

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INTERACT-RAG: REASON AND INTERACT WITH THE CORPUS, BEYOND BLACK-BOX RETRIEVAL

Anonymous authors

Paper under double-blind review

ABSTRACT

Retrieval-Augmented Generation (RAG) has significantly enhanced LLMs by incorporating external information. However, prevailing agentic RAG approaches are constrained by a critical limitation: they treat the retrieval process as a black-box querying operation. This confines agents' actions to query issuing, hindering its ability to tackle complex information-seeking tasks. To address this, we introduce Interact-RAG, a new paradigm that elevates the LLM agent from a passive query issuer into an active manipulator of the retrieval process. We dismantle the black-box with a Corpus Interaction Engine, equipping the agent with a set of action primitives for fine-grained control over information retrieval. To further empower the agent on the entire RAG pipeline, we first develop a reasoning-enhanced workflow, which enables both zero-shot execution and the synthesis of interaction trajectories. We then leverage this synthetic data to train a fully autonomous end-to-end agent via Supervised Fine-Tuning (SFT), followed by refinement with Reinforcement Learning (RL). Extensive experiments across six benchmarks demonstrate that Interact-RAG significantly outperforms other advanced methods, validating the efficacy of our reasoning-interaction strategy.

1 INTRODUCTION

Large Language Models (LLMs) have shown advancements in natural language understanding and generation but are constrained by their training data, which can be static, outdated, or lack domain-specific knowledge (Huang et al., 2025). Retrieval-Augmented Generation (RAG) has emerged as a prevailing solution to this limitation (Lewis et al., 2020; Gao et al., 2023). By retrieving information from external corpora, RAG systems enable LLMs to access up-to-date information, incorporate specialized knowledge, and reason over proprietary data (Hui et al., 2024; Li et al., 2025c).

The development of RAG has progressed through three stages. The initial approach, **Static RAG**, performs a single retrieval to fetch relevant documents for the LLM (Gao et al., 2023). To handle more complex tasks, **Iterative RAG** frameworks were introduced. These systems employ multi-step retrieval pipelines to progressively gather information (Trivedi et al., 2023; Jiang et al., 2023; Chan et al., 2024). The current frontier is **Agentic RAG**, which uses an LLM-centric agent to autonomously orchestrate the entire workflow with more flexibility (Gao et al., 2025). The agent decides when to retrieve, what to query, and how to analyze the retrieved information (Singh et al., 2025). Advanced implementations include prompt-driven multi-agent workflows (Nguyen et al., 2025; Li et al., 2025b) and other end-to-end trained agents using Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) to improve reasoning and adaptability (Jin et al., 2025a; Zheng et al., 2025; Qian & Liu, 2025).

Despite these advances, existing agentic RAG frameworks share a critical limitation: they treat the retrieval process as an opaque *black-box*. The agent is confined to issuing a query and passively receiving text chunks, typically from an embedding-based semantic retriever (Gao et al., 2025; Jin et al., 2025a). This paradigm prevents the agent from inspecting the internal state of the retrieval process, thereby forcing it to relinquish fine-grained control over the process. Consequently, the agent's exploration is restricted to a trial-and-error loop of query reformulation, which limits the breadth, depth, and overall efficacy of its information seeking. For example, when asked, “Which film was released first, *The Jaws of Death* or *Failure to Launch*?”, an agent might first query for the “release date of *The Jaws of Death*”. This retrieval may fail if the supporting evidence

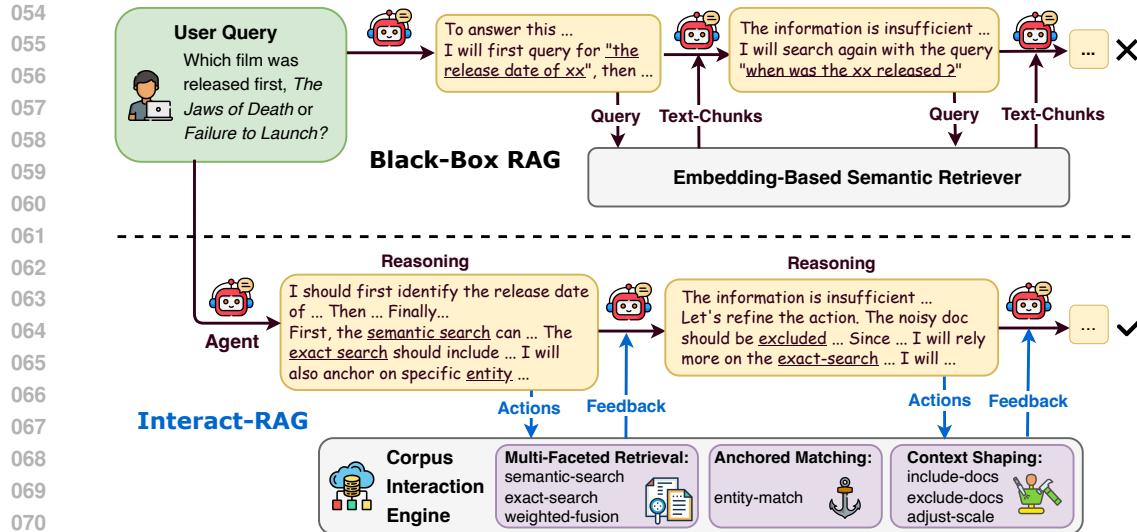


Figure 1: A brief demonstration of Interact-RAG. It empowers the agent with fine-grained control over the information-seeking process, leveraging a set of interactive actions. In contrast, conventional RAG is confined to ineffective loops of query issuing.

is phrased differently (e.g., "...*The Jaws of Death* is a 1976 thriller film...") or if the retriever is distracted by semantically similar but irrelevant entities (e.g., a film named *The Hound of Death*). Faced with such a failure, existing agents can only resort to repeatedly paraphrasing the query (e.g., "when was *The Jaws of Death* released"). This often leads to an inefficient loop of blind guessing that fails to obtain the necessary information.

To overcome this limitation, we introduce **Interact-RAG**, a novel paradigm that transforms the agent from a passive query issuer to an active participant in the retrieval process. Our core idea is to dismantle the retrieval "black box" by providing the agent with transparent and fine-grained control over its information seeking. To achieve this, **firstly**, we propose a **Corpus Interaction Engine**, which equips the agent with a versatile set of Interaction Primitives, categorized into three action types: (1) Multi-Faceted Retrieval, which allows the agent to employ diverse retrieval strategies (e.g., semantic, exact) and adaptively fuse their results with different weights; (2) Anchored Matching, which focuses the search on a specific entity to mitigate distraction from irrelevant content; (3) Context Shaping, which enables the agent to proactively manage the retrieval context by retaining efficient documents and adjusting the retrieval scope. **This suite of primitives serves as a foundation for the fined-grained control, beyond simple query reformulation (as shown in Figure 1).** [Revision: refine the clarification]

However, just providing these interactive capabilities is insufficient. Empowering the LLM to actively and strategically master the interactive pipeline remains challenging. **First**, it is difficult to directly instruct an LLM to manage the intricate multi-step process. To address this, we design a reasoning-enhanced workflow that decomposes the task into three modules: a global planner, an adaptive reasoner, and an executor. This approach not only provides a robust, training-free solution but also synthesizes high-quality agent trajectories for subsequent training. **Second**, achieving full autonomy requires the model to internalize the strategic policies. Therefore, we leverage the synthesized trajectories and apply Supervised Fine-Tuning (SFT), followed by refinement with Reinforcement Learning (RL). As shown in Figure 1, we finally yield a unified, end-to-end agent capable of executing the entire pipeline, without relying on an explicit multi-module architecture.

We conduct extensive experiments on six challenging RAG benchmarks. Our final trained Interact-RAG agent significantly outperforms other advanced RAG approaches, achieving a relative improvement of 22.5%. Ablation studies and detailed analysis further validate the efficacy of our proposed methods. This work sheds light on future exploration to build effective RAG systems with agent-driven interactive retrieval and reasoning enhancement.

