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ABSTRACT

Intelligent agents need to remember salient information to reason in partially-
observed environments. For example, agents with a first-person view should
remember the positions of relevant objects even if they go out of view. Similarly, to
effectively navigate through rooms agents need to remember the floor plan of how
rooms are connected. However, most benchmark tasks in reinforcement learning
do not test long-term memory in agents, slowing down progress in this important
research direction. In this paper, we introduce the Memory Maze, a 3D domain
of randomized mazes specifically designed for evaluating long-term memory in
agents. Unlike existing benchmarks, Memory Maze measures long-term memory
separate from confounding agent abilities and requires the agent to localize itself
by integrating information over time. With Memory Maze, we propose an online
reinforcement learning benchmark, a diverse offline dataset, and an offline probing
evaluation. Recording a human player establishes a strong baseline and verifies the
need to build up and retain memories, which is reflected in their gradually increasing
rewards within each episode. We find that current algorithms benefit from training
with truncated backpropagation through time and succeed on small mazes, but
fall short of human performance on the large mazes, leaving room for future
algorithmic designs to be evaluated on the Memory Maze. Videos are available on
the website: https://github.com/jurgisp/memory-maze

1 INTRODUCTION

Deep reinforcement learning (RL) has made tremendous progress in recent years, outperforming
humans on Atari games (Mnih et al., 2015; Badia et al., 2020), board games (Silver et al., 2016;
Schrittwieser et al., 2019), and advances in robot learning (Akkaya et al., 2019; Wu et al., 2022).
Much of this progress has been driven by the availability of challenging benchmarks that are easy to
use and allow for standardized comparison (Bellemare et al., 2013; Tassa et al., 2018; Cobbe et al.,
2020). What is more, the RL algorithms developed on these benchmarks are often general enough
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Figure 1: The first 150 time steps of an episode in the Memory Maze 9x9 environment. The bottom
row shows the top-down view of a randomly generated maze with 3 colored objects. The agent only
observes the first-person view (top row) which includes a prompt for the next object to find as a
border of the corresponding color. The agent receives +1 reward when it reaches the object of the
prompted color. During the episode, the agent has to visit the same objects multiple times, testing its
ability to memorize their positions, the way the rooms are connected, and its own location.
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to solve completely unrelated challenges, such as finetuning large language models from human
preferences (Ziegler et al., 2019), optimizing video compression parameters (Mandhane et al., 2022),
or promising results in controlling the plasma of nuclear fusion reactors (Degrave et al., 2022).

Despite the progress in RL, many current algorithms are still limited to environments that are mostly
fully observed and struggle in partially-observed scenarios where the agent needs to integrate and
retain information over many time steps (Wayne et al., 2018). Despite this, the ability to remember
over long time horizons is a central aspect of human intelligence and a major limitation on the
applicability of current algorithms. While many existing benchmarks are partially observable to some
extent, memory is rarely the limiting factor of agent performance (Oh et al., 2015; Cobbe et al., 2020;
Beattie et al., 2016; Hafner, 2021). Instead, these benchmarks evaluate a wide range of skills at once,
making it challenging to measure improvements in an agent’s ability to remember.

Ideally, we would like a memory benchmark to fulfill the following requirements: (1) isolate
the challenge of long-term memory from confounding challenges such as exploration and credit
assignment, so that performance improvements can be attributed to better memory. (2) The tasks
should challenge an average human player but be solvable for them, giving an estimate of how
far current algorithms are away from human memory abilities. (3) The task requires remembering
multiple pieces of information rather than a single bit or position, e.g. whether to go left or right at
the end of a long corridor. (4) The benchmark should be open source and easy to use.

We introduce the Memory Maze, a benchmark platform for evaluating long-term memory in RL
agents and sequence models. The Memory Maze features randomized 3D mazes in which the agent
is tasked with repeatedly navigating to one of the multiple objects. To find the objects quickly, the
agent has to remember their locations, the wall layout of the maze, as well as its own location. The
contributions of this paper are summarized as follows:

• Environment We introduce the Memory Maze environment, which is specifically designed
to measure memory isolated from other challenges and overcomes the limitations of existing
benchmarks. We open source the environment and make it easy to install and use.

• Human Performance We record the performance of a human player and find that the benchmark
is challenging but solvable for them. This offers an estimate of how far current algorithms are from
the memory ability of a human.

