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Abstract
Local steps are crucial for Federated Learning
(FL) algorithms and have witnessed great em-
pirical success in reducing communication costs
and improving the generalization performance of
deep neural networks. However, there are limited
studies on the effect of local steps on heteroge-
neous FL. A few works investigate this problem
from the optimization perspective. Woodworth
et al. (2020a) showed that the iteration complex-
ity of Local SGD, the most popular FL algorithm,
is dominated by the baseline mini-batch SGD,
which does not show the benefits of local steps.
In addition, Levy (2023) proposed a new local
update method that provably benefits over mini-
batch SGD. However, in the same setting, there is
still no work analyzing the effects of local steps
to generalization in a heterogeneous FL setting.
Motivated by our experimental findings where Lo-
cal SGD learns more distinguishing features than
parallel SGD, this paper studies the generaliza-
tion benefits of local steps from a feature learning
perspective. We propose a novel federated data
model that exhibits a new form of data heterogene-
ity, under which we show that a convolutional
neural network (CNN) trained by GD with global
updates will miss some pattern-related features,
while the network trained by GD with local up-
dates can learn all features in polynomial time.
Consequently, local steps help CNN generalize
better in our data model. In a different parameter
setting, we also prove that Local GD with one-
shot model averaging can learn all features and
generalize well in all clients. Our experimental
results also confirm the benefits of local steps in
improving test accuracy on real-world data.
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1. Introduction
Federated learning (FL) is an efficient distributed paradigm
in which local clients train a global model collaboratively by
performing multiround gradient-based updates using local
data (Konečnỳ et al., 2016). Local steps in FL algorithms
are initially designed to reduce the communication cost
between clients and the server, while they are mysteriously
useful to improve the generalization performance of deep
neural networks. For example, extensive experiments in
(Lin et al., 2018) showed that local steps could improve
the test accuracy of models compared with parallel SGD in
the homogeneous data setting. To theoretically explain this
phenomenon, Gu et al. (2023b;a) investigated the dynamic
of Local SGD based on the stochastic differential equation
(SDE) approximation and showed that it enjoys a reduction
of sharpness when choosing a large number of local steps
and thus generalizes better in the test data. However, these
works are restricted to the homogeneous data setting.

In the heterogeneous data setting, Woodworth et al. (2020b)
proved that a baseline method mini-batch SGD that only
takes global updates converges faster than Local SGD. To
show the benefits of local steps in optimization, Levy (2023)
proposed a new local update method and proved it requires
less communication round than mini-batch SGD under the
gradient dissimilarity assumption for heterogeneous data.
However, these works purely focus on the optimization
perspective. To the best of our knowledge, there is still no
work considering the generalization effect of local steps in
a heterogeneous FL regime.

Our work is motivated by an experimental finding of the
CIFAR-10 task in the heterogeneous FL environment, where
we can see that Local SGD learned more distinguishing fea-
tures than parallel SGD in Figure 1 (e.g., one can compare
the pixels inside the bounding boxes). This finding inspires
us to analyze the benefits of local steps from a feature learn-
ing (Allen-Zhu & Li, 2022a;b) perspective: How does the
FL algorithm with local steps learn heterogeneous features
more efficiently than that without local steps?

To characterize the benefits of local steps in generalization,
we build a new heterogeneous data model in the FL setting.
Different from the traditional definition of data heterogene-
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Figure 1: Weight visualization for Local SGD (left) vs
Parallel SGD (right). The visualization shows the first layer
convolutional weights (64 filters) for ResNet-18 trained on
CIFAR-10 with heterogeneous features. We use standard
data augmentation and feature heterogeneity h = 0.25. See
Section 8 for training details.

ity in FL literature (i.e., gradient dissimilarity), our data
model’s heterogeneity depends solely on raw data and does
not depend on the architecture of the neural network used in
the learning process. The data distribution includes two key
ingredients: (1) Feature heterogeneity. The data label in
different clients is determined by different feature vectors,
which means that learning the local pattern-related feature
is necessary to guarantee good generalization performance
in the corresponding client. The feature vectors are divided
into normal features and confounding features. (2) Adver-
sarial heterogeneity. The local data has a different feature
noise structure, i.e., features of the opposite label (Allen-
Zhu & Li, 2022b; Zou et al., 2021). Specifically, clients with
confounding pattern-related features share the same feature
noise components; the clients with normal pattern-related
features have individual feature noise components.

We consider using a one-hidden-layer convolutional neural
network (CNN) with a cubic activation function to learn
the features of our proposed data model. Note that cubic
is the smallest degree of polynomial that makes the neural
network non-linear and compatible with our setting, which
is also used by (Jelassi & Li, 2022). To help intuitively
understand the difference between GD with global updates
and local updates in the training process, we plot the signals
in the local gradients and the globally averaged gradients in
Figure 2. The feature noise in gradients carries a negative
signal that will slow down the learning of pattern-related
features. In each local client, the intensity of the negative
signal can be neglected compared with that of the positive
signal. Therefore, running a large number of local steps will
capture the local pattern-related feature. However, averaging
the gradients from clients with confounding features will
shrink the relative scale of the individual positive signal.
In Section 4, we formally show that gradient descent (GD)
with global updates cannot learn the confounding features
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Figure 2: The signals in local gradients for the clients con-
taining confounding features and the signals in the globally
averaged gradients, where α, ρ > 0 are the scale of feature
and feature noise. The intensity of the positive signal sig-
nificantly shrinks after averaging, while the negative signal
keeps the same scale.

and naturally has a worse generalization performance in
the clients whose data label is determined by those features.
Moreover, we also prove that GD with local updates can
learn all the features in polynomial time and hence enjoy a
superior generalization ability.

Our contributions can be summarized as follows:

• We proposed a new heterogeneous data model in FL,
which is a refined version of multi-view data from
the paper (Allen-Zhu & Li, 2022b). Different from
the conventional data heterogeneity definition in FL
literature which uses gradient dissimilarity (Li et al.,
2020b; Khaled et al., 2020; Woodworth et al., 2020a;
Karimireddy et al., 2020), our data model introduces a
novel adversarial heterogeneity regarding the feature
noise structure across different local clients, which is
pivotal in showing the superiority of local updates in
generalization over global updates.

• Based on the proposed data model, our results formally
show that the CNN model trained by GD with global
updates and local updates can both attain zero training
error in polynomial time with high probability. But GD
with global updates can only learn normal features and
prefers to fit the noise in the clients with confounding
features. Finally, the network learned by global updates
behaves like random guessing for the test data in these
clients. On the other hand, GD with local updates suc-
cessfully learns both normal and confounding features
and can attain almost perfect test accuracy in all clients.
The negative results for global updates rely on a care-
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ful inspection of the scale of gradients computed from
the clients with confounding features since we need
the negative signal to stay strong before memorizing
noise. In addition, under a different parameter setting
with the mild signal of feature noise, we also show that
Local GD with one-shot model averaging can learn
all pattern-related features and attain low test error in
all clients. However, GD needs at least polynomial
communication rounds to learn those features.

• We complement our theory with experimental results
showing that Local SGD generalizes better than Par-
allel SGD on a CIFAR-10 task with heterogeneous
features across clients. Both Local SGD and Parallel
SGD reach almost 100% training accuracy (up to 0.1%
error), but Local SGD consistently generalizes better
than Parallel SGD in the presence of heterogeneous
features. Further, generalization tends to improve as
the number of local steps in Local SGD increases. We
also evaluate two algorithms on modified CIFAR-10
data with feature noise, where Local SGD has better
test accuracy than Parallel SGD across all values of the
feature noise magnitude.

2. Related Work
Optimization in Federated Learning. Since the concept
of FL was introduced in Konečnỳ et al. (2016); McMahan
et al. (2017), there has been a series of studies on federated
optimization in various settings. As the leading algorithm
in FL, the convergence of FedAvg (also called Local SGD
in the literature) was well studied in both convex and non-
convex problems. In the homogeneous setting, where the
data distributions in all clients are the same, the convergence
analysis of the Local SGD is given in (Stich, 2018; Yu et al.,
2019; Khaled et al., 2020; Woodworth et al., 2020b). In
the heterogeneous setting, several works (Li et al., 2020c;
Glasgow et al., 2022; Woodworth et al., 2020a) showed
that gradient dissimilarity will affect the convergence rate
of Local SGD. To address the heterogeneity issue, several
variants of Local SGD algorithms were proposed, such as
FedProx (Li et al., 2020b), SCAFFOLD (Karimireddy et al.,
2020). Specifically, the lower bounds in Woodworth et al.
(2020a); Patel et al. (2023) showed that the accelerated
mini-batch SGD is minimax optimal under some hetero-
geneity notations. Recently, Levy (2023) proposed a new
local method in the heterogeneous setting that achieves less
communication complexity than both Local SGD and mini-
batch SGD. To better analyze the effectiveness of local steps,
(Wang et al., 2022; Patel et al., 2023) suggested introducing
a new definition of data heterogeneity. For a comprehensive
survey, we refer the readers to Kairouz et al. (2019); Li et al.
(2020a) and references therein. In addition, there is also a
line of work focusing on the federated optimization of neural

networks. Most papers (Li et al., 2021; Huang et al., 2021;
Deng et al., 2022; Yue et al., 2022; Yu et al., 2022) studied
federated learning algorithms on overparameterized neural
networks under the neural tangent kernel (NTK) regime.
Bao et al. (2023) directly analyzed the global convergence
of Local SGD when training the one-layer neural network
with Gaussian input beyond the NTK regime. Our theoreti-
cal results are also beyond NTK and only require a moderate
level of over-parameterization.

Generalization in Deep Learning. There is a huge liter-
ature on generalization for deep learning. A classical lens
for studying the generalization of a neural network is uni-
form convergence (Bartlett, 1998; Bartlett & Mendelson,
2002; Neyshabur et al., 2015; Bartlett et al., 2017; Golowich
et al., 2018). Arora et al. (2018) improved the generaliza-
tion bounds for a deep neural network using a compression
approach. The second line of work studied generalization
in deep learning through the lens of implicit bias. The
implicit bias was originally introduced for the analysis of
algorithmic regularization for linear models (Soudry et al.,
2018; Gunasekar et al., 2018a; Ji & Telgarsky, 2018b), and
is later widely used to analyze the generalization effect of
different optimization algorithms for training neural net-
works (Lampinen & Ganguli, 2018; Arora et al., 2019; Gu-
nasekar et al., 2018b; Ji & Telgarsky, 2018a; Chizat & Bach,
2020). The third line of work is connecting the generaliza-
tion performance with the sharpness of the minima (Hochre-
iter & Schmidhuber, 1997; Neyshabur et al., 2017), and flat
minima are believed to generalize well. These works con-
sider how different algorithms find the flat minima (Keskar
et al., 2016; Wu et al., 2018; Kleinberg et al., 2018; Foret
et al., 2020). The most relevant work to this paper is (Gu
et al., 2023b;a), which studied generalization in federated
learning by investigating how FedAvg with different local
steps find minimizers with different sharpness. However,
their work only considers the homogeneous data setting
and is not applicable to the heterogeneous data setting as
considered in this paper.

Feature Learning. The feature learning is a new perspec-
tive for theoretical understanding of neural networks in re-
cent years. In the pioneering work, Allen-Zhu & Li (2022a)
developed the concept of feature learning to show the ro-
bustness of adversarial training in deep learning. Then,
Allen-Zhu & Li (2022b) introduced the multi-view data
model to study how the ensemble of deep neural networks
and knowledge distillation improves the test accuracy of
related tasks. After these two works, a line of papers studied
the feature learning process for some algorithms or tech-
niques in deep learning. Wen & Li (2021) investigated
how contrastive learning learns the feature representations
of neural networks. Zou et al. (2021) demonstrated the
generalization gap between GD and Adam (Kingma & Ba,
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2014) in training the one-hidden-layer CNN under image-
like data distribution. Chen et al. (2022) studied how the
Mixture-of-Experts layer (Shazeer et al., 2017) improves the
performance of neural network learning. Shen et al. (2022)
investigated the effect of data augmentation on the dynamic
of the learning process, which helps learn rare features in
the training data. Jelassi & Li (2022) showed that the mo-
mentum can improve generalization by learning the feature
with a small margin. Based on a similar data model, Zou
et al. (2023) showed that the Mixup training can effectively
learn the rare features.Huang et al. (2023) presented a study
on the generalization benefits of structural information in
Graph Neural Networks. Kou et al. (2023) studied the be-
nign overfitting problem for two-layer ReLU CNN. Huang
et al. (2024) studied the generalization problem of FedAvg
in the heterogeneous setting from a feature learning per-
spective, which shows the generalization benefits of model
averaging compared with local training. However, to the
best of our knowledge, our work is the first to show the
generalization benefits of local steps in FL algorithms via
the feature learning perspective. Moreover, our data model
is very different from that in Huang et al. (2024).

3. Problem Setup
3.1. Notations

Given a positive integer n, we write [n] = {1, . . . , n}.
Given an index set S, we denote |S| the cardinality of S.
We use N (µ,Σ) to denote the Gaussian distribution with
mean µ and covariance Σ. We denote Id the d × d iden-
tity matrix. We use asymptotic notations Õ, Θ̃, Ω̃ to hide
polylogarithmic factors in d. In addition, we use poly(d)
and polylog(d) to hide the polynomial orders greater than 1.
Throughout the paper, we use η to denote the learning rate.

3.2. Heterogeneous data distribution

Let {v∗
k}k∈[K] ⊆ Rd be the feature vectors. For simplicity,

we assume ∥v∗
k∥ = 1 for k ∈ [K] and ⟨v∗

k,v
∗
k′⟩ = 0 if

k ̸= k′. Let K0 ⊆ [K] be the indices of confounding
features with size K0. Without loss of generality, we assume
K0 = [K0]. Suppose there are N clients in the distributed
environment. Next, we define the local data distributions.

Definition 3.1. For the i-th client, we define its local data
distribution Di as:

(1) Sample the label y ∈ {−1, 1} uniformly;

(2) Generate the input x as a vector of P patches, i.e.,
x = (x1, . . . ,xP ) ∈ (Rd)P with P = K0 + 2, where

– Feature patch. The first patch is given by x1 =
αy · vi, where vi is uniformly sampled from
{v∗

k}Kk=1 and α > 0.

– Feature noise patches. If vi = v∗
k with k ∈ K0,

those patches are given by xp = −ρy · v∗
p−1 for

2 ≤ p ≤ K0 + 1. If vi = v∗
k with k ∈ [K] \ K0,

those patches are given by xp = −βy · vi for
2 ≤ p ≤ K0 + 1.

– Pure noise patch. The last patch is given by xP =
ξ, where ξ ∼ N (0, σ2

ξ ·H) and is independent of

the label y, where H = Id −
∑K

k=1 v
∗
k(v

∗
k)

⊤.

The heterogeneity in the data distribution comes from the
feature patch and the components in feature noise patches.
In the feature patch, each client has a pattern-relevant fea-
ture vi from the vectors {v∗

k}k∈[K], which represents the
individual characteristic of the local data. In the feature
noise patches, the components are determined by whether
vi is a confounding feature: if so, these patches carry the
negative signals for all confounding features {v∗

k}k∈K0
; oth-

erwise, these patches only carry the negative signal for the
pattern relevant feature vi. The adversarial structure of fea-
ture noise patches is crucial to show the failure of GD in
learning confounding features.

To keep the analysis clean, we assume the noise patch is sam-
pled from the orthogonal complement of the space spanned
by feature vectors. A similar setting is also used in the re-
lated work (Jelassi & Li, 2022; Zou et al., 2023; 2021). We
defer the detailed setting for the parameters to Definition
3.1 in Section 4.

We define the subset of clients with the feature vector v∗
k

as Ck = {i ∈ [N ] : vi = v∗
k}. We assume |Ck| = N/K

for any k ∈ [K]. In the i-th client, we can collect a data set
Zi = {(xij , yij)}j∈[n] generated from the local distribution
Di in Definition 3.1, where xij = (xij,1, . . . ,xij,P ).

3.3. Learner model and algorithms

We consider the following one-hidden-layer convolutional
neural network architecture with cubic activation function:

F (W ,x) =
∑
r∈[m]

∑
p∈[P ]

⟨wr,xp⟩3, (1)

where m is the number of hidden neurons and W =
{w1, . . . ,wm} is the model weight. We denote the logistic
loss function evaluated at the i-th client as

L(W ;Zi) =
1

n

∑
j∈[n]

log
{
1 + e−yijF (W ,xij)

}
.

At the beginning of training, we randomly initialize the CNN
model (1) by independently generating the hidden weights
{w(0)

r }r∈[m] from the same distribution N (0, σ2
0Id).

GD with global updates. Given the randomly initialized
point W (0), the global GD updates the model weight using

4



Provable Benefits of Local Steps in Heterogeneous FL: A Feature Learning Perspective

the averaged gradient from all clients, that is

W (t+1) = W (t) − η

N

∑
i∈[N ]

∇L(W (t);Zi). (2)

GD with local updates. Given the same initial point
W

(0)
i = W (0), the local model weights in the i-th client is

updated by

W
(t+1)
i = W

(t)
i − η∇L(W

(t)
i ;Zi). (3)

Let Ŵ be the model weight of CNN in (1). The local
training error in the i-th client is defined as

1

n

∑
j∈[n]

1{yijF (Ŵ ,xij) < 0}.

Given a test data (x, y) generated from some distribution
Di, the corresponding test error is defined as

P(x,y)∼Di

{
yF (Ŵ ,x) < 0

}
.

4. Main Results
Before presenting the generalization results, we first give a
detailed range for the parameters that appear in Section 3.

Parameter 1. For the data model in Definition 3.1, we
set α = Θ(1), ρ3 = α3−1/poly(d)

K0
, β3 ∈ (0, α3/(2K0)],

and σξ = Θ(d−0.51). For the random initialization, we
set σ0 = Θ(d−0.52). The number of confounding features
satisfies K0 ≥ logϱ(d) with ϱ > 1/2. In addition, we set
N,n = polylog(d) and N > K0. Finally, we assume a
moderate level of over-parameterization: m = polylog(d).

4.1. GD with global updates generalizes badly

Our first theorem shows that the model trained by the GD
with global updates fails in generalization for the clients
with confounding features.

Theorem 1. Suppose the setting in Parameter 1 holds. For
GD algorithm with global updates, choosing learning rate
η ∈ (0, Õ(1)], after T = poly(d)

η global iterations,

• (Training error attains zero for all clients.) For any
client i ∈ [N ] and data j ∈ [n], with probability at
least 1− 1/poly(d), it holds that

yijF (W (T ),xij) ≥ Ω̃(1). (4)

• (Test error is almost zero for clients with normal fea-
tures.) For the new data (x, y) ∼ Di for i ∈ Ck with
k ∈ [K] \ K0, it holds that

P
{
yF (W (T ),x) < 0

}
≤ 1

poly(d)
.

• (Test error is high for clients with confounding fea-
tures.) For the new data (x, y) ∼ Di for i ∈ Ck with
k ∈ K0, it holds that

P
{
yF (W (T ),x) < 0

}
≥ 1

2
− 1

polylog(d)
. (5)

From (4), we know that global GD can attain zero training
error in all clients with high probability. However, by (5), it
behaves like random guessing for test data in clients with
confounding features. The reason is that global updates
only fit the noise patch in the data from these clients instead
of learning pattern-related features v∗

k with k ∈ K0. We
defer the analysis of the training process of GD with global
updates to Section 5.