108 2 PRELIMINARY
109110 2.1 RAG FORMULATION
111112 **External Information.** The external information in RAG is often represented as a visible **corpus**
113 $\mathcal{C} = \{d_1, d_2, \dots, d_N\}$, typically consisting of N documents or segmented text chunks.114 **Task Formulation.** For a RAG system, the core objective is to produce a factual and useful response
115 A to a user query Q , utilizing the retrieved information from the external corpus \mathcal{C} .
116117 **Basic Pipeline.** The RAG process typically consists of two main stages: retrieval and generation.
118 Given a user query Q and the corpus \mathcal{C} , a retriever \mathcal{R} selects some relevant chunks $\mathcal{C}' \subset \mathcal{C}$, which is
119 often based on embedding similarity. Subsequently, a LLM \mathcal{G} generates the response Y , conditioned
120 on both the query Q and the retrieved context \mathcal{C}' . The process can be formalized as:
121

122
$$\mathcal{C}' = \mathcal{R}(Q, \mathcal{C}), \quad Y = \mathcal{G}(Q \mid \mathcal{C}').$$

123

124 2.2 END-TO-END RAG AGENT
125126 To overcome the rigidity of static pipelines, recent works frame RAG as a sequential process driven
127 by an LLM agent, π_{LLM} . Given a query Q , the agent continuously searches the information from a
128 corpus \mathcal{C} . At each step t , it generates an action a_t based on the history: $a_t = \pi_{\text{LLM}}(H_{t-1})$, where
129 the history H_{t-1} contains prior thoughts, actions and retrieved information (with $H_0 = Q$).
130131 The actions of agent often include: (1) **search** (q_t) : issuing a query q_t to retrieve evidence I_t from
132 the corpus; (2) **answer** (Y) : concluding the final answer Y . When a **search** action is invoked,
133 the information I_t is retrieved and appended to the history, following the action a_t :
134

135
$$H_t = H_{t-1} \oplus (a_t, I_t)$$

136

137 where \oplus denotes the concatenation operation. And a typical agent trajectory can be visualized as:
138

139
$$Q \rightarrow [\text{thought}] \rightarrow [\text{search}] \rightarrow [\text{info}] \rightarrow [\text{thought}] \rightarrow [\text{search}] \rightarrow [\text{info}] \rightarrow [\text{thought}] \rightarrow [\text{answer}]$$

140

141 In this trajectory, each [thought]-[search] or [thought]-[answer] corresponds to an action a_t , [info]
142 represents the retrieved information I_t , and their accumulated history H_t is iteratively fed to the
143 LLM for subsequent decisions.
144145 3 METHODOLOGY: INTERACT-RAG
146147 In this section, we introduce Interact-RAG with three core components: (1) a corpus interaction
148 engine that supports the fine-grained information control; (2) a reasoning-enhanced workflow that
149 enables both zero-shot solution and data synthesis; and (3) a training pipeline using SFT and RL to
150 produce an autonomous end-to-end agent.
151152 3.1 INTERACTIVE ENGINE AND PARADIGM
153154 RAG systems typically treat the information retrieval as a black-box semantic-query-search. To
155 address this, we propose the **Corpus Interaction Engine**, which equips the agent with a versatile
156 set of *Interaction Primitives*. This allows the agent to navigate the information corpus \mathcal{C} in a **human-like manner**,
157 with fine-grained reasoning and manipulation. We define the agent's action space \mathcal{A}_{CI}
158 (corpus interaction) to include these primitives, which can be categorized into three classes:
159160 **1) Multi-Faceted Retrieval.** Primitives in this category offer diverse retrieval strategies to locate
161 query-related text passages, balancing semantic relevance with lexical precision.
162163

- **semantic_search** ($query_s$) : Performs a dense retrieval, using embedding similarity to find
164 semantically related documents.
- **exact_search** ($keywords_e$) : Executes a sparse retrieval based on exact keywords ranking,
165 ideal for finding specific terms, names, or phrases.
- **weighted_fusion** (w_s, w_e) : Sets the fusion weights for semantic and exact search strate-
166 gies, enabling the agent to flexibly combine their strengths based on the context of the query.
167

162 **2) Anchored Matching.** This allows the agent to focus its search on a specific, identified entity,
 163 thereby retrieving highly relevant information and minimizing distraction from noisy context.
 164

- 165 • `entity_match(entity)` : Retrieves information segments that are strongly associated with a
 166 specified entity, ensuring the results are centered around a key subject.

167 **3) Context Shaping.** These actions enable the agent to sculpt the information context dynamically.
 168

- 169 • `include_docs(doc_ids)` : Guarantees the inclusion of specified documents in subsequent
 170 retrieval steps, ensuring critical information is not missed.
- 171 • `exclude_docs(doc_ids)` : Filters out irrelevant documents from subsequent searches, pre-
 172 venting noisy distractions.
- 173 • `adjust_scale(n)` : Adaptively adjusts the scale of the retrieved information (e.g., the number
 174 of text chunks) to match the different complexity of the sub-problem.

175
 176 **Agent Interaction Pipeline.** Within the Interact-RAG pipeline, the LLM agent orchestrates the
 177 decision-making process (as shown in Figure 1). At each step t , given the previous history, the
 178 LLM will generate a structured output that includes: (1) a reasoning thought that rationalizes the
 179 current state and strategy, and (2) a suite of concurrent actions $A_t = \{a_{t_1}, a_{t_2}, \dots\} \subset \mathcal{A}_{CI}$. These
 180 actions are formulated in the parameterized function call, encapsulated within structured tags (e.g.,
 181 `<tool_call>...</tool_call>`). The Corpus Interaction Engine then parses and executes the actions,
 182 returning a consolidated response to the LLM. This response, wrapped in tags like `<tool_response>`,
 183 contains the aggregated retrieved content and critical metadata (e.g., source document id, similarity
 184 scores for each search strategy). This interactive feedback allows the agent to perform sophisticated
 185 strategic analysis and dynamically refine the next actions.

186
 187 **Implementation.** Our engine is designed for computationally efficiency with small overhead.
 188 We implement primitives like `exact_search` and `entity_match` by leveraging the Full-Text
 189 Search (FTS) modules in relational databases (SQLite, 2025). While this builds an additional text
 190 index, the computational cost is negligible. Furthermore, the Context Shaping primitives are imple-
 191 mented through simple filters. It is worth noting that while the agent may invoke multiple strategies
 192 in a single iteration, our engine avoids generating multiple large contexts. Instead, it produces a
 193 single consolidated context by aggregating these primitives. Further implementation details and
 194 validation are provided in Appendix D.2.

195 3.2 REASONING-ENHANCED WORKFLOW

196 Directly prompting an LLM to master the entire interactive pipeline is challenging. Therefore,
 197 we develop a reasoning-enhanced workflow, decomposing the agent action into a hierarchical and
 198 iterative structure. It not only serves as a robust training-free solution but also generates high-quality
 199 data to train our end-to-end agent. As shown in Figure 2, the workflow contains three collaborative
 200 modules: a global-planner, an adaptive-reasoner, and an executor.

201 **1) Global-Planner.** Given a user query, the global-planner analyzes the problem and decomposes it
 202 into a primary step-by-step execution plan, providing a high-level strategic roadmap.

203 **2) Adaptive-Reasoner.** This component acts as the cognitive core of the workflow. At each step, it
 204 first analyzes the current state, including the previous actions, gathered information, and the objec-
 205 tive from the planning road-map. After the analysis, it adaptively issues one of two directives:

- 206 • **Proceed:** If the current sub-task is progressing well and the retrieved information is sufficient,
 207 it instructs the Executor to proceed to the next step or conclude the final response.
- 208 • **Reflect & Refine:** If the process encounters an obstacle (e.g., insufficient information), the
 209 reasoner will enter a reflection phase. It diagnoses the issue and refines the interaction strategy
 210 for the next action. For example, it might rely more on `exact_search` to locate precise terms,
 211 or use `exclude_docs` to filter out misleading documents.

212 Additionally, the reasoner is instructed to adjust the primary plan when necessary. This ensures
 213 flexibility, allowing changes without rigidly adhering to the initial roadmap.

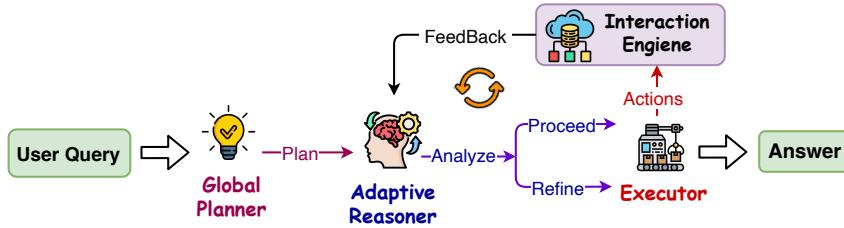


Figure 2: An illustration of our reasoning-enhanced workflow.