• Memory Challenge We confirm that memory is indeed the leading challenge in this benchmark,
by observing that the rewards of the human player increases within each episode, as well as by
finding strong improvements of training agents with truncated backpropagation through time.

• Offline Dataset We collect a diverse offline dataset that includes semantic information, such
as the top-down view, object positions, and the wall layout. This enables offline RL as well as
evaluating representations through probing of both task-specific and task-agnostic information.

• Baseline Scores We benchmark a strong model-free and model-based agent on the four sizes of
the Memory Maze and find that they make progress on the smaller mazes but lag far behind human
performance on the larger mazes, showing that the benchmark is of appropriate difficulty.

2 RELATED WORK

Several benchmarks for measuring memory abilities have been proposed. This section summarizes
important examples and discusses the limitations that motivated the design of the Memory Maze.

DMLab (Beattie et al., 2016) features various tasks, some of which require memory among other
challenges. Parisotto et al. (2020) identified a subset of 8 DMLab tasks relating to memory but these
tasks have largely been solved by R2D2 and IMPALA (see Figure 11 in Kapturowski et al. (2018)).
Moreover, DMLab features a skyline in the background that makes it trivial for the agent to localize
itself, so the agent does not need to remember its location in the maze. (Wayne et al., 2018) used a
larger battery of tasks, but only a subset of those was included in the public release of DMLab.

SimCore (Gregor et al., 2019) studied the memory abilities of agents by probing representations
and compared a range of agent objectives and memory mechanisms, an approach that we build upon
in this paper. However, their datasets and implementations were not released, making it difficult for
the research community to build upon the work. A standardized probe benchmark is available for
Atari (Anand et al., 2019), but those tasks require almost no memory.
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Memory 9x9 Memory 11x11 Memory 13x13 Memory 15x15

Figure 2: Examples of randomly generated Memory Maze layouts of the four sizes.

DM Memory Suite (Fortunato et al., 2019) consists of 5 existing DMLab tasks and 7 variations of
T-Maze and Watermaze tasks implemented in the Unity game engine, which neccessitates interfacing
with a provided Docker container via networking. These tasks pose an exploration challenge due
to the initialization far away from the goal, creating a confounding factor in agent performance.
Moreover, the tasks tend to require only small memory capacity, namely 1 bit for T-Mazes and 1
coordinate for Watermazes.

3 THE MEMORY MAZE

Memory Maze is a domain of randomized mazes specifically designed for evaluating the long-
term memory abilities of RL agents. The agent navigates in the maze using first-person camera
observations of the 3D scene while moving on a 2D planar layout. Memory Maze isolates long-term
memory from confounding agent abilities, such as exploration, and requires remembering several
pieces of information: the positions of objects, the wall layout, and the agent’s own position. This
section introduces three aspects of the benchmark: (1) an online reinforcement learning environment
with four tasks, (2) an offline dataset, and (3) a protocol for evaluating representations on this dataset
by probing.

3.1 ENVIRONMENT

The Memory Maze environment is implemented using MuJoCo (Todorov et al., 2012) as the physics
and graphics engine and the dm_control (Tunyasuvunakool et al., 2020) library for building RL
environments. The environment can be installed as a pip package memory-maze or from the source
code, available on the project website 1. There are four Memory Maze tasks with varying sizes and
difficulty: Memory 9x9, Memory 11x11, Memory 13x13, and Memory 15x15.
The task is inspired by a game known as scavenger hunt or treasure hunt. The agent starts in a
randomly generated maze containing several objects of different colors. The agent is prompted to
find the target object of a specific color, indicated by the border color in the observation image. Once
the agent finds and touches the correct object, it gets a +1 reward, and the next random object is
chosen as a target. If the agent touches the object of the wrong color, there is no effect. Throughout
the episode, the maze layout and the locations of the objects do not change. The episode continues
for a fixed amount of time, so the total episode return is equal to the number of targets the agent can
find in the given time. See Figure 1 for an illustration.
The episode return is inversely proportional to the average time it takes for the agent to locate the
target objects. If the agent remembers the location of the prompted object and how the rooms are
connected, the agent can take the shortest path to the object and thus reach it quickly. On the other
hand, an agent without memory cannot remember the object position and wall layout and thus has
to randomly explore the maze until it sees the requested object, resulting in several times longer
duration. Thus, the score on the Memory Maze tasks correlates with the ability to remember the maze
layout, particularly object locations and paths to them.
Memory Maze sidesteps the hard exploration problem present in many T-Maze and Watermaze tasks.
Due to the random maze layout in each episode, the agent will sometimes spawn close to the object
of the prompted color and easily collect the reward. This allows the agent to quickly bootstrap to
a policy that navigates to the target object once it is visible, and from that point, it can improve
by developing memory. This makes training much faster compared to, for example, the “Spot the

