sink directly or indirectly. Using clustering techniques,
resource-constrained sensor nodes do not need to send their data to the sink directly, which can cause
energy depletion, resource consumption inefficiency and interference. Clustering can be formulated
as MWDS problem, where the cluster heads form a dominating set so that the rest of the sensor nodes
can directly reach at least one cluster head. By defining the node weight as the cost of being a cluster
head, MWDS can minimize the total cost of wireless sensor networks, such as energy consumption
or quality of service. To maximize the lifetime of the wireless sensor network, it may need to select a
different set of cluster heads once in a while to avoid draining the battery of cluster heads. The node
weight would change based on the battery levels of the sensor nodes.

G.3 NWST FOR MULTICAST ROUTING IN WIRELESS NETWORKS

Definition: In the NWST problem, we are given an undirected graph G with node cost (non-negative
weight) and a subset of nodes called terminals. The goal is to find a minimum cost subgraph of G that
connects the terminals.

NWST in multicast routing: A multicast route is a network route that connects more than two nodes
at the same time (Oliveira et al., 2011). Multicast routing is applicable to networking scenarios where
data needs to be shared by a group of users, such as a software company sends out a security patch to
the computers across the Internet installed with its software, or a company pushes a notification to
the smart phones installed with its mobile app. In these example, the Internet would be the graph, the
server and the recipients are defined as the terminals in the Steiner tree problem, and the non-terminal
nodes are the routers, gateways, and other computers on the Internet.

Multicast routing in wireless multihop networks can be formulated as node weighted Steiner tree
(NWST) problem (Sun et al., 2020). The graph models the network, e.g., a node represents a wireless
device and an edge represents a link between two wireless devices. The terminals in the NWST are the
subset of wireless devices that need to connected with each other, and the non-terminal nodes are the
rest of the wireless devices in the network. The node weight captures the cost of a non-terminal node
relaying packets, such as the consumption of energy, bandwidth, and/or CPU load. By formulating
the multicast routing as a NWST, we can connect all the terminals at minimal total cost. Whenever
there is a request to establish a multicast route, a NWST problem in the network needs to be solved.
In medium to large-scale wireless networks, distributed algorithms are always preferred since it does
not require a centralized coordinator to collect the real-time network state and compute the solution.

G.4 MWCDS IN MOBILE AD-HOC NETWORKS

Definition: In MWCDS problem, we are given an undirected connected graph, and our goal is to find
a minimum weighted dominating set that is connected.

MWCDS for virtual backbone computation: In mobile ad-hoc networks, a virtual backbone is
a set of nodes that can be used to take routing decisions and that act as proxies for routing packets
(Oliveira et al., 2011). It can reduce the amount of routing information shared among nodes of the
system, by requiring only a subset of nodes to be actively involved in routing decisions. Formally,
we would define the mobile ad-hoc network as a undirected graph, in which each node represents
a mobile device, and each edge represents a link between two mobile devices. A virtual backbone
needs to a connected subgraph so that packets from one node can always reach to another node in
the virtual backbone. A node in the network needs to be either a member of the virtual backbone

18

Published as a conference paper at ICLR 2023

or adjacent to at least one member of the virtual backbone, so that it can reach to the rest of the
network. Therefore, a virtual backbone needs to be a dominating set of the graph. Moreover, since
members of the virtual backbone take the responsibility of routing, which comes with extra cost in
battery power consumption and routing packets, we want to minimize the total cost of implementing a
virtual backbone. Therefore, the computation of a virtual backbone is to find the minimum weighted
connected dominating set of the network. The virtual backbone in mobile ad-hoc networks needs to
be re-established after a while, in order to adapt to the changing traffic conditions, network topology,
as well as the battery levels of the mobile devices. The network topology may change slowly,
whereas the battery levels of mobile devices and traffic conditions may change more frequently.
Re-establishing the virtual backbone once a while could avoid draining the batteries of the members
of the virtual backbone. Moreover, virtual backbone computation requires distributed algorithm to
find the MWCDS, since there is no server or base-station in mobile ad-hoc network to perform such
computation.

