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ABSTRACT

Retrieval-Augmented Generation (RAG) has significantly enhanced LLMs by in-
corporating external information. However, prevailing agentic RAG approaches
are constrained by a critical limitation: they treat the retrieval process as a black-
box querying operation. This confines agents’ actions to query issuing, hindering
its ability to tackle complex information-seeking tasks. To address this, we intro-
duce Interact-RAG, a new paradigm that elevates the LLM agent from a passive
query issuer into an active manipulator of the retrieval process. We dismantle
the black-box with a Corpus Interaction Engine, equipping the agent with a set
of action primitives for fine-grained control over information retrieval. To fur-
ther empower the agent on the entire RAG pipeline, we first develop a reasoning-
enhanced workflow, which enables both zero-shot execution and the synthesis of
interaction trajectories. We then leverage this synthetic data to train a fully au-
tonomous end-to-end agent via Supervised Fine-Tuning (SFT), followed by re-
finement with Reinforcement Learning (RL). Extensive experiments across six
benchmarks demonstrate that Interact-RAG significantly outperforms other ad-
vanced methods, validating the efficacy of our reasoning-interaction strategy.

1 INTRODUCTION

Large Language Models (LLMs) have shown advancements in natural language understanding and
generation but are constrained by their training data, which can be static, outdated, or lack domain-
specific knowledge (Huang et al., 2025). Retrieval-Augmented Generation (RAG) has emerged as a
prevailing solution to this limitation (Lewis et al., 2020; Gao et al., 2023). By retrieving information
from external corpora, RAG systems enable LLMs to access up-to-date information, incorporate
specialized knowledge, and reason over proprietary data (Hui et al., 2024; Li et al., 2025c).

The development of RAG has progressed through three stages. The initial approach, Static RAG,
performs a single retrieval to fetch relevant documents for the LLM (Gao et al., 2023). To handle
more complex tasks, Iterative RAG frameworks were introduced. These systems employ multi-
step retrieval pipelines to progressively gather information (Trivedi et al., 2023; Jiang et al., 2023;
Chan et al., 2024). The current frontier is Agentic RAG, which uses an LLM-centric agent to
autonomously orchestrate the entire workflow with more flexibility (Gao et al., 2025). The agent
decides when to retrieve, what to query, and how to analyze the retrieved information (Singh et al.,
2025). Advanced implementations include prompt-driven multi-agent workflows (Nguyen et al.,
2025; Li et al., 2025b) and other end-to-end trained agents using Supervised Fine-Tuning (SFT) and
Reinforcement Learning (RL) to improve reasoning and adaptability (Jin et al., 2025a; Zheng et al.,
2025; Qian & Liu, 2025).

Despite these advances, existing agentic RAG frameworks share a critical limitation: they treat the
retrieval process as an opaque black-box. The agent is confined to issuing a query and passively
receiving text chunks, typically from an embedding-based semantic retriever (Gao et al., 2025;
Jin et al., 2025a). This paradigm prevents the agent from inspecting the internal state of the re-
trieval process, thereby forcing it to relinquish fine-grained control over the process. Consequently,
the agent’s exploration is restricted to a trial-and-error loop of query reformulation, which lim-
its the breadth, depth, and overall efficacy of its information seeking. For example, when asked,
“Which film was released first, The Jaws of Death or Failure to Launch?”, an agent might first
query for the “release date of The Jaws of Death”. This retrieval may fail if the supporting evidence
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also anchor on specific entity ...

Corpus
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Engine
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semantic-search
exact-search
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Actions
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entity-match
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The information is insufficient ...
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I will first query for "the
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Query

The information is insufficient ...
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"when was the xx released ?"

...

Text-Chunks Query Text-Chunks

Black-Box RAG

Interact-RAG
Feedback

Agent

Figure 1: A brief demonstration of Interact-RAG. It empowers the agent with fine-grained control
over the information-seeking process, leveraging a set of interactive actions. In contrast, conven-
tional RAG is confined to ineffective loops of query issuing.

is phrased differently (e.g., “...The Jaws of Death is a 1976 thriller film...”) or if the retriever is
distracted by semantically similar but irrelevant entities (e.g., a film named The Hound of Death).
Faced with such a failure, existing agents can only resort to repeatedly paraphrasing the query (e.g.,
“when was The Jaws of Death released”). This often leads to an inefficient loop of blind guessing
that fails to obtain the necessary information.

To overcome this limitation, we introduce Interact-RAG, a novel paradigm that transforms the
agent from a passive query issuer to an active participant in the retrieval process. Our core idea is to
dismantle the retrieval “black box” by providing the agent with transparent and fine-grained control
over its information seeking. To achieve this, firstly, we propose a Corpus Interaction Engine,
which equips the agent with a versatile set of Interaction Primitives, categorized into three action
types: (1) Multi-Faceted Retrieval, which allows the agent to employ diverse retrieval strategies
(e.g., semantic, exact) and adaptively fuse their results with different weights; (2) Anchored Match-
ing, which focuses the search on a specific entity to mitigate distraction from irrelevant content; (3)
Context Shaping, which enables the agent to proactively manage the retrieval context by retaining
efficient documents and adjusting the retrieval scope. This suite of primitives serves as a founda-
tion for the fined-grained control, beyond simple query reformulation (as shown in in Figure 1).
[Revision: refine the clarification]

However, just providing these interactive capabilities is insufficient. Empowering the LLM to ac-
tively and strategically master the interactive pipeline remains challenging. First, it is difficult to
directly instruct an LLM to manage the intricate multi-step process. To address this, we design a
reasoning-enhanced workflow that decomposes the task into three modules: a global planner, an
adaptive reasoner, and an executor. This approach not only provides a robust, training-free solution
but also synthesizes high-quality agent trajectories for subsequent training. Second, achieving full
autonomy requires the model to internalize the strategic policies. Therefore, we leverage the synthe-
sized trajectories and apply Supervised Fine-Tuning (SFT), followed by refinement with Reinforce-
ment Learning (RL). As shown in Figure 1, we finally yield a unified, end-to-end agent capable of
executing the entire pipeline, without relying on an explicit multi-module architecture.

We conduct extensive experiments on six challenging RAG benchmarks. Our final trained Interact-
RAG agent significantly outperforms other advanced RAG approaches, achieving a relative improve-
ment of 22.5%. Ablation studies and detailed analysis further validate the efficacy of our proposed
methods. This work sheds light on future exploration to build effective RAG systems with agent-
driven interactive retrieval and reasoning enhancement.
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2 PRELIMINARY

2.1 RAG FORMULATION

External Information. The external information in RAG is often represented as a visible corpus
C = {d1, d2, . . . , dN}, typically consisting of N documents or segmented text chunks.

Task Formulation. For a RAG system, the core objective is to produce a factual and useful response
A to a user query Q, utilizing the retrieved information from the external corpus C.