1https://github.com/jurgisp/memory-maze
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Parameter
Memory

9x9
Memory

11x11
Memory

13x13
Memory

15x15

Number of objects 3 4 5 6
Number of rooms 3− 4 4− 6 5− 6 9
Room size 3− 5 3− 5 3− 5 3
Episode length (steps at 4Hz) 1000 2000 3000 4000
Mean maximum score (oracle) 34.8 58.0 74.5 87.7

Table 1: Memory Maze environment details.

Difference” set of tasks in DM Memory Suite that require the agent to cross a long corridor to receive
any reward signal.
The sizes are designed such that the Memory 15x15 environment is challenging for a human player
and out of reach for state-of-the-art RL algorithms, whereas Memory 9x9 is easy for a human player
and solvable with RL, with 11x11 and 13x13 as intermediate stepping stones. See Table 1 for details
and Figure 2 for an illustration.

3.2 OFFLINE DATASET

We collect a diverse offline dataset of recorded experience from the Memory Maze environments.
This dataset is used in the present work for the offline probing benchmark and also enables other
applications, such as offline RL.
We release two datasets: Memory Maze 9x9 (30M) and Memory Maze 15x15 (30M). Each dataset
contains 30 thousand trajectories from Memory Maze 9x9 and 15x15 environments respectively.
A single trajectory is 1000 steps long, even for the larger maze to increase the diversity of mazes
included while keeping the download size small. The datasets are split into 29k trajectories for
training and 1k for evaluation.
The data is generated by running a scripted policy on the corresponding environment. The policy
uses an MPC planner (Richards, 2005) that performs breadth-first-search to navigate to randomly
chosen points in the maze under action noise. This choice of policy was made to generate diverse
trajectories that explore the maze effectively and that form loops in space, which can be important for
learning long-term memory. We intentionally avoiding recording data with a trained agent to ensure a
diverse data distribution (Yarats et al., 2022) and to avoid dataset bias that could favor some methods
over others.
The trajectories include not only the information visible to the agent – first-person image observations,
actions, rewards – but also additional semantic information about the environment, including the
maze layout, agent position, and the object locations. The details of the data keys are in Table 2.

3.3 OFFLINE PROBING

Unsupervised representation learning aims to learn representations that can later be used for down-
stream tasks of interest. In the context of partially observable environments, we would like unsuper-
vised representations to summarize the history of observations into a representation that contains
information about the state of the environment beyond what is visible in the current observation by
remembering salient information about the environment. Unsupervised representations are commonly
evaluated by probing (Oord et al., 2018; Chen et al., 2020; Gregor et al., 2019; Anand et al., 2019),
where a separate network is trained to predict relevant properties from the frozen representations.
We introduce the following four Memory Maze offline probing benchmarks: Memory 9x9 Walls,
Memory 15x15 Walls, Memory 9x9 Objects, and Memory 15x15 Objects. These are based on either
using the maze wall layout (maze_layout) or agent-centric object locations (targets_vec) as
the probe prediction target, trained and evaluated on either Memory Maze 9x9 (30M) or Memory
Maze 15x15 (30M) offline datasets.
The evaluation procedure is as follows. First, a sequence representation model (which may be a
component of a model-based RL agent) is trained on the offline dataset with a semi-supervised
loss based on the first-person image observations conditioned by actions. Then a separate probe
network is trained to predict the probe observation (either maze wall layout or agent-centric object
locations) from the internal state of the model. Crucially, the gradients from the probe network are
not propagated into the model, so it only learns to decode the information already present in the
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Key Shape Type Description

image (64, 64, 3) uint8 First-person view observation
action (6) binary Last action, one-hot encoded
reward () float Last reward

maze_layout (9, 9) | (15, 15) binary Maze layout (wall / no wall)
agent_pos (2) float Agent position in global coordinates
agent_dir (2) float Agent orientation as a unit vector
targets_pos (3, 2) | (6, 2) float Object locations in global coordinates
targets_vec (3, 2) | (6, 2) float Object locations in agent-centric coordinates
target_pos (2) float Current target object location, global
target_vec (2) float Current target object location, agent-centric
target_color (3) float Current target object color RGB