Remark 4.1. We shall provide a high-level intuition behind
Theorem 1 to understand why global updates cannot learn
confounding features. According to the data distribution in
Definition 3.1, the data in each client i ∈ Ck with k ∈ K0

contains the same feature noise patches {−ρv∗
k}k∈K0 . As

illustrated in Figure 2, after averaging the gradients from all
clients in (2), the intensity of the negative signal of the con-
founding feature (say v∗

1) becomes −ρ3 1
N

∑
k∈K0

|Ck| =
−ρ3K0/K. Meanwhile, the intensity of the positive sig-
nal of v∗

1 shrinks to α3|C1|/N = α3/K since the positive
signal only exists in the clients C1. Due to the shrink of
the positive signal after averaging gradients, the growth of
signal intensity is significantly slower compared with the
memorization of noise patches. As a consequence, GD loses
the opportunity to learn the confounding features and only
memorizes the noise to attain zero training error. As for
the normal features v∗

k with k ∈ [K] \ K0, the positive and
negative signals shrink at the same ratio (i.e., 1/K), hence
GD can still learn normal features.

4.2. GD with local updates generalizes well

Our next theorem shows that GD with local updates can
generalize well in all clients.

Theorem 2. Suppose the setting in Parameter 1 holds. For
GD with local updates, choosing the learning rate η ∈
(0, Õ(1)], after T = poly(d)

η local iterations in each client,

• (Training error attains zero for all clients.) For any
client i ∈ [N ] and data j ∈ [n], with probability at
least 1− 1/poly(d), it holds that

yijF (W
(T )
i ,xij) ≥ Ω̃(1).

• (Test error is almost zero for all clients.) For the new
data (x, y) ∼ Di for i ∈ Ck with k ∈ [K], it holds that

P
{
yF (W

(T )
i ,x) < 0

}
≤ 1

poly(d)
.
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Theorem 2 shows that local steps can learn both normal fea-
tures and confounding features after a polynomial number
of local steps. Compared with the results in Theorem 1, it
formally proves the benefits of local steps in generalization,
which also confirms the empirical observation. We defer the
analysis of local training to Section 6.
Remark 4.2. Our results in Theorem 2 are consistent with
the literature on personalized FL (Sim et al., 2019; Jiang
et al., 2023; Fallah et al., 2020), which tries to find a com-
mon model by meta-learning approach and then person-
alizes the model on each client by running local gradient
descent separately. In our theorem, the randomly initial-
ized model can be regarded as a common model that does
not bias towards any client as in (Fallah et al., 2020), and
the local updates try to find individual models during the
training. Personalized FL algorithms have been verified to
have significantly better test performance than FedAvg on
heterogeneous data, which indicates the empirical benefit
of local steps.

5. Analysis of GD with Global Updates
In this section, we provide the analysis sketch of Theorem
1. Given the model weight W (t) in GD, we define its pro-
jections on feature vectors and noise patches and its local
derivative during the training process:

• The signal intensity of feature learning: Γ
(t)
r,k =

⟨w(t)
r ,v∗

k⟩ for r ∈ [m], k ∈ [K].

• The memorization of noise patch: Ξ(t)
r,ij = ⟨w(t)

r , ξij⟩
for r ∈ [m], i ∈ [N ] and j ∈ [n].

• The averaged derivative in each client: ν
(t)
i =

1
n

∑
j∈[n] 1/(1 + eyijF (W (t),xij)) for i ∈ [N ].

In Figure 3, we illustrate the growth of signal intensity of
normal and confounding features and the noise memoriza-
tion during the training process of GD with global updates.
Lemma 5.1 (GD learns normal features). For any k ∈
[K] ∈ K0, let τk be the first iteration that maxr∈[m] Γ

(t)
r,k ≥

Θ
(

1
m1/3α

)
. It holds that τk ≤ T0

v . Meanwhile, we can also
guarantee that for iterations t ≤ T0

v ,

max
r∈[m],k′∈K0

|Γ(t)
r,k′ | ≤ Õ(σ0),

max
r∈[m],i∈[N ],j∈[n]

|Ξ(t)
r,ij | ≤ Õ(

√
dσξσ0).

Lemma 5.1 guarantees GD can learn all normal features
before T0

v. More importantly, the signal intensity of con-
founding features and the memorization of noise patches
stay at the initial scale, which is plotted in the green area
of Figure 3. Now let us see the competition of the growth
between them in the following lemma.
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Figure 3: The growth of signal intensity and noise mem-
orization in the training process of GD with global up-
dates. The subscript r∗ refers to the hidden weight with
a maximum signal. For example, Γ(t)

r∗,k ≡ Γ
(t)
r∗k,k

, where

r∗k = argmaxr∈[m] Γ
(0)
r,k.

Lemma 5.2. Denote T−
ξ = Θ

(
Nn

η(
√
dσξ)3σ0

)
. Given any

k ∈ K0, for iterations t ≤ T−
ξ ,

• The signal intensity of the feature v∗
k is updated by:

Γ
(t+1)
r,k = Γ

(t)
r,k +Θ

(
η(α3 −K0ρ

3)

K

)(
Γ
(t)
r,k

)2
.

• The memorization of noise patch ξij for i ∈ Ck and
j ∈ [n] is updated by:

yijΞ
(t+1)
r,ij = yijΞ

(t)
r,ij +Θ

(
ηdσ2

ξ

Nn

)(
yijΞ

(t)
r,ij

)2
+ o(

√
dσξσ0).

According to Parameter 1, we know α3−K0ρ
3

K ≤ O(d−1)

and
dσ2

ξ

Nn = Õ(d−0.02). Therefore, noise memorization is
much faster than learning confounding features. The tensor
power method guarantees that GD first memorizes the noise
patches. After that, the scale of gradients in the client with
confounding features is not enough to learn these features.
The competition between learning confounding features and
memorizing noise is shown in the following lemma, which
is also illustrated in the yellow and blue areas of Figure 3.
Lemma 5.3 (GD memorizes noises in clients with confound-
ing features). Given any i ∈ Ck with k ∈ K0 and j ∈ [n],

let τ0ij be the first iteration that maxr∈[m]

(
yijΞ

(t)
r,ij

)
≥

Θ(m− 1
3 ). It holds that τ0ij ≤ T0

ξ = T−
ξ +O(log(d)). Mean-

while, we can also guarantee that maxr∈[m] |Γ
(t)
r,k| ≤ Õ(σ0)

for any t ≤ T0
ξ and k ∈ K0.

Lemma 5.3 guarantees the signal intensity of confounding
features at iteration T−

ξ is bounded by Õ(σ0), the derivative
scale after T−

ξ is not enough to learn confounding features.
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6. Analysis of GD with Local Updates

Given the local model weight W (t)
i = {w(t)

1,i , . . . ,w
(t)
m,i} in

the i-th client, we define the following iterates during the
local training process:

• The signal intensity of feature learning: Γ
(t)
r,k,i =

⟨w(t)
r,i ,v

∗
k⟩ for r ∈ [m] and k ∈ [K].

• The memorization of noise patch: Ξ(t)
r,ij = ⟨w(t)

r,i , ξij⟩
for r ∈ [m] and j ∈ [n].

• The averaged derivative in each client: ν
(t)
i =

1
n

∑
j∈[n] 1/(1 + eyijF (W

(t)
i ,xij)) for i ∈ [N ].

To avoid introducing notations with complex subscripts, we
use the same notations Ξ(t)

r,ij and ν
(t)
i those have appeared in

Section 5 but were defined by global weight. In this section,
they are computed by local model weights W (t)

i .

The next lemma presents the local update rules of the signal
intensity of normal features and confounding features. In
particular, we need to pay more attention to the clients with
the confounding feature because it also contains the negative
signal of other confounding features.

Lemma 6.1. Denote T0
v = Θ

(
1

ηα3σ0

)
+O(log d). For any

t ≤ T0
v , we have the following local update rules:

• If i ∈ Ck with k ∈ [K] \ K0,

Γ
(t+1)
r,k,i = Γ

(t)
r,k,i +Θ

{
η(α3 −K0β

3)
}(

Γ
(t)
r,k,i

)2
.

• If i ∈ Ck with k ∈ K0,

Γ
(t+1)
r,k,i = Γ

(t)
r,k,i +Θ

{
η(α3 − ρ3)

}(
Γ
(t)
r,k,i

)2
, (6)

and for k′ ∈ K0 \ {k},

−Γ
(t+1)
r,k′,i = −Γ

(t)
r,k′,i +Θ

(
ηρ3
) (

Γ
(t)
r,k′,i

)2
. (7)

By comparing the growth speed in (6) and (7), we know
(α3 − ρ3)/ρ3 = Ω(K0) ≥ logϱ(d) with ϱ > 1/2 according
to Parameter 1. Since all clients share the same initial model,
we know Γ

(0)
r,k,i ≡ Γ

(0)
r,k for any i ∈ [N ]. By concentration,

the initial signal intensity satisfies that

min
r∈[m]

Γ
(0)
r,k′,i ≥ −O(σ0

√
log d), max

r∈[m]
Γ
(0)
r,k,i ≥ Ω(σ0).

Therefore, applying the tensor power method can guarantee
that the learning of positive signals in (6) will win in the
competition with the learning negative signals in (7). The
consequence is stated in the following lemma.

Lemma 6.2 (Local steps learn all the features). For any
i ∈ Ck with k ∈ [K], let τk,i be the first iteration when
maxr∈[m] Γ

(t)
r,k,i > Θ

(
1

m1/3α

)
. It holds that τk,i ≤ T0

v =

T−
v + O(log d). In addition, for the client i ∈ Ck with

k ∈ K0, we also have minr∈[m] Γ
(t)
r,k′,i ≥ −Õ(σ0) for any

k′ ∈ K0 \ {k} and t ≤ τk,i.

Credited to local steps, each client can learn its local feature
after T0

v local iterations. At the same time, the negative
signal for confounding features stays at the initial scale.
After τk,i, the derivative in each local client is not large
enough to pick up the negative signal. Hence, the feature
noise will not affect the generalization of the local model.

7. Local GD with One-shot Model Averaging
can Learn All Features

Under the data model with Parameter 1, we have shown
that GD with global updates (without model averaging) can
learn all features but GD with global average fails. In this
section, we will compare Local GD with one-shot model
averaging and GD with global updates under the following
parameter setting.
Parameter 2. We keep the setting identical to Parameter 1,
other than choose ρ = 1/poly(d).

The following theorem characterizes feature learning results
of two algorithms under Parameter 2.
Theorem 3. Suppose the setting in Parameter 2 holds.
For GD with global updates, choosing learning rate η ∈
(0, Õ(1)], if the number of global iterations (communica-

tion rounds) t is smaller than Ω̃
(

1
ηα3σ0

)
, the global model

W (t) satisfies that for any k ∈ [K] \ K0,

max
r∈[m]

⟨w(t)
r ,v∗

k⟩ = Õ(σ0).

Theorem 4. Suppose the setting in Parameter 2 holds.
For GD with local updates, choosing learning rate η ∈
(0, Õ(1)] and T = poly(d)

η local iterations, the one-shot av-

eraged model W̄ = 1
N

∑
i∈[N ] W

(T )
i satisfies that: (1) for

any k ∈ [K], maxr∈[m]⟨w̄r,v
∗
k⟩ = Ω̃(1); (2) and for a new

data (x, y) ∼ Di with any i ∈ Ck and any k ∈ [K],

P
{
yF (W̄ ,x) < 0

}
≤ 1

poly(d)
.

Under Parameter 2, Theorem 3 shows that GD with global
updates cannot learn all pattern-related features if the num-
ber of communication rounds is smaller than poly(d)/η.
Meanwhile, Theorem 4 shows that Local GD with one-shot
model averaging can learn all features and consequently
generalize better than GD with global updates. Therefore,
we can still show the generalization benefits of local steps
after model averaging.
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CIFAR-10 (with augmentation) CIFAR-10 (no augmentation)
Algorithm h = 0.25 h = 0.5 h = 0.25 h = 0.5

Parallel SGD 90.17± 0.19 90.17± 0.19 77.73± 0.20 77.73± 0.20
Local SGD (I = 8) 91.01± 0.17 90.71± 0.25 80.35± 0.14 80.45± 0.66
Local SGD (I = 16) 91.21± 0.25 90.84± 0.07 80.64± 0.12 80.77± 0.30
Local SGD (I = 32) 91.19± 0.22 91.08± 0.25 80.86± 0.17 81.27± 0.36

Table 1: Average test accuracy over three trials, with and without data augmentation and varying h ∈ {0.25, 0.5}. The error
is the distance from the average to the max/min across three runs. All runs achieved at least 99.9% training accuracy. Note
that Parallel SGD is unaffected by h, since it does not utilize local steps.

8. Experiments
To complement our theoretical results, we provide
experiments to empirically verify the generalization
benefit of local steps when training on real-world data.
We train ResNet-18 models for image classification
on a modified CIFAR-10 task, in which the dataset
is split across clients to create heterogeneous features
across clients. We compare the generalization per-
formance of Local SGD with a different number of
local steps against Parallel SGD (no local updates),
and find that local steps tend to increase test accuracy,
which is consistent with our theory. The code is avail-
able at https://github.com/MingruiLiu-ML-Lab/

Provable-Benefit-Local-Steps-Feature-Learning.

8.1. Heterogeneous CIFAR-10 task

Previous works in heterogeneous FL (Karimireddy et al.,
2020) use a non-IID data partitioning protocol to split a
centralized dataset into local datasets that have a different
distribution of labels. In our experiments, we use a modified
protocol that creates heterogeneous features while enforcing
that all clients have the same label distribution, in order to
isolate the effect of heterogeneous features.

We first split the dataset D = {(xi, yi)}ni=1 into two pieces
based on the parity of the label, so that for j ∈ {0, 1} each
piece is Dj = {(x, y) ∈ D | y (mod 2) = j}. We then
apply the non-IID partitioning protocol from (Karimireddy
et al., 2020) to split each Dj into N partitions, allocating
samples to each partition according to the 10-way label. The
local dataset for client i is comprised of the i-th partition of
D0 together with the i-th partition of D1. Finally, we replace
the target of each sample from a 10-way label y ∈ {0, . . . 9}
to a binary label y (mod 2). As a result, each local dataset
has the same 50-50 distribution of binary target labels, but
has a different distribution of images according to their
original 10-way label.

The non-IID partitioning protocol from (Karimireddy et al.,
2020) has a parameter h ∈ [0, 1] that controls the level
of heterogeneity. 0 corresponds to IID partitioning, and 1

induces maximal heterogeneity offered by the protocol. In
our experiments, we evaluate two heterogeneity settings of
h = 0.25 and h = 0.5.

Training Settings. We evaluate Local SGD with vary-
ing communication intervals (I ∈ {8, 16, 32}) and Parallel
SGD, which is equivalent to Local SGD with I = 1. In
all settings, we use a ResNet-18 architecture and the cross-
entropy loss function. We set N = 8 clients and use a batch
size of 64 for each client, so Parallel SGD is equivalent to
SGD with batch size 64N = 512.

We run training separately with and without data augmen-
tation (random flip, random crop). Without data augmen-
tation, we use a learning rate η = 0.01 and train for 16k
update steps (≈ 170 epochs). With data augmentation, we
set η = 0.03 and train for 65k steps (≈ 670 epochs). We
use a number of steps sufficiently long to ensure that every
training run reaches at least 99.9% training accuracy. In
all settings, we decay the learning rate by a factor of 2 two
times: once after 1/2 of the total steps and once after 3/4
of the total steps. The training was implemented in PyTorch
and executed on a cluster of 8 NVIDIA A6000 GPUs.

Results. Table 1 shows the average test accuracy achieved
by each algorithm across the four settings. Despite achiev-
ing the same training accuracy, Local SGD with any number
of local steps reaches a higher test accuracy than Parallel
SGD in all four settings. Across multiple random seeds, the
worst test accuracy from Local SGD is better than the best
test accuracy from Parallel SGD, indicating that the general-
ization boost of local steps is a consistent phenomenon.

For three of the four settings, the test accuracy of Local
SGD improves as the number of local steps I increases,
further suggesting that more local steps are better for gener-
alization. This is a significant practical benefit since the cost
of communication between clients is significantly reduced
as I increases (assuming the number of iterations remains
fixed). In practice, local steps provide a win-win situation:
increased generalization and reduced communication.
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8.2. CIFAR-10 with feature noise

To evaluate Local SGD under real-world data with feature
noise, we train with modified CIFAR-10 data that explicitly
includes feature noise similar to our theoretical framework
from Definition 3.1. The modified data is constructed in the
following way:

1. Let ρ > 0 be the feature noise magnitude.

2. Partition the dataset into N client datasets according to
the heterogeneity protocol outlined in the main paper.
Denote the client datasets as D1, . . . , Dn.

3. For each client i, sample (x̃i, ỹi) uniformly at random
from ∪j ̸=iDj . Then, for each data sample (x, y) ∈ Di,
define a modified data sample x′ = x−ρx̃i. Let D′

i be
the set of data samples (x′, y) modified from samples
(x, y) ∈ Di.

The dataset D′
i then consists of images from Di, with an

additional negative signal corresponding to an image x̃i

from a different client, and ρ is the magnitude of the feature
noise. This construction emulates the negative signal of the
feature noise patches from Definition 3.1, while still using
real-world data.

Training Settings. After constructing the feature noise
datasets D′

i, we run training using the same experimental
setup as in the CIFAR-10 experiments of the main body. We
evaluate the setting of h = 0.5 with data augmentation. We
also set I = 128 for Local SGD, which is an intermediate
value of I between experiments of the main paper and the
large I experiments of Section F. To understand the effect
of the feature noise, we allow the feature noise magnitude ρ
to vary over {0.03125, 0.0625, 0.125, 0.25}. Lastly, we run
for 24k update steps (compared to 16k from the main paper)
to ensure that all training runs reach near 100% training
accuracy. Each setup was evaluated over three trials with
different random seeds. Examples of the modified images
are shown in Figure 4. Each image contains slightly more
noise than the previous row, but overall the images retain
their original signal.

Results. The testing accuracies of Parallel SGD and Local
SGD are shown in Figure 5 for varying values of ρ, averaged
over the three trials with different random seeds. The error
bars range from minimum to the maximum test accuracy
over the three trials. Note that all training runs each at least
99.9% training accuracy.

Local SGD has better test accuracy than Parallel SGD for
all values of the feature noise magnitude ρ. Further, the
gap between the two algorithms increases as ρ increases,
showing that Local SGD can handle feature noise better than
Parallel SGD. This experimental result confirms our theory,

Figure 4: Modified CIFAR-10 images, where feature
noise has been added. Each row shows a different
value of the feature noise magnitude ρ, ranging over
{0.0, 0.03125, 0.0625, 0.125, 0.25}.

Figure 5: Test accuracy for Local SGD and Parallel SGD
under different strengths of feature noise, with three trials.
Local SGD always has better test accuracy.

and shows that local steps can improve generalization in the
presence of feature noise, even with real world data.