3) Executor. Following the directives from the reasoner, the executor translate the strategy into a concrete, structured action. It generates the precise function call for the interaction primitives with appropriate parameters. Once all sub-tasks are complete, the Executor will generate the final answer.

This modular design clearly decouples high-level planning, detailed reasoning and precise execution. For a general-purpose LLM, this separation is critical, as the well-defined and focused tasks elicit more reliable output. This workflow yields two significant advantages. First, as a training-free method, it enhances the stability and logical coherence of zero-shot RAG. Second, it serves as a data synthesis engine to train the autonomous agent. With logically-structured modules, the LLM operates in a non-reasoning mode to produce clean reasoning traces, free from the verbose and irrelevant thinking content, which is common in native large reasoning models (LRMs).

3.3 END-TO-END AGENT TRAINING

To develop an autonomous, end-to-end LLM agent that internalizes reasoning, we adopt a two-stage training process involving supervised fine-tuning (SFT) followed by reinforcement learning (RL).

Trace Sampling and Fine-Tuning. The initial SFT stage aims to teach the LLM the fundamental mechanics, such as planning, reasoning, and mastering the interactions. We leverage our reasoning-enhanced workflow to generate a collection of trajectories based on QA pairs. To ensure the data quality, we retain only successful trajectories, where the agent’s final answer matches the ground truth. The agent is then fine-tuned on these high-quality trajectories. The training objective is to predict the sequence of thoughts and actions in an auto-regressive manner. During loss calculation, we mask out the tokens of retrieved information, avoiding the distraction during learning.

Policy Refinement with Reinforcement Learning. We then employ RL to enable superior strategies through active exploration. We adopt Group Relative Policy Optimization (GRPO) (Shao et al., 2024), an advanced optimization algorithm, to further refine the agent’s policy π_θ . **During the policy updating, we also mask out the tokens of retrieved information.**

1) RL Objective: Given a question from the dataset $q \in \mathcal{D}_Q$, the agent generates a group of trajectories $\{\tau_i\}_{i=1}^N$. And the policy π_θ is updated using the following objective function:

$$\mathcal{J}_{\text{GRPO}}(\theta) = \mathbb{E}_{[q \sim \mathcal{D}_Q, \{\tau_i\}_{i=1}^N \sim \pi_{\theta_{\text{old}}}(\cdot|q)]} \left[\frac{1}{N} \sum_{i=1}^N \frac{1}{|\tau_i|} \sum_{t=1}^{|\tau_i|} \min \left(\rho_\theta(\mathbf{a}_t^{(i)}) \hat{A}(\tau_i), \text{clip} \left(\rho_\theta(\mathbf{a}_t^{(i)}), 1 \pm \epsilon \right) \hat{A}(\tau_i) \right) - \beta \mathbb{D}_{\text{KL}}(\pi_\theta \| \pi_{\text{ref}}) \right],$$

where \mathbf{a}_t means the agent action, $\rho_\theta(\mathbf{a}_t^{(i)}) = \frac{\pi_\theta(\mathbf{a}_t^{(i)} | \mathbf{s}_{t-1}^{(i)})}{\pi_{\theta_{\text{old}}}(\mathbf{a}_t^{(i)} | \mathbf{s}_{t-1}^{(i)})}$ is the importance sampling ratio, and the advantage $\hat{A}(\tau_i)$ is calculated by normalizing the rewards within the sampled group. This objective encourages updates towards high-reward trajectories while stabilizing training.

2) Reward Function: We design a outcome reward $R(\tau)$ to guide the agent, based on both the syntactic validity and answer accuracy of its trajectory τ :

$$R(\tau) = -1 + \mathbb{I}\{\tau_{\text{valid}}\} + \mathbb{I}\{\tau_{\text{valid}}\} \cdot \mathbb{I}\{y_{\text{ans}}\}$$

Here, each trajectory incurs an initial penalty of -1. The agent should generate a format-coherent output to overcome this penalty. $\mathbb{I}\{\cdot\}$ denotes the *indicator function*, which returns 1 if its enclosed

270 condition is true, and 0 otherwise. **First**, the term $\mathbb{I}\{\tau_{\text{valid}}\}$, grants a +1 reward if τ is syntactically
 271 valid, thereby neutralizing the initial penalty. Syntactic validity encompasses the entire action se-
 272 quence structure, the reasoning format, and the tool call syntax. **Second**, $\mathbb{I}\{\tau_{\text{valid}}\} \cdot \mathbb{I}\{y_{\text{ans}}\}$ provides
 273 a +1 reward for task success, where the final answer y_{ans} matches the ground-truth. This reward is
 274 gated by the trajectory’s validity, ensuring that only well-formed output can be rewarded. **It worth**
 275 **noting that, The inclusion of the ”-1 initial penalty” was primarily intended for intuitive logic. Math-
 276 ematically, this constant term is canceled out during the group-based normalization process in GRPO**
 277 **and does not influence the advantages or the actual training.**

279 4 EXPERIMENTS

281 4.1 EXPERIMENTAL SETTINGS

283 **Datasets.** We conduct experiments across six prominent and standard RAG benchmarks. These
 284 include two single-hop question-answering datasets, Natural Questions (**NQ**) (Kwiatkowski et al.,
 285 2019) and **PopQA** (Mallen et al., 2023), and four multi-hop question-answering datasets: **Hot-
 286 potQA** (Yang et al., 2018), **2WikiMultiHopQA (2Wiki)** (Ho et al., 2020), **MuSiQue** (Trivedi
 287 et al., 2022), and **Bamboogle** (Press et al.). More dataset details are in Appendix D.1 **Besides,**
 288 **for more comprehensive evaluation over non-wiki domains, we conduct additional experiments on**
 289 **the MultiHop-RAG benchmark (Tang & Yang, 2024) (more details in Appendix C.2).**

290 **Baselines.** We compare our method against a diverse suite of baselines, covering paradigms of
 291 non-RAG, static, iterative, prompt-driven multi-agent, and end-to-end trained agents. Specifically,
 292 we include: (1) **Direct**: Answers questions directly via Chain-of-Thought, without external in-
 293 formation. (2) **Standard RAG**: A static RAG method that performs a single retrieval. (3) **IR-
 294 CoT** (Trivedi et al., 2023): A representative iterative RAG method using intermediate thought-chain
 295 steps to formulate queries for multi-step retrieval. (4) **MA-RAG** (Nguyen et al., 2025): A multi-
 296 agent framework with agent collaboration. (5) **Search-O1** (Li et al., 2025b): An agentic framework
 297 with a reasoning-enhanced workflow. (6) **Search-R1** (Jin et al., 2025a): An end-to-end approach
 298 that uses RL to generate multi-turn search queries after reasoning. (7) **SimpleDeepSearcher (S-
 299 DeepSearcher)** (Sun et al., 2025): An end-to-end approach that fine-tunes a LLM on synthesized
 300 high-quality data. (8) **R-Search** (Zhao et al., 2025): An end-to-end approach that trains an au-
 301 tonomous agent via RL, using optimized multi-reward signals.

302 **Experimental Details.** Following previous works (Jin et al., 2025a; Qian & Liu, 2025), we process
 303 the 2018 Wikipedia dump as the retrieval corpus. We employ the e5-base-v2 (Wang et al., 2022)
 304 model as the retriever, fetching the top 3 relevant chunks. **To ensure a fair comparison, we maintain**
 305 **the same corpus and retriever across all methods, and re-evaluate all baselines under this unified**
 306 **setting.** For all experiments, we use Qwen3-8B by default (Yang et al., 2025), a recent instruction-
 307 tuned model. For training-driven baselines (i.e., Search-R1, S-DeepSearcher, and R-Search), we
 308 utilize their official checkpoints trained on Qwen-2.5-7B, since their 8B versions are not available
 309 yet. To ensure the comprehensiveness, we also report our results on Qwen2.5-7B in main results.