Table 2: Entries in the offline dataset. The tensors are saved as NPZ files with an additional time
step, e.g. image tensor for a 1000-step long trajectory is (1001, 64, 64, 3). The first element is the
image before the first action and the last element is the image after the last action.

internal state, but it does not drive the representation. Finally, the predictions of the probe network are
evaluated on the hold-out dataset. When predicting the wall layout, the evaluation metric is prediction
accuracy, averaged across all tiles of the maze layout. When predicting the object locations, the
evaluation metric is the root-mean-squared error (RMSE), averaged over the objects. The final score
is calculated by averaging the evaluation metric over the second half (500 steps) of each trajectory in
the evaluation dataset. This is done to remove the initial exploratory part of each trajectory, during
which the model has no way of knowing the full layout of the maze (see Figure C.1). We make this
choice so that a model with perfect memory could reach 0.0 RMSE on the Objects benchmark and
100% accuracy on the Walls benchmark.

The architecture of the probe network is defined as part of the benchmark to ensure comparability:
it is an MLP with 4 hidden layers, 1024 units each, with layer normalization and ELU activation
after each layer (see Table E.3). The input to the probe network is the representation of the model —
which should be a 1D vector of length 2048 — concatenated with the position and orientation of the
agent. The agent coordinate is provided as additional input because the wall layout prediction target
is presented in the global grid coordinate system, which the agent has no way of knowing from the
first-person observations. The probe network is trained with BCE loss when the output is wall layout,
and with MSE loss when the output is object coordinates.

We found a linear probe to not be suitable for our study because it is not powerful enough to extract
the desired features (such as the wall layout) from the recurrent state. There is a potential concern
that a powerful enough probe network could extract any desired information about the history of
observations from the recurrent state, which would invalidate the logic of the test. We provide
evidence in Appendix D that this is not the case, and the choice of the 4-layer network is justified.

4 ONLINE EXPERIMENTS

In this section, we present online RL benchmark results on the four Memory Maze tasks (9x9, 11x11,
13x13, 15x15) introduced in Section 3.1. We have evaluated the following baselines, including a
strong model-based and model-free RL algorithm each:

• Human Player The data was collected from one person who had experience playing first-person
computer games but had not previously seen the Memory Maze task. The player first played several
episodes to familiarize themselves with the task and GUI. They then played the recorded episodes,
for which they were instructed to concentrate and strive for the maximum score. We recorded ten
episodes for each maze size.

• Dreamer For a model-based RL baseline we evaluated the DreamerV2 agent (Hafner et al.,
2020). We mostly used the default parameters from the Atari agent in (Hafner et al., 2020) but
increased the RSSM recurrent state size and tuned the KL scale and entropy scale. The same
parameters were used across all four tasks. We increased the speed of data generation (environment
steps per update) to make the training faster in wall clock time, at some expense to the sample
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Figure 3: Online RL benchmark results after 100M environment steps of training. Error bars show the
standard deviation over five runs. We find that current algorithms benefit from training with truncated
backpropagation through time and succeed on small mazes, but fall short of human performance on
the large mazes, leaving room for future algorithmic designs to be evaluated on the Memory Maze.

Method
Memory

9x9
Memory

11x11
Memory

13x13
Memory

15x15

Oracle 34.8 58.0 74.5 87.7
Human 26.4±1.6 44.3±2.5 55.5±3.5 67.7±4.0

IMPALA 23.4±0.4 28.2±0.3 27.5±0.6 17.7±1.4

Dreamer 28.2±0.8 20.4±1.9 11.6±0.7 4.1±1.2

Dreamer (TBTT) 33.2±0.1 31.4±3.1 21.4±3.0 5.6±1.9

Table 3: Online RL benchmark results. The RL agents were trained for 100M steps, and the reported
scores are averaged over five runs, with the standard deviation indicated as a subscript. Human score
is an average of 10 episodes, with the bootstrapped standard error of the mean shown as a subscript.

efficiency. We trained Dreamer on 8 parallel environments. The full hyperparameters are listed in
Table E.1.