9. Discussion
This paper explores the effectiveness of local steps of the
gradient-based method in learning pattern-related features
under heterogeneous FL. Due to the new adversarial form
of heterogeneity in our synthetic data model, we formally
prove the generalization superiority of GD with local up-
dates over global updates. We also prove Local GD with the
large number of local steps and one-shot model averaging
can generalize well in all clients under mild magnitude of
feature noises. In our future work, we aim to provide a more
refined analysis to study the feature learning process of the
vanilla Local SGD algorithm and its variants.
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A. Preliminaries
A.1. The range of parameters

We restate the setting in Parameter 1 for our proofs:

• σξ = Θ(d−0.51), σ0 = Θ(d−0.52).

• N,n,m = polylog(d).

• Ω(logϱ(d)) ≤ K0 ≤ N with ϱ > 1/2.

• α = Θ(1).

• ρ3 = α3−1/poly(d)
K0

.

• β3 ≤ α3/(2K0).

A.2. Random initialization

Lemma A.1. Under the Gaussian initialization, with probability 1− 1/poly(d), we have

• Given any k ∈ [K], maxr∈[m] Γ
(0)
r,k > Ω(σ0). In addition, maxr∈[m],k∈[K] |Γ

(0)
r,k| ≤ O

(
σ0

√
log d

)
.

• Given any i ∈ [N ] and j ∈ [n], maxr∈[m] yijΞ
(0)
r,ij > Ω(

√
dσξσ0). In addition, maxr∈[m],i∈[N ],j∈[n] |Ξ

(0)
r,ij | ≤

O
(
σξσ0

√
d log d

)
.

Proof. According to the random initialization, we know {w(0)
r }r∈[m]

i.i.d.∼ N (0, σ2
0Id). It follows that

• For each k ∈ [K], {Γ(0)
r,k = ⟨w(0)

r ,v∗
k⟩}r∈[m]

i.i.d.∼ N (0, σ2
0).

• Fixing ξij and yij , {yijΞ(0)
r,ij = ⟨w(0)

r , yijξij⟩}r∈[m]
i.i.d.∼ N (0, σ2

0∥ξij∥2).

Let Φ(·) be the cumulative distribution function of N (0, 1). For any positive constant c = O(1), we have

P
(
Γ
(0)
r,k > cσ0

)
= P

(
Γ
(0)
r,k/σ0 > c

)
= 1− Φ(c).

It follows that

P
(
max
r∈[m]

Γ
(0)
r,k > cσ0

)
= P

(
∪m
r=1{⟨w(0)

r ,v∗
k⟩ > cσ0}

)
= 1− [1− Φ(c)]m ≥ 1− 1/poly(d).

Similarly, we also have

P
(
max
r∈[m]

yijΞ
(0)
r,ij > cσ0∥ξij∥ | ξij

)
= 1− 1/poly(d). (A.1)

By the distribution of ξij in Definition 3.1, we can write ξij = (Id−
∑

k∈K0
v∗
k(v

∗
k)

⊤)ξd for some ξd ∼ N (0, σ2
ξId). Since

(v∗
k)

⊤ξd ∼ N (0, σ2
ξ ), then we have

∥ξij∥ =

∥∥∥∥∥ξd − ∑
k∈K0

v∗
k(v

∗
k)

⊤ξd

∥∥∥∥∥ ≥ ∥ξd∥ −

∥∥∥∥∥∑
k∈K0

v∗
k(v

∗
k)

⊤ξd

∥∥∥∥∥
≥ Θ(dσξ)−

∑
k∈K0

∥v∗
k∥ · |(v∗

k)
⊤ξd|

≥ Θ(dσξ)−O
(
K0σξ

√
log d

)
= Θ(dσξ),

where we used Lemma E.1 and K0 = polylog(d). Together with (A.1), we can guarantee that maxr∈[m] yijΞ
(0)
r,ij >

Ω(
√
dσξσ0) with probability 1− 1/poly(d).
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A.3. A threshold for vanishing derivative

Recall the local loss

L(W ;Zi) =
1

n

∑
j∈[n]

log
(
1 + e−yijF (W ,xij)

)
.

We compute its gradient w.r.t. the hidden weight wr by

∇wr
L(W ;Zi) = − 1

n

∑
j∈[n]

yijℓij(W )∇wr
F (W ,xij)

= − 1

n

∑
j∈[n]

yijℓij(W )
∑
p∈[P ]

3⟨wr,xij,p⟩2 · xij,p, (A.2)

where ℓij(W ) = 1/
(
1 + eyijF (W ,xij)

)
. Given the total iterations T = poly(d)

η , we define a threshold ϑ = log(Ω̃(T )) =

Ω̃(1) such that

T∑
t=0

1

1 + exp(ϑ)
≤ Õ(1). (A.3)

Hence we can guarantee that
∑T

s=t0
ℓ
(t)
ij ≤ Õ(1) if yijF (W (s),xij) ≥ ϑ holds for s ≥ t0.

B. GD with global updates under Parameter 1
Given the iterate W (t) in GD, define the following iterates during the training process:

• Signal intensity of feature learning: Γ(t)
r,k = ⟨w(t)

r ,v∗
k⟩ for r ∈ [m] and k ∈ [K].

• Noise memorization: Ξ(t)
r,ij = ⟨w(t)

r , ξij⟩ for r ∈ [m], i ∈ [N ] and j ∈ [n].

• Derivative: ℓ(t)ij = ℓij(W
(t)) = 1/

(
1 + eyijF (W (t),xij)

)
for i ∈ [N ] and j ∈ [n].

• Derivative in each client: ν(t)i = 1
n

∑
j∈[n] ℓ

(t)
ij for i ∈ [N ].

• Maximum signal intensity: Γ(t)
r∗,k ≡ Γ

(t)
r∗k,k

, where r∗k = argmaxr∈[m] Γ
(0)
r,k.

• Maximum noise memorization: Ξ(t)
r∗,ij ≡ Ξ

(t)
r∗ij ,ij

, where r∗ij = argmaxr∈[m] yijΞ
(0)
r,ij .

B.1. Update rules of signal intensity and noise memorization

Using the data distribution and gradients in (A.2), for the signal intensity of v∗
k, we have the following update rules:

• If k ∈ K0,

Γ
(t+1)
r,k = Γ

(t)
r,k − η

N

∑
i∈[N ]

⟨∇wrL(W
(t);Di),v

∗
k⟩

= Γ
(t)
r,k +

η

N

∑
i∈[N ]

1

n

∑
j∈[n]

yijℓ
(t)
ij

∑
p∈[P ]

3⟨w(t)
r ,xij,p⟩2 ⟨xij,p,v

∗
k⟩

= Γ
(t)
r,k +

3η

Nn

∑
i∈[N ]

1{i∈Ck}α
3
∑
j∈[n]

ℓ
(t)
ij ⟨w

(t)
r ,v∗

k⟩2 − 1{i∈∪k′∈K0
Ck′}ρ

3
∑
j∈[n]

ℓ
(t)
ij ⟨w

(t)
r ,v∗

k⟩2

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= Γ
(t)
r,k +

3η

Nn

α3
∑
i∈Ck

∑
j∈[n]

ℓ
(t)
ij − ρ3

∑
k′∈K0

∑
i∈Ck′

∑
j∈[n]

ℓ
(t)
ij

(Γ(t)
r,k

)2

= Γ
(t)
r,k +

3η

N

α3
∑
i∈Ck

ν
(t)
i − ρ3

∑
k′∈K0

∑
i∈Ck′

ν
(t)
i

(Γ(t)
r,k

)2
. (B.1)

• If k ∈ [K] \ K0,

Γ
(t+1)
r,k = Γ

(t)
r,k − η

N

∑
i∈[N ]

⟨∇wr
L(W (t);Di),v

∗
k⟩

= Γ
(t)
r,k +

η

N

∑
i∈[N ]

1{i∈Ck}(α
3 −K0β

3)
1

n

∑
j∈[n]

ℓ
(t)
ij 3⟨w

(t)
r ,v∗

k⟩2


= Γ
(t)
r,k +

3η

Nn

(α3 −K0β
3)
∑
i∈Ck

∑
j∈[n]

ℓ
(t)
ij

(Γ(t)
r,k

)2
= Γ

(t)
r,k +

[
3η(α3 −K0β

3)

N

∑
i∈Ck

ν
(t)
i

](
Γ
(t)
r,k

)2
. (B.2)

In fact, we also used the facts ⟨v∗
k,v

∗
1⟩ = 0 if k ̸= 1 and ⟨v∗

k, ξij⟩ = 0 almost surely due to Hv∗
k = 0.

The noise memorization of the patch ξij is given by:

• If i ∈ Ck with k ∈ K0,

Ξ
(t+1)
r,ij = Ξ

(t)
r,ij −

η

N

∑
i′∈[N ]

⟨∇wr
L(W (t);Di′), ξij⟩

= Ξ
(t)
r,ij +

η

N

∑
i′∈[N ]

1

n

∑
j′∈[n]

yi′j′ℓ
(t)
i′j′3⟨w

(t)
r ,xi′j′⟩2⟨xi′j′ , ξij⟩

= Ξ
(t)
r,ij + η

[
3

Nn
yijℓ

(t)
ij ∥ξij∥

2

](
Ξ
(t)
r,ij

)2
+

3η

Nn

∑
j′∈[n]\{j}

yij′ℓ
(t)
ij′

(
Ξ
(t)
r,ij′

)2
⟨ξij′ , ξij⟩

+
3η

Nn

∑
i′∈Ck\{i}

∑
j′∈[n]

yi′j′ℓ
(t)
i′j′

(
Ξ
(t)
r,i′j′

)2
⟨ξi′j′ , ξij⟩

+
3η

Nn

∑
k′∈K0\{k}

∑
i′∈Ck′

∑
j′∈[n]

yi′j′ℓ
(t)
i′j′

(
Ξ
(t)
r,i′j′

)2
⟨ξi′j′ , ξij⟩

+
3η

Nn

∑
k′∈[K]\K0

∑
i′∈Ck′

∑
j′∈[n]

yi′j′ℓ
(t−1)
i′j′

(
Ξ
(t−1)
r,i′j′

)2
⟨ξi′j′ , ξij⟩. (B.3)

• If i ∈ Ck with k ∈ [K] \ K0,

Ξ
(t+1)
r,ij = Ξ

(t)
r,ij −

η

N

∑
i′∈[N ]

⟨∇wr
L(W (t);Di′), ξij⟩

= Ξ
(t)
r,ij +

η

N

∑
i′∈[N ]

1

n

∑
j′∈[n]

yi′j′ℓ
(t)
i′j′3⟨w

(t)
r ,xi′j′⟩2⟨xi′j′ , ξij⟩

= Ξ
(t)
r,ij + η

[
3

Nn
yijℓ

(t)
ij ∥ξij∥

2

](
Ξ
(t)
r,ij

)2
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+
3η

Nn

∑
j′∈[n]\{j}

yij′ℓ
(t)
ij′

(
Ξ
(t)
r,ij′

)2
⟨ξij′ , ξij⟩

+
3η

Nn

∑
i′∈Ck\{i}

∑
j′∈[n]

yi′j′ℓ
(t)
i′j′

(
Ξ
(t)
r,i′j′

)2
⟨ξi′j′ , ξij⟩

+
3η

Nn

∑
k′∈[K]\K0\{k}

∑
i′∈Ck′

∑
j′∈[n]

yi′j′ℓ
(t−1)
i′j′

(
Ξ
(t−1)
r,i′j′

)2
⟨ξi′j′ , ξij⟩

+
3η

Nn

∑
k′∈K0

∑
i′∈Ck′

∑
j′∈[n]

yi′j′ℓ
(t)
i′j′

(
Ξ
(t)
r,i′j′

)2
⟨ξi′j′ , ξij⟩. (B.4)

B.2. Induction hypothesis in GD

Induction hypothesis B.1 (The scale of noise memorization). Throughout the training process of GD, with probability at
least 1− 1/poly(d),

(a) For any i ∈ Ck with k ∈ K0 and j ∈ [n], we maintain

max
r∈[m],j∈[n]

|Ξ(t)
r,ij | ≤ Õ(1) for any t ≥ 0.

(b) For any i ∈ Ck with k ∈ [K] \ K0 and j ∈ [n], we maintain

max
r∈[m],j∈[n]

|Ξ(t)
r,ij | ≤ Õ(d−1/2) for any t ≥ 0.

Induction hypothesis B.2 (The scale of noisy feature’s signal). Throughout the training process of GD, with probability at
least 1− 1/poly(d), for any k ∈ K0 and r ∈ [m], we maintain:

max
r∈[m]

|Γ(t)
r,k| ≤ Õ(σ0) for any t ≥ 0.

Lemma B.1. Given i ∈ Ck with k ∈ K0 and j ∈ [n], with probability at least 1− 1/poly(d), we maintain:

min
r∈[m]

yijΞ
(t)
r,ij ≥ −Õ(d−1/2) for any t ≥ 0. (B.5)

B.3. Proof of Theorem 1

The following lemma characterizes the growth of normal feature’s signal intensity in the early stage of GD, where the scale
of gradients is relatively large.

Lemma B.2. Denote T0
v = Θ

(
K

ηα3σ0

)
+O(log d). For any t ≤ T0

v , the signal intensity of v∗
k with k ∈ [K] \K0 is updated

by

Γ
(t+1)
r,k = Γ

(t)
r,k +Θ

(
η(α3 −K0β

3)

K

)(
Γ
(t)
r,k

)2
. (B.6)

Proof. For t ≤ T0
v, it follows from Lemmas B.6 and B.7 that maxr,i,j |Ξ(t)

r,ij | ≤ Õ(σ0σξ

√
d). Hence we have for

t ≤ min{τk,T0
v},

ℓ
(t)
ij =

1

1 + exp
{∑m

r=1

[
(α3 −K0β3)[Γ

(t)
r,k]

3 + yij(Ξ
(t)
r,ij)

3
]}

≥ 1

1 + exp
{∑m

r=1(α
3 −K0β3)[Γ

(t)
r,k]

3 + Õ(mσ3
0σ

3
ξd

3/2)
}
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≥ 1

1 + exp
{
1/2 + Õ(mσ3

0σ
3
ξd

3/2)
}

= Θ(1). (B.7)

According to the assumption |Ck| = N/K for any k ∈ [K], we can simplify (B.1) as

Γ
(t+1)
r,k = Γ

(t)
r,k +Θ

(
ηα3

K

)(
Γ
(t)
r,k

)2
.

This completes the proof.

B.3.1. PROOF OF LEMMA 5.1

Proof. For any k ∈ [K] \ K0 and t ≤ τk, by Lemma B.2, we have

Γ
(t+1)
r,k = Γ

(t)
r,k + η ·Θ

(
α3 −K0β

3

K

)(
Γ
(t)
r,k

)2
= Γ

(t)
r,k + η ·Θ

(
α3

K

)(
Γ
(t)
r,k

)2
.

From Lemma A.1, we know Γ
(0)
r∗,k = Ω(σ0) holds with probability 1− 1/poly(d). Applying Lemma E.4 with h = H =

η ·Θ
(

α3

K

)
, we can guarantee Γ

(t)
r∗,k ≥ Θ

(
1

m1/3α

)
for any t ≥ τ0k where

τk ≤ 3

hΓ
(0)
r∗,k

+
8H

h

⌈
log(v/z(0))

log(2)

⌉
≤ K

ηα3σ0
+O(log d) ≤ T0

v.

The other two conclusions follows from Lemmas B.6 and B.7.

B.3.2. PROOF OF LEMMA 5.2

Proof. The conclusion follows from Lemma B.9.

B.3.3. PROOF OF LEMMA 5.3

Proof. According to the definition of τ0ij , we know maxr∈[m] yijΞ
(s)
r,ij ≤ Θ(1/m1/3) for s ≤ τ0ij . In addition, by Lemma

B.6, we also know τ0ij > T−
v . Given i ∈ Ck with k ∈ K0 and j ∈ [n], it holds for any s ≤ τ0ij that

ℓ
(s)
ij =

1

1 + exp

{∑m
r=1

[
α3
(
Γ
(s)
r,k

)3
− ρ3

∑
k′∈K0

(Γ
(s)
r,k′)3 + (yijΞ

(s)
r,ij)

3

]}
≥ 1

1 + exp
{
mΘ(1/m) + Õ (α3mσ3

0) + Õ (ρ3mK0σ3
0)
}

≥ 1

1 + exp {Θ(1) + o(1)}
= Θ(1), (B.8)

where we used Induction hypothesis B.2. Let τ0r,ij be the first iteration yijΞ
(t)
r,ij reaches Θ(m− 1

3 ). From Lemma B.9, we

know maxr∈[m] yijΞ
(t)
r,ij ≤ Θ((md)−

1
3 ) holds for any t ≤ T−

ξ = Θ
(

1
η

Nn
(
√
dσξ)3σ0

)
.

Let τ−r∗,ij be the first iteration yijΞ
(t)
r∗,ij ≥ Θ((md)−

1
3 ), then τ−r∗,ij > T−

ξ . After enrolling (B.3) with r = r∗ij , for any
τ−r∗,ij ≤ t ≤ min{τ0ij ,T0

ξ}, we can get

yijΞ
(t)
r∗,ij

(i)
= yijΞ

(τ−
r∗,ij

)

r∗,ij +Θ

(
ηdσ2

ξ

Nn

)
t−1∑

s=τ−
r∗,ij

(
Ξ
(s)
r∗,ij

)2
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± Õ

(
η
√
dσ2

ξ

Nn

) ∑
j′∈[n]\{j}

t−1∑
s=τ−

r∗,ij

ℓ
(s)
ij′

(
Ξ
(s)
r∗ij′

)2

± Õ

(
η
√
dσ2

ξ

Nn

) ∑
i′∈Ck\{i}

∑
j′∈[n]

t−1∑
s=τ−

r∗,ij

ℓ
(s)
i′j′

(
Ξ
(s)
r∗i′j′

)2

± Õ

(
η
√
dσ2

ξ

Nn

) ∑
k′∈K0\{k}

∑
i′∈Ck′

∑
j′∈[n]

t−1∑
s=τ−

r∗,ij

ℓ
(s)
i′j′

(
Ξ
(s)
r∗i′j′

)2

± Õ

(
ηd3/2σ4

ξσ
2
0

Nn

) ∑
k′∈[K]\K0

∑
i′∈Ck′

 T0
v−1∑

s=τ−
r∗,ij

ν
(s)
i′j′ +

t−1∑
s=T0

v

ν
(s)
i′j′


(ii)
= yijΞ

(τ−
r∗,ij

)

r∗ij +Θ

(
ηdσ2

ξ

Nn

)
t−1∑

s=τ−
r∗,ij

(
Ξ
(s)
r∗ij

)2
± Õ

(√
dσ2

ξ

dσ2
ξ

)
± Õ

(
d3/2σ4

ξσ
2
0

)
(iii)
= yijΞ

(T−
ξ )

r∗ij +Θ

(
ηdσ2

ξ

Nn

)
t−1∑

s=τ−
r∗,ij

(
Ξ
(s)
r∗ij

)2
± o(m− 1

3 d−1/3), (B.9)

where (i) holds due to (B.8) and hypothesis (b); (ii) follows from Lemmas B.8 and B.10; and (iii) holds since σξ =

Θ(d−0.51) and σ0 = Θ(d−0.52). Let A = Θ
(

ηdσ2
ξ

Nn

)
, C = o(

√
dσξσ0) and v = Θ(m− 1

3 ), applying the tensor power’s
method in (E.3) of Lemma E.6 guarantees that,

τ0r∗,ij ≤ τ−r∗,ij +
21

AyijΞ
(τ−

r∗,ij
)

r∗,ij

+ 8

 log(v/[yijΞ
(τ−

r∗,ij
)

r∗,ij ])

log(2)


≤ Θ

(
1

η

Nn

(
√
dσξ)3σ0

)
+Θ

(
1

η

Nnm1/3

d2/3σ2
ξ

)
+O(log d)

≤ O

(
1

η

Nn

(
√
dσξ)3σ0

+ log d

)
. (B.10)

By the definition of τ0ij , we know τ0ij ≤ τ0r∗,ij ≤ T0
ξ .