310 We train our agent on the combined training splits of NQ, HotpotQA, and MuSiQue, and evaluate it
 311 on the test splits of all six benchmarks. This setup enables the generalization on both **in-distribution**
 312 and **out-of-distribution** (PopQA, 2Wiki, Bamboogle). For the training process, we first employed
 313 Qwen-Plus to synthesize 4.8K agent trajectories for SFT. Subsequently, we utilized 7.1K question-
 314 answer pairs for the RL phase. More details are in Appendix D.3.

315 4.2 MAIN RESULTS

316 We evaluate Interact-RAG on six benchmarks, with the main results in Table ???. Our findings
 317 highlight three key advantages of our approach. **First**, Interact-RAG consistently achieves best per-
 318 formance across all datasets. On average, it improves the EM-score by **9.7** points (**22.5%** relative
 319 gain) over the second-best method, Search-R1. And our 7B version also achieves a relative im-
 320 provement of 10.1%. Notably, our Interact-RAG was trained on 12K QA data, a small fraction of
 321 the 170K QA pairs used for Search-R1. This data disparity also explains Search-R1’s higher re-
 322 sults on the NQ dataset using the 7B model. **Second**, the performance gains are more pronounced
 323 on complex multi-hop QA tasks. For instance, on Musique, Interact-RAG delivers a 36.4% rela-
 324 tive improvement. Concurrently, it maintains strong performance on single-hop benchmarks like

Method	Multi-Hop QA								Single-Hop QA				AVG	
	HotpotQA		2Wiki.		Musique		Bamboogle		NQ		PopQA			
	EM	F1	EM	F1	EM	F1	EM	F1	EM	F1	EM	F1	EM	F1
Results on Qwen2.5-7B Backbone														
Direct	17.8	26.2	22.6	27.7	4.3	9.8	19.6	30.2	16.1	23.5	18.6	21.2	16.5	23.1
Std-RAG	29.8	41.5	28.0	34.1	9.5	14.4	18.4	26.8	35.1	44.9	34.6	41.2	25.9	33.8
IR-CoT	19.3	36.6	20.0	37.5	5.2	14.4	18.2	30.0	16.5	27.5	24.6	34.8	17.3	30.1
MA-RAG	35.0	44.7	39.6	46.9	13.1	19.0	40.8	50.9	29.5	39.9	33.3	39.0	31.9	40.1
Search-o1	33.6	46.3	39.9	49.6	14.7	21.7	32.0	45.3	33.7	43.8	36.3	43.1	31.7	41.6
Search-R1	<u>45.2</u>	<u>60.1</u>	50.9	58.2	<u>25.5</u>	<u>34.1</u>	42.2	55.6	45.3	54.7	<u>49.3</u>	<u>53.6</u>	<u>43.1</u>	<u>52.7</u>
R-Search	38.2	51.0	<u>58.8</u>	<u>64.4</u>	19.4	28.0	36.0	52.1	36.8	46.5	42.8	46.2	38.7	48.0
S-DeepSearch	40.2	53.6	54.0	61.8	18.6	25.8	<u>46.2</u>	<u>57.4</u>	37.0	46.6	40.6	46.1	39.4	48.5
Interact-RAG-7B	47.8	61.6	63.6	71.0	30.9	39.5	47.6	61.1	<u>43.7</u>	<u>52.9</u>	51.6	54.4	47.5	56.8
Results on Qwen3-8B Backbone														
Direct	23.6	33.0	26.4	32.5	5.9	13.3	33.2	49.1	19.8	30.4	20.5	25.0	21.6	30.6
Std-RAG	37.6	50.6	35.9	41.2	13.7	21.0	26.8	35.0	37.1	47.8	37.3	44.6	31.4	40.0
IR-CoT	30.8	43.3	33.6	42.6	12.9	20.3	22.8	32.6	33.0	43.9	31.7	38.1	27.5	36.8
MA-RAG	39.3	51.7	45.5	53.1	18.0	25.1	35.6	49.3	34.6	46.2	40.2	45.8	35.5	45.2
Search-o1	23.1	30.2	28.0	34.6	10.1	13.8	31.2	39.7	33.1	41.9	33.1	38.4	26.4	33.1
Search-R1 [†]	<u>45.2</u>	<u>60.1</u>	50.9	58.2	<u>25.5</u>	<u>34.1</u>	42.2	55.6	<u>45.3</u>	<u>54.7</u>	<u>49.3</u>	<u>53.6</u>	<u>43.1</u>	<u>52.7</u>
R-Search [†]	38.2	51.0	<u>58.8</u>	<u>64.4</u>	19.4	28.0	36.0	52.1	36.8	46.5	42.8	46.2	38.7	48.0
S-DeepSearch [†]	40.2	53.6	54.0	61.8	18.6	25.8	<u>46.2</u>	<u>57.4</u>	37.0	46.6	40.6	46.1	39.4	48.5
Interact-RAG	51.6	66.7	69.6	76.4	34.8	43.9	54.0	65.5	50.9	60.7	56.0	60.2	52.8	62.2

Table 1: [Revision: move the results on Qwen2.5-7B from the Appendix to the main results.] Overall performance in Exact Match (EM) and F1 scores across various benchmarks. **Bold** and underline denote the best and second-best performance. For the Qwen3-8B results, methods marked with a dagger ([†]) use their official 7B models, due to the lack of 8B versions. Notably, our Interact-RAG was trained on 12K QA data, a small fraction of the 170K QA pairs used for Search-R1. This data disparity also explains Search-R1’s higher results on the NQ dataset when using the 7B model.

Method	2Wiki.	Musique	PopQA
Interact-RAG	69.6	34.8	56.0
w/o Interaction	63.4 (-8.9%)	30.1 (-10.9%)	50.2 (-10.4%)
w/o SFT	59.0 (-15.2%)	26.4 (-21.9%)	52.2 (-6.8%)
w/o RL	65.2 (-6.3%)	28.1 (-16.9%)	45.6 (-18.6%)

Table 2: Ablation study on Interact-RAG, reported in Exact Match (EM) scores. The 2Wiki and Musique are multi-hop-QA datasets, while PopQA is single-hop.

NQ and PopQA, with relative improvements of 11.0% and 12.3% on EM scores. This validates the effectiveness of our interaction-reasoning paradigm in tackling complex challenges. **Third**, our trained agent demonstrates great generalization. Trained with train-splits of HotpotQA, Musique, and NQ, it achieves consistent improvements on both in-distribution and out-of-distribution benchmarks. This indicates that the learned capability are not task-specific, underscoring the robustness and generalizability of our approach.

4.3 ABLATION STUDY

As shown in Table 2, we conduct an ablation study on Interact-RAG.

Efficacy of the Interaction Paradigm. The “w/o Interaction” variant means the black-box retrieval is deployed, mirroring the paradigm of typical agentic RAG systems. In this configuration, the agent is restricted to issuing queries to a semantic retriever, without any other interaction. The

378	Method	2Wiki	Musique	PopQA
379	Interact-RAG	69.6	34.8	56.0
380	w/o All-Interaction	63.4	30.1	50.2
381	w/o Multi-faceted Retrieval	66.0	34.6	55.1
382	w/o Anchored Matching	66.3	34.4	53.4
383	w/o Context Shaping	68.8	33.6	55.2
384				

385 Table 3: **Fine-grained ablation study on interaction primitives, reported in Exact Match (EM) scores.**
 386 [Revision: add more ablation results.]
 387

388	Training-free Method	2Wiki.	Musique	PopQA
389	MA-RAG	45.5	18.0	40.2
390	Interact-RAG-Workflow	60.1	24.1	43.6
391	w/o Interaction	56.3	18.8	38.7
392	w/o Workflow	52.0	21.8	40.0
393				

394 Table 4: Ablation performance of our training-free workflow, with MA-RAG (Nguyen et al., 2025)
 395 as a baseline reference. Results are reported in Exact Match (EM) scores.
 396

397 corresponding results clearly show a marked performance drop. This finding underscores the critical
 398 value of our interactive paradigm, confirming that equipping the agent with fine-grained control over
 399 the information-seeking process is essential and effective.