• Dreamer (TBTT) Truncated backpropagation through time (TBTT) is known to be an effective
method for training RNNs to preserve information over time. For example, R2D2 agent (Kaptur-
owski et al., 2018), when trained with the stored state, shows significant improvement on DMLab
tasks compared to zero state initialization. Original Dreamer is trained with zero input state on each
batch, which may limit its ability to form long-term memories. To test this, we implement TBTT
training in Dreamer by replaying complete trajectories sequentially and passing the RSSM state
from one batch to the next. We alleviate the potential problem of correlated batches by forming
each T ×B batch from B different episodes, and we start replaying the first episode from a random
offset to avoid synchronized episode starts.

• IMPALA We choose IMPALA (V-trace) as a strong model-free baseline, which performs well
on DMLab-30 (Espeholt et al., 2018) and has a reliable implementation available in SEED RL
(Espeholt et al., 2019). The hyperparameters used in our experiments are shown in Table E.2. We
tuned the entropy loss scale, learning rate and Adam epsilon. We also tried increasing the LSTM
size, but it did not improve performance. The efficient implementation allowed us to use 128
parallel environments, which was important for the performance achieved on the larger mazes.

• Oracle We establish an upper bound on the task scores by training an oracle agent that observes
complete information about the maze layout and follows the shortest path to the target object. Note
that no real agent relying on first-person observations can achieve this upper bound score because
the oracle receives the maze layout as input from the beginning of the episode without having to
explore it over time. However, we can estimate that this initial exploration, if done efficiently,
should not take more steps than reaching a few targets. So the maximum achievable score for
agents is within a few points of the Oracle upper bound.

In the future, it would be interesting to evaluate additional baselines on Memory Maze, such as MRA
(Fortunato et al., 2019) that uses episodic memory and GTrXL (Parisotto et al., 2020) that uses a
transformer architecture. Unfortunately, the source code of these agents is not publicly available, so
we were unable to include them in our comparison.
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Figure 4: Offline probing results on Memory 9x9 and Memory 15x15 datasets. Left: Average
accuracy of wall probing (higher is better), with the perfect score being 100% and VAE indicating a
no-memory baseline. Right: Average root-mean-squared error (RMSE) of object probing (lower is
better), measured in grid cell units, with the perfect score being 0 and VAE indicating a no-memory
baseline.

Method
Memory 9x9

Walls
Memory 15x15

Walls
Memory 9x9

Objects
Memory 15x15

Objects

Constant baseline 80.8 78.3 4.9 8.0

VAE (no memory) 84.1±0.3 78.7±0.1 4.1±0.1 7.5±0.1

Supervised oracle 99.7±0.1 88.5±0.1 0.5±0.1 3.0±0.1

RSSM 89.0±0.3 80.0±0.1 2.9±0.1 6.3±0.1

VAE+GRU (TBTT) 90.0±0.1 80.2±0.1 2.8±0.1 5.9±0.1

RSSM (TBTT) 94.0±0.5 80.5±0.2 2.5±0.1 5.8±0.1

Table 4: Offline probing benchmark results. The score is measured in wall prediction accuracy (%)
for the Walls benchmarks and in RMSE (measured in grid cell units) for the Object benchmarks. The
scores are calculated over the second half of the evaluation episodes to remove the effect of the initial
memory burn-in (see Figure C.1). The models were trained for 1M gradient steps, and we report the
mean score over three training runs, with the standard deviation indicated as a subscript.

All agents were evaluated after 100 million environment steps of training. For each baseline and task,
we trained five agents with different random seeds and report the average scores. A single Dreamer
training run took 14 days to train using one GPU learner and 8 CPU actors. A single IMPALA
training run took 20 hours to train using one GPU learner and 128 CPU actors. Our experimental
results are summarized in Figure 3 and Table 3. The training curves are provided in Appendix A.

First, we observe that the task is challenging but solvable for a human player. The mean human score
is approximately 75% of the oracle upper bound across all four maze sizes. Inspection of episode
replays shows that the player is slow at collecting the first few rewards while exploring the new
unknown layout, after which the remaining rewards are collected relatively quickly (see Appendix B).
This indicates that the task indeed relies on the ability to remember. Moreover, the learning phase
becomes longer in the larger mazes.