Basic Pipeline. The RAG process typically consists of two main stages: retrieval and generation.
Given a user query Q and the corpus C, a retriever R selects some relevant chunks C′ ⊂ C, which is
often based on embedding similarity. Subsequently, a LLM G generates the response Y , conditioned
on both the query Q and the retrieved context C′. The process can be formalized as:

C′ = R(Q, C), Y = G(Q | C′).

2.2 END-TO-END RAG AGENT

To overcome the rigidity of static pipelines, recent works frame RAG as a sequential process driven
by an LLM agent, πLLM. Given a query Q, the agent continuously searches the information from a
corpus C. At each step t, it generates an action at based on the history: at = πLLM(Ht−1), where
the history Ht−1 contains prior thoughts, actions and retrieved information (with H0 = Q).

The actions of agent often include: (1) search(qt): issuing a query qt to retrieve evidence It from
the corpus; (2) answer(Y ): concluding the final answer Y . When a search action is invoked,
the information It is retrieved and appended to the history, following the action at:

Ht = Ht−1 ⊕ (at, It)

where ⊕ denotes the concatenation operation. And a typical agent trajectory can be visualized as:

Q → [thought] → [search] → [info] → [thought] → [search] → [info] → [thought] → [answer]

In this trajectory, each [thought]-[search] or [thought]-[answer] corresponds to an action at, [info]
represents the retrieved information It, and their accumulated history Ht is iteratively fed to the
LLM for subsequent decisions.

3 METHODOLOGY: INTERACT-RAG

In this section, we introduce Interact-RAG with three core components: (1) a corpus interaction
engine that supports the fine-grained information control; (2) a reasoning-enhanced workflow that
enables both zero-shot solution and data synthesis; and (3) a training pipeline using SFT and RL to
produce an autonomous end-to-end agent.

3.1 INTERACTIVE ENGINE AND PARADIGM

RAG systems typically treat the information retrieval as a black-box semantic-query-search. To
address this, we propose the Corpus Interaction Engine, which equips the agent with a versatile
set of Interaction Primitives. This allows the agent to navigate the information corpus C in a human-
like manner, with fine-grained reasoning and manipulation. We define the agent’s action space ACI
(corpus interaction) to include these primitives, which can be categorized into three classes:

1) Multi-Faceted Retrieval. Primitives in this category offer diverse retrieval strategies to locate
query-related text passages, balancing semantic relevance with lexical precision.

• semantic search(querys): Performs a dense retrieval, using embedding similarity to find
semantically related documents.

• exact search(keywordse): Executes a sparse retrieval based on exact keywords ranking,
ideal for finding specific terms, names, or phrases.

• weighted fusion(ws, we): Sets the fusion weights for semantic and exact search strate-
gies, enabling the agent to flexibly combine their strengths based on the context of the query.
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2) Anchored Matching. This allows the agent to focus its search on a specific, identified entity,
thereby retrieving highly relevant information and minimizing distraction from noisy context.

• entity match(entity): Retrieves information segments that are strongly associated with a
specified entity, ensuring the results are centered around a key subject.

3) Context Shaping. These actions enable the agent to sculpt the information context dynamically.

• include docs(doc ids) : Guarantees the inclusion of specified documents in subsequent
retrieval steps, ensuring critical information is not missed.

• exclude docs(doc ids): Filters out irrelevant documents from subsequent searches, pre-
venting noisy distractions.

• adjust scale(n): Adaptively adjusts the scale of the retrieved information (e.g., the number
of text chunks) to match the different complexity of the sub-problem.

Agent Interaction Pipeline. Within the Interact-RAG pipeline, the LLM agent orchestrates the
decision-making process (as shown in Figure 1). At each step t, given the previous history, the
LLM will generate a structured output that includes: (1) a reasoning thought that rationalizes the
current state and strategy, and (2) a suite of concurrent actions At = {at1 , at2 , ...} ⊂ ACI. These
actions are formulated in the parameterized function call, encapsulated within structured tags (e.g.,
<tool call>...</tool call>). The Corpus Interaction Engine then parses and executes the actions,
returning a consolidated response to the LLM. This response, wrapped in tags like <tool response>,
contains the aggregated retrieved content and critical metadata (e.g., source document id, similarity
scores for each search strategy). This interactive feedback allows the agent to perform sophisticated
strategic analysis and dynamically refine the next actions.

Implementation. Our engine is designed for computationally efficiency with small overhead.
We implement primitives like exact search and entity match by leveraging the Full-Text
Search (FTS) modules in relational databases (SQLite, 2025). While this builds an additional text
index, the computational cost is negligible. Furthermore, the Context Shaping primitives are imple-
mented through simple filters. It is worth noting that while the agent may invoke multiple strategies
in a single iteration, our engine avoids generating multiple large contexts. Instead, it produces a
single consolidated context by aggregating these primitives. Further implementation details and
validation are provided in Appendix D.2.

3.2 REASONING-ENHANCED WORKFLOW

Directly prompting an LLM to master the entire interactive pipeline is challenging. Therefore,
we develop a reasoning-enhanced workflow, decomposing the agent action into a hierarchical and
iterative structure. It not only serves as a robust training-free solution but also generates high-quality
data to train our end-to-end agent. As shwon in Figure 2, the workflow contains three collaborative
modules: a global-planner, an adaptive-reasoner, and an executor.

1) Global-Planner. Given a user query, the global-planner analyzes the problem and decomposes it
into a primary step-by-step execution plan, providing a high-level strategic roadmap.

2) Adaptive-Reasoner. This component acts as the cognitive core of the workflow. At each step, it
first analyzes the current state, including the previous actions, gathered information, and the objec-
tive from the planning road-map. After the analysis, it adaptively issues one of two directives:

• Proceed: If the current sub-task is progressing well and the retrieved information is sufficient,
it instructs the Executor to proceed to the next step or conclude the final response.

• Reflect & Refine: If the process encounters an obstacle (e.g., insufficient information), the
reasoner will enter a reflection phase. It diagnoses the issue and refines the interaction strategy
for the next action. For example, it might rely more on exact search to locate precise terms,
or use exclude docs to filter out misleading documents.

Additionally, the reasoner is instructed to adjust the primary plan when necessary. This ensures
flexibility, allowing changes without rigidly adhering to the initial roadmap.
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Figure 2: An illustration of our reasoning-enhanced workflow.

3) Executor. Following the directives from the reasoner, the executor translate the strategy into a
concrete, structured action. It generates the precise function call for the interaction primitives with
appropriate parameters. Once all sub-tasks are complete, the Executor will generate the final answer.