400 **Impact of the Training Strategy.** For our two-phase training, removing SFT leads to severe performance
 401 drops, especially on challenging datasets like Musique (-21.9%). This highlights its role in
 402 building fundamental mechanics of planning, reasoning, and iterative interaction. Similarly, omitting
 403 RL also causes marked declines, as RL is essential to develop more strategic policies. These results
 404 demonstrate that while SFT establishes the core patterns of reasoning and interaction, RL further
 405 optimizes the agent’s policy to achieve better performance. (More discussion in Section 4.5).

406 **Ablation on Interaction Primitives.** To isolate the specific contributions of each component, we
 407 conduct a fine-grained ablation study on the interaction primitives (Table 4.3). The results reveal
 408 a strong synergistic effect: while removing the single module degrades performance, the complete
 409 absence of interaction leads to the most significant drop. This confirms that these primitives function
 410 collectively to surpass black-box retrieval. Furthermore, the contributions of different components
 411 vary across data patterns, showing the comprehensiveness of our design. For example, Multi-Faceted
 412 Retrieval and Anchored Matching are vital for 2Wiki, which may demand explicit facts. And Con-
 413 text Shaping proves more impactful on Musique, where the prevalence of distractors requires robust
 414 context scaling.

416 4.4 TRAINING-FREE SCENARIOS

417 In scenarios with limited training resources or requiring zero-shot deployment, training-free solutions
 418 are practically important. Therefore, we evaluate our training-free approach, termed Interact-
 419 RAG-Workflow. As shown in Table 4, our approach consistently outperforms MA-RAG across
 420 various benchmarks, underscoring the intrinsic effectiveness of our reasoning-interaction paradigm
 421 even without model training. To better understand the impact of individual components, we con-
 422 duct two ablation studies. First, removing the interaction (i.e, resorting to a black-box query-search)
 423 leads to a significant performance drop, highlighting the critical role of fine-grained retrieval con-
 424 trol. Second, “w/o workflow” means omit our reasoning-enhanced workflow and directly instruct
 425 the LLM through an end-to-end prompt (detailed in Appendix D.4). This also results in performance
 426 degradation, confirming the effectiveness of our workflow to orchestrate the entire RAG process.

428 4.5 DETAILED ANALYSIS

429 **Efficiency of Information Retrieval.** We further assess the retrieval process by measuring the
 430 number of action iterations. We compare our Interact-RAG against two query-only methods: an

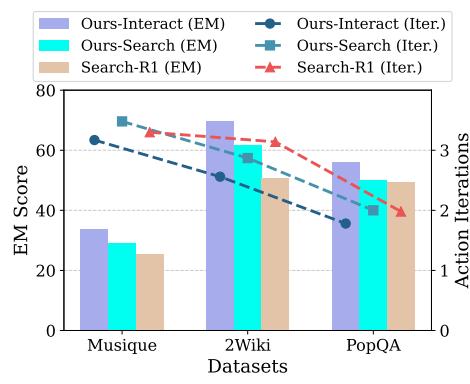


Figure 3: Comparison of the retrieval iterations and the accuracy. [Revision: rephrase the expression]

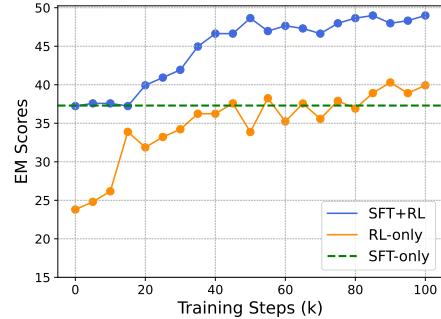


Figure 4: Performance during RL training. Measured on a sampled subset.

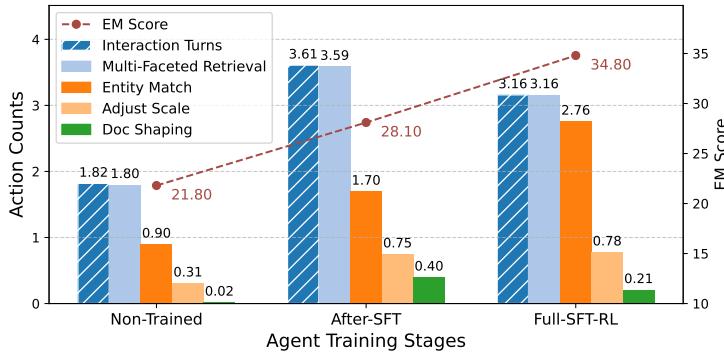


Figure 5: Action invocation status in different training stages. Measured on the Musique dataset.

ablation variant restricted to only the query-search action (termed as Ours-Search) and the Search-R1 method. The results in Figure 3 indicate that Interact-RAG always achieves the highest EM scores with the minimum action iterations. This is particularly pronounced on complex multi-hop datasets (2Wiki and Musique), where tasks demand more intricate information seeking. This finding validates the core advantage of our paradigm: by providing the agent with fine-grained control, it can navigate the information space in less iterations, avoiding inefficient trial-and-error loops. (A case study is in Figure 6).

Training Dynamics in RL. Figure 4 depicts the RL training dynamics, with EM scores evaluated on a sampled subset of the six test datasets. We compare the two-stage SFT+RL approach with a RL-only method. Starting from the SFT checkpoint, the SFT+RL model demonstrates a consistent improvement after an initial warm-up phase, ultimately converging at a high-performance level. In contrast, the RL-only agent shows faster progress within the first 40 steps and then its development slows, resulting in marginal improvements over the SFT-only baseline (dashed line) and falling significantly behind the SFT+RL model. This highlights the critical role of the two-stage training. SFT provides the agent with a crucial foundational capability and strategic solution paths. Without this prior, the RL-only agent struggles to master the complex retrieval strategies from scratch.

Interaction Patterns Across Training Stages. To understand how our training shapes the agent’s behavior, Figure 5 shows the statistics of interaction across different stages. (1) Non-Trained: The agent relies solely on an end-to-end prompt, exhibiting limited engagement. It averages only 1.82 turns, with minimal invocation of interactive actions. This confirms that, without training, the LLM struggles to autonomously master the iterative information-seeking process. (2) SFT Stage: After SFT, the agent learns the fundamental processing patterns. The number of interaction turns rises to 3.61, indicating that SFT instills reasoning strategies and equips the agent to better engage with the Corpus Interaction Engine. (3) RL Stage: While the number of interaction turns decreases, the EM

486 score improves significantly. This reflects the agent’s transition to a more strategic policy, enhancing
 487 both efficiency and accuracy through improved reasoning and appropriate retrieval actions. (4)
 488 Detailed Observations: After the RL exploration, the frequency of Entity-Match increases sharply.
 489 This suggests the agent has learned to prioritize precise and anchored searches. In contrast, the use
 490 of Doc-Shaping decreases, because the agent’s improved retrieval precision reduces the necessity
 491 for subsequent noise filtering. In summary, this progression analysis highlights the rationality and
 492 effectiveness of our interaction paradigm and training pipeline.

493

494 5 RELATED WORK

495

496 5.1 RETRIEVAL-AUGMENTED GENERATION

497

498 Retrieval-Augmented Generation (RAG) is a prevailing method to enhance LLMs with external in-
 499 formation (Lewis et al., 2020). Basic RAG relies on static embedding-based retrieval, which may
 500 suffer from information omission (Gao et al., 2023). To address this, various studies propose tree-
 501 based or graph-based index to improve retrieval robustness (Jin et al., 2025b; Edge et al., 2024; Luo
 502 et al., 2025). Another direction focuses on improving the retrieval pipeline. Iterative RAGs were in-
 503 troduced to progressively refine information through multi-step retrieval (Trivedi et al., 2023; Chan
 504 et al., 2024; Hui et al., 2025). Recent agentic methods provide more flexibility, where the LLM
 505 autonomously orchestrate the entire RAG pipeline (Gao et al., 2025). Methods such as MA-RAG
 506 (Nguyen et al., 2025), Search-O1 (Li et al., 2025b), and MCTS-RAG (Hu et al., 2025) implement
 507 prompt-driven strategies, leveraging multiple agentic modules. End-to-end approaches like Search-
 508 R1 (Jin et al., 2025a), InForage (Qian & Liu, 2025), and SimpleDeepSearcher (Sun et al., 2025)
 509 adopt SFT and RL to create fully autonomous agents. Despite the effectiveness of above approaches,
 510 they often operate within a black-box retrieval paradigm, limiting the analysis and control. Ad-
 511 dressing this, our work explores an interactive framework with fine-grained retrieval manipulation,
 512 supporting improved reasoning and adaptability.