Second, we note that the performance of RL agents exceeds the human performance on the smallest
9x9 maze but is far below the human baseline on the largest 15x15 maze, with 11x11 and 13x13
interpolating between the two extremes. This shows that our benchmark uncovers the limits of the
current RL methods and enables measurable progress for future algorithms.

Third, we observe the utility of training Dreamer with TBTT, which shows a clear boost to the original
Dreamer across all maze sizes. For example, on the Memory Maze 9x9, only the Dreamer (TBTT)
agent achieves near-optimal performance.

Finally, even though Dreamer (TBTT) outperforms model-free IMPALA on the smaller mazes, on the
larger mazes IMPALA is the best RL agent, making steady progress even on the Memory Maze 15x15.
We speculate that IMPALA is better at remembering task-relevant information for longer because
model-free policy training encourages the encoder and RNN to only process and retain task-relevant
information and ignore the rest. In contrast, the world model of Dreamer tries to remember as much
information about the environment as possible, which may limit the memory horizon.
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Figure 5: Probing the representations of a trained RSSM (TBTT) model for the information about
the global layout of the maze. The model only sees raw pixels of the 3D first-person view (top row).
The probe predictions of the wall layout are shown in the bottom row. After initial exploration, almost
the full layout can be decoded from the representation in the small maze, demonstrating its ability to
retain information over time.

5 OFFLINE EXPERIMENTS

In this section, we present offline probing experiments on the four benchmarks: Memory 9x9 (Walls),
Memory 9x9 (Objects), Memory 15x15 (Walls), and Memory 15x15 (Objects), that were introduced
in Section 3.3. We trained and evaluated the following sequence representation learning models:

• RSSM Recurrent State Space Model (Hafner et al., 2018) is the world model component of
Dreamer agent. We use the exact same model that is part of the DreamerV2 agent (Hafner et al.,
2020) that was evaluated on the online benchmark, with the hyperparameters listed in Table E.1.
The probe network receives the full internal state as input, which is a concatenation of deterministic
and stochastic states of RSSM.

• RSSM (TBTT) As in the online experiments, we evaluate the effect of training RSSM with
truncated backpropagation through time (TBTT). Instead of starting with zero recurrent state on
each training batch, we sample training sequences from trajectories sequentially and carry over the
state from one batch to the next. Note that during inference time, both RSSM and RSSM (TBTT)
propagate the state over the complete 1000-step trajectory. The difference is only during training,
where RSSM effectively resets the state to zero every 48 steps, and RSSM (TBTT) does not.

• VAE+GRU (TBTT) This baseline is a recurrent model that operates on separately learned
representations (Ha and Schmidhuber, 2018). The image embeddings are trained with a standard
VAE (Kingma and Welling, 2013) on the full dataset, without consideration of their sequential
ordering. A GRU-based RNN summarizes the sequence of embeddings and actions in a recurrent
state, and a dynamics MLP predicts the next observation embedding, given the current state
and action. This network is trained with an MSE loss for the next-embedding prediction. The
hyperparameters are chosen to match RSSM where relevant (see Table E.4). The probe predictor
uses the GRU hidden state as the representation. This model is also trained with TBTT.

• Supervised Oracle For comparison, we evaluate a baseline trained in a supervised manner,
allowing the gradients of the probe prediction loss to propagate into the whole model. We use the
exact same architecture as VAE+GRU, with the only difference of not stopping the probe gradients
during training. It is an “oracle” in the sense that it does not follow the standard evaluation
procedure, and uses hidden information (probe observations) to train the representation model.
This baseline is useful as an upper (optimistic) bound for models with similar architecture.

• VAE (no-memory) A model that simply uses the VAE image embeddings as the input to
the probe prediction. It has no memory by design, and it is able to only predict the part of the
probe observation which can be inferred from the current first-person view. It serves as a lower
(pessimistic) bound for memory models.