This modular design clearly decouples high-level planning, detailed reasoning and precise execution.
For a general-purpose LLM, this separation is critical, as the well-defined and focused tasks elicit
more reliable output. This workflow yields two significant advantages. First, as a training-free
method, it enhances the stability and logical coherence of zero-shot RAG. Second, it serves as a
data synthesis engine to train the autonomous agent. With logically-structured modules, the LLM
operates in a non-reasoning mode to produces clean reasoning traces, free from the verbose and
irrelevant thinking content, which is common in native large reasoning models (LRMs).

3.3 END-TO-END AGENT TRAINING

To develop an autonomous, end-to-end LLM agent that internalizes reasoning, we adopt a two-stage
training process involving supervised fine-tuning (SFT) followed by reinforcement learning (RL).

Trace Sampling and Fine-Tuning. The initial SFT stage aims to teach the LLM the fundamental
mechanics, such as planing, reasoning, and mastering the interactions. We leverage our reasoning-
enhanced workflow to generate a collection of trajectories based on QA pairs. To ensure the data
quality, we retain only successful trajectories, where the agent’s final answer matches the ground
truth. The agent is then fine-tuned on these high-quality trajectories. The training objective is to
predict the sequence of thoughts and actions in an auto-regressive manner. During loss calculation,
we mask out the tokens of retrieved information, avoiding the distraction during learning.

Policy Refinement with Reinforcement Learning. We then employ RL to enable superior strate-
gies through active exploration. We adopt Group Relative Policy Optimization (GRPO) (Shao et al.,
2024), an advanced optimization algorithm, to further refine the agent’s policy πθ. During the policy
updating, we also mask out the tokens of retrieved information.

1) RL Objective: Given a question from the dataset q ∈ DQ, the agent generates a group of
trajectories {τi}Ni=1. And the policy πθ is updated using the following objective function:

JGRPO(θ) = E[q∼DQ, {τi}N
i=1∼πθold (·|q)] 1

N

N∑
i=1

1

|τi|

|τi|∑
t=1

min
(
ρθ(a

(i)
t )Â(τi), clip

(
ρθ(a

(i)
t ), 1± ϵ

)
Â(τi)

)
− β DKL(πθ∥πref)

 ,

where at means the agent action, ρθ(a
(i)
t ) =

πθ(a
(i)
t |s(i)t−1)

πθold (a
(i)
t |s(i)t−1)

is the importance sampling ratio, and the

advantage Â(τi) is calculated by normalizing the rewards within the sampled group. This objective
encourages updates towards high-reward trajectories while stabilizing training.

2) Reward Function: We design a outcome reward R(τ) to guide the agent, based on both the
syntactic validity and answer accuracy of its trajectory τ :

R(τ) = −1 + I{τvalid}+ I{τvalid} · I{yans}
Here, each trajectory incurs an initial penalty of -1. The agent should generate a format-coherent
output to overcome this penalty. I{·} denotes the indicator function, which returns 1 if its enclosed
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condition is true, and 0 otherwise. First, the term I{τvalid}, grants a +1 reward if τ is syntactically
valid, thereby neutralizing the initial penalty. Syntactic validity encompasses the entire action se-
quence structure, the reasoning format, and the tool call syntax. Second, I{τvalid} · I{yans} provides
a +1 reward for task success, where the final answer yans matches the ground-truth. This reward is
gated by the trajectory’s validity, ensuring that only well-formed output can be rewarded. It worth
noting that, The inclusion of the ”-1 initial penalty” was primarily intended for intuitive logic. Math-
ematically, this constant term is canceled out during the group-based normalization process in GRPO
and does not influence the advantages or the actual training.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We conduct experiments across six prominent and standard RAG benchmarks. These
include two single-hop question-answering datasets, Natural Questions (NQ) (Kwiatkowski et al.,
2019) and PopQA (Mallen et al., 2023), and four multi-hop question-answering datasets: Hot-
potQA (Yang et al., 2018), 2WikiMultiHopQA (2Wiki) (Ho et al., 2020), MuSiQue (Trivedi
et al., 2022), and Bamboogle (Press et al.). More dataset details are in Appendix D.1 Besides,
for more comprehensive evaluation over non-wiki domains, we conduct additional experiments on
the MultiHop-RAG benchmark (Tang & Yang, 2024) (more details in Appendix C.2).

Baselines. We compare our method against a diverse suite of baselines, covering paradigms of
non-RAG, static, iterative, prompt-driven multi-agent, and end-to-end trained agents. Specifically,
we include: (1) Direct: Answers questions directly via Chain-of-Thought, without external in-
formation. (2) Standard RAG: A static RAG method that performs a single retrieval. (3) IR-
CoT (Trivedi et al., 2023): A representative iterative RAG method using intermediate thought-chain
steps to formulate queries for multi-step retrieval. (4) MA-RAG (Nguyen et al., 2025): A multi-
agent framework with agent collaboration. (5) Search-O1 (Li et al., 2025b): An agentic framework
with a reasoning-enhanced workflow. (6) Search-R1 (Jin et al., 2025a): An end-to-end approach
that uses RL to generate multi-turn search queries after reasoning. (7) SimpleDeepSearcher (S-
DeepSearcher) (Sun et al., 2025): An end-to-end approach that fine-tunes a LLM on synthesized
high-quality data. (8) R-Search (Zhao et al., 2025): An end-to-end approach that trains an au-
tonomous agent via RL, using optimized multi-reward signals.

Experimental Details. Following previous works (Jin et al., 2025a; Qian & Liu, 2025), we process
the 2018 Wikipedia dump as the retrieval corpus. We employ the e5-base-v2 (Wang et al., 2022)
model as the retriever, fetching the top 3 relevant chunks. To ensure a fair comparison, we maintain
the same corpus and retriever across all methods, and re-evaluate all baselines under this unified
setting. For all experiments, we use Qwen3-8B by default (Yang et al., 2025), a recent instruction-
tuned model. For training-driven baselines (i.e., Search-R1, S-DeepSearcher, and R-Search), we
utilize their official checkpoints trained on Qwen-2.5-7B, since their 8B versions are not available
yet. To ensure the comprehensiveness, we also report our results on Qwen2.5-7B in main results.

We train our agent on the combined training splits of NQ, HotpotQA, and MuSiQue, and evaluate it
on the test splits of all six benchmarks. This setup enables the generalization on both in-distribution
and out-of-distribution (PopQA, 2Wiki, Bamboogle). For the training process, we first employed
Qwen-Plus to synthesize 4.8K agent trajectories for SFT. Subsequently, we utilized 7.1K question-
answer pairs for the RL phase. More details are in Appendix D.3.