B.3.4. PROOF OF LEMMA B.1

Proof. According to Lemma A.1, we know minr∈[m] yijΞ
(0)
r,ij ≥ −Õ(

√
dσξσ0) holds for any i ∈ Ck with k ∈ K0 and

j ∈ [n]. By Lemma B.9, we know ℓ
(s)
ij ≥ 1

2 −O(d−1) for any s ≤ T−
ξ . Similar to (B.39), we can obtain that for any t ≤ T−

ξ ,

yijΞ
(t)
r,ij = yijΞ

(0)
r,ij +Θ

(
η∥ξij∥2

Nn

) t∑
s=0

(
Ξ
(s)
r,ij

)2
± o(

√
dσξσ0)

≥ −Õ(
√
dσξσ0)− o(

√
dσξσ0)

= −Õ(
√
dσξσ0). (B.11)

For t > T−
ξ , we also have

yijΞ
(t)
r,ij ≥ yijΞ

(T−
ξ )

r,ij +Θ

(
η∥ξij∥2

Nn

) t∑
s=T−

ξ

(
Ξ
(s)
r,ij

)2
− Õ

(
η
√
dσ2

ξ

Nn

) ∑
k′∈K0

∑
i′∈Ck′

∑
j′∈[n]

t∑
s=T−

ξ

ℓ
(s)
i′j′

(
Ξ
(s)
r,i′j′

)2
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− Õ

(
η
√
dσ2

ξ

N

) ∑
k′∈[K]\K0

∑
i′∈Ck′

t∑
s=T0

v

ν
(s)
i′

(
Ξ
(s)
r,i′j′

)2
≥ −Õ(

√
dσξσ0)− Õ

(
1√
d

)
− Õ

(
σ2
ξ√
d

)

≥ −Õ

(
1√
d

)
,

where the second inequality follows from Lemma B.8, Lemma B.10 and Induction hypothesis B.1 (b). Then we have
finished the proof.

B.3.5. PROOF OF THEOREM 1

The following lemma gives the upper bound of the summation of the averaged derivative over the clients with confounding
features till the end of training. Since Lemma 5.3 guarantees the signal intensity of confounding features at iteration T−

ξ is

bounded by Õ(σ0), the derivative scale after T−
ξ is not enough to learn confounding features.

Lemma B.3. Given any k ∈ K0, in the training process of GD, for any T−
ξ < t ≤ T , we maintain:

η

N

∑
i∈Ck

t∑
s=T−

ξ

ν
(s)
i ≤ Õ

(
1

d2/3σ2
ξ

)
.

Lemma B.4. Let ξ ∼ N (0, σ2
ξH) be a noise vector that is independent of the training data. During the training process of

GD, we maintain

max
r∈[m]

|⟨w(t)
r , ξ⟩| ≤ Õ

(
d−

1
2

)
for any t ≥ 0. (B.12)

Proof. Denote Ξ
(t)
r = ⟨w(t)

r , ξ⟩. Notice that

Ξ(t+1)
r = Ξ(t)

r +
η

N

∑
i∈[N ]

1

n

∑
j∈[n]

yijℓ
(t)
ij

∑
p∈[P ]

3⟨w(t)
r ,xij,p⟩2 ⟨xij,p, ξ⟩

= Ξ(t)
r +

3η

Nn

∑
i∈[N ]

∑
j∈[n]

yijℓ
(t)
ij

(
Ξ
(t)
r,ij

)2
⟨ξij , ξ⟩

= Ξ(0)
r ± Õ

(
η
√
dσ2

ξ

Nn

) ∑
i∈[N ]

∑
j∈[n]

t∑
s=0

ℓ
(s)
ij

(
Ξ
(s)
r,ij

)2
= Ξ(0)

r ± Õ

(
η
√
dσ2

ξ

Nn

) ∑
k∈K0

∑
i∈Ck

∑
j∈[n]

t∑
s=0

ℓ
(s)
ij

(
Ξ
(s)
r,ij

)2
± Õ

(
η
√
dσ2

ξ

Nn

) ∑
k∈[K]\K0

∑
i∈Ck

∑
j∈[n]

t∑
s=0

ℓ
(s)
ij

(
Ξ
(s)
r,ij

)2
. (B.13)

We first consider k ∈ [K] \ K0. If t ≤ T0
v , by Lemma B.6, we have

η

Nn

∑
i∈Ck

∑
j∈[n]

t∑
s=0

ℓ
(s)
ij

(
Ξ
(s)
r,ij

)2
≤ η

Nn

∑
i∈Ck

∑
j∈[n]

T0
v∑

s=0

(
Ξ
(s)
r,ij

)2
≤ Õ

(
ηT0

vdσ
2
ξσ

2
0

)
= Õ(dσ2

ξσ0). (B.14)

If t > T0
v , Lemma B.8 guarantees that

η

Nn

∑
i∈Ck

∑
j∈[n]

t∑
s=T0

v

ℓ
(s)
ij

(
Ξ
(s)
r,ij

)2
≤ Õ

(
dσ2

ξσ
2
0

)
· η

N

∑
i∈Ck

t∑
s=T0

v

ν
(s)
i ≤ Õ

(
dσ2

ξσ
2
0

)
. (B.15)
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For any k ∈ K0, if t ≤ T−
ξ , Lemma B.9 implies that

η

Nn

∑
i∈Ck

∑
j∈[n]

t∑
s=0

ℓ
(s)
ij

(
Ξ
(s)
r,ij

)2
≤ η

Nn

∑
i∈Ck

∑
j∈[n]

T−
ξ∑

s=0

(
Ξ
(s)
r,ij

)2
≤ Õ

(
ηT−

ξ · d− 2
3

)
= Õ

(
d−

2
3

(
√
dσξ)3σ0

)
. (B.16)

If t > T−
ξ , Lemma B.3 guarantees that

η

Nn

∑
i∈Ck

∑
j∈[n]

t∑
s=Tξ

ℓ
(s)
ij

(
Ξ
(s)
r,ij

)2
≤ Õ

(
1

dσ2
ξ

)
. (B.17)

Now plugging (B.14)-(B.17) to (B.13), we can obtain

|Ξ(t+1)
r | ≤ |Ξ(0)

r |+ Õ
(
d3/2σ4

ξσ0

)
+ Õ

(
d−

2
3

dσξσ0

)
+ Õ

(
d−

1
2

)
= Õ

(
d−

1
2

)
. (B.18)

Proof of Theorem 1. For any k ∈ [K]\K0, according to Lemma 5.1, we know maxr∈[m] Γ
(T )
r,k ≥ Θ(m− 1

3 ). By Lemma B.5,

it holds that minr∈[m] Γ
(T )
r,k ≥ −Õ(σ0). In addition, Induction hypothesis B.1 (b) also guarantees that maxr∈[m] |Ξ

(T )
r,ij | ≤

Õ(
√
dσξσ0) if i ∈ Ck with k ∈ [K] \K0. For each local data (xij , yij) with i ∈ Ck with k ∈ [K] \K0 and j ∈ [n], we have

yijF (W (T ),xij) = yij
∑
r∈[m]

∑
p∈[P ]

⟨w(T )
r ,xij,p⟩3

=
∑
r∈[m]

[
(α3 −K0ρ

3)
(
Γ
(T )
r,k

)3
+
(
yijΞ

(T )
r,ij

)3]
≥ (α3 −K0ρ

3) ·Θ(m− 1
3 )− (α3 −K0ρ

3) · Õ(mσ3
0)− Õ(md3/2σ3

ξσ
3
0)

= Ω̃(1)− Õ(d−1.47)− Õ(d−1.5)

= Ω̃(1), (B.19)

where we used the setting m = polylog(d), σ0 = d−0.49 and σξ = d−0.51. For the new test data (x, y) ∼ Di, with the
probability at least 1− 1/poly(d), we have

yF (W (T ),x) = y
∑
r∈[m]

∑
p∈[P ]

⟨w(T )
r ,xp⟩3

=
∑
r∈[m]

[
(α3 −K0ρ

3)
(
Γ
(T )
r,k

)3
+ y⟨w(T )

r , ξ⟩3
]

≥ Ω̃(1)− Õ(md3/2σ3
ξσ

3
0)− Õ

(
md−3/2

)
≥ Ω̃(1), (B.20)

where we used Lemma B.4.

For any k ∈ K0, we know maxr∈[m] |Γ
(T )
r,k | ≤ Õ(σ0) by Induction hypothesis B.2. If i ∈ Ck with k ∈ K0, Lemma 5.3

ensures that maxr∈[m] yijΞ
(T )
r,ij ≥ Θ(m− 1

3 ) for any j ∈ [n]. For each local data (xij , yij) with i ∈ Ck with k ∈ K0 and
j ∈ [n], we have

yijF (W (T ),xij) = yij
∑
r∈[m]

∑
p∈[P ]

⟨w(T )
r ,xij,p⟩3
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=
∑
r∈[m]

[
α3
(
Γ
(T )
r,k

)3
− ρ3

∑
k′∈K0

(
Γ
(T )
r,k′

)3
+
(
yijΞ

(T )
r,ij

)3]
≥ −α3 · Õ(mσ3

0)− ρ3 · Õ(mK0σ
3
0) + Θ(m− 1

3 )

= Ω̃(1). (B.21)

For the new test data (x, y) ∼ Di, with probability at least 1− 1/poly(d), we have

yF (W (T ),x) = y
∑
r∈[m]

∑
p∈[P ]

⟨w(T )
r ,xp⟩3

=
∑
r∈[m]

[
α3
(
Γ
(T )
r,k

)3
− ρ3

∑
k′∈K0

(
Γ
(T )
r,k′

)3
+ y⟨w(T )

r , ξ⟩3
]

≤
∑
r∈[m]

y⟨w(T )
r , ξ⟩3 + α3 · Õ(mσ3

0) + ρ3 · Õ(mK0σ
3
0)

=
∑
r∈[m]

y⟨w(T )
r , ξ⟩3 + Õ(σ3

0). (B.22)

Denote Pv =
∑

k∈[K] v
∗
k(v

∗
k)

⊤ and P⊥
v = Id −Pv . Since ξ ∼ N (0, σ2

ξP
⊥
v ), there exists some ξd ∼ N (0, σ2

ξId) such that

ξ = P⊥
v ξd. Now we write w

(T )
r = Pvw

(T )
r + P⊥

v w
(T )
r . Recalling the definition Ξ

(T )
r,ij = ⟨w(T )

r , ξij⟩ = ⟨P⊥
v w

(T )
r , ξij⟩.

For each local data (xij , yij) with i ∈ Ck with k ∈ K0 and j ∈ [n], we know

Θ(m− 1
3 ) ≤ max

r∈[m]
yijΞ

(T )
r,ij = max

r∈[m]
⟨P⊥

v w
(T )
r , yijξij⟩.

Let r∗ = argmaxr∈[m] yijΞ
(T )
r,ij . Due to the fact

√
dσξ = Θ(d−0.01), using Induction hypothesis B.1, we have

∑
r∈[m]

〈
P⊥

v w
(T )
r ,

yijξij
∥ξij∥

〉3

≥ 1

∥ξij∥3

(yijΞ(T )
r∗,ij

)3
−
∑
r ̸=r∗

(
yijΞ

(T )
r,ij

)3
≥ Ω̃

(
1

d3/2σ3
ξ

)[
Θ(m−1)− Õ

(
m(

√
dσξσ0)

3
)]

= Ω̃

(
1

d3/2σ3
ξ

)
≥ 1. (B.23)

Since the model W (T ) and the test label y are independent of the noise ξd, then we know the distribution of∑
r∈[m] y⟨P⊥

v w
(T )
r , ξd⟩3 is symmetric given W (T ) and yξd ∼ N (0, σ2

ξId) given y ∈ {−1,+1}. Now applying Lemma

E.3 with wr = P⊥
v w

(T )
r and u = yijξij/∥ξij∥, we have

Pξd

∑
r∈[m]

⟨P⊥
v w

(T )
r , yξd⟩3 < −ϵσ3

ξ

 ≥ 1

2
− Pξd

(∣∣∣∣∣
m∑
r=1

⟨P⊥
v w

(T )
r , yξd⟩3

∣∣∣∣∣ ≤ ϵσ3
ξ

∣∣∣∣∣
m∑
r=1

⟨P⊥
v w

(T )
r ,u⟩3

∣∣∣∣∣
)

≥ 1

2
−O

(
ϵ1/3

)
.

Taking ϵ = 1/polylog(d), together with (B.23), we can guarantee that

P

∑
r∈[m]

⟨P⊥
v w

(T )
r , yξd⟩3 < −Ω̃(σ3

ξ )

 ≥ 1

2
− 1

polylog(d)
. (B.24)

Since
∑

r∈[m] y⟨w
(T )
r , ξ⟩3 =

∑
r∈[m]⟨P⊥

v w
(T )
r , yξd⟩3, under the same event in (B.24), we have

yF (W (T ),x) ≤
∑
r∈[m]

y⟨w(T )
r , ξ⟩3 + Õ(σ3

0)
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≤ −Ω̃(σ3
ξ ) + Õ(σ3

0)

< 0,

where we used the setting σ0 = Θ(d−0.52) and σξ = Θ(d−0.51).

B.4. Proof of Induction hypotheses in GD

Lemma B.5. Given k ∈ [K] \ K0. In the training process of GD, with probability at least 1− 1/poly(d), we maintain:

Γ
(t)
r,k ≥ −Õ(σ0) for any t ≥ 0. (B.25)

Proof. From Lemma A.1, with probability 1− 1/poly(d), it holds that Γ(0)
r,k ≥ −Õ(σ0) holds for any r ∈ [m]. Observing

the update rule in (B.2) for k ∈ [K] \ K0, we have

Γ
(t+1)
r,k = Γ

(t)
r,k +

3η(α3 − β3)

N

∑
i∈Ck

ν
(t)
i · [Γ(t)

r,k]
2

≥ Γ
(t)
r,k ≥ · · · ≥ Γ

(0)
r,k ≥ −Õ(σ0).

This proves the lower bound in (B.25).

B.4.1. PROOF OF INDUCTION HYPOTHESIS B.1

Let T−
v = Θ

(
K

ησ0α3

)
. In this subsection, we will prove Induction hypothesis B.1 in two stages: [0,T−

v ] and [T−
v , T ]. The

first stage is proved by Lemma B.6. The second stage is proved by Lemma B.11.

Lemma B.6. In the training process of GD, with probability at least 1− 1/poly(d), we maintain:

max
r∈[m],i∈[N ],j∈[n]

|Ξ(t)
r,ij | ≤ Õ(σ0σξ

√
d) for any t ≤ T−

v . (B.26)

Proof. Due to the initialization and the concentration, with probability at least 1− 1/poly(d), we can guarantee that

Ξ(0)
r = max

i,j
|Ξ(0)

r,ij | = max
i,j

|⟨w(0)
r , ξij⟩| ≤ Õ(

√
dσ0σξ).

Now we assume Ξ
(s)
r ≤ Õ(

√
dσ0σξ) holds for any s ≤ t, and verify the upper bound at iteration t + 1. Denote

Ξ
(t)
r = maxi,j |Ξ(t)

r,ij |. From the update rules in (B.3) and (B.4), we have

Ξ(t+1)
r ≤ max

i,j

{
|Ξ(t)

r,ij |+
3η

Nn
ℓ
(t)
ij ∥ξij∥

2
(
Ξ
(t)
r,ij

)2}

+
3η

Nn
max
i,j,i′,j′

 ∑
(i′,j′ )̸=(i,j)

ℓ
(t)
i′j′

(
Ξ
(t)
r,i′j′

)2
|⟨ξi′j′ , ξij⟩|


(i)

≤ Ξ(t)
r + η|Ξ(t)

r |2 · Õ

(
dσ2

ξ

Nn

)
+ η|Ξ(t)

r |2 · Õ
(
P
√
dσ2

ξ

)
(ii)

≤ Ξ(t)
r + η · Õ

(
d2σ4

ξσ
2
0

Nn
+ Pd3/2σ4

ξσ
2
0

)

≤ Ξ(0)
r + η(t+ 1) · Õ

(
d2σ4

ξσ
2
0

Nn
+ Pd3/2σ4

ξσ
2
0

)
(iii)

≤ Õ(
√
dσ0σξ) + Õ

(
Kd2σ4

ξσ0

Nnα3
+

PKdσ4
ξσ0

α3

)
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(iv)
= Õ(

√
dσ0σξ) ·

[
1 + Õ(d−0.03) + Õ

(
d−1.53

)]
≤ Õ(

√
dσ0σξ),

where (i) holds due to the concentration ∥ξij∥ ≤ Õ(
√
dσξ) and |⟨ξi′j′ , ξij⟩| ≤ Õ(

√
dσ2

ξ ); (ii) follows from the induction
hypothesis; (iii) holds due to t+ 1 ≤ T−

v ; and (iv) is true because the setting σξ = Θ(d−0.51) and α = Θ(1).

Lemma B.7. In the training process of GD, given k ∈ K0, with probability at least 1− 1/poly(d), we maintain:

max
r∈[m]

|Γ(t)
r,k| ≤ Õ(σ0) for any t ≤ T−

v .