H APPENDIX: ML PIPELINES AND BASELINE HEURISTICS

H.1 MWIS PIPELINE

We adopt the GCN-LGS pipeline in (Zhao et al., 2022a) as the actor network, which comprises a
3-layer GCNN followed by a distributed local greedy solver (LGS-MWIS) (Joo & Shroff, 2012).
The actor GCNN is configured as follows: the dimensions of GCNN layers are gl = 32, l = 1, 2,
and g0 = g3 = 1, the hidden layers employ leaky ReLU activation, while the output layer ReLU
activation. The GCNN outputs vector c ∈ R|V|. The local function in (5d) is instantiated as a
multiplier, floc(ci, zi) = cizi. The twin network is implemented by a 5-layer GCNN, in which the
hidden layers have dimensions of gl = 64, l = 1, . . . , 4 and leaky ReLU activation, and the output
layer has a dimension of g5 = 2 and Softmax activation. The training takes about an hour on a server
with 16 GB memory, 8 CPUs and 1 GPU (Nvidia 1080 Ti).

The basic greedy heuristic first sorts the nodes by their weight in decreasing order, then iteratively
adds a node to the solution and removes the node and its neighbors from the sorted list, until the list
is empty.

The distributed heuristic LGS-MWIS (Joo & Shroff, 2012) iteratively builds a solution as follows: in
an iteration, each node compares its weight with its neighbors; if a node has the maximal weight in
the neighborhood, it marks itself as 1, and broadcasts a control message to its neighbors, who then
mark themselves as -1; the unmarked nodes enter the next iteration. When all nodes are marked, the
solution is the set of nodes marked as 1. LGS-MWIS has an average local communication complexity
of O(log |V|) on general graphs. The centralized greedy algorithm and LGS-MWIS are detailed in
(Zhao et al., 2022a, Algo 1 and Appendix Algo 1).

For MWIS problem in Section 4.1, the test set of 500 ER graphs and the corresponding optimal
solutions are from https://github.com/zhongyuanzhao/distgcn (Zhao et al., 2022a).

H.2 MWDS PIPELINE AND GREEDY-MWIDS

We augment Greedy-MWDS with a 5-layer actor GCNN and the same local function in the MWIS
pipeline in Appendix H.1. The actor GCNN is configured as follows: the input and hidden layers have
dimensions of gl = 32, l = 1, . . . , 4 and leaky ReLU activations, the input and output dimensions
are g0 = g5 = 1, and the output layer employs ReLU activation. The twin is also implemented by
a 5-layer GCNN configured the same as the twin GCNN in the MWIS pipeline in Appendix H.1,
except that gl = 32, l = 1, . . . , 4. The GCNN is trained on randomly generated ER graphs of 100 to
300 nodes. The training takes about an hour on a server with 16 GB memory, 8 CPUs and 1 GPU
(Nvidia 1080 Ti)

The greedy algorithm, Greedy-MWDS, iteratively builds a solution by adding to the solution the
most cost-effective node from the vertices not yet in the solution, marking its neighbors as covered,
until all nodes are either in the solution or covered. A good metric for the cost-effectiveness of node
v ∈ V is (Jovanovic et al., 2010):

ω(v) =
c(v)

1 +
∑

u∈N (v)∩W′ c(u)
,W ′ = {i|i ∈ V \ (D′ ∪N (D′)} , (29)

19

https://github.com/zhongyuanzhao/distgcn

Published as a conference paper at ICLR 2023

where smaller ω(v) means better cost-effectiveness, c(v) is the weight of node v, D′ is the partial
solution (initialized as ∅), N (·) refers to the neighbors of a node or a vertex set,W ′ is the set of
uncovered nodes.