4.2 MAIN RESULTS

We evaluate Interact-RAG on six benchmarks, with the main results in Table ??. Our findings
highlight three key advantages of our approach. First, Interact-RAG consistently achieves best per-
formance across all datasets. On average, it improves the EM-score by 9.7 points (22.5% relative
gain) over the second-best method, Search-R1. And our 7B version also achieves a relative im-
provement of 10.1%. Notably, our Interact-RAG was trained on 12K QA data, a small fraction of
the 170K QA pairs used for Search-R1. This data disparity also explains Search-R1’s higher re-
sults on the NQ dataset using the 7B model. Second, the performance gains are more pronounced
on complex multi-hop QA tasks. For instance, on Musique, Interact-RAG delivers a 36.4% rela-
tive improvement. Concurrently, it maintains strong performance on single-hop benchmarks like
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Method

Multi-Hop QA Single-Hop QA
AVG

HotpotQA 2Wiki. Musique Bamboogle NQ PopQA

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Results on Qwen2.5-7B Backbone

Direct 17.8 26.2 22.6 27.7 4.3 9.8 19.6 30.2 16.1 23.5 18.6 21.2 16.5 23.1
Std-RAG 29.8 41.5 28.0 34.1 9.5 14.4 18.4 26.8 35.1 44.9 34.6 41.2 25.9 33.8

IR-CoT 19.3 36.6 20.0 37.5 5.2 14.4 18.2 30.0 16.5 27.5 24.6 34.8 17.3 30.1
MA-RAG 35.0 44.7 39.6 46.9 13.1 19.0 40.8 50.9 29.5 39.9 33.3 39.0 31.9 40.1
Search-o1 33.6 46.3 39.9 49.6 14.7 21.7 32.0 45.3 33.7 43.8 36.3 43.1 31.7 41.6
Search-R1 45.2 60.1 50.9 58.2 25.5 34.1 42.2 55.6 45.3 54.7 49.3 53.6 43.1 52.7
R-Search 38.2 51.0 58.8 64.4 19.4 28.0 36.0 52.1 36.8 46.5 42.8 46.2 38.7 48.0
S-DeepSearch 40.2 53.6 54.0 61.8 18.6 25.8 46.2 57.4 37.0 46.6 40.6 46.1 39.4 48.5

Interact-RAG-7B 47.8 61.6 63.6 71.0 30.9 39.5 47.6 61.1 43.7 52.9 51.6 54.4 47.5 56.8

Results on Qwen3-8B Backbone

Direct 23.6 33.0 26.4 32.5 5.9 13.3 33.2 49.1 19.8 30.4 20.5 25.0 21.6 30.6
Std-RAG 37.6 50.6 35.9 41.2 13.7 21.0 26.8 35.0 37.1 47.8 37.3 44.6 31.4 40.0

IR-CoT 30.8 43.3 33.6 42.6 12.9 20.3 22.8 32.6 33.0 43.9 31.7 38.1 27.5 36.8
MA-RAG 39.3 51.7 45.5 53.1 18.0 25.1 35.6 49.3 34.6 46.2 40.2 45.8 35.5 45.2
Search-o1 23.1 30.2 28.0 34.6 10.1 13.8 31.2 39.7 33.1 41.9 33.1 38.4 26.4 33.1
Search-R1† 45.2 60.1 50.9 58.2 25.5 34.1 42.2 55.6 45.3 54.7 49.3 53.6 43.1 52.7
R-Search† 38.2 51.0 58.8 64.4 19.4 28.0 36.0 52.1 36.8 46.5 42.8 46.2 38.7 48.0
S-DeepSearch† 40.2 53.6 54.0 61.8 18.6 25.8 46.2 57.4 37.0 46.6 40.6 46.1 39.4 48.5

Interact-RAG 51.6 66.7 69.6 76.4 34.8 43.9 54.0 65.5 50.9 60.7 56.0 60.2 52.8 62.2

Table 1: [Revision: move the results on Qwen2.5-7B from the Appendix to the main results.] Overall
performance in Exact Match (EM) and F1 scores across various benchmarks. Bold and underline
denote the best and second-best performance. For the Qwen3-8B results, methods marked with a
dagger (†) use their official 7B models, due to the lack of 8B versions. Notably, our Interact-RAG
was trained on 12K QA data, a small fraction of the 170K QA pairs used for Search-R1. This data
disparity also explains Search-R1’s higher results on the NQ dataset when using the 7B model.

Method 2Wiki. Musique PopQA

Interact-RAG 69.6 34.8 56.0
w/o Interaction 63.4 (-8.9%) 30.1 (-10.9%) 50.2 (-10.4%)
w/o SFT 59.0 (-15.2%) 26.4 (-21.9%) 52.2 (-6.8%)
w/o RL 65.2 (-6.3%) 28.1 (-16.9%) 45.6 (-18.6%)

Table 2: Ablation study on Interact-RAG, reported in Exact Match (EM) scores. The 2Wiki and
Musique are multi-hop-QA datasets, while PopQA is single-hop.

NQ and PopQA, with relative improvements of 11.0% and 12.3% on EM scores. This validates
the effectiveness of our interaction-reasoning paradigm in tackling complex challenges. Third, our
trained agent demonstrates great generalization. Trained with train-splits of HotpotQA, Musique,
and NQ, it achieves consistent improvements on both in-distribution and out-of-distribution bench-
marks. This indicates that the learned capability are not task-specific, underscoring the robustness
and generalizability of our approach.

4.3 ABLATION STUDY

As shown in Table 2, we conduct an ablation study on Interact-RAG.

Efficacy of the Interaction Paradigm. The “w/o Interaction” variant means the black-box retrieval
is deployed, mirroring the paradigm of typical agentic RAG systems. In this configuration, the
agent is restricted to issuing queries to a semantic retriever, without any other interaction. The
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Method 2Wiki Musique PopQA

Interact-RAG 69.6 34.8 56.0

w/o All-Interaction 63.4 30.1 50.2
w/o Multi-faceted Retrieval 66.0 34.6 55.1
w/o Anchored Matching 66.3 34.4 53.4
w/o Context Shaping 68.8 33.6 55.2

Table 3: Fine-grained ablation study on interaction primitives, reported in Exact Match (EM) scores.
[Revision: add more ablation results.]

Training-free Method 2Wiki. Musique PopQA

MA-RAG 45.5 18.0 40.2
Interact-RAG-Workflow 60.1 24.1 43.6

w/o Interaction 56.3 18.8 38.7
w/o Workflow 52.0 21.8 40.0

Table 4: Ablation performance of our training-free workflow, with MA-RAG (Nguyen et al., 2025)
as a baseline reference. Results are reported in Exact Match (EM) scores.

corresponding results clearly show a marked performance drop. This finding underscores the critical
value of our interactive paradigm, confirming that equipping the agent with fine-grained control over
the information-seeking process is essential and effective.

Impact of the Training Strategy. For our two-phase training, removing SFT leads to severe perfor-
mance drops, especially on challenging datasets like Musique (-21.9%). This highlights its role in
building fundamental mechanics of planing, reasoning, and iterative interaction. Similarly, omitting
RL also causes marked declines, as RL is essential to develop more strategic policies. These results
demonstrate that while SFT establishes the core patterns of reasoning and interaction, RL further
optimizes the agent’s policy to achieve better performance. (More discussion in Section 4.5).