All models were trained for 1M gradient steps, and we repeated each training with three random seeds.
The evaluation results are summarized in Figure 4 and Table 4. In addition to the trained models,
we include a Constant baseline that outputs the training set mean prediction. This score is relatively
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Figure 6: Probing the representations of a trained RSSM (TBTT) model for the object locations. The
model only sees raw pixels of a 3D first-person view (top row). The bottom row shows the object
locations as predicted from the frozen representation (x) versus the actual locations (o). The output
of the probe decoder is the agent-centric object locations, here they are transformed into the global
coordinates for visualization.

high on Walls (e.g. 80.8% for 9x9) because a relatively small number of grid cells vary between
different layouts. The performance of models falls on the scale between the Constant baseline, as the
minimum, and 100% accuracy or 0.0 RMSE as the maximum.
We observe that all evaluated models show some memory capacity (being better than the no-memory
baseline), but fall short of perfect memory. The 15x15 Walls is an especially challenging benchmark,
where the models barely outperform the no-memory baseline. This is consistent with the low
performance of the corresponding agents on the 15x15 online RL benchmark, and suggests that
Memory Maze can be a fruitful platform for further research, both in the online and offline settings.
Among the models, RSSM (TBTT) reaches the highest performance, outperforming RSSM and
VAE+GRU (TBTT). This shows that both truncated backpropagation through time and the stochastic
bottleneck are helpful ingredients for learning to remember. On Memory 9x9 (Walls), RSSM
(TBTT) correctly predicts 94% of the wall layout after the initial burn-in phase, compared to the
84.1% no-memory baseline. This is consistent with the fact that Dreamer (TBTT) achieves near-
perfect performance on the Memory 9x9 online RL benchmark. An illustration of a sample evaluation
trajectory, observations, and the corresponding probe predictions is presented in Figure 5 and Figure 6.

6 DISCUSSION

We introduced Memory Maze, an environment for evaluating the memory abilities of RL agents. We
conduced a human study to confirm that the tasks are challenging but solvable for a human player
and found that human rewards increase within each episode, demonstrating the need to build up
memory to solve the tasks. We collected a diverse offline dataset that includes semantic information
to evaluate learned representations through probing, by predicting both task-specific and task-agnostic
information. Empirically, we find that truncated backpropagation through time offers a significant
boost in probe performance, further confirming that memory is the key challenge in this benchmark.
An evaluation of a strong model-free and model-based RL algorithm each show learning progress on
smaller mazes but fall short of human performance on larger mazes, presenting a challenge for future
algorithms research.
Acknowledgements We thank Google Research infrastructure team to provide JP with access
to computational resources. DH was at Google Research for part of the project before starting an
internship at DeepMind.
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A ONLINE TRAINING CURVES
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Figure A.1: Training curves on the Memory Maze tasks. The scores are averaged over five runs,
standard deviation is shown as a shaded area. After training for 100M environment steps, Dreamer
(TBTT) shows the best performance on the two smaller benchmarks Memory 9x9 and 11x11, and
IMPALA is the best on the larger mazes 13x13 and 15x15.
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Figure A.2: Extended IMPALA training curves on Memory Mazes over 400M steps. On Memory
Maze 15x15 it makes steady progress beyond 100M steps reaching score of 27.7 ± 0.2, but it is
flattening out far below the Human baseline.

B HUMAN SCORES
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Figure B.1: The average reward collected as a function of the episode step within the episode,
summed over 100 step bins, averaged over the episodes of the human player. The reward collection is
slow in the beginning of the episode, when the maze layout is unknown and the player has to explore
the maze. The pace increases as the player memorizes the maze and object locations, and can effectly
navigate between them. This shows that the task relies on long-term memory.
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C EXTRA OFFLINE PROBING RESULTS
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Figure C.1: Offline probe prediction performance as a function of the episode step. The prediction
error starts high at the beginning of the episode, when the layout of the maze is impossible to predict,
and then drops as the agent explores the maze. The benchmark results reported in Table 4 are equal
to the mean value of these plots over the range from 500 to 1000, where the prediction error is stable.

D PROBE NETWORK

Here we motivate the choice of using a 4-layer MLP probe network as opposed to a more typical
linear probe. Figure D.1 shows how probe accuracy on the Memory Maze 9x9 (Walls) benchmark
depends on the number of layers in the MLP. The linear probe performs poorly; the accuracy increases
up to 4 layers. More layers provide little additional gain. Note the probe has to take into account the
input about the position of the agent, which is infeasible with a linear probe. At the other extreme,
one may worry that a powerful enough network could extract any desired information about the
history of observations, but we show that 1) additional layers don’t do better and 2) a probe MLP
trained on a random untrained RSSM is only marginally better than the constant baseline (80.8%):