513

514 5.2 REASONING-ENHANCED LLM AGENT

515

516 Enhancing LLMs with reasoning has become a prevailing research focus (Xu et al., 2025). The
 517 strategies span prompting-based approaches like Chain-of-Thought Wei et al. (2022), and training-
 518 optimized models like OpenAI o1/o3/o4 (Jaech et al., 2024) and DeepSeek-R1 (Guo et al., 2025).
 519 To support broader scenarios, various works leverage reasoning to improve the performance of LLM
 520 agents (Ferrag et al., 2025), training them to use tools and solve complex problems (Lu et al., 2025b;
 521 Shen et al., 2025). They explore various dimensions, including the construction of high-quality
 522 training data (Li et al., 2025a; Shi et al., 2025), the refinement of reward signals (Zhao et al., 2025;
 523 Qian & Liu, 2025), and the optimization of reinforcement learning algorithms (Dong et al., 2025; Lu
 524 et al., 2025a). While these works have made great advances concentrating on the agent’s training, our
 525 focus is distinct: we redesign the interaction paradigm for RAG agents and leverage the reasoning
 526 capability to enable fine-grained manipulation.

527

528 6 CONCLUSION

529

530 In this paper, we identify the limitation of simple black-box retrieval, and introduce Interact-RAG, a
 531 new paradigm empowering LLM agents with fine-grained control over the information-seeking pro-
 532 cess. Our approach features an underlying Interaction Engine, a reasoning-enhanced workflow and
 533 a two-stage training pipeline, finally yielding a unified, end-to-end interactive RAG agent. Extensive
 534 experiments show Interact-RAG significantly outperforms advanced baselines, validating the
 535 effectiveness of reasoning-interaction paradigm. This work offers a promising direction for creating
 536 more powerful, transparent, and interactive RAG systems.

537

538

539

540 ETHICS STATEMENT
541

542 This work adheres to the ethical guidelines set forth by ICLR 2026. We have conducted our research
543 with a commitment to avoiding harm, ensuring honesty and transparency in our methodology and
544 reporting. We have made concerted efforts to identify and mitigate potential biases in our data and
545 algorithms to ensure fairness. Furthermore, our research respects individual privacy, and we have
546 complied with all applicable regulations and ethical standards regarding data use.

548 REPRODUCIBILITY STATEMENT
549

550 In this work, we present Interact-RAG, a new paradigm empowering LLM agents with fine-grained
551 control over the information-seeking process. To ensure reproducibility and facilitate further re-
552 search, we provide the source code of our approach (details can be found in the supplementary
553 materials). Additionally, we offer comprehensive documentation in Section 4.1 and Appendix D,
554 covering dataset details, training parameters, environment constructions, and experimental configu-
555 rations. Together, these efforts ensure the reproducibility of our work.

557 REFERENCES
558

559 Satish Tanaji Bhosale, Tejaswini Patil, and Pooja Patil. Sqlite: Light database system. *Int. J. Comput. Sci. Mob. Comput.*, 44(4):882–885, 2015.

560

561 Chi-Min Chan, Chunpu Xu, Ruibin Yuan, Hongyin Luo, Wei Xue, Yike Guo, and Jie Fu. Rq-rag:
562 Learning to refine queries for retrieval augmented generation. *arXiv preprint arXiv:2404.00610*,
563 2024.

564

565 Chroma core team. Chroma: Open-source search and retrieval database for ai applications. <https://github.com/chroma-core/chroma>, 2025.

566

567 Gordon V Cormack, Charles LA Clarke, and Stefan Buetzcher. Reciprocal rank fusion outperforms
568 condorcet and individual rank learning methods. In *Proceedings of the 32nd international ACM
569 SIGIR conference on Research and development in information retrieval*, pp. 758–759, 2009.

570

571 Guanting Dong, Hangyu Mao, Kai Ma, Licheng Bao, Yifei Chen, Zhongyuan Wang, Zhongxia
572 Chen, Jiazen Du, Huiyang Wang, Fuzheng Zhang, et al. Agentic reinforced policy optimization.
573 *arXiv preprint arXiv:2507.19849*, 2025.

574

575 Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
576 Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson. From local to global: A
577 graph rag approach to query-focused summarization. *arXiv preprint arXiv:2404.16130*, 2024.

578

579 Mohamed Amine Ferrag, Norbert Tihanyi, and Merouane Debbah. From llm reasoning to au-
580 tonomous ai agents: A comprehensive review. *arXiv preprint arXiv:2504.19678*, 2025.

581

582 Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
583 Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A
584 survey. *arXiv preprint arXiv:2312.10997*, 2(1), 2023.

585

586 Yunfan Gao, Yun Xiong, Yijie Zhong, Yuxi Bi, Ming Xue, and Haofen Wang. Synergizing rag and
587 reasoning: A systematic review. *arXiv preprint arXiv:2504.15909*, 2025.

588

589 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
590 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
591 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

592

593 Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
594 qa dataset for comprehensive evaluation of reasoning steps. In *Proceedings of the 28th Interna-
595 tional Conference on Computational Linguistics*, pp. 6609–6625, 2020.

596

597 Yunhai Hu, Yilun Zhao, Chen Zhao, and Arman Cohan. Mcts-rag: Enhancing retrieval-augmented
598 generation with monte carlo tree search. *arXiv preprint arXiv:2503.20757*, 2025.

594 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
 595 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
 596 models: Principles, taxonomy, challenges, and open questions. *ACM Transactions on Information*
 597 *Systems*, 43(2):1–55, 2025.

598 Yulong Hui, Yao Lu, and Huachen Zhang. Uda: a benchmark suite for retrieval augmented gen-
 599 eration in real-world document analysis. In *Proceedings of the 38th International Conference on*
 600 *Neural Information Processing Systems*, pp. 67200–67217, 2024.

602 Yulong Hui, Yihao Liu, Yao Lu, and Huachen Zhang. Okralong: A flexible retrieval-augmented
 603 framework for long-text query processing. *arXiv preprint arXiv:2503.02603*, 2025.

604 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 605 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv*
 606 *preprint arXiv:2412.16720*, 2024.

608 Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
 609 Jamie Callan, and Graham Neubig. Active retrieval augmented generation. In *Proceedings of the*
 610 *2023 Conference on Empirical Methods in Natural Language Processing*, pp. 7969–7992, 2023.

612 Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
 613 Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
 614 learning. *arXiv preprint arXiv:2503.09516*, 2025a.

615 Jiajie Jin, Xiaoxi Li, Guanting Dong, Yuyao Zhang, Yutao Zhu, Yongkang Wu, Zhonghua Li, Qi Ye,
 616 and Zhicheng Dou. Hierarchical document refinement for long-context retrieval-augmented gen-
 617 eration. *arXiv preprint arXiv:2505.10413*, 2025b.

619 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
 620 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
 621 benchmark for question answering research. *Transactions of the Association for Computational*
 622 *Linguistics*, 7:453–466, 2019.

623 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 624 Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
 625 ation for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:
 626 9459–9474, 2020.

628 Kuan Li, Zhongwang Zhang, Hufeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baix-
 629 uan Li, Zhengwei Tao, Xinyu Wang, et al. Websailor: Navigating super-human reasoning for web
 630 agent. *arXiv preprint arXiv:2507.02592*, 2025a.

631 Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
 632 Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. *arXiv preprint*
 633 *arXiv:2501.05366*, 2025b.

635 Zuoqun Li, Xuanang Chen, Haiyang Yu, Hongyu Lin, Yaojie Lu, Qiaoyu Tang, Fei Huang, Xianpei
 636 Han, Le Sun, and Yongbin Li. Structrag: Boosting knowledge intensive reasoning of llms via
 637 inference-time hybrid information structurization. In *The Thirteenth International Conference on*
 638 *Learning Representations*, 2025c.

639 Fanbin Lu, Zhisheng Zhong, Shu Liu, Chi-Wing Fu, and Jiaya Jia. Arpo: End-to-end policy opti-
 640 mization for gui agents with experience replay. *arXiv preprint arXiv:2505.16282*, 2025a.