Ablation on Interaction Primitives. To isolate the specific contributions of each component, we
conduct a fine-grained ablation study on the interaction primitives (Table 4.3). The results reveal
a strong synergistic effect: while removing the single module degrades performance, the complete
absence of interaction leads to the most significant drop. This confirms that these primitives function
collectively to surpass black-box retrieval. Furthermore, the contributions of different components
vary across data patterns, showing the comprehensiveness of our design. For example, Multi-Faceted
Retrieval and Anchored Matching are vital for 2Wiki, which may demand explicit facts. And Con-
text Shaping proves more impactful on Musique, where the prevalence of distractors requires robust
context scaling.

4.4 TRAINING-FREE SCENARIOS

In scenarios with limited training resources or requiring zero-shot deployment, training-free solu-
tions are practically important. Therefore, we evaluate our training-free approach, termed Interact-
RAG-Workflow. As shown in Table 4, our approach consistently outperforms MA-RAG across
various benchmarks, underscoring the intrinsic effectiveness of our reasoning-interaction paradigm
even without model training. To better understand the impact of individual components, we con-
duct two ablation studies. First, removing the interaction (i.e, resorting to a black-box query-search)
leads to a significant performance drop, highlighting the critical role of fine-grained retrieval con-
trol. Second, “w/o workflow” means omit our reasoning-enhanced workflow and directly instruct
the LLM through an end-to-end prompt (detailed in Appendix D.4). This also results in performance
degradation, confirming the effectiveness of our workflow to orchestrate the entire RAG process.

4.5 DETAILED ANALYSIS

Efficiency of Information Retrieval. We further assess the retrieval process by measuring the
number of action iterations. We compare our Interact-RAG against two query-only methods: an
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ablation variant restricted to only the query-search action (termed as Ours-Search) and the Search-
R1 method. The results in Figure 3 indicate that Interact-RAG always achieves the highest EM
scores with the minimum action iterations. This is particularly pronounced on complex multi-hop
datasets (2Wiki and Musique), where tasks demand more intricate information seeking. This finding
validates the core advantage of our paradigm: by providing the agent with fine-grained control, it
can navigate the information space in less iterations, avoiding inefficient trial-and-error loops. (A
case study is in Figure 6).

Training Dynamics in RL. Figure 4 depicts the RL training dynamics, with EM scores evaluated
on a sampled subset of the six test datasets. We compare the two-stage SFT+RL approach with a
RL-only method. Starting from the SFT checkpoint, the SFT+RL model demonstrates a consistent
improvement after an initial warm-up phase, ultimately converging at a high-performance level. In
contrast, the RL-only agent shows faster progress within the first 40 steps and then its development
slows, resulting in marginal improvements over the SFT-only baseline (dashed line) and falling
significantly behind the SFT+RL model. This highlights the critical role of the two-stage training.
SFT provides the agent with a crucial foundational capability and strategic solution paths. Without
this prior, the RL-only agent struggles to master the complex retrieval strategies from scratch.

Interaction Patterns Across Training Stages. To understand how our training shapes the agent’s
behavior, Figure 5 shows the statistics of interaction across different stages. (1) Non-Trained: The
agent relies solely on an end-to-end prompt, exhibiting limited engagement. It averages only 1.82
turns, with minimal invocation of interactive actions. This confirms that, without training, the LLM
struggles to autonomously master the iterative information-seeking process. (2) SFT Stage: After
SFT, the agent learns the fundamental processing patterns. The number of interaction turns rises to
3.61, indicating that SFT instills reasoning strategies and equips the agent to better engage with the
Corpus Interaction Engine. (3) RL Stage: While the number of interaction turns decreases, the EM
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score improves significantly. This reflects the agent’s transition to a more strategic policy, enhancing
both efficiency and accuracy through improved reasoning and appropriate retrieval actions. (4)
Detailed Observations: After the RL exploration, the frequency of Entity-Match increases sharply.
This suggests the agent has learned to prioritize precise and anchored searches. In contrast, the use
of Doc-Shaping decreases, because the agent’s improved retrieval precision reduces the necessity
for subsequent noise filtering. In summary, this progression analysis highlights the rationality and
effectiveness of our interaction paradigm and training pipeline.

5 RELATED WORK

5.1 RETRIEVAL-AUGMENTED GENERATION

Retrieval-Augmented Generation (RAG) is a prevailing method to enhance LLMs with external in-
formation (Lewis et al., 2020). Basic RAG relies on static embedding-based retrieval, which may
suffer from information omission (Gao et al., 2023). To address this, various studies propose tree-
based or graph-based index to improve retrieval robustness (Jin et al., 2025b; Edge et al., 2024; Luo
et al., 2025). Another direction focuses on improving the retrieval pipeline. Iterative RAGs were in-
troduced to progressively refine information through multi-step retrieval (Trivedi et al., 2023; Chan
et al., 2024; Hui et al., 2025). Recent agentic methods provide more flexibility, where the LLM
autonomously orchestrate the entire RAG pipeline (Gao et al., 2025). Methods such as MA-RAG
(Nguyen et al., 2025), Search-O1 (Li et al., 2025b), and MCTS-RAG (Hu et al., 2025) implement
prompt-driven strategies, leveraging multiple agentic modules. End-to-end approaches like Search-
R1 (Jin et al., 2025a), InForage (Qian & Liu, 2025), and SimpleDeepSearcher (Sun et al., 2025)
adopt SFT and RL to create fully autonomous agents. Despite the effectiveness of above approaches,
they often operate within a black-box retrieval paradigm, limiting the analysis and control. Ad-
dressing this, our work explores an interactive framework with fine-grained retrieval manipulation,
supporting improved reasoning and adaptability.

5.2 REASONING-ENHANCED LLM AGENT

Enhancing LLMs with reasoning has become a prevailing research focus (Xu et al., 2025). The
strategies span prompting-based approaches like Chain-of-Thought Wei et al. (2022), and training-
optimized models like OpenAI o1/o3/o4 (Jaech et al., 2024) and DeepSeek-R1 (Guo et al., 2025).
To support broader scenarios, various works leverage reasoning to improve the performance of LLM
agents(Ferrag et al., 2025), training them to use tools and solve complex problems (Lu et al., 2025b;
Shen et al., 2025). They explore various dimensions, including the construction of high-quality
training data (Li et al., 2025a; Shi et al., 2025), the refinement of reward signals (Zhao et al., 2025;
Qian & Liu, 2025), and the optimization of reinforcement learning algorithms (Dong et al., 2025; Lu
et al., 2025a). While these works have made great advances concentrating on the agent’s training, our
focus is distinct: we redesign the interaction paradigm for RAG agents and leverage the reasoning
capability to enable fine-grained manipulation.