Proof. Now we suppose maxr∈[m],k∈K0
|Γ(s)

r,k| ≤ Õ(σ0) holds for iterations s ≤ t ≤ T−
v − 1. By Lemma B.6, we know

maxr,i,j |Ξ(s)
r,ij | ≤ Õ(

√
dσξσ0) for any s ≤ t. It means that for any i ∈ Ck with k ∈ K0, j ∈ [n] and s ≤ t,

ℓ
(s)
ij =

1

1 + exp
{∑m

r=1

[
α3(Γ

(s)
r,k)

3 − ρ3
∑

k′∈K0
(Γ

(s)
r,k′)3 + yij(Ξ

(s)
r,ij)

3
]}

=
1

1 + exp
{
±Õ (α3mσ3

0)± Õ (ρ3mK0σ3
0)± Õ

(
m(

√
dσξ)3σ3

0

)}
=

1

1 + exp
{
±Õ(σ3

0)
}

=
1

2
+

exp
{
±Õ(σ3

0)
}
− 1

2(1 + exp{±Õ(σ3
0)})

=
1

2
± Õ(σ3

0). (B.27)

Using the recursion (B.1), for any t+ 1 ≤ T−
v we have

Γ
(t+1)
r,k ≤ Γ

(0)
r,k +

[
3ηα3

K
− 3ηK0ρ

3

K

]
·

t∑
s=0

(
Γ
(s)
r,k

)2
+ Õ(σ3

0) ·
3ηα3

2N

∑
i∈Ck

t∑
s=0

(
Γ
(s)
r,k

)2
≤ Õ(σ0) +

[
3ηα3

K
− 3ηK0ρ

3

K

]
· Õ
(
T−
v σ

2
0

)
+ Õ(σ3

0) ·
3ηα3

K
· Õ
(
T−
v σ

2
0

)
≤ Õ(σ0) +

α3 −K0ρ
3

K
· Õ
(
Kσ0

α3

)
+ Õ

(
σ4
0

)
= Õ(σ0) + Õ

(
Kσ0

dα3

)
+ Õ

(
σ4
0

)
= Õ(σ0), (B.28)

where we used the inductive hypothesis and the setting ρ =
[
α3−Θ(K/d)

K0

]1/3
. For the lower bound at time t+ 1, we have

Γt+1
r,k ≥ Γ

(0)
r,k +

[
3ηα3

K
− 3ηK0ρ

3

K

]
·

t∑
s=0

(
Γ
(s)
r,k

)2
− Õ(σ3

0) ·
3ηρ3

2N

∑
k′∈K0

∑
i∈Ck′

t∑
s=0

(
Γ
(s)
r,k

)2
≥ −Õ(σ0)− Õ(σ3

0) ·
3K0ηρ

3

K
· Õ
(
T−
v σ

2
0

)
≥ −Õ(σ0). (B.29)

Consequently, we can conclude that maxr∈[m],k∈K0
|Γ(t)

r,k| ≤ Õ(σ0) holds for any t ≤ T−
v .
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Lemma B.8. Given any k ∈ [K] \ K0. If Induction hypothesis B.1 holds for any iterations s ≤ t, with probability at least
1− 1/poly(d), we have

η

N

∑
i∈Ck

t∑
s=τk

ν
(s)
i ≤ Õ (1) for any t ≥ T0

v. (B.30)

Proof. Let τ0r∗,k be the first iteration Γ
(t)
r∗,k reaches Θ

(
1

m1/3α

)
for k ∈ [K]\K0. It follows from Lemma 5.1 that τ0r∗,k ≤ T−

v

for any k ∈ [K] \ K0. Let τ+r∗,k be the first iteration Γ
(t)
r∗,k reaches Θ

(
ϑ1/3/α

)
, where ϑ is defined in (A.3). Applying

Lemma E.8 with z(0) = Γ
(τ0

r∗,k)

r∗,k , h = H = 3ηα3 and a(t) = 1
N

∑
i∈Ck

ν
(t)
i ≤ 1

K , we have

η

N

∑
i∈Ck

τ+
r∗,k∑

s=T0
v

ν
(s)
i ≤

Θ
(
m1/3α

)
α3

+O

(
η log[ϑ1/3/α]

K

)
≤ Õ(1). (B.31)

Notice that Γ(s)
r∗,k ≥ Θ

(
ϑ1/3

m1/3α

)
for any s ≥ τ+r∗,k since Γ

(t)
r,k is increasing by observing (B.2). It means for any i ∈ Ck with

k ∈ [K] \ K0 and j ∈ [n],

ℓ
(s)
ij =

1

1 + exp

{∑m
r=1

[
(α3 −K0β3)

(
Γ
(s)
r,k

)3
+ [yijΞ

(s)
r,ij ]

3

]}
=

1

1 + exp

{
(α3 −K0β3)

[(
Γ
(s)
r∗,k

)3
+
∑

r ̸=r∗

(
Γ
(s)
r,k

)3]
−
∑m

r=1 |Ξ
(s)
r,ij |3

}
≤ 1

1 + exp

{
(α3 −K0β3)

(
Γ
(s)
r∗,k

)3
− Õ(mσ3

0)− Õ(md3/2σ3
ξσ

3
0)

}
≤ 1

1 + exp
{
α3/2(Γ

(s)
r∗,k)

3 − o(1)
}

≤ Θ(1)

1 + eϑ
, (B.32)

where we also used Induction hypothesis B.1 and the lower bound of Lemma B.5 in the first inequality. By the definition of
ϑ in (A.3), for any i ∈ Ck with k ∈ [K] \ K0 we have

η

N

∑
i∈Ck

t∑
s=T0

v

ν
(s)
i ≤ Θ

( η

K

)
·

T∑
s=0

1

1 + eϑ
≤ Õ

( η

K

)
= Õ(1). (B.33)

Combining (B.31) and (B.33), we can finish the proof.

Lemma B.9. Let T−
ξ = Θ

(
Nn

η(
√
dσξ)3σ0

)
. In the training process of GD, with probability at least 1− 1/poly(d),

• For any k ∈ K0, we maintain:

max
r∈[m],i∈Ck,j∈[n]

yijΞ
(t)
r,ij ≤ (md)

−1/3 for any t ≤ T−
ξ . (B.34)

• For any k ∈ K0, we maintain:

max
r∈[m]

|Γ(t)
r,k| ≤ Õ(σ0) for any t ≤ T−

ξ . (B.35)
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• For any k ∈ [K] \ K0, we maintain:

max
r∈[m],i∈Ck,j∈[n]

|Ξ(t)
r,ij | ≤ Õ(

√
dσξσ0) for any t ≤ T−

ξ . (B.36)

Proof of Lemma B.9. Given any k ∈ K0, let T−
ξij

= Θ
(

Nn
ηMij

)
where Mij =

(
yijΞ

(0)
r∗,ij∥ξij∥2

)−1

for i ∈ Ck and j ∈ [n].

We first assume (B.34), (B.35) and (B.36) hold for iterations s ≤ t < T−
ξ − 1. Then we know for any i ∈ Ck with k ∈ K0,

j ∈ [n] and s ≤ t,

ℓ
(s)
ij =

1

1 + exp

{∑m
r=1

[
α3
(
Γ
(s)
r,k

)3
− ρ3

∑
k′∈K0

(Γ
(s)
r,k′)3 + (yijΞ

(s)
r,ij)

3

]}
≥ 1

1 + exp
{
d−1 + Õ (α3mσ3

0) + Õ (ρ3mK0σ3
0)
}

≥ 1

1 + exp {2d−1}

=
1

2
− e2d

−1 − 1

2(1 + e2d−1)

=
1

2
−O(d−1). (B.37)

From the recursion (B.1), we have

Γ
(t+1)
r,k = Γ

(0)
r,k +

3ηα3

N

∑
i∈Ck

t∑
s=0

ν
(s)
i

(
Γ
(s)
r,k

)2
− 3ηρ3

N

∑
k′∈K0

∑
i∈Ck′

t∑
s=0

ν
(s)
i

(
Γ
(s)
r,k

)2
(i)

≤ Γ
(0)
r,k +

[
3ηα3

2K
− 3K0ηρ

3

2K

]
·

t∑
s=0

(
Γ
(s)
r,k

)2
+ Õ

( η

Kd

) t∑
s=0

(
Γ
(s)
r,k

)2
(ii)
= Γ

(0)
r,k +Θ

(η
d

)
·

t∑
s=0

(
Γ
(s)
r,k

)2
+ Õ

( η

Kd

)
·

t∑
s=0

(
Γ
(s)
r,k

)2
≤ Õ(σ0) +

[
Θ
(η
d

)
+ Õ

(
ηα3

Kd

)]
· Õ
(

T−
ξ σ

2
0

)
= Õ(σ0) + Õ

(
σ0

d

Nn

d3/2σ3
ξ

)
= Õ(σ0) ·

[
1 + Õ

(
d−0.97

)]
≤ Õ(σ0), (B.38)

where (i) holds due to (B.37) and ℓ
(s)
ij ≤ 1; and (ii) follows from the setting ρ3 = α3−1/poly(d)

K0
. Then we have verified

(B.35) at time t+ 1.

Recall that yijΞ
(0)
r∗,ij = maxr∈[m] yijΞ

(0)
r,ij > Ω(

√
dσξσ0). Using the recursion (B.3), we have

yijΞ
(t+1)
r∗,ij

(i)
= yijΞ

(0)
r∗,ij +Θ

(
η∥ξij∥2

Nn

) t∑
s=0

(
Ξ
(s)
r∗,ij

)2
± Õ

(
η
√
dσ2

ξ

Nn

) ∑
j′∈[n]\{j}

t∑
s=0

ℓ
(s)
ij′

(
Ξ
(s)
r∗,ij′

)2
± Õ

(
η
√
dσ2

ξ

Nn

) ∑
i′∈Ck\{i}

∑
j′∈[n]

t∑
s=0

ℓ
(s)
i′j′

(
Ξ
(s)
r∗,i′j′

)2
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± Õ

(
η
√
dσ2

ξ

Nn

) ∑
k′∈K0\{k}

∑
i′∈Ck′

∑
j′∈[n]

t∑
s=0

ℓ
(s)
i′j′

(
Ξ
(s)
r∗,i′j′

)2
± Õ

(
η
√
dσ2

ξ

Nn

) ∑
k′∈[K]\K0

∑
i′∈Ck′

t∑
s=0

ν
(s)
i′

(
Ξ
(s)
r∗,i′j′

)2
(ii)
= yijΞ

(0)
r∗,ij +Θ

(
η∥ξij∥2

Nn

) t∑
s=0

(
Ξ
(s)
r∗,ij

)2
± Õ

(
η
√
dσ2

ξ

Nn
· NK0n

K

1

(md)
2
3

· T−
ξ

)
± Õ

(
d3/2σ4

ξσ
2
0

)
= yijΞ

(0)
r∗,ij +Θ

(
η∥ξij∥2

Nn

) t∑
s=0

(
Ξ
(s)
r∗,ij

)2
± Õ

(
1

d
2
3

1

dσξσ0

)
± Õ

(
d3/2σ4

ξσ
2
0

)
(iii)
= yijΞ

(0)
r∗,ij +Θ

(
η∥ξij∥2

Nn

) t∑
s=0

(
Ξ
(s)
r∗,ij

)2
± Õ

(
d−

2
3+0.03

)
± Õ

(
d−1.58

)
(iv)
= yijΞ

(0)
r∗,ij +Θ

(
η∥ξij∥2

Nn

) t∑
s=0

(
Ξ
(s)
r∗,ij

)2
± o(

√
dσξσ0), (B.39)

where (i) holds due to (B.37) and hypothesis (B.36); (ii) follows from Lemmas B.8 and hypothesis (B.34) for s ≤ t; (iii)
and (iv) holds since σξ = Θ(d−0.51) and σ0 = Θ(d−0.52) such that

√
dσξσ0 = Θ(d−0.53).

Then (E.4) in Lemma E.7 guarantees yijΞ
(t)
r∗,ij ≤ (md)−1/3 for any t ≤ T−

ξij
since (md)−1/3 > 2yijΞ

(0)
r∗,ij . By concentra-

tion, we also know maxij T−
ξij

+ 1 ≤ T−
ξ , which means yijΞ

(t+1)
r∗,ij ≤ (md)−1/3. In addition, for any other r ∈ [m], we also

have the following upper bounds

yijΞ
(t+1)
r,ij ≤ yijΞ

(0)
r,ij +Θ

(
ηdσ2

ξ

Nn

)
t∑

s=0

(
yijΞ

(s)
r,ij

)2
+ o(

√
dσξσ0). (B.40)

Then we have

• For r ∈ [m] such that yijΞ
(0)
r∗,ij/2 < yijΞ

(0)
r,ij < yijΞ

(0)
r∗,ij , the (E.4) in Lemma E.7 ensures that yijΞ

(t+1)
r,ij ≤ (md)−

1
3

because t+ 1 ≤ T−
ξ and 2yijΞ

(0)
r,ij = Ω(

√
dσξσ0) < (md)−

1
3 .

• For r ∈ [m] such that 0 < yijΞ
(0)
r,ij ≤ yijΞ

(0)
r∗,ij/2, applying Lemma E.11 to the competition between (B.40) and (B.39)

ensures that yijΞ
(t+1)
r,ij ≤ yijΞ

(t+1)
r∗,ij ≤ (md)−

1
3 for any t ≤ T−

ξ .

• For r ∈ [m] such that −Õ(
√
dσξσ0) ≤ yijΞ

(0)
r,ij ≤ 0, we know it cannot reach (md)−

1
3 before T−

ξ since it needs to

exceed Θ(
√
dσξσ0) firstly. In fact, if −Õ(

√
dσξσ0) < yijΞ

(s)
r,ij < Θ(

√
dσξσ0), then

yijΞ
(s+1)
r,ij ≤ yijΞ

(0)
r,ij +Θ

(
ηdσ2

ξ

Nn

)
s∑

l=0

(
Ξ
(l)
r,ij

)2
+ o(

√
dσξσ0)

≤ yijΞ
(s)
r,ij +Θ

(
ηdσ2

ξ

Nn

)(
Ξ
(s)
r,ij

)2
+ o(

√
dσξσ0)

≤ Θ(
√
dσξσ0) + Õ

(
ηd2σ4

ξσ
2
0

Nn

)
+ o(

√
dσξσ0)

≤ Θ(
√
dσξσ0).

Up to now, we have verified (B.34) at time t+ 1.

For (B.36) at time t+ 1, by update rule (B.4), we have

|Ξ(t+1)
r,ij | ≤ |Ξ(T0

v)
r,ij |+Θ

(
ηdσ2

ξ

Nn

)
t∑

s=T0
v

ℓ
(s)
ij

(
Ξ
(s)
r,ij

)2
+ Õ

(
η
√
dσ2

ξ

Nn

) ∑
j′∈[n]\{j}

t∑
s=T0

v

ℓ
(s)
ij′

(
Ξ
(s)
r,ij′

)2
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+ Õ

(
η
√
dσ2

ξ

Nn

) ∑
i′∈Ck\{i}

∑
j′∈[n]

t∑
s=T0

v

ℓ
(s)
i′j′

(
Ξ
(s)
r,i′j′

)2
+ Õ

(
η
√
dσ2

ξ

Nn

) ∑
k′∈[K]\K0\{k}

∑
i′∈Ck′

∑
j′∈[n]

t∑
s=T0

v

ℓ
(s)
i′j′

(
Ξ
(s)
r,i′j′

)2
+ Õ

(
η
√
dσ2

ξ

Nn

) ∑
k′∈K0

∑
i′∈Ck′

∑
j′∈[n]

t∑
s=T0

v

ℓ
(s)
i′j′

(
Ξ
(s)
r,i′j′

)2
(i)

≤ Õ(
√
dσξσ0) + Õ

(
ηd2σ4

ξσ
2
0

Nn
· T−

ξ

)
+ Õ

(
ηd3/2σ4

ξσ
2
0 · T−

ξ

)
+ Õ

(
η
√
dσ2

ξ · (md)−2/3 · T−
ξ

)
(ii)

≤ Õ(
√
dσξσ0) + Õ

(√
dσξσ0

)
+ Õ

(
1

d5/3σξσ0

)
(iii)

≤ Õ(
√
dσξσ0), (B.41)

where (i) follows from the hypothesis (B.36) and (B.34); (ii) holds due to the definition of Tξ; and (iii) is true because√
dσξσ0 = Θ(d−0.53) and (d5/3σξσ0)

−1 = Θ(d−
5
3+1.03) ≪ Θ(d−0.57). Then we have verified (B.34) at time t+ 1.

Lemma B.10. Suppose Induction hypothesis B.1 holds for iterations s ≤ t, with probability at least 1 − 1/poly(d), we
maintain:

η

Nn

∑
k∈K0

∑
i∈Ck

∑
j∈[n]

t∑
s=T−

ξ

ℓ
(s)
ij

[
yijΞ

(s)
r,ij

]2
≤ Õ

(
1

dσ2
ξ

)
for any t > T−

ξ . (B.42)

Proof. If t > T−
ξ , by the update rule (B.3) and the Induction hypothesis B.1 for any 0 ≤ s ≤ t, we have

yijΞ
(t)
r,ij ≥ yijΞ

(T−
ξ )

r,ij +Θ

(
ηdσ2

ξ

Nn

)
·

t−1∑
s=T−

ξ

ℓ
(s)
ij

(
Ξ
(s)
r,ij

)2
− Õ

(
ηd3/2σ4

ξσ
2
0

)

− Õ

(
η
√
dσ2

ξ

Nn

)
·
∑

k′∈K0

∑
i′∈Ck′

∑
j′∈[n]

t−1∑
s=T−

ξ

ℓ
(s)
i′j′

(
Ξ
(s)
r,i′j′

)2
, (B.43)

where we also used (B.30) in Lemma B.8 since T−
ξ ≥ τk for k ∈ [K] \ K0 by Lemma 5.1. Taking summation on both sides

of (B.43) over k ∈ K0, i ∈ Ck, j ∈ [n], we can get[
Θ
(
dσ2

ξ

)
− Õ

(
K0Nn

√
dσ2

ξ

K

)]
η

Nn

∑
k∈K0

∑
i∈Ck

∑
j∈[n]

t−1∑
s=T−

ξ

ℓ
(s)
ij

(
Ξ
(s)
r,ij

)2
≤
∑
k∈K0

∑
i∈Ck

∑
j∈[n]

[
yijΞ

(t)
r,ij − yijΞ

(T−
ξ )

r,ij

]
+ Õ

(
ηd3/2σ4

ξσ
2
0

)
.

Since K,P,N, n = polylog(d), the inequality above implies

η

Nn

∑
k∈K0

∑
i∈Ck

∑
j∈[n]

t∑
s=T−

ξ

ℓ
(s)
ij

[
yijΞ

(s)
r,ij

]2
≤ Θ

(
K0Nn

K

)
· Õ

(
1

dσ2
ξ

)
= Õ

(
1

dσ2
ξ

)
, (B.44)

where we used the hypothesis maxr,i∈Ck,j |Ξ
(t)
r,ij | ≤ Õ(1).

Lemma B.11. With probability at least 1− 1/poly(d), we have:
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• If k ∈ [K] \ K0,

max
r∈[m],i∈Ck,j∈[n]

|Ξ(t)
r,ij | ≤ Õ(d−1/2) for any t > T0

v . (B.45)

• If k ∈ K0,

max
r∈[m],i∈Ck,j∈[n]

|Ξ(t)
r,ij | ≤ Õ(1) for any t > T0

v . (B.46)

Proof. Now we suppose (B.45) and (B.46) hold for any T0
v < s ≤ t. For i ∈ Ck with k ∈ [K] \ K0, using (B.4) gives

|Ξ(t+1)
r,ij | ≤ |Ξ(T0

v)
r,ij |+ ηΘ

(
dσ2

ξ

Nn

)
t∑

s=T0
v

ℓ
(s)
ij

(
Ξ
(s)
r,ij

)2
+ Õ

(
η
√
dσ2

ξ

Nn

) ∑
j′∈[n]\{j}

t∑
s=T0

v

ℓ
(s)
ij′

(
Ξ
(s)
r,ij′

)2
+ Õ

(
η
√
dσ2

ξ

Nn

) ∑
i′∈Ck\{i}

∑
j′∈[n]

t∑
s=T0

v

ℓ
(s)
i′j′

(
Ξ
(s)
r,i′j′

)2
+ Õ

(
η
√
dσ2

ξ

Nn

) ∑
k′∈[K]\K0\{k}

∑
i′∈Ck′

∑
j′∈[n]

t∑
s=T0

v

ℓ
(s)
i′j′

(
Ξ
(s)
r,i′j′

)2
+ Õ

(
η
√
dσ2

ξ

Nn

) ∑
k′∈K0

∑
i′∈Ck′

∑
j′∈[n]

t∑
s=T0

v

ℓ
(s)
i′j′

(
Ξ
(s)
r,i′j′

)2
(i)

≤ Õ(
√
dσξσ0) + Õ

(
ησ2

ξ

Nn

)
t∑

s=T0
v

ℓ
(s)
ij + Õ

(
ησ2

ξ

N
√
d

) ∑
k′∈[K]\K0

∑
i∈Ck′

ν
(s)
i

+ Õ

(
η
√
dσ2

ξ

Nn

) ∑
k′∈K0

∑
i′∈Ck′

∑
j′∈[n]

t∑
s=T0

v

ℓ
(s)
i′j′

(
Ξ
(s)
r,i′j′

)2
(ii)

≤ Õ(
√
dσξσ0) + Õ

(
σ2
ξ

)
+ Õ

(√
dσ2

ξ

)
+ Õ

(
√
dσ2

ξ ·
1

dσ2
ξ

)
(iii)

≤ Õ(d−1/2), (B.47)

where (i) holds due to the induction hypotheses; (ii) follows from Lemmas B.8 and B.10; and (iii) holds due to the setting
σξ = Θ(d−0.51) and σ0 = Θ(d−0.52). Lemma 5.1 guarantees τk ≤ T 0

v , which means that (B.47) can imply the conclusion
(B.45). In fact, the proof of Lemma 5.1 depends only on Lemma B.6, which is independent of (B.45) and (B.46).