An alternative greedy algorithm (Greedy-MWIDS) selects the most cost-effective node only from
the uncovered vertices in each iteration, which builds an independent dominating set (IDS). Greedy-
MWIDS can be implemented by the distributed LGS-MWIS (Joo & Shroff, 2012), and is used as part
of the distributed heuristic for the MWCDS problem in Appendix H.4.

H.3 NWST PIPELINE AND BASELINE HEURISTICS

The actor, twin, and local function are configured the same as in the MWDS pipeline in Appendix H.2.
The input node feature for the actor and twin GCNNs is one-hot encoded indicator of whether a node
is a terminal. The GCNNs are trained on randomly generated GRP graphs with 100 to 300 nodes.
The training takes 5 hours on a server with 16 GB memory, 8 CPUs and 1 GPU (Nvidia 1080 Ti).

Shortest path heuristic (SPH) (Matsuyama, 1980) initializes the terminals as a set of subtrees; starting
from an arbitrary subtree, it iteratively merges with its nearest subtree through the shortest path. The
distance of a path is the total cost of nodes on it, where terminals have zero cost. The algorithm
terminates when only one tree is left. The shortest path is found by Dijkstra’s algorithm (Dijkstra et al.,
1959). Kruskal’s SPH (Bauer & Varma, 1996) (K-SPH) is a distributed variation of SPH, in which
every subtree merges with its nearest subtree until only one tree is left. SPH has an approximation
ratio of 2 (Matsuyama, 1980).

H.4 MWCDS PIPELINE, BASELINE AND REFERENCE HEURISTICS

A low complexity heuristic for MWCDS problem (Sun et al., 2019) can be implemented in two steps:
1) find a MWDS, 2) connect the MWDS by solving a NWST problem where the terminals are the
solution of step 1.

In our baseline heuristic, we choose Greedy-MWIDS in Appendix H.2 for step 1, and K-SPH-NWST
in Appendix H.3 for step 2, and treat them as a single distributed greedy heuristic (Dist.Greedy).

Our reference algorithm is a centralized greedy heuristic, composed of Greedy-MWDS in Ap-
pendix H.2 for step 1 and SPH-NWST in Appendix H.3 for step 2.

The actor GCNN is configured as follows: the dimensions of input and hidden layers are gl = 32, l =
1, . . . , 4 and leaky ReLU activations, the input and output dimensions are g0 = 1, g5 = 2, and
the output layer employs linear activation. The actor outputs Z ∈ R|V|×2, and the local function
is a single neuron, floc(ci,Zi∗) = ReLU(Zi,1ci + Zi,2). The twin network is a 5-layer GCNN
configured identically as the twin in Appendices H.2 and H.3, except that its input dimension fits the
output dimension of its own actor GCNN. The GCNN is trained on GRP graphs of 100 to 300 nodes.
The training takes 8 hours on a server with 16 GB memory, 8 CPUs and 1 GPU (Nvidia 1080 Ti).

I APPENDIX: CENTRALIZED RUNTIME IN SECONDS

We report the actual runtime of GCNN-enhanced COP solvers demonstrated in Section 4, measured
on a laptop computer (Macbook Pro, 16GB memory, 2 GHz Quad-Core Intel Core i5, CPU only).
It should be noted that these runtimes are based on our Python code, of which the implementation
could be further optimized for running speed.

For the examples demonstrated by distributed COP solvers, the centralized runtime does not represent
their distributed runtime. Therefore, we report both the total centralized runtime and the per-node
centralized runtime for each distributed solver. The latter represents the estimated computational time
in distributed execution. However, the major component of distributed runtime for distributed solvers
is the communication time rather than the computational time, which could not be measured in our
setting. In general, the GCNN no longer dominate the total runtime for these distributed COP solvers.
For MWIS in Figure 9(a) and 9(b), the centralized runtime of distributed COP solvers are still linear
to the graph size. For NWST (Figures 10(a) and 10(b)) and MWCDS (Figures 11(a) and 11(b)), the
major component of the centralized runtime is Dijkstra’s algorithm for the shortest path, which has a
time complexity of O(|V|2) or O((|V|+ |E|) log |V|).