6 CONCLUSION

In this paper, we identify the limitation of simple black-box retrieval, and introduce Interact-RAG, a
new paradigm empowering LLM agents with fine-grained control over the information-seeking pro-
cess. Our approach features an underlying Interaction Engine, a reasoning-enhanced workflow and
a two-stage training pipeline, finally yielding a unified, end-to-end interactive RAG agent. Exten-
sive experiments show Interact-RAG significantly outperforms advanced baselines, validating the
effectiveness of reasoning-interaction paradigm. This work offers a promising direction for creating
more powerful, transparent, and interactive RAG systems.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work adheres to the ethical guidelines set forth by ICLR 2026. We have conducted our research
with a commitment to avoiding harm, ensuring honesty and transparency in our methodology and
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algorithms to ensure fairness. Furthermore, our research respects individual privacy, and we have
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REPRODUCIBILITY STATEMENT

In this work, we present Interact-RAG, a new paradigm empowering LLM agents with fine-grained
control over the information-seeking process. To ensure reproducibility and facilitate further re-
search, we provide the source code of our approach (details can be found in the supplementary
materials). Additionally, we offer comprehensive documentation in Section 4.1 and Appendix D,
covering dataset details, training parameters, environment constructions, and experimental configu-
rations. Together, these efforts ensure the reproducibility of our work.
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A THE USE OF LLMS

This paper utilized LLMs only for language polishing in parts of the text.

B LIMITATIONS

Despite the effectiveness of Interact-RAG, we acknowledge two limitations: (1) RL Optimization:
Our RL stage currently relies on outcome-based rewards. While this aligns with some established
GRPO practices, incorporating granular process rewards or advanced RL algorithm could further
enhance learning efficiency. (2) Test-time Cost: Our explicit Chain-of-Thought reasoning trajec-
tory incurs higher latency and token usage, compared to non-reasoning modes. This test-time scal-
ing reflects the trade-off inherent in reasoning models, where increased compute is exchanged for
superior accuracy. In future work, we will explore more advanced RL designs and optimize the
cost-effectiveness.

C ADDITIONAL DEMONSTRATION AND EXPERIMENTS

C.1 CASE STUDY

As illustrated in Figure 6, Search-R1, which relies on black-box query search, can fall into query
loops, hindering its ability to efficiently retrieve evidence. In contrast, our Interact-RAG utilizes
granular interactive actions to effectively address this challenge.

Question:  What’s the birth date of the director of film I Want Someone To Eat Cheese With?

Search-R1
…  First, both find the director is Jeff Garlin …
<think>I found out that the director of the film "I 
Want Someone To Eat Cheese With" is Jeff Garlin. 
Now I need to find what’s his birth date </think>

<search> Jeff Garlin birth year </search>

<information> … In March 2018, Garlin was one 
of the actors who … <information>

<think> I found out that the birth year is still not 
available. I need to find this information again. 
</think>

<search> What’s the birth date of Jeff Garlin?   
</search>

<information> …In 2013, Garlin signed onto the
ABC sitcom "The Goldbergs” … </information> 

<think> The birth date is still unknown ...
</think>

Interact-RAG
…  First, both find the director is Jeff Garlin …
<think> We find that "I Want Someone to Eat Cheese 
With" is a film directed by Jeff Garlin. To find his birth 
date, we can include exact keywords. And we can also 
focus on his name with entity match … </think>
<tool_call>{"entity_match": "Jeff Garlin", 
“exact_query_keywords": ["Jeff Garlin", "born"], 
"semantic_query": "What is Jeff Garlin's birth date?"} 
</tool_call> 
<tool_response> … Jeff Garlin (born June 5, 1962) is 
an American …</tool_response> 
<think> We have found that the director is Jeff Garlin, 
who was born on June 5, 1962 </think> … Answer …

Figure 6: Case study under a multi-hop query, comparing Interact-RAG and Search-R1. The
results highlight that Search-R1, relying on black-box query-search, can become trapped in query
loops, failing to retrieve efficient evidence. In contrast, our approach leverages granular interactive
actions to directly resolve the issue. Both the exact keyword “born” and the anchored entity-match
are helpful to retrieval the desired information.

C.2 GENERALIZATION TO OTHER DOMAINS

For more comprehensive evaluation over other non-wiki domains, we conducted additional experi-
ments on the MultiHop-RAG benchmark (Tang & Yang, 2024). Its corpus consists of news covering
diverse fields such as technology, health, and business. As shown in the Table 5, Interact-RAG
significantly outperforms baselines in this out-of-distribution setting. This further demonstrates the
effectiveness and robustness of our interaction-reasoning paradigm.
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Method EM F1

7B Models
Std-RAG-7B 57.5 59.4
MA-RAG-7B 50.2 52.3
Search-R1-7B 73.0 74.1
Interact-RAG-7B 79.4 80.4

8B Models
Std-RAG-8B 63.4 65.1
MA-RAG-8B 66.3 68.7
Interact-RAG-8B 81.4 82.3

Table 5: Performance results on the MultiHop-RAG benchmark (non-wiki domain).

Method 2Wiki Musique HotpotQA

Standard-Retrieval 0.434 0.127 0.502
MA-RAG-7B 0.620 0.256 0.573
MA-RAG-8B 0.631 0.277 0.581
Search-R1-7B 0.608 0.256 0.609

Interact-RAG-7B 0.686 0.316 0.632
Interact-RAG-8B 0.706 0.335 0.637

Table 6: Retrieval quality evaluation. We report the coverage of supporting facts within the retrieved
context.

C.3 RETRIEVAL QUALITY

To assess retrieval quality beyond final answer accuracy, we evaluate the coverage of supporting facts
across three multi-hop benchmarks, since they provide human-annotated evidence. We calculated
the proportion of supporting facts covered within the retrieved context. As shown in Table 6, our
Interact-RAG consistently outperforms other baselines. This confirms that our active interaction
paradigm effectively improves the information retrieval and gathering process.

C.4 COST-PERFORMANCE TRADE-OFF ANALYSIS.

Table C.4 provides a detailed comparison of computational costs on the 2WikiMultiHopQA dataset.
The evaluation was conducted on the NVIDIA A100 GPU utilizing the vLLM inference engine,
and the results are averaged per question. To ensure the consistent comparison, the methods are
all based on the Qwen2.5-7B model. We acknowledge that Interact-RAG incurs higher latency and
token consumption compared to standard baselines. This increase stems from the explicit reasoning
trajectory. However, this design aligns with the emerging paradigm of reasoning models and test-
time scaling (e.g., OpenAI-o1 (Jaech et al., 2024), DeepSeek-R1 (Guo et al., 2025)), where increased
inference compute is a necessary trade-off for superior accuracy over complex tasks.
Furthermore, we conducted a control experiment applying a Best-of-N (N = 3) sampling strategy
to the strong baseline, Search-R1. While this approach increased the computational cost by over
3×, the performance only improved from 50.9 to 56.2, still falling short of ours. This demonstrates
the effectiveness of Interact-RAG.