80 85 90 95
Map Accuracy (%)

linear
1 layer

2 layers
4 layers
5 layers
6 layers
7 layers

untrained RSSM

Figure D.1: Average map probe accuracy on Memory Maze 9x9 (Walls) offline benchmark as a
function of the number of layers in the probe MLP. The last row shows the performance of a 4-layer
MLP probe trained to decode information from a randomly initialized RSSM.
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E HYPERPARAMETERS

For tuning hyperparameters we performed one-dimensional grid searches for one parameter at a time.
We evaluated parameters on the Memory 11x11 environment, since it is the smallest challenging
one, and then used the best values across all environments. For Dreamer agent we scanned over the
following parameter values: recurrent state size (512, 1024, 2048, 4096), KL scale (0.1, 0.3, 1.0,
3.0), entropy scale (3 · 10−4, 1 · 10−3, 3 · 10−3, 1 · 10−2). For IMPALA we tuned the entropy scale
(3 · 10−4, 1 · 10−3, 3 · 10−3, 1 · 10−2), learning rate (1 · 10−4, 2 · 10−4, 3 · 10−4, 4 · 10−4) and Adam
epsilon (3 · 10−9, 10−7, 10−6, 10−5).

Parameter Value

Model

RSSM recurrent state size 2048
RSSM stochastic discrete latent size 32× 32
RSSM number of hidden units 1000
Decoder MLP number of layers 4
Decoder MLP number of units 400
Probe MLP number of layers 4
Probe MLP number of units 1024

Objective

Discount 0.995
λ-target parameter 0.95
Actor entropy loss scale 0.001
RSSM KL loss scale 1.0
RSSM KL balancing 0.8

Training

Parallel environments 8
Replay buffer size 10M steps
Batch size 32 sequences
Sequence length 48
Imagination horizon 15
Environment steps per update 25
Slow critic update interval 100
World model learning rate 3 · 10−4

Actor learning rate 1 · 10−4

Critic learning rate 1 · 10−4

AdamW epsilon 10−5

AdamW weight decay 10−2

Gradient clipping 200

Table E.1: Hyperparameters used when training Dreamer and Dreamer (TBTT) agents. The dif-
ferences from the parameters of the original DreamerV2 Atari model (Table D.1 in Hafner et al.
(2020)) are shown in bold face. The most substantial differences are: RSSM recurrent state size
(600 → 2048), replay buffer size (106 → 107), environment steps per update (4 → 25) and KL loss
scale (0.1 → 1.0).
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Parameter Value

Parallel environments 128
LSTM size 256
Discount 0.99
λ-target parameter 0.95
Actor entropy loss scale 0.001
Batch size 32 sequences
Sequence length 100
Adam learning rate 2 · 10−4

Adam epsilon 10−7

Table E.2: Hyperparameters used when training IMPALA agent. The parameters were based on
those used in (Espeholt et al., 2019) on the DMLab-30 tasks, with the additional tuning of entropy
scale, learning rate and Adam epsilon. We also tested larger LSTM size, but it provided no extra
performance.

Parameter Value

Probe MLP number of layers 4
Probe MLP number of units 1024
Probe MLP activation ELU
Probe MLP layer norm epsilon 10−3

Adam learning rate 3 · 10−4

Adam epsilon 10−5

Table E.3: Hyperparameters of the probe decoder used in the offline probing
benchmarks.

Parameter Value

GRU state size 2048
VAE stochastic latent size 32
Encoder (same as Dreamer)
Decoder (same as Dreamer)
Dynamics MLP number of layers 2
Dynamics MLP number of units 400
VAE KL loss scale 0.1
Batch size 32 sequences
Sequence length 48
AdamW learning rate 3 · 10−4

AdamW epsilon 10−5

AdamW weight decay 10−2

Gradient clipping 200

Table E.4: Hyperparameters used for the GRU+VAE offline probing baseline.
Parameters are chosen to match Dreamer model Table E.1 where relevant.
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F ENVIRONMENT DETAILS

Index Action Forward/Backward Left/Right

0 noop 0.0 0.0
1 forward +1.0 0.0
2 turn left 0.0 −1.0
3 turn right 0.0 +1.0
4 forward left +1.0 −1.0
5 forward right +1.0 +1.0

Table F.1: Memory Maze 6-dimensional discrete action space mapping to the underlying DMC
continuous action space.
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