20

Published as a conference paper at ICLR 2023

100 150 200 250 300
Graph Size

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Ce
nt

ra
liz

ed
 ru

nt
im

e
(s

)
GCNN(3)+LGS
GCNN(3)
LGS

(a)

100 150 200 250 300
Graph Size

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

0.00016

0.00018

Ce
nt

ra
liz

ed
 ru

nt
im

e
pe

r n
od

e
(s

)

GCNN(3)+LGS
GCNN(3)
LGS

(b)

Figure 9: Average centralized runtime of GCNN-enhanced LGS-MWIS per instance, with a reusing factor
N = 1. The total runtime is broken down to GCNN(3), as a one time overhead, and LGS, as the runtime for
N = ∞. (a) Total centralized runtime by graph size, (b) Per node centralized runtime by graph size, representing
the estimated computational time in distributed execution. Notice that the major component of distributed
runtime is the communication time.

100 150 200 250 300
Graph Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ce
nt

ra
liz

ed
 ru

nt
im

e
(s

)

Graph
BA
ER
GRP
WS

(a)

100 150 200 250 300
Graph Size

0.000

0.001

0.002

0.003

0.004

0.005
Ce

nt
ra

liz
ed

 ru
nt

im
e

pe
r n

od
e

(s
) Graph

BA
ER
GRP
WS

(b)

Figure 10: Average centralized runtime of GCNN-enhanced K-SPH-NWST solver per instance, with a reusing
factor N = 1. (a) Total centralized runtime by graph size, (b) Per node centralized runtime by graph size,
representing the estimated computational time in distributed execution. Notice that the major component of
distributed runtime is the communication time.

100 150 200 250 300 350
Graph Size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ce
nt

ra
liz

ed
 ru

nt
im

e
(s

)

Graph
BA
ER
GRP
WS

(a)

100 150 200 250 300 350
Graph Size

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Ce
nt

ra
liz

ed
 ru

nt
im

e
pe

r n
od

e
(s

)

Graph
BA
ER
GRP
WS

(b)

Figure 11: Average centralized runtime of GCNN-enhanced MWCDS per instance, with a reusing factor N = 1.
(a) Total centralized runtime by graph size, (b) Per node centralized runtime by graph size, representing the
estimated computational time in distributed execution. Notice that the major component of distributed runtime is
the communication time.

21

	Introduction
	Existing Approaches to COPs
	Learning in Non-differentiable Pipelines
	Contributions

	Problem Formulation
	Independent Repetitive COPs
	Repetitive COPs in a Graph-based Markov Decision Process

	Graph-based deterministic policy gradient
	Learning for independent repetitive COP
	Random Sampling Around Current Policy

	Learning for Repetitive COP in a Graph-based Markov Decision Process

	Numerical Results
	Independent R-COPs
	Repetitive MWIS in a Graph-based Markov Decision Process
	Comparison with zeroth-order optimization in training

	Conclusion
	Appendix: Two exemplary formulations of repetitive COPs
	Appendix: SGD for twin network in independent repetitive COPs
	Appendix: SGD for twin network in R-COPs in Graph-based MDP
	Appendix: Algorithmic procedures of GDPG-Twin
	Appendix: Graph convolutional neural networks
	Appendix: Configurations of random graphs for training and testing
	Appendix: Applications of the four exemplary R-COPs
	MWIS in scheduling and computer vision
	MWDS in wireless sensor networks and covering codes
	NWST for multicast routing in wireless networks
	MWCDS in mobile ad-hoc networks

	Appendix: ML pipelines and baseline heuristics
	MWIS pipeline
	MWDS pipeline and Greedy-MWIDS
	NWST pipeline and baseline heuristics
	MWCDS pipeline, baseline and reference heuristics

	Appendix: Centralized runtime in seconds