C.5 FUSION POLICY FOR MULTI-FACETED RETRIEVAL

In the multi-faceted retrieval, we need to fuse the results from two distinct strategies. In our imple-
mentation, we apply min-max normalization to both scores, and then perform the weighted aggrega-
tion, where the weight is assigned by the LLM agent. Now, we compare our fusion policy with two
standard rank fusion methods, including Reciprocal Rank Fusion (RRF) and CombMNZ (Cormack
et al., 2009). As shown in Table 8 , our implementation yields performance comparable or slightly
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Method EM Score Latency (s) Tool Time (s) Out Tok. In Tok.

MA-RAG-7B 39.6 15.1 5.09 181 3812
Search-R1-7B 50.9 17.2 5.61 192 4289
Interact-RAG-7B 63.6 36.4 4.67 713 5216

Table 7: Detailed computational cost analysis on the 2WikiMultiHopQA dataset. We report the
Exact Match (EM) score alongside average wall-clock latency, tool execution time, and accumulated
token consumption per query.

Fusion Method 2Wiki Musique PopQA

RRF 68.7 34.6 55.3
CombMNZ 69.8 32.9 56.0
Interact-RAG 69.6 34.8 56.0

Table 8: Comparison of different fusion strategies (reported in EM Scores).

superior. And we would like to clarify that the fusion mechanism is a small functional design in our
interaction engine, so its variations do not significantly alter the overall performance.

C.6 OVERHEAD OF OUR CORPUS INTERACTION ENGINE

For the memory footprint, on a corpus of 21.8K documents (280K chunks), the standard vector
database (based on Chromadb (core team, 2025)) occupies 2.3GB. And our additional interaction
component (based on SQLite FTS-based (SQLite, 2025)) occupies only 0.3GB, representing a neg-
ligible memory addition. Besides, we evaluate the deployment performance of our engine using the
2Wiki dataset, in an 8-core CPU environment with 96 concurrent request clients. For the wall-clock
time, our interaction processing latency is 1.82s per iteration, only ∼ 3% higher than the standard
vector-based retrieval (1.76s), which is negligible.

D ADDITIONAL IMPLEMENTATION DETAILS

D.1 DATASET DETAILS

For the training phase, our data is sourced from the combined training splits of NQ, HotpotQA,
and MuSiQue. This collection includes both single-hop (NQ) and multi-hop (HotpotQA, MuSiQue)
question-answering data. Following the workflow described in Section 3.2, we synthesized 4.8K
agent trajectories for Supervised Fine-Tuning (SFT). Subsequently, for the Reinforcement Learn-
ing (RL) phase, we started with 9K question-answer pairs and filtered out some overly simplistic
questions (measured by the pass rate), resulting in a curated set of 7.4K pairs. For the evaluation
phase, our test set was constructed by randomly sampling 500 question-answer pairs from each of
six distinct datasets. An exception was made for the Bamboogle dataset, from which we used all
125 available test instances due to its limited size.

D.2 MORE DETAILS OF CORPUS INTERACTION

Our Corpus Interaction Engine is designed to support agent interactions. It parses LLM-generated
tool-calling response, executes the specific operations, and returns the feedback. The implementa-
tion is lightweight, intentionally avoiding the overhead of heavy operations or extra LLM invoca-
tions.

The core functionalities are realized as follows: (1) For Semantic-Search, we implemented a re-
triever based on the e5-base-v2 model (Wang et al., 2022), using the prevailing ChromaDB (core
team, 2025) as our underlying vector database. (2) Exact-Search is built upon the Full-Text Search
(FTS) module of SQLite database (Bhosale et al., 2015), which returns results ranked by the BM25
scores between query keywords and text chunks. (3) In the Fusion Stage of semantic and exact
search, we first apply the min-max normalization over the scores of the top-20 chunks from each

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

search strategy. These scores are then aggregated via a weighted sum, according to the weight spec-
ified by the agent, and the high-scoring chunks are ultimately returned. (4) For Entity-Matching, the
LLM agent is reponsible and capable to provide the specific entity keywords, based on the query
and history context. Then, we utilize SQLite FTS to retrieve sentences containing the entity terms,
where the words are normalized for comparison. After that, we retain and append the three most
relevant small sentences based on the current sub-query. (5) Simpler actions like Include-Docs and
Exclude-Docs are handled directly through basic filtering operations. Regarding filter persistence,
the LLM is instructed to manage the state by reissuing filter instructions if needed.

The engine follows a deterministic pipeline to resolve concurrent actions: (1) Retrieval scores are
fused to form a candidate list. (2) Doc-filters (include/exclude) are applied to explicitly retain or
remove chunks. (3) Top-ranked chunks are selected according to the chunk budget. (4) Unique
entity-specific short snippets are appended.

It is worth noting that while the agent may invoke multiple strategies in a single iteration, our engine
avoids generating multiple large contexts. Instead, it produces a single consolidated context by ag-
gregating these primitives. Specifically, multi-strategy retrieval yields a unified chunk set via score
fusion, and Entity Match appends only concise snippets with negligible addition. While context-
shaping may dynamically change the number of chunks, our ablation studies (Table 4.3) demon-
strate that Interact-RAG still maintains strong performance without this module. Collectively, these
suggest that our performance gains stem from fine-grained interaction strategies, rather than simply
inflating the retrieval volume.

D.3 EXPERIMENTAL DETAILS

All our experiments were conducted on a cluster of 8 NVIDIA A100 (80GB) GPUs. To ensure
generality and alignment, our action pipeline is implemented using the official reasoning and tool-
use template from Qwen3 (Yang et al., 2025), which inherently utilizes <think>, <tool call>, and
<tool response> tags. In the Supervised Fine-Tuning (SFT) stage, we employ the Llama-Factory
framework (Zheng et al., 2024), training for 2 epochs with a learning rate of 2 × 10−5 and a batch
size of 128. Following this, the agent is refined through Reinforcement Learning (RL) using the verl
framework (Sheng et al., 2025). The RL phase involves multi-turn agent training for 2 epochs, with
a policy learning rate of 1 × 10−6, a batch size of 128, a maximum of 7 interaction turns, and the
rollout-num of 8. During the RL training, we observed the format error rate of 2% at the beginning.
And this rate declined to 1.1% at step 50 and dropped to 0.04% by the final step (i.e., step-110),
which also demonstrates the effectiveness of our RL optimization.