Notice that we have proved (B.46) holds for T0
v ≤ t ≤ T−

ξ . Next we verify (B.46) at time t + 1 ≥ T−
ξ . For i ∈ Ck with

k ∈ K0, by the update rule (B.3), we have

|Ξ(t+1)
r,ij | ≤ |Ξ

(T−
ξ )

r,ij |+ Õ

(
ηdσ2

ξ

Nn

)
t∑

s=0

ℓ
(s)
ij [Ξ

(s)
r,ij ]

2 + Õ

(
η
√
dσ2

ξ

Nn

) ∑
k′∈K0

∑
i′∈Ck′

∑
j′∈[n]

t∑
s=T−

ξ

ℓ
(s)
i′j′

(
Ξ
(s)
r,i′j′

)2

+ Õ

(
ησ2

ξ

N
√
d

) ∑
k′∈[K]\K0

∑
i′∈Ck′

t∑
s=T−

v

ν
(s)
i′

≤ Õ(
√
dσξσ0) + Õ

(
dσ2

ξ ·
1

dσ2
ξ

)
+ Õ

(
√
dσ2

ξ ·
1

dσ2
ξ

)
+ Õ

(
σ2
ξ√
d

)
= Õ(1), (B.48)

where we used Lemma B.10 and Lemma B.8. Combining (B.47) and (B.48), we can finish the proof.
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B.4.2. PROOF OF LEMMA B.3

Proof of Lemma B.3. Given i ∈ Ck with k ∈ K0, we define three time steps:

• τ−ij : the first iteration maxr∈[m] yijΞ
(t)
r,ij ≥ Θ((dm)−

1
3 ).

• τ0ij : the first iteration maxr∈[m] yijΞ
(t)
r,ij ≥ Θ(m− 1

3 ).

• τ+ij : the first iteration maxr∈[m] yijΞ
(t)
r,ij ≥ Θ(ϑ1/3).

Applying Lemma E.6 to (B.39), we know

τ−ij ≤ Θ

(
Nn

η(
√
dσξ)3σ0

)
+


log
(

1
d5/6m1/3σξσ0

)
log(2)

 ≤ T−
ξ +O (log d) ,

which implies that

τ−
ij∑

s=T−
ξ

ℓ
(s)
ij ≤ O (log d) . (B.49)

Notice that ℓ(t)ij = Θ(1) for t ≤ τ0ij . Now regarding yijΞ
(τ−

ij )

r∗,ij as the initial point, and applying Lemma E.6 to (B.39) again,
we know

τ0
ij∑

s=τ−
ij

ℓ
(s)
ij ≤ τ0ij − τ−ij ≤ Θ

(
Nn

ηdσ2
ξ

· (md)1/3

)
+O(log d) ≤ Õ

(
1

d2/3σ2
ξ

)
. (B.50)

For t ≥ τ0ij , by (B.3), the following relation still holds

yijΞ
(t)
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(τ0
ij)
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± Õ
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) ∑
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)2

± Õ

(
η
√
dσ2

ξ

Nn

) ∑
i′∈Ck\{i}

∑
j′∈[n]

t∑
s=τ0

ij

ℓ
(s)
i′j′

(
Ξ
(s)
r∗,i′j′

)2

± Õ

(
η
√
dσ2

ξ

Nn

) ∑
k′∈K0\{k}

∑
i′∈Ck′

∑
j′∈[n]

t∑
s=τ0

ij

ℓ
(s)
i′j′

(
Ξ
(s)
r∗,i′j′

)2

± Õ

(
η
√
dσ2

ξ

Nn

) ∑
k′∈[K]\K0

∑
i′∈Ck′

t∑
s=τ0

ij

ν
(s)
i′

(
Ξ
(s)
r∗,i′j′

)2

= yijΞ
(τ0

ij)

r∗,ij +Θ

(
ηdσ2

ξ

Nn

)
t−1∑
s=τ0

ij

ℓ
(s)
ij

(
Ξ
(s)
r∗,ij

)2
± o(m− 1

3 ).

Now regarding yijΞ
(τ0

ij)

r∗,ij as the initial point, and applying (E.11) in Lemma E.9, we have

τ+
ij∑

s=τ0
ij

ℓ
(s)
ij ≤ Θ

(
Nn

ηdσ2
ξ

·m1/3

)
+O(log d) = Õ

(
1

dσ2
ξ

)
. (B.51)
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By the definition of ϑ in (A.3), we know

T∑
s=τ+

ij

ℓ
(s)
ij ≤ Õ(1). (B.52)

Combining (B.49)–(B.52), we can prove the conclusion.

B.4.3. PROOF OF INDUCTION HYPOTHESIS B.2

The Induction hypothesis B.2 can be proved via Lemma B.9 and Lemma B.13. Since Induction hypothesis B.1 has been
proved in Section B.4.1, we can use its conclusions in the following proof.

Lemma B.12. Given k ∈ [K] \ K0. In the training process of GD, with probability at least 1 − 1/poly(d), we have
Γ
(t)
r,k ≤ Õ(1) for any t ≥ 0.

Proof. Denote τ+k the first iteration maxr∈[m] Γ
(t)
r,k ≥ Θ(ϑ1/3) = Õ(1), where ϑ is defined in (A.3). For any t ≥ τ+k , we

know maxr∈[m] Γ
(t)
r,k ≥ Θ(ϑ1/3) due to its monotonicity. For any i ∈ Ck, j ∈ [n] and τ+k ≤ s ≤ t, it follows that

ℓ
(s)
ij =

1

1 + exp

{∑m
r=1

[
(α3 −K0β3)

(
Γ
(s)
r,k

)3
+ yij [Ξ

(s)
r,ij ]

3

]}
≤ 1

1 + exp
{
(α3 −K0β3)ϑ− (m− 1)(α3 −K0β3)Õ(σ3

0)− Õ(md−3/2)
}

≤ Θ(1)

1 + eϑ
,

where we used Induction hypothesis B.1 (b) and Lemma B.5. Now suppose Γ
(s)
r,k ≤ Õ(1) for any τ+k ≤ s ≤ t. By the

definition of ϑ, we know

1

N

∑
i∈Ck

∑
j∈[n]

t∑
s=τ+

k

ℓ
(s)
ij ≤ Õ(1),

which implies that

Γ
(t+1)
r,k = Γ

(τ+
k )

r,k +
3η(α3 −K0β

3)

N

∑
i∈Ck

t∑
s=τ+

k

ν
(s)
i ·

(
Γ
(s)
r,k

)2
≤ Õ(1).

Then the proof is completed by induction.

Lemma B.13. Given any k ∈ K0, in the training process of GD, with probability at least 1− 1/poly(d), we maintain:

max
r∈[m]

|Γ(t)
r,k| ≤ Õ(σ0) for any t ≥ T−

ξ . (B.53)

Proof. In Lemma B.9, we have proved maxr∈[m] |Γ
(t)
r,k| ≤ Õ(σ0) for any t ≤ T−

ξ . Now suppose it holds for T−
ξ ≤ s ≤ t, at

time t+ 1, we have

|Γ(t+1)
r,k | ≤ |Γ

(T−
ξ )

r,k |+

∣∣∣∣∣∣∣α3
∑
i∈Ck

t∑
s=T−

ξ

ν
(s)
i

(
Γ
(s)
r,k

)2
− ρ3

∑
k′∈K0

∑
i∈Ck′

t∑
s=T−

ξ

ν
(s)
i

(
Γ
(s)
r,k

)2∣∣∣∣∣∣∣
(i)

≤ |Γ
(T−

ξ )

r,k |+ 3ηα3

N

∑
i∈Ck

t∑
s=T−

ξ

ν
(s)
i

(
Γ
(s)
r,k

)2
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≤ Õ(σ0) + Õ
(
α3σ2

0

)
· η

N

∑
i∈Ck

t∑
s=T−

ξ

ν
(s)
i

(ii)

≤ Õ(σ0) + Õ

(
σ2
0

d2/3σ2
ξ

)
(iii)

≤ Õ(σ0) ·
[
1 + Õ

(
d−0.1

)]
,

where (i) holds due to the induction hypothesis; (ii) follows from Lemma B.3; and (iii) holds due to the setting σξ =
Θ(d−0.51), σ0 = Θ(d−0.52) and 2

3 − 1.02 + 0.52 > 0.1.

C. GD with local updates under Parameter 1

Given the local weights {W (t)
i }i∈[N ] in Local GD, we define the following iterates during the training process1:

• Signal intensity of v∗
k in the i-th client: Γ(t)

r,k,i = ⟨w(t)
r,i ,v

∗
k⟩ for r ∈ [m] and k ∈ [K].

• Noise memorization: Ξ(t)
r,ij = ⟨w(t)

r,i , ξij⟩ for any r ∈ [m], i ∈ [N ] and j ∈ [n].

• Derivative: ℓ(t)ij = ℓij(W
(t)
i ) = 1/

(
1 + eyijF (W

(t)
i ,xij)

)
for any i ∈ [N ] and j ∈ [n].

• Derivative in each client: ν(t)i = 1
n

∑
j∈[n] ℓ

(t)
ij for i ∈ [N ].

C.1. Update rules of signal intensity and noise memorization

Update rules for the feature’s signal in each client are

• If k ∈ [K] \ K0 and i ∈ Ck, we have

Γ
(t+1)
r,k,i = Γ

(t)
r,k,i +

η

n

∑
j∈[n]

yijℓij(W )∇wr
F (W

(t)
i ,xij)

= Γ
(t)
r,k,i +

3η

n

∑
j∈[n]

(α3 −K0β
3)ℓ

(t)
ij [Γ

(t)
r,k,i]

2

= Γ
(t)
r,k,i + 3η(α3 −K0β

3)ν
(t)
i · [Γ(t)

r,k,i]
2. (C.1)

• If k ∈ K0 and i ∈ Ck, we have

Γ
(t+1)
r,k,i = Γ

(t)
r,k,i + 3η(α3 − ρ3)ν

(t)
i · [Γ(t)

r,k,i]
2. (C.2)

• If k ∈ K0 and i ∈ Ck, for k′ ∈ K0 \ {k}, we have

Γ
(t+1)
r,k′,i = Γ

(t)
r,k′,i − 3ηρ3ν

(t)
i · [Γ(t)

r,k′,i]
2. (C.3)

Update rules for the noise’s memorization: given any i ∈ [N ] and j ∈ [n],

Ξ
(t+1)
r,ij = Ξ

(t)
r,ij +

1

n

∑
j′∈[n]

yij′ℓ
(t)
ij′

∑
p∈[P ]

3⟨w(t)
r ,xij′,p⟩2 ⟨xij′,p, ξij⟩

= Ξ
(t)
r,ij +

3η∥ξij∥2

n
yijℓ

(t)
ij

(
Ξ
(t)
r,ij

)2
+

3η

n

∑
j′∈[n]\{j}

yij′ℓ
(t)
ij′

(
Ξ
(t)
r,ij′

)2
⟨ξij′ , ξij⟩ . (C.4)

1To avoid new notations, we still use Ξ
(t)
r,ij , ℓ(t)ij and ν

(t)
i in this subsection, but they are different to those in the analysis of GD.
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Induction hypothesis C.1. Throughout the training process of Local GD, with probability 1− 1/poly(d),

(a) For any i ∈ Ck with k ∈ K0, we maintain

max
r∈[m],k′∈K0\{k}

|Γ(t)
r,k′,i| ≤ Õ(σ0) for any t ≥ 0.

(b) For any i ∈ [N ] and j ∈ [n], we maintain

max
r∈[m]

|Ξ(t)
r,ij | ≤ Õ(

√
dσξσ0) for any t ≥ 0.

C.2. Proof of Theorem 2

C.2.1. PROOF OF LEMMA 6.1

Proof. The results can be easily obtained by applying Lemmas C.3 and C.4 to (C.1), (C.2) and (C.3).

C.2.2. PROOF OF LEMMA 6.2

Proof. Notice that, given the same initial point W (0)
i = W (0), the local iterates at t = 0 still satisfy Lemma A.1. Specially,

with probability at least 1− 1/poly(d), we have:

• For any k ∈ [K] and i ∈ Ck, maxr∈[m] Γ
(0)
r,k,i ≥ Ω(σ0) and maxr∈[m] |Γ

(0)
r,k,i| ≤ O

(
σ0

√
log d

)
.

• For any k ∈ [K], i ∈ Ck and j ∈ [n], maxr∈[m] |Ξ
(0)
r,ij | ≤ O

(
σξσ0

√
d log d

)
.

Recall that r∗k = argmaxr∈[m] Γ
(0)
r,k. Hereafter, we will write Γ(t)

r∗,k,i ≡ Γ
(t)
r∗k,k,i

for t ≥ 0 and any i ∈ Ck. Given k ∈ [K]\K0,
invoking Induction hypothesis C.1 (b), we know for s ≤ τk,i,

ℓ
(s)
ij =

1

1 + exp

{∑m
r=1

[
(α3 −K0β3)

(
Γ
(s)
r,k,i

)3
+
(
Ξ
(s)
r,ij

)3]}
≥ 1

1 + exp
{
1 + Õ(d3/2σ3

ξσ
3
0)
}

= Θ(1).

By the update rule (C.1) and the assumption K0β
3 ≤ α3/2, we have

Γ
(t+1)
r,k,i = Γ

(t)
r,k,i + 3η(α3 −K0β

3)ν
(t)
i · [Γ(t)

r,k,i]
2

= Γ
(t)
r,k,i +Θ

(
ηα3

)
· [Γ(t)

r,k,i]
2. (C.5)

Now applying the tensor power method in Lemma E.4 to the sequence {Γ(t)
r∗,k,i}t≥0, we can guarantee

τk,i ≤ Θ

(
1

ηα3Γ
(0)
r∗,k,i

)
+O

(
log

(
1

m[Γ
(0)
r∗,k,i]

))

≤ Θ

(
1

ηα3σ0

)
+O

(
log

(
1

mσ0

))
.

By invoking σ0 = Θ(d−0.52), we can verify τk,i ≤ T0
v ≤ I .

Given i ∈ Ck with k ∈ K0, using ρ3 = α3−Θ(K/d)
K0

, we also have

Γ
(t+1)
r,k,i = Γ

(t)
r,k,i + 3η(α3 − ρ3)ν

(t)
i · [Γ(t)

r,k,i]
2

= Γ
(t)
r,k,i +Θ

(
ηα3

)
· [Γ(t)

r,k,i]
2. (C.6)

Applying the tensor power method in Lemma E.4 to the sequence {Γ(t)
r∗,k,i}t≥0, we can also guarantee τk,i ≤ T0

v ≤ I . The
rest conclusions of Lemma 6.2 follows from Induction hypothesis C.1.
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C.2.3. PROOF OF THEOREM 2

Lemma C.1. Given any i ∈ Ck with k ∈ [K]. In the training process of GD, for any τk,i < t ≤ T , we maintain:

η

t∑
s=τk,i

ν
(s)
i ≤ Õ(1).

Proof. Denote τ+k,i the first iteration maxr∈[m] Γ
(t)
r,k,i ≥ Θ(ϑ1/3). By the definition of τk,i, we know Γ

(τk,i)
r,k,i ≥ Θ(m− 1

3α−1).
Applying Lemma E.8 to (C.1) or (C.2), we can have

η

τ+
k,i∑

s=τk,i

ν
(s)
i ≤ 4

3(α3 − β3)m− 1
3α−1

+ 8

⌈
log
(
mϑ/α3

)
log(2)

⌉
= Õ(1). (C.7)

In addition, Γ(t)
r,k,i ≥ Θ(ϑ1/3) holds for any t ≥ τ+k,i. Recalling (A.3), we can guarantee that for any t > τ+k,i,

η
t∑

s=τ+
k,i

ν
(s)
i ≤ Õ(η) = Õ(1). (C.8)

Combining (C.7) and (C.8), we can finish the proof.

Lemma C.2. Let ξ ∼ N (0, σ2
ξH) be a noise vector that is independent of the training data. For any i ∈ Ck with k ∈ [K],

we have

max
r∈[m]

|⟨w(t)
r,i , ξ⟩| ≤ Õ(

√
dσξσ0) for any t ≥ 0.

Proof. Denote Ξ
(t)
r,i = ⟨w(t)

r,i , ξ⟩. In the client i ∈ Ck, we have

Ξ
(t+1)
r,i = Ξ

(t)
r,i +

η

n

∑
j∈[n]

yijℓ
(t)
ij

∑
p∈[P ]

3⟨w(t)
r ,xij,p⟩2 ⟨xij,p, ξ⟩

= Ξ
(t)
r,i +

η

n

∑
j∈[n]

yijℓ
(t)
ij

(
Ξ
(t)
r,ij

)2
⟨ξij , ξ⟩

= Ξ
(0)
r,i ± Õ

(
η
√
dσ2

ξ

n

) ∑
j∈[n]

t∑
s=0

ℓ
(s)
ij

(
Ξ
(s)
r,ij

)2
. (C.9)

If t ≤ τk,i, Lemma C.3 and Induction hypothesis C.1 guarantee that

η

n

∑
j∈[n]

t∑
s=0

ℓ
(s)
ij

(
Ξ
(s)
r,ij

)2
≤ η

n

∑
j∈[n]

t∑
s=0

ℓ
(s)
ij · Õ(dσ2

ξσ
2
0) ≤ Õ(ηT0

vdσ
2
ξσ

2
0) = Õ(dσ2

ξσ0). (C.10)

If t > τk,i, Lemma C.5 and Induction hypothesis C.1 guarantee that

η

n

∑
j∈[n]

t∑
s=τk,i

ℓ
(s)
ij

(
Ξ
(s)
r,ij

)2
≤ η

t∑
s=τk,i

ν
(s)
i · Õ(dσ2

ξσ
2
0) ≤ Õ(dσ2

ξσ
2
0). (C.11)

Plugging (C.10) and (C.11) into (C.9) yields

|Ξ(t+1)
r,i | ≤ Õ(

√
dσξσ0) + Õ(d3/2σ4

ξσ0) = Õ(
√
dσξσ0),

which proved the conclusion.
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Proof of Theorem 2. By the update rules (C.1) and (C.2), we know {Γ(t)
r,k,i}t≥0 is an increasing sequence for any i ∈ Ck

with k ∈ [K]. Hence we have Γ
(t)
r,k,i ≥ Γ

(0)
r,k,i ≥ −Õ(σ0). Therefore, for any training data (xij , yij) with i ∈ Ck with

k ∈ K0, it holds that

yijF (W
(T )
i ,xij) = yij

∑
r∈[m]

∑
p∈[P ]

⟨W (T )
i ,xij,p⟩3

=
∑
r∈[m]

[
α3
(
Γ
(T )
r,k,i

)3
− ρ3

∑
k′∈K0

(
Γ
(T )
r,k′,i

)3
+ y

(
ΞT
r,ij

)3]

≥ α3 ·
[
Θ

(
1

mα3

)
− Õ

(
mσ3

0

)]
− Õ

(
d3/2σ3

ξσ
3
0

)
= Ω̃(1). (C.12)

Moreover, for any training data (xij , yij) with i ∈ Ck with k ∈ [K] \ K0, it holds that

yijF (W
(T )
i ,xij) =

∑
r∈[m]

[
(α3 −K0β

3)
(
Γ
(T )
r,k,i

)3
+ y

(
ΞT
r,ij

)3]

≥ α3/2 ·
[
Θ

(
1

mα3

)
− Õ

(
mσ3

0

)]
− Õ

(
d3/2σ3

ξσ
3
0

)
= Ω̃(1). (C.13)

Combining (C.12) and (C.13), we can prove the training accuracy in Theorem 2.