642 Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang Liu, Hao Wang, Han Xiao, Shuai Ren,
 643 Guanjing Xiong, and Hongsheng Li. Ui-r1: Enhancing efficient action prediction of gui agents
 644 by reinforcement learning. *arXiv preprint arXiv:2503.21620*, 2025b.

646 Haoran Luo, Guanting Chen, Yandan Zheng, Xiaobao Wu, Yikai Guo, Qika Lin, Yu Feng, Zemin
 647 Kuang, Meina Song, Yifan Zhu, et al. Hypergraphrag: Retrieval-augmented generation via
 hypergraph-structured knowledge representation. *arXiv preprint arXiv:2503.21322*, 2025.

648 Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi.
 649 When not to trust language models: Investigating effectiveness of parametric and non-parametric
 650 memories. In *Proceedings of the 61st Annual Meeting of the Association for Computational
 651 Linguistics (Volume 1: Long Papers)*, pp. 9802–9822, 2023.

652

653 Thang Nguyen, Peter Chin, and Yu-Wing Tai. Ma-rag: Multi-agent retrieval-augmented generation
 654 via collaborative chain-of-thought reasoning. *arXiv preprint arXiv:2505.20096*, 2025.

655

656 Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Mea-
 657 suring and narrowing the compositionality gap in language models. In *The 2023 Conference on
 658 Empirical Methods in Natural Language Processing*.

659

660 Hongjin Qian and Zheng Liu. Scent of knowledge: Optimizing search-enhanced reasoning with
 661 information foraging. *arXiv preprint arXiv:2505.09316*, 2025.

662

663 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 664 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 665 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

666

667 Junhong Shen, Hao Bai, Lunjun Zhang, Yifei Zhou, Amirth Setlur, Shengbang Tong, Diego Caples,
 668 Nan Jiang, Tong Zhang, Ameet Talwalkar, et al. Thinking vs. doing: Agents that reason by scaling
 669 test-time interaction. *arXiv preprint arXiv:2506.07976*, 2025.

670

671 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 672 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In *Proceedings
 673 of the Twentieth European Conference on Computer Systems*, pp. 1279–1297, 2025.

674

675 Wenxuan Shi, Haochen Tan, Chuqiao Kuang, Xiaoguang Li, Xiaozhe Ren, Chen Zhang, Hanting
 676 Chen, Yasheng Wang, Lifeng Shang, Fisher Yu, et al. Pangu deepdiver: Adaptive search intensity
 677 scaling via open-web reinforcement learning. *arXiv preprint arXiv:2505.24332*, 2025.

678

679 Aditi Singh, Abul Ehtesham, Saket Kumar, and Tala Talaei Khoei. Agentic retrieval-augmented
 680 generation: A survey on agentic rag. *arXiv preprint arXiv:2501.09136*, 2025.

681

682 SQLite. Sqlite fts5 extension. <https://www.sqlite.org/fts5.html>, 2025.

683

684 Shuang Sun, Huatong Song, Yuhao Wang, Ruiyang Ren, Jinhao Jiang, Junjie Zhang, Fei Bai, Jia
 685 Deng, Wayne Xin Zhao, Zheng Liu, et al. Simpledeepsearcher: Deep information seeking via
 686 web-powered reasoning trajectory synthesis. *arXiv preprint arXiv:2505.16834*, 2025.

687

688 Yixuan Tang and Yi Yang. Multihop-rag: Benchmarking retrieval-augmented generation for multi-
 689 hop queries. *arXiv preprint arXiv:2401.15391*, 2024.

690

691 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
 692 questions via single-hop question composition. *Transactions of the Association for Computational
 693 Linguistics*, 10:539–554, 2022.

694

695 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving re-
 696 trieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. In Anna
 697 Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meet-
 698 ing of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 10014–10037,
 699 Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
 acl-long.557. URL <https://aclanthology.org/2023.acl-long.557/>.

700

701 Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Dixin Jiang, Rangan Ma-
 702 jumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. *arXiv
 703 preprint arXiv:2212.03533*, 2022.

704

705 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 706 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 707 neural information processing systems*, 35:24824–24837, 2022.

702 Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong Lan,
703 Jiahui Gong, Tianjian Ouyang, Fanjin Meng, et al. Towards large reasoning models: A survey of
704 reinforced reasoning with large language models. *arXiv preprint arXiv:2501.09686*, 2025.

705

706 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
707 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
708 *arXiv:2505.09388*, 2025.

709

710 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
711 and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
712 answering. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing*, pp. 2369–2380, 2018.

713

714 Qingfei Zhao, Ruobing Wang, Dingling Xu, Daren Zha, and Limin Liu. R-search: Empowering llm
715 reasoning with search via multi-reward reinforcement learning. *arXiv preprint arXiv:2506.04185*,
716 2025.

717

718 Yaowei Zheng, Richong Zhang, Junhao Zhang, YeYanhan YeYanhan, and Zheyuan Luo. Llamafac-
719 tory: Unified efficient fine-tuning of 100+ language models. In *Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)*,
720 pp. 400–410, 2024.

721

722 Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
723 Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environ-
724 ments. *arXiv preprint arXiv:2504.03160*, 2025.

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A THE USE OF LLMs**
757758 This paper utilized LLMs only for language polishing in parts of the text.
759760 **B LIMITATIONS**
761762 Despite the effectiveness of Interact-RAG, we acknowledge two limitations: (1) RL Optimization:
763 Our RL stage currently relies on outcome-based rewards. While this aligns with some established
764 GRPO practices, incorporating granular process rewards or advanced RL algorithm could further
765 enhance learning efficiency. (2) Test-time Cost: Our explicit Chain-of-Thought reasoning trajec-
766 tory incurs higher latency and token usage, compared to non-reasoning modes. This test-time scal-
767 ing reflects the trade-off inherent in reasoning models, where increased compute is exchanged for
768 superior accuracy. In future work, we will explore more advanced RL designs and optimize the
769 cost-effectiveness.
770771 **C ADDITIONAL DEMONSTRATION AND EXPERIMENTS**
772773 **C.1 CASE STUDY**
774775 As illustrated in Figure 6, Search-R1, which relies on black-box query search, can fall into **query**
776 **loops**, hindering its ability to efficiently retrieve evidence. In contrast, our Interact-RAG utilizes
777 granular interactive actions to effectively address this challenge.
778779 **Question:** What's the birth date of the director of film I Want Someone To Eat Cheese With?
780781 **Search-R1**782 ... First, both find the director is Jeff Garlin ...
783
<think> I found out that the director of the film "I
784 Want Someone To Eat Cheese With" is Jeff Garlin.
785 Now I need to find what's his birth date **</think>**
<search> Jeff Garlin birth year **</search>**
<information> ... In March 2018, Garlin was one
786 of the actors who ... **</information>**
<think> I found out that the birth year is still not
787 available. I need to find this information again.
788 **</think>**
<search> What's the birth date of Jeff Garlin?
789 **</search>**
<information> ... In 2013, Garlin signed onto the
790 ABC sitcom "The Goldbergs" ... **</information>**
<think> The birth date is still unknown ...
791 **</think>**792 **Interact-RAG**793 ... First, both find the director is Jeff Garlin ...
794
<think> We find that "I Want Someone to Eat Cheese
795 With" is a film directed by Jeff Garlin. To find his birth
796 date, we can include exact keywords. And we can also
797 focus on his name with entity match ... **</think>**
<tool_call> {"entity_match": "Jeff Garlin",
798 "exact_query_keywords": ["Jeff Garlin", "born"],
799 "semantic_query": "What is Jeff Garlin's birth date?"}
800 **</tool_call>**
<tool_response> ... Jeff Garlin (born June 5, 1962) is
801 an American ... **</tool_response>**
<think> We have found that the director is Jeff Garlin,
802 who was born on June 5, 1962 **</think>** ... Answer ...
803804 **Figure 6:** Case study under a multi-hop query, comparing Interact-RAG and Search-R1. The
805 results highlight that Search-R1, relying on black-box query-search, can become trapped in **query**
806 **loops**, failing to retrieve efficient evidence. In contrast, our approach leverages **granular interactive**
807 **actions** to directly resolve the issue. Both the exact keyword "born" and the anchored entity-match
808 are helpful to retrieval the desired information.
809810 **C.2 GENERALIZATION TO OTHER DOMAINS**
811812 For more comprehensive evaluation over other non-wiki domains, we conducted additional exper-
813 iments on the MultiHop-RAG benchmark (Tang & Yang, 2024). Its corpus consists of news covering
814 diverse fields such as technology, health, and business. As shown in the Table 5, Interact-RAG
815 significantly outperforms baselines in this out-of-distribution setting. This further demonstrates the
816 effectiveness and robustness of our interaction-reasoning paradigm.
817

Method	EM	F1
<i>7B Models</i>		
Std-RAG-7B	57.5	59.4
MA-RAG-7B	50.2	52.3
Search-R1-7B	73.0	74.1
Interact-RAG-7B	79.4	80.4
<i>8B Models</i>		
Std-RAG-8B	63.4	65.1
MA-RAG-8B	66.3	68.7
Interact-RAG-8B	81.4	82.3

Table 5: Performance results on the MultiHop-RAG benchmark (non-wiki domain).