For our evaluation, we enabled Qwen3’s native thinking mode (Yang et al., 2025) for non-RAG
and standard-RAG baselines to maximize their reasoning capabilities, while disabling it for prompt-
based methods like IR-CoT and MA-RAG to ensure strict format adherence. All end-to-end trained
agents, including our Interact-RAG, operated with their innate reasoning enabled. Furthermore, we
addressed a corpus limitation: using the generic 2018 Wikipedia dump as a corpus often causes
mismatches with QA benchmarks (e.g., entity name ambiguity, missing evidence). We therefore
constructed a more faithful corpus as follows: for benchmarks with candidate passages, we used their
metadata to obtain the corresponding documents from the 2018 Wikipedia snapshot, which mitigates
the name ambiguity. If the document was unavailable, we used the provided passages directly. For
benchmarks lacking explicit evidence (e.g., Bamboogle), we generated synthetic queries from the
question and ground-truth answer to retrieve the top 20 most similar passages via a retriever. Our
final evaluation corpus consists of approximately 280,000 text chunks, with each chunk averaging
100 words. We will release this corpus to facilitate further research.

D.4 LLM PROMPTS

To ensure generality and alignment, our action pipeline is implemented using the official reasoning
and tool-use template from Qwen3 (Yang et al., 2025). Therefore, we don’t need to specify special
tags or define explicit rules for the model’s output structure. Actions described in Section 3.1 can
simply be injected as tool-use arguments, where the template automatically formats the inputs into
the required structure, and the model inherently generates standardized reasoning and tool calls.
Therefore, we just need to craft the task prompt, the details of which are provided below.
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End-to-End Prompt for Interactive RAG Agent

You are a strategic AI research assistant. Your task is to answer user questions by leveraging
a search tool. You must operate in a systematic, iterative loop of planning, acting, and
analyzing.

## Your Research Process

### 1. Understand & Plan:
Understand the user’s question and create a search plan.
- First, thoroughly analyze the user’s question. Identify key concepts, entities, and any
constraints.
- If the question is straightforward, formulate a single, comprehensive search query that is
most likely to yield the final answer.
- If the question is complex, break it down and define the clear and specific sub-tasks. Please
outline the sub-questions and desired outcomes for each step.
- If some sub-tasks can be executed parallelly, you should point out it.
- You should first perform thinking, and output the primary plan in the list format.

### 2. Execute the Search
Based on the current state and previous analysis, call the execute search plan tool to perform
the search.
- The parameter semantic query is primary and required. It should be a clear and concise
query to search the needed information.
- There are also serval optional parameters to improve the search results. You should perform
analysis and adapt the parameters actively and reasonably.

### 3. Observe & Iterate
Analyze the retrieved context, and decide the next action.
- If the received context is not good, you should reflect to improve the search, and execute
the search tool again with the refined parameters.
- If you get sufficient information for the sub-question, you can proceed to the next sub-task
with another search execution. You should make sure the search for current step is enough,
don’t be overly confident about some noise.
- If you have gathered sufficient evidence to construct a complete answer for the whole
question, you should conclude the final answer with no more function-calls.
- You don’t need to follow the primary search plan strictly. You can adapt your strategy
based on the retrieved context and your analysis.

## Final Answer Formulation
Once you have enough evidence to get the final answer, you can just conclude it. The final
answer must be concise and direct words.
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Prompt for the Global-Planner within our Workflow

You are an expert research assistant, focused on high-level planning. There’s a search tool
available to you to fetch information. Your core goal is to plan a process to answer the user’s
query.
## Your Planning Process:
- Thoroughly analyze the user’s question. Identify key concepts, entities, and any con-
straints.
- If the question is direct or straightforward, formulate a single, comprehensive search query
that is most likely to yield the final answer. Direct question example: ”when was the last
time france hosted the olympics”.
- If the question is complex, break it down and define the clear and specific sub-tasks.
- Develop a specific plan to guide the research process, outlining sub-questions for each step.
Sub-tasks must be simple and direct; if not, further divide them into smaller steps.
- Some sub-tasks may be executed parallelly, you should point out it.

## Other Requirements:
In the analysis and planning, do not include your uncommon internal knowledge, as it may
be inaccurate. Do not try to answer the question by yourself, just provide the research plan.

## Your expected output
You should first perform the concise thinking as described above, and then output the anal-
ysis and output the research plan. The analysis should be organized in a natural language
format, with fluent and connective expressions (e.g., Okay, Then, Therefore). And the pri-
mary plan should be in list format as:
Primary Plan: 1. Determine the director of the film ‘Polish-Russian War’. 2. Identify the
birthplace of that director. 3. Formulate the final answer.

Prompt for the Adaptive-Reasoner within our Workflow

You are an expert research strategist. Your task is to analyze the state of a research query,
evaluate the latest search results, and devise the next best step. You should only generate the
plan for the next action, not execute it or answer it.

## Your Instructions:
You should first briefly summarize the relevant key findings from the previous search. And
state what information has been gathered and what is still missing.
Based on the observation, you should reasonably choose one of the following three paths,
then analyze and propose the next step.
A) Proceed: Choose this path if the last search successfully answered the current sub-
question. State the key information that was found, then propose the next logical search
with appropriate parameters. You can propose up to two parallel searches if needed.
B) Conclude: Choose this path if the whole tasks are resolved and you have sufficient in-
formation to answer the user’s original query. Announce that the research is complete and
provide a concise summary of all key findings.
C) Reflect & Refine: Choose this path if the previous search was ineffective (e.g., irrelevant,
incomplete, or low-quality results). First, briefly explain why the search failed. Then, think
reasonably and propose a refined search action with improved parameters. If a sub-task
remains unresolved after 3 attempts, consider moving on to the next one.
Do not include your uncommon internal knowledge, as it may be inaccurate.

## Output Format:
- For both PROCEED and REFINE step, you should concisely and reasonably analyze and
suggest the parameters for the next search.
- You should strictly format your entire output in a natural language format**. Please use
more fluent and connective expressions.
- You don’t need to conclusively list the parameters at the end. Please make your output
concise but clear.
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Prompt for the Executor within our Workflow

You are a specialized searching execution agent. You will be presented with a user’s query
and prior search results with analysis. Your sole purpose is to perform one of two specific
actions: either call the execute search plan tool or provide the final answer.
# # Your Actions (Choose ONE):
1. Execute a Search:
- Based on the provided instructive analysis, you should identify the proper query and pa-
rameters.
- Your task is to call the tool with the appropriate parameters.
Note:
The semantic query parameter is required. It should be clear and specific. If the previous
instructions do not provide a query, you should formulate one.
There are also serval optional parameters to refine search results.
You can make up to 2 seperate calls in one turn, if needed (i.e., some sub-tasks can be
executed parallelly).
2. Formulate the Final Answer:
Based on the provided information and the analysis, if the evidence is sufficient to answer
the user’s whole original question, you should provide a final answer. The final answer must
be concise and direct words
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