Given the new test data (x, y) ∼ Di for i ∈ Ck and k ∈ K0, with probability at least 1− 1/poly(d), we have

yF (W
(T )
i ,x) = y

∑
r∈[m]

∑
p∈[P ]

⟨W (T )
i ,xp⟩3

=
∑
r∈[m]

[
α3
(
Γ
(T )
r,k,i

)3
− ρ3

∑
k′∈K0

(
Γ
(T )
r,k′,i

)3
+ y⟨w(T )

r,i , ξ⟩
3

]

≥ α3 ·Θ
(

1

α3m

)
−K0ρ

3 · Õ(mσ3
0)−

∣∣∣∣∣∣
∑
r∈[m]

⟨w(T )
r,i , ξ⟩

3

∣∣∣∣∣∣
≥ Ω̃(1)− Õ(σ3

0)− Õ(d3/2σ3
ξσ

3
0)

= Ω̃(1), (C.14)

where we used Induction hypothesis C.1 (a) and Lemma C.2. Given the new test data (x, y) ∼ Di for i ∈ Ck and
k ∈ [K] \ K0, with probability at least 1− 1/poly(d), we have

yF (W
(T )
i ,x) = y

∑
r∈[m]

∑
p∈[P ]

⟨W (T )
i ,xp⟩3

=
∑
r∈[m]

[
(α3 −K0ρ

3)
(
Γ
(T )
r,k,i

)3
+ y⟨w(T )

r,i , ξ⟩
3

]
≥ Ω̃(1)− Õ(d3/2σ3

ξσ
3
0)

= Ω̃(1). (C.15)

The relations (C.14) and (C.15) prove the test accuracy in Theorem 2.

C.3. Proof of Induction hypothesis C.1

The Induction hypothesis C.1 (a) is proved by Lemma C.4 and Lemma C.6. The Induction hypothesis C.1 (b) is proved by
Lemma C.3 and Lemma C.5.
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Lemma C.3. In the training process of Local GD, with probability at least 1− 1/poly(d), we maintain:

max
i∈[N ],j∈[n],r∈[m]

|Ξ(t)
r,ij | ≤ Õ(

√
dσξσ0) for any t ≤ T0

v. (C.16)

Proof. For the noise ξij , by the update rule (C.4), we have

|Ξ(t+1)
r,ij | = |Ξ(t)

r,ij |+
3η∥ξij∥2

n

(
Ξ
(t)
r,ij

)2
+

3η

n

∑
j′∈[n]\{j}

ℓ
(t)
ij′

(
Ξ
(t)
r,ij′

)2
| ⟨ξij′ , ξij⟩ |

≤ |Ξ(t)
r,ij |+Θ

(
ηdσ2

ξ

n

)(
Ξ
(t)
r,ij

)2
+ Õ

(
η
√
dσ2

ξ

n

) ∑
j′∈[n]\{j}

ℓ
(t)
ij′

(
Ξ
(t)
r,ij′

)2
= |Ξ(0)

r,ij |+Θ

(
ηdσ2

ξ

n

)
·

t∑
s=0

(
Ξ
(s)
r,ij

)2
+ Õ

(
η
√
dσ2

ξ

n

) ∑
j′∈[n]\{j}

t∑
s=0

ℓ
(s)
ij′

(
Ξ
(s)
r,ij′

)2
(i)

≤ Õ(
√
dσξσ0) +

[
Θ

(
ηdσ2

ξ

n

)
+ Õ

(
η
√
dσ2

ξ

n

)]
· Õ
(
T0
vdσ

2
ξσ

2
0

)
= Õ(

√
dσξσ0) ·

[
1 + Õ

(
d3/2σ3

ξ

)]
(ii)

≤ Õ(
√
dσξσ0), (C.17)

where (i) follows from the induction hypothesis for iterations s ≤ t; and (ii) holds due to σξ = Θ(d−0.51).

Lemma C.4. Given i ∈ Ck with k ∈ K0, let τk,i be the first iteration there exists some maxr∈[m] Γ
(t)
r,k,i > Θ

(
1

m1/3α

)
. In

the training process of Local GD, with probability at least 1− 1/poly(d), we maintain:

max
r∈[m],k′∈K0\{k}

|Γ(t)
r,k′,i| ≤ Õ(σ0) for any t ≤ τk,i. (C.18)

Proof. Suppose (C.18) holds for iterations s ≤ t < τk,i. For i ∈ Ck with k ∈ K0 and j ∈ [n], we have

ℓ
(s)
ij =

1

1 + exp

{∑m
r=1

[
α3
(
Γ
(s)
r,k,i

)3
− ρ3

∑
k′∈K0

(
Γ
(s)
r,k′,i

)3
+ yij

(
Ξ
(s)
r,ij

)3]}
≥ 1

1 + exp
{
Θ(1) + Õ (K0mρ3σ3

0) + Õ
(
md3/2σ3

ξσ
3
0

)}
= Θ(1).

Using the update rule (C.2) and ρ3 = α3−Θ(K/d)
K0

, we have

Γ
(t+1)
r,k,i = Γ

(t)
r,k,i + 3η(α3 − ρ3)ν

(t)
i · [Γ(t)

r,k,i]
2

= Γ
(t)
r,k,i +Θ(ηα3) · [Γ(t)

r,k,i]
2. (C.19)

Applying Lemma E.4 to the sequence {Γ(t)
r∗,k,i}t≥0, we can guarantee τk,i ≤ T0

v. In addition, for k′ ∈ K0 \ {k}, it holds

that minr∈[m] Γ
(0)
r,k′,i ≥ −O(σ0

√
log d). Denote r−k′,i = argminr∈[m] Γ

(0)
r,k′,i. For simplicity, we write Γ(t)

r−,k′,i ≡ Γ
(t)

r−
k′,i,k

′,i
.

By update rule (C.3) and the fact ν(t)i ≤ 1, we have

−Γ
(t+1)
r−,k′,i = −Γ

(t)
r−,k′,i + 3ηρ3ν

(t)
i · [Γ(t)

r−,k′,i]
2

≤ −Γ
(t)
r−,k′,i + 3ηρ3 · [Γ(t)

r−,k′,i]
2. (C.20)
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Notice that −Γ
(0)
r−,k′,i/Γ

(0)
r∗,k,i ≤ O

(√
log d

)
and α3/ρ3 = O(K0) ≥ O(log d). Using Lemma E.12 on two sequences

in (C.19) and (C.20), we can guarantee −Γ
(t+1)
r−,k′,i ≤ −2Γ

(0)
r−,k′,i = Õ(σ0) since t + 1 ≤ τk,i. By Lemma E.10, we can

guarantee that minr∈[m] Γr,k′,i ≥ Õ(σ0). For the upper bound, we notice that for any r ∈ [m],

Γ
(t+1)
r,k′,i = Γ

(t)
r,k′,i − 3ηρ3ν

(t)
i · [Γ(t)

r,k′,i]
2 ≤ Γ

(t)
r,k′,i ≤ Γ

(0)
r,k′,i ≤ Õ(σ0).

By induction, we can prove the conclusion.

Lemma C.5. In the training process of Local GD, with probability at least 1− 1/poly(d), we maintain:

max
i∈[N ],j∈[n],r∈[m]

|Ξ(t)
r,ij | ≤ Õ(

√
dσξσ0) for any t > T0

v. (C.21)

Proof. Suppose (C.21) holds for iterations T0
v < s ≤ t. By the update rule (C.4), we have

|Ξ(t+1)
r,ij | ≤ |Ξ(T0

v)
r,ij |+

3η∥ξij∥2

n

t∑
s=T0

v

ℓ
(s)
ij

(
Ξ
(s)
r,ij

)2
+ 3η

t∑
s=T0

v

ν
(s)
i

(
Ξ
(s)
r,ij′

)2
| ⟨ξij′ , ξij⟩ |

≤ |Ξ(T0
v)

r,ij |+Θ
(
ηdσ2

ξ

) t∑
s=T0

v

ν
(s)
i

(
Ξ
(s)
r,ij

)2
+ Õ

(
η
√
dσ2

ξ

) t∑
s=T0

v

ν
(s)
i

(
Ξ
(s)
r,ij′

)2
(i)

≤ |Ξ(T0
v)

r,ij |+Θ
(
ηd2σ4

ξσ
2
0

) t∑
s=T0

v

ν
(s)
i + Õ

(
ηd3/2σ4

ξσ
2
0

) t∑
s=T0

v

ν
(s)
i

(ii)

≤ Õ(
√
dσξσ0) ·

[
1 + Õ((

√
dσξ)

3σ0) + Õ
(
dσ3

ξσ0

)]
(iii)

≤ Õ(
√
dσξσ0),

where (i) follows from the induction hypothesis; (ii) holds due to Lemma (C.1) and the fact τk,i ≤ T0
v; and (iii) holds due

to the setting σξ = Θ(d−0.51) and σ0 = Θ(d−0.52).

Lemma C.6. Given i ∈ Ck with k ∈ K0. In the training process of Local GD, with probability at least 1− 1/poly(d), we
maintain:

min
r∈[m],k′∈K0\{k}

Γ
(t)
r,k′,i ≥ −O(σ0

√
log d) for any t > τk,i. (C.22)

Proof. Suppose (C.22) holds for iterations τk,i < s ≤ t. By update rule (C.3), we have

−Γ
(t+1)
r−,k′,i = −Γ

(t)
r−,k′,i + 3ηρ3ν

(t)
i · [Γ(t)

r−,k′,i]
2

≤ −Γ
(τk,i)

r−,k′,i + 3ηρ3 ·
t∑

s=τk,i

ν
(s)
i [Γ

(s)
r−,k′,i]

2

≤ O(σ0

√
log d) +O(σ2

0 log d) · η
t∑

s=τk,i

ν
(s)
i

≤ O(σ0

√
log d) + Õ(σ2

0 log d)

= O(σ0

√
log d),

where we used Lemma C.1. By induction, we can prove the conclusion.

Lemma C.7. Given any k ∈ [K] and i ∈ Ck, in the training process of Local GD, with probability at least 1− 1/poly(d),
we maintain:

max
r∈[m]

|Γ(t)
r,k,i| ≤ Õ(1) for any t ≤ T .
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Proof. Since τ+k,i is the first iteration maxr∈[m] Γ
(t)
r,k,i ≥ Θ(ϑ1/3), we only need to prove the conclusion for t ≥ τ+k,i.

Applying Lemma C.1 to (C.1) and (C.2), for any t ≥ τ+k,i we have

Γ
(t)
r,k,i ≤ Γ

(τ+
k,i)

r,k,i + 3ηα3
t∑

s=τ+
k,i

ν
(s)
i ≤ Õ(1).

D. GD and one-shot Local GD under Parameter 2
D.1. Proof of Theorem 3

Proof. From the signal intensity’s update rule in (B.2), we know for any k ∈ [K] \ K0,

Γ
(t+1)
r,k ≤ Γ

(t)
r,k +

3ηα3

N

N∑
i=1

ν
(t)
i .

Let τ0r,k be the first iteration that Γ(t)
r,k reaches 2Γ(0)

r,k. For r ∈ [m] such that Γ(0)
r,k > 0, {Γ(t)

r,k}t≥0 is a positive sequence since
it is increasing. Applying Lemma E.5, we have

τ0r,k ≥ N

12ηα3

1

Γ
(0)
r,k

≥ N

12ηα3
· Ω̃(σ−1

0 ) = Ω̃

(
N

ηα3σ0

)
,

where we also used maxr∈[m] |Γ
(0)
r,k| ≤ Õ(σ0). For r ∈ [m] such that Γ(0)

r,k ≤ 0, we know τ0r,k ≥ Ω̃
(

N
ηα3σ0

)
since it needs

to exceed zero firstly.

D.2. Proof of Theorem 4

Proof. For the conclusion of GD with local updates, the Induction hypothesis C.1 (in Section C.2) still holds since the scale
of ρ in Parameter 2 is smaller than that in Parameter 2. Consequently, Lemma 6.2 also holds under Parameter 2. Given the
new test data (x, y) ∼ Di for i ∈ Ck and k ∈ K0, with probability at least 1− 1/poly(d), we have

yF (W̄ ,x) = y
∑
r∈[m]

∑
p∈[P ]

〈
1

N

N∑
i=1

W
(T )
i ,xp

〉3

=
∑
r∈[m]

α3

(
1

N

N∑
i=1

Γ
(T )
r,k,i

)3

− ρ3
∑

k′∈K0

(
1

N

N∑
i=1

Γ
(T )
r,k′,i

)3

+ y

〈
1

N

N∑
i=1

w
(T )
r,i , ξ

〉3


≥
∑
r∈[m]

α3

(
1

N

N∑
i=1

Γ
(T )
r,k,i

)3

− ρ3
∑

k′∈K0

(
1

N

N∑
i=1

Γ
(T )
r,k′,i

)3
−

∑
r∈[m]

(
max
i∈[N ]

∣∣∣〈w(T )
r,i , ξ

〉∣∣∣)3

≥ Ω̃(1)− Õ(ρ3K0)− Õ(mσ3
0)− Õ(d3/2σ3

ξσ
3
0)

= Ω̃(1),

where we used Lemmas 6.2, C.2 and C.7 in the last inequality; and the last equality holds due to ρ = 1/poly(d).

Given the new test data (x, y) ∼ Di for i ∈ Ck and k ∈ [K] \ K0, with probability at least 1− 1/poly(d), we have

yF (W̄ ,x) = y
∑
r∈[m]

∑
p∈[P ]

〈
1

N

N∑
i=1

W
(T )
i ,xp

〉3

37



Provable Benefits of Local Steps in Heterogeneous FL: A Feature Learning Perspective

=
∑
r∈[m]

(α3 −K0β
3)

(
1

N

N∑
i=1

Γ
(T )
r,k,i

)3

+ y

〈
1

N

N∑
i=1

w
(T )
r,i , ξ

〉3


≥ (α3 −K0β
3) ·Θ

(
1

α3m

)
− Õ(mσ3

0)−
∑
r∈[m]

(
max
i∈[N ]

∣∣∣〈w(T )
r,i , ξ

〉∣∣∣)3

≥ Ω̃(1)− Õ(σ3
0)− Õ(d3/2σ3

ξσ
3
0)

= Ω̃(1),

where we used Induction hypothesis C.1 (a) and Lemma C.2.

E. Auxiliary Lemmas
E.1. Probability inequalities

Lemma E.1. Let X ∼ N (0, σ2Id) be a Gaussian distributed vector in Rd. With probability at least 1 − 1/poly(d), we
have ∥X∥ = Θ(σ

√
d).

Proof. Notice that ∥X∥2/σ2 =
∑

j∈[d] X
2
j /σ

2 ∼ χ2(d), i.e., the Chi-squared distribution with degree of freedom d. It
holds that E[∥X∥2] = 2dσ2. By the tail probability of χ2(d), we know

P
(∣∣∥X∥2 − E[∥X∥2]

∣∣ > ϵσ2
)
≤ 2e−ϵ2/2.

Taking ϵ =
√
2c log d for some absolute constant c ≥ 1, we have

P
(∣∣∥X∥2 − 2dσ2

∣∣ >√2c log d
)
≤ 2d−c.

Lemma E.2. Let X ∼ N (0, σ2
xId) and Y ∼ N (0, σ2

yId) be two independent Gaussian vectors in Rd. With probability at
least 1− 1/poly(d), we have |⟨X,Y ⟩| ≤ O

(
σxσy

√
d log d

)
.

Proof. Let’s first fix Y , then we know ⟨X,Y ⟩ ∼ N (0, σ2
x∥Y ∥2) by independence. By the tail probability of standard

Gaussian distribution, we have

P
(
|⟨X,Y ⟩|
σx∥Y ∥

> ϵ | Y
)

≤ 2e−ϵ2/2.

Taking ϵ =
√
2c log d for some absolute constant c ≥ 1, we have

P
(
|⟨X,Y ⟩| >

√
2c log d · σx∥Y ∥ | Y

)
≤ 2d−c.

Together with the bound on ∥Y ∥ by Lemma E.1, we can prove the conclusion.

Lemma E.3 (Lemma K.12 in Jelassi & Li (2022)). Let {wr}mr=1 be vectors in Rd and ξ ∼ N (0, σ2
ξId). If there exists a

unit norm vector u such that |
∑m

r=1⟨wr,u⟩3| ≥ 1, then for any ϵ ∈ (0, 1), we have

P

(∣∣∣∣∣
m∑
r=1

⟨wr, ξ⟩3
∣∣∣∣∣ ≤ ϵσ3

ξ

)
≤ O

(
ϵ1/3

)
. (E.1)

E.2. Basic tensor power method

Lemma E.4 (Lemma K.15 in Jelassi & Li (2022)). Let {z(t)}Tt=0 be a positive sequence defined by the following recursions

z(t+1) ≥ z(t) + h[z(t)]2,
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z(t+1) ≤ z(t) +H[z(t)]2,

where z(0) > 0 is the initialization and h,H > 0. Let v > 0 such that z(0) ≤ v and t0 be the first iteration z(t) ≥ v. Then,
we have

t0 ≤ 3

hz(0)
+

8H

h

⌈
log(v/z(0))

log(2)

⌉
.

Lemma E.5. Let {z(t)}t≥0 be a positive sequence satisfying the recursive upper bound in Lemma E.4. Let v > 0 such that
0 < z(0) ≤ v and t0 be the first iteration z(t) ≥ v. For any v ≥ 2z(0), we have the following lower bound

t0 ≥ 1

4Hz(0)
. (E.2)

Proof. Let τb be the first iteration that z(t) ≥ 2bz(0) for b ≥ 1, that is τb = inf{t : z(t) ≥ 2bz(0)}. Using the recursive
upper bound, we have

z(τ1) ≤ z(0) +H

τ1−1∑
s=0

[z(s)]2

≤ z(0) + 4H

τ1−1∑
s=0

[z(0)]2

= z(0) + 4H[z(0)]2 · τ1.

Together with the assumption C ≤ z(0)/8, it follows that

τ1 ≥ z(τ1) − z(0)

4H[z(0)]2
≥ z(0)

4A[z(0)]2
=

1

4Hz(0)
.

Since v ≥ 2z(0), the conclusion follows immediately.

Lemma E.6 (Lemma K.16 in Jelassi & Li (2022)). Let {z(t)}Tt=0 be a positive sequence defined by the following recursions

z(t) ≥ z(0) +A

t−1∑
s=0

[z(s)]2 − C,

z(t) ≤ z(0) +A

t−1∑
s=0

[z(s)]2 + C,

where A,C > 0 and z(0) > 0 is the initialization. Assume that C ≤ z(0)/8. Let t0 be the first iteration z(t) ≥ v. If v > z(0),
we have the following upper bound

t0 ≤ 21

Az(0)
+ 8

⌈
log(v/z(0))

log(2)

⌉
. (E.3)

Lemma E.7. For the same sequence {z(t)}t≥0 be a positive sequence satisfying the recursive upper bound in Lemma E.6.
Let v > 0 such that z(0) ≤ v and t0 be the first iteration z(t) ≥ v. For any v ≥ 2z(0), we have the following lower bound

t0 ≥ 1

8Az(0)
. (E.4)

Proof. Let τ b be the first iteration that z(t) ≥ 2bz(0) for b ≥ 1, that is τb = inf{t : z(t) ≥ 2bz(0)}. Using the recursive
upper bound, we have

z(τ1) ≤ z(0) +A

τ1−1∑
s=0

[z(s)]2 + C
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≤ z(0) + 4A

τ1−1∑
s=0

[z(0)]2 + C

= z(0) + 4A[z(0)]2 · τ1 + C.

Together with the assumption C ≤ z(0)/8, it follows that

τ1 ≥ z(τ1) − z(0) − C

4A[z(0)]2
≥ z(0) − C

4A[z(0)]2
≥ 1

8Az(0)
.

Since v ≥ 2z(0), the conclusion follows immediately.

E.3. Variants of tensor power method

E.3.1. BOUNDS FOR THE INCREMENT

Lemma E.8. Let {z(t)}Tt=0 and {a(t)}Tt=0 be two positive sequences admitting the following recursions

z(t+1) ≥ z(t) + ha(t)[z(t)]2,

z(t+1) ≤ z(t) +Ha(t)[z(t)]2.

where 0 < h < H and z(0) > 0. If maxt≤T a(t) ≤ A, we have

T∑
s=0

a(s) ≤ 4

hz(0)
+

8HA

h

⌈
log(z(T )/z(0))

log(2)

⌉
,

and

T∑
s=0

a(s) ≥ z(T ) − z(0)

H[z(T )]2
.

Proof. Let B = ⌈ log(z(T )/z(0))
log(2) ⌉, then we define a sequence of time steps {τb}Bb=0 where τb = inft{t : z(t) ≥ 2bz(0)}.

Since z(t) is increasing, we know τ1 ≤ . . . ≤ τB . Let’s first consider b = 1. By the recursive lower bound and the definition
of τ1, we have

z(τ1) ≥ z(0) + h

τ1−1∑
s=0

a(s)[z(s)]2 ≥ z(0) + h

τ1−1∑
s=0

a(s)[z(0)]2,

which yields

τ1−1∑
s=0

a(s) ≤ 1

h

z(τ1) − z(0)

[z(0)]2
. (E.5)

In addition, invoking the recursive upper bound gives

z(τ1) ≤ z(τ1−1) +Ha(τ1−1)[z(τ1−1)]2 ≤ 2z(0) +HA[2z(0)]2, (E.6)

where we used z(τ1−1) ≤ 2z(0) and maxt≤T a(t) ≤ A. Combining (E.5) and (E.6) leads

τ1−1∑
s=0

a(s) ≤ 1

h

2z(0) + 4HA[z(0)]2 − z(0)

[z(0)]2
=

1

hz(0)
+

4HA

h
. (E.7)

For the case b > 1, by the definition of τb−1, we know z(s) ≥ 2b−1z(0) for any s ≥ τb−1. It follows that

z(τb) ≥ z(τb−1) + h

τb−1∑
s=τb−1

a(s)[z(s)]2 ≥ 2b−1z(0) + h

τb−1∑
s=τb−1

a(s)[2b−1z(0)]2.
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It implies that

τb−1∑
s=τb−1

a(s) ≤ z(τb) − 2b−1z(0)

h[2b−1z(0)]2
. (E.8)

Similar to (E.6), we also have

z(τb) ≤ z(τb−1) +Ha(τb−1)[z(τb−1)]2 ≤ 2bz(0) +HA[2bz(0)]2. (E.9)

Plugging (E.9) into (E.8) gives

τb−1∑
s=τb−1

a(s) ≤ 2bz(0) +HA[2bz(0)]2

h[2b−1z(0)]2
≤ 1

2b−1

2

hz(0)
+

4HA

h
. (E.10)

Since τB = T and τ0 = 0, combining (E.7) and (E.10), we conclude that

T∑
s=0

a(s) =

B∑
b=1

τb−1∑
s=τb−1

a(s) ≤
B∑

b=1

1

2b−1

2

hz(0)
+B

8HA

h
≤ 4

hz(0)
+

8HA

h

⌈
log(z(T )/z(0))

log(2)

⌉
.

This proves the upper bound. The lower bound can be obtained by rearranging the following inequality

z(T ) ≤ z(0) +H

T−1∑
s=0

a(s)[z(s)]2 ≥ z(0) +H

T−1∑
s=0

a(s)[z(T )]2.

Lemma E.9. Let {z(t)}Tt=0 and {a(t)}Tt=0 be two positive sequences defined by the following recursions

z(t) ≥ z(0) +H

t−1∑
s=0

a(s)[z(s)]2 − C,

z(t) ≤ z(0) +H

t−1∑
s=0

a(s)[z(s)]2 + C,

where H,C > 0 and max0≤s≤T a(s) ≤ A. Assume that C ≤ z(0)/8. Let t0 be the first iteration z(t) ≥ v.

• If v > z(0), we have the following upper bound

t0∑
s=0

a(s) ≤ 8

Hz(0)
+ 8A

⌈
log(v/z(0))

log(2)

⌉
. (E.11)

• If 2z(0) < v < 1/(2HA), we have the following lower bound

t0∑
s=0

a(s) ≥ 1

16Hz(0)
. (E.12)

Proof. Let τ b be the first iteration that z(t) ≥ 2bz(0) for b ≥ 0, that is τb = inf{t : z(t) ≥ 2bz(0)}. Denote B =⌈
log(v/z(0))

log 2

⌉
.
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Upper bound (E.11). Since C > z(0)/8 and a(t) > 0, we know z(t) ≥ z(0)/
√
2 holds for any t ≥ 0. Let’s first consider

b = 1. Using the recursive lower bound, we have

z(τ1) ≥ z(0) +H

τ1−1∑
s=0

a(s)[z(s)]2 − C

≥ z(0) +
H[z(0)]2

2

τ1−1∑
s=0

a(s) − C,

which implies

τ1−1∑
s=0

a(s) ≤ z(τ1) − z(0) + C

h[z(0)]2/2
. (E.13)

By the recursive upper bound, we also have

z(τ1) ≤ z(0) +H

τ1−1∑
s=0

a(s)[z(s)]2 + C

= z(0) +H

τ1−2∑
s=0

a(s)[z(s)]2 − C +Ha(τb−1)[z((τb−1))]2 + 2C

≤ z(τ1−1) +Ha(τb−1)[z(τb−1)]2 + 2C

≤ 2z(0) + 4HA[z(0)]2 + 2C. (E.14)

Plugging (E.14) into (E.13) leads to

τ1−1∑
s=0

a(s) ≤ 2z(0) + 4HA[z(0)]2 + 2C − z(0) + C

H[z(0)]2/2
≤ 4

Hz(0)
+ 8A. (E.15)

For the case b ≥ 1, we first notice that when t ≥ τb,

z(t) ≥ z(τb) +H

t−1∑
s=τb

a(s)[z(s)]2 − 2C

≥ 2bz(0) − 2C.

It follows that

z(τb+1) ≥ z(0) +H

τb+1−1∑
s=0

a(s)[z(s)]2 − C

≥ z(τb) +H

τb+1−1∑
s=τb

a(s)[z(s)]2 − 2C

≥ z(τb) +H

τb+1−1∑
s=τb

a(s)[2bz(0) − 2C]2 − 2C,

which implies

τb+1−1∑
s=τb

a(s) ≤ z(τb+1) − 2bz(0) + 4C

H[2bz(0) − 2C]2
. (E.16)

In addition, we have

z(τb+1) ≤ z(τb+1−1) +Ha(τb+1−1)[z(τb+1−1)]2 + 2C
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≤ 2b+1z(0) +HA[2b+1z(0)]2 + 2C. (E.17)

Plugging (E.17) into (E.16) yields

τb+1−1∑
s=τb

a(s) ≤ 2bz(0) +HA[2b+1z(0)]2 + 6C

H[2bz(0) − 2C]2

≤ 2b+1z(0) +HA[2b+1z(0)]2

22b−1[z(0)]2

≤ 4

2bz(0)H
+ 8A. (E.18)

Combining (E.15) and (E.18), we have

t0∑
s=0

a(s) ≤
B−1∑
b=0

τb+1−1∑
s=τb

a(s) ≤ 4

Hz(0)

B−1∑
b=0

1

2b−1
+ 8AB

≤ 8

Hz(0)
+ 8A

⌈
log(v/z(0))

log(2)

⌉
.

Lower bound (E.12). Let’s first consider b = 1. Using the recursive upper bound, we have

z(τ1) ≤ z(0) +H

τ1−1∑
s=0

a(s)[z(s)]2 + C

≤ z(0) + 4H

τ1−1∑
s=0

a(s)[z(0)]2 + C, (E.19)

which implies that

τ1−1∑
s=0

a(s) ≥ z(τ1) − z(0) − C

4H[z(0)]2
≥ z(0) − C

4H[z(0)]2
≥ 1

8Hz(0)
. (E.20)

When b ≥ 1, we have

z(τb+1) ≤ z(0) +H

τb+1−1∑
s=0

a(s)[z(s)]2 + C

= z(0) +H

τb−1∑
s=0

a(s)[z(s)]2 − C +H

τb+1−1∑
s=τb

a(s)[z(s)]2 + 2C

≤ z(τb) +H

τb+1−1∑
s=τb

a(s)[z(s)]2 + 2C

≤ z(τb) +H

τb+1−1∑
s=τb

a(s)[2b+1z(0)]2 + 2C,

which implies that

τb+1−1∑
s=τb

a(s) ≥ z(τb+1) − z(τb) − 2C

H[2b+1z(0)]2
. (E.21)

In addition, notice that

z(τb) ≤ z(0) +H

τb−1∑
s=0

a(s)[z(s)]2 + C
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≤ z(0) +H

τb−2∑
s=0

a(s)[z(s)]2 − C +Ha(τb−1)[z(τb−1)]2 + 2C

≤ z(τb−1) +Ha(τb−1)[z(τb−1)]2 + 2C

≤ 2bz(0) +HA[2bz(0)]2 + 2C

≤ 2bz(0) + 2b−1z(0) + 2C, (E.22)

where we used the assumption HAv ≤ 1/2 and the fact 2bz(0) ≤ v. Plugging (E.22) into (E.21) gives

τb+1−1∑
s=τb

a(s) ≥ 2b−1z(0) − 4C

H[2b+1z(0)]2
≥ 1

16Hz(0)
· 1

2b
. (E.23)

Combining (E.20) and (E.23) leads to

t0∑
s=0

a(s) =

B−1∑
b=0

τb+1−1∑
s=τb

a(s) ≥ 1

16Hz(0)
·
B−1∑
b=0

1

2b
≥ 1

16Hz(0)
.

E.3.2. COMPETITION OF THE GROWTH BETWEEN TWO SEQUENCES

Lemma E.10. Let {x(t)}t≥0 and {y(t)}t≥0 be two positive sequences defined by the following recursions

x(t+1) = x(t) +H[x(t)]2,

y(t+1) = y(t) +H[y(t)]2,

where H > 0. If x(0) ≥ y(0), we can guarantee that x(t) ≥ y(t) holds for any t ≥ 0.

Proof. The conclusion is trivial.

Lemma E.11. Let {x(t)}t≥0 and {y(t)}t≥0 be two positive sequences defined by the following recursions

x(t) ≥ x(0) +A

t−1∑
s=0

[x(s)]2 − C,

y(t) ≤ y(0) +A

t−1∑
s=0

[y(s)]2 + C,

where A,C > 0. If x(0) ≥ 2y(0) and 4C ≤ x(0), we can guarantee that x(t) ≥ y(t) holds for any t ≥ 0.

Proof. We first verify the conclusion at t = 1. Using the recursive bounds of y(1) and x(1), we have

y(1) ≤ y(0) +A[y(0)]2 + C

≤ x(0)

2
+

A

4
[x(0)]2 + C

≤ x(0) +A[x(0)]2 − C − x(0)

2
+ 2C

≤ x(1). (E.24)

Suppose x(s) ≥ y(s) holds for any s ≤ t, then we have

y(t+1) ≤ y(0) +A

t∑
s=0

[y(s)]2 + C
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≤ x(0)

2
+A

t∑
s=0

[x(s)]2 + C

= x(0) +A

t∑
s=0

[x(s)]2 − C − x(0)

2
+ 2C

≤ x(t+1). (E.25)

Combining (E.24) and (E.25), we can finish the proof.

Lemma E.12. Let x(0), y(0) ≤ 1
poly(d) and {x(t)}t≥0 and {y(t)}t≥0 be two positive sequences updated as

x(t+1) = x(t) + ηx · Ct[x
(t)]2,

y(t+1) = y(t) + ηy · Ct[y
(t)]2,

where Ct = Θ(1), ηx, ηy ≤ Õ(1). For every v ∈ (x(0), O(1)], let τx be the first iteration such that x(t) ≥ v. If
y(0)/x(0) ≤ O (logφ(d)) and ηx/ηy ≥ Ω(logϱ(d)) for ϱ > φ > 0, then we must have yτx ≤ 2y(0).

Proof. Applying Lemma E.4 to {x(t)} with H,h = Θ(ηx), we can guarantee

τx ≤ O

(
1

ηxx(0)

)
+O

(
log
[ v

x(0)

])
(i)

≤ O

(
logφ(d)

ηxy(0)

)
+O

(
log
[ v

x(0)

])
(ii)

≤ O

(
logφ−ϱ(d)

ηyy(0)

)
+O

(
log

[
A

x(0)

])
(iii)
= O

(
logφ−ϱ(d)

ηyy(0)

)
, (E.26)

where (i) follows from the initial condition y(0)/x(0) ≤ c log d; (ii) holds due to ηx/ηy ≥ logϱ(d); and (iii) holds due
to the assumption x(0) ≤ 1/poly(d). Now denote τy be the first iteration such that yt ≥ 2y0. Applying Lemma E.5 to
{y(t)}t≥0 with H,h = Θ(ηy), we have

τy ≥ O

(
1

ηyy(0)

)
. (E.27)

Comparing (E.26) and (E.27), together with the fact ϱ > φ, we can guarantee that τy ≥ τx. Hence it holds that
y(τx) ≤ 2y(0).

F. Additional experiments
In this section, we provide an additional experimental result, which is a comparison of Local SGD and Parallel SGD with
larger values of I . All details of the experimental setup are identical to the CIFAR-10 experiments in Section 8, other than
the setting of I . In Section 8, we evaluated I ∈ {8, 16, 32}. Here, we additionally show results for I ∈ {64, 256, 1024}, in
order to understand whether the optimization/generalization performance of Local SGD degrades for extremely large I .

Note that we run the same number of epochs for all values of I , in order to stay consistent with the main paper. As a result,
not all of the training runs reach 100% training accuracy, since extremely large I might require more steps to reach the same
training accuracy. All runs for I ∈ {64, 256} reach at least 98.3% training accuracy, and all runs for I = 1024 reach at least
95% training accuracy.

The test accuracy and train accuracy of all values of I are shown in Tables 2 and 3, respectively. Across the four settings,
test accuracy with I ∈ {64, 256} is nearly as good or better than the smaller values of I that we originally evaluated in the
paper, which shows that the generalization benefit of local steps occurs even for large I . For the largest I = 1024, the test
accuracy is consistently the lowest compared to Local SGD with other I , implying that performance may degrade when

45



Provable Benefits of Local Steps in Heterogeneous FL: A Feature Learning Perspective

CIFAR-10 (with augmentation) CIFAR-10 (no augmentation)
Algorithm h = 0.25 h = 0.5 h = 0.25 h = 0.5

Parallel SGD 90.17± 0.19 90.17± 0.19 77.73± 0.20 77.73± 0.20
Local SGD (I = 8) 91.01± 0.17 90.71± 0.25 80.35± 0.14 80.45± 0.66
Local SGD (I = 16) 91.21± 0.25 90.84± 0.07 80.64± 0.12 80.77± 0.30
Local SGD (I = 32) 91.19± 0.22 91.08± 0.25 80.86± 0.17 81.27± 0.36
Local SGD (I = 64) 91.14± 0.04 90.70± 0.07 81.89± 0.26 81.58± 0.25
Local SGD (I = 256) 91.19± 0.12 90.53± 0.18 81.48± 0.49 81.04± 0.13
Local SGD (I = 1024) 90.49± 0.14 89.84± 0.30 80.10± 0.22 79.66± 0.07

Table 2: Average test accuracy over three trials, with and without data augmentation and varying h ∈ {0.25, 0.5}. The error
is the distance from the average to the max/min across three runs. Note that Parallel SGD is unaffected by h, since it does
not utilize local steps.

CIFAR-10 (with augmentation) CIFAR-10 (no augmentation)
Algorithm h = 0.25 h = 0.5 h = 0.25 h = 0.5

Parallel SGD 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
Local SGD (I = 8) 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
Local SGD (I = 16) 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
Local SGD (I = 32) 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
Local SGD (I = 64) 99.78± 0.06 99.71± 0.05 100.0± 0.0 100.0± 0.0
Local SGD (I = 256) 99.01± 0.15 98.56± 0.23 100.0± 0.0 100.0± 0.0
Local SGD (I = 1024) 97.47± 0.15 96.07± 0.18 96.46± 0.32 95.28± 0.19

Table 3: Average train accuracy over three trials, with and without data augmentation and varying h ∈ {0.25, 0.5}. The
error is the distance from the average to the max/min across three runs. Note that Parallel SGD is unaffected by h, since it
does not utilize local steps.

I becomes extremely large. However, even with I = 1024, the test accuracy is still higher than that of Parallel SGD in
three of the four settings, showing that the generalization boost from local steps is still present even with extremely large
I . Also, we include the training accuracy in Table 3, to consider the fact that Local SGD with large I did not reach 100%
training accuracy. Even with this slight decrease in training performance, the testing accuracy of Local SGD with large I is
consistently better than Parallel SGD.

To summarize, the generalization benefit of local steps in this setting persists for extremely large I , even up to I = 1024.
Although the test accuracy of Local SGD with I = 1024 is smaller than that of I ∈ {8, 16, 32, 64, 256}, it is still larger than
that of Parallel SGD. This indicates that the local steps help generalization in real-world datasets even if the number of local
steps is large, which is consistent with our theoretical results.
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