Method	2Wiki	Musique	HotpotQA
Standard-Retrieval	0.434	0.127	0.502
MA-RAG-7B	0.620	0.256	0.573
MA-RAG-8B	0.631	0.277	0.581
Search-R1-7B	0.608	0.256	0.609
Interact-RAG-7B	0.686	0.316	0.632
Interact-RAG-8B	0.706	0.335	0.637

Table 6: Retrieval quality evaluation. We report the coverage of supporting facts within the retrieved context.

C.3 RETRIEVAL QUALITY

To assess retrieval quality beyond final answer accuracy, we evaluate the coverage of supporting facts across three multi-hop benchmarks, since they provide human-annotated evidence. We calculated the proportion of supporting facts covered within the retrieved context. As shown in Table 6, our Interact-RAG consistently outperforms other baselines. This confirms that our active interaction paradigm effectively improves the information retrieval and gathering process.

C.4 COST-PERFORMANCE TRADE-OFF ANALYSIS.

Table C.4 provides a detailed comparison of computational costs on the 2WikiMultiHopQA dataset. The evaluation was conducted on the NVIDIA A100 GPU utilizing the vLLM inference engine, and the results are averaged per question. To ensure the consistent comparison, the methods are all based on the Qwen2.5-7B model. We acknowledge that Interact-RAG incurs higher latency and token consumption compared to standard baselines. This increase stems from the explicit reasoning trajectory. However, this design aligns with the emerging paradigm of reasoning models and test-time scaling (e.g., OpenAI-o1 (Jaech et al., 2024), DeepSeek-R1 (Guo et al., 2025)), where increased inference compute is a necessary trade-off for superior accuracy over complex tasks.

Furthermore, we conducted a control experiment applying a Best-of-N ($N = 3$) sampling strategy to the strong baseline, Search-R1. While this approach increased the computational cost by over $3\times$, the performance only improved from 50.9 to 56.2, still falling short of ours. This demonstrates the effectiveness of Interact-RAG.

C.5 FUSION POLICY FOR MULTI-FACETED RETRIEVAL

In the multi-faceted retrieval, we need to fuse the results from two distinct strategies. In our implementation, we apply min-max normalization to both scores, and then perform the weighted aggregation, where the weight is assigned by the LLM agent. Now, we compare our fusion policy with two standard rank fusion methods, including Reciprocal Rank Fusion (RRF) and CombMNZ (Cormack et al., 2009). As shown in Table 8, our implementation yields performance comparable or slightly

Method	EM Score	Latency (s)	Tool Time (s)	Out Tok.	In Tok.
MA-RAG-7B	39.6	15.1	5.09	181	3812
Search-R1-7B	50.9	17.2	5.61	192	4289
Interact-RAG-7B	63.6	36.4	4.67	713	5216

Table 7: **Detailed computational cost analysis on the 2WikiMultiHopQA dataset.** We report the **Exact Match (EM)** score alongside average wall-clock latency, tool execution time, and accumulated token consumption per query.

Fusion Method	2Wiki	Musique	PopQA
RRF	68.7	34.6	55.3
CombMNZ	69.8	32.9	56.0
Interact-RAG	69.6	34.8	56.0

Table 8: **Comparison of different fusion strategies (reported in EM Scores).**

superior. And we would like to clarify that the fusion mechanism is a small functional design in our interaction engine, so its variations do not significantly alter the overall performance.

C.6 OVERHEAD OF OUR CORPUS INTERACTION ENGINE

For the memory footprint, on a corpus of 21.8K documents (280K chunks), the standard vector database (based on Chromadb (core team, 2025)) occupies 2.3GB. And our additional interaction component (based on SQLite FTS-based (SQLite, 2025)) occupies only 0.3GB, representing a negligible memory addition. Besides, we evaluate the deployment performance of our engine using the 2Wiki dataset, in an 8-core CPU environment with 96 concurrent request clients. For the wall-clock time, our interaction processing latency is 1.82s per iteration, only $\sim 3\%$ higher than the standard vector-based retrieval (1.76s), which is negligible.

D ADDITIONAL IMPLEMENTATION DETAILS

D.1 DATASET DETAILS

For the training phase, our data is sourced from the combined training splits of NQ, HotpotQA, and MuSiQue. This collection includes both single-hop (NQ) and multi-hop (HotpotQA, MuSiQue) question-answering data. Following the workflow described in Section 3.2, we synthesized 4.8K agent trajectories for Supervised Fine-Tuning (SFT). Subsequently, for the Reinforcement Learning (RL) phase, we started with 9K question-answer pairs and filtered out some overly simplistic questions (measured by the pass rate), resulting in a curated set of 7.4K pairs. For the evaluation phase, our test set was constructed by randomly sampling 500 question-answer pairs from each of six distinct datasets. An exception was made for the Bamboolle dataset, from which we used all 125 available test instances due to its limited size.

D.2 MORE DETAILS OF CORPUS INTERACTION

Our Corpus Interaction Engine is designed to support agent interactions. It parses LLM-generated tool-calling response, executes the specific operations, and returns the feedback. The implementation is lightweight, intentionally avoiding the overhead of heavy operations or extra LLM invocations.

The core functionalities are realized as follows: (1) For Semantic-Search, we implemented a retriever based on the e5-base-v2 model (Wang et al., 2022), using the prevailing ChromaDB (core team, 2025) as our underlying vector database. (2) Exact-Search is built upon the Full-Text Search (FTS) module of SQLite database (Bhosale et al., 2015), which returns results ranked by the BM25 scores between query keywords and text chunks. (3) In the Fusion Stage of semantic and exact search, we first apply the `min-max` normalization over the scores of the top-20 chunks from each

918 search strategy. These scores are then aggregated via a weighted sum, according to the weight specified by the agent, and the high-scoring chunks are ultimately returned. (4) For Entity-Matching, the
 919 LLM agent is responsible and capable to provide the specific entity keywords, based on the query
 920 and history context. Then, we utilize SQLite FTS to retrieve sentences containing the entity terms,
 921 where the words are normalized for comparison. After that, we retain and append the three most
 922 relevant small sentences based on the current sub-query. (5) Simpler actions like Include-Docs and
 923 Exclude-Docs are handled directly through basic filtering operations. Regarding filter persistence,
 924 the LLM is instructed to manage the state by reissuing filter instructions if needed.
 925

926 The engine follows a deterministic pipeline to resolve concurrent actions: (1) Retrieval scores are
 927 fused to form a candidate list. (2) Doc-filters (include/exclude) are applied to explicitly retain or
 928 remove chunks. (3) Top-ranked chunks are selected according to the chunk budget. (4) Unique
 929 entity-specific short snippets are appended.

930 It is worth noting that while the agent may invoke multiple strategies in a single iteration, our engine
 931 avoids generating multiple large contexts. Instead, it produces a single consolidated context by ag-
 932 gregating these primitives. Specifically, multi-strategy retrieval yields a unified chunk set via score
 933 fusion, and Entity Match appends only concise snippets with negligible addition. While context-
 934 shaping may dynamically change the number of chunks, our ablation studies (Table 4.3) demon-
 935 strate that Interact-RAG still maintains strong performance without this module. Collectively, these
 936 suggest that our performance gains stem from fine-grained interaction strategies, rather than simply
 937 inflating the retrieval volume.

938 D.3 EXPERIMENTAL DETAILS

941 All our experiments were conducted on a cluster of 8 NVIDIA A100 (80GB) GPUs. To ensure
 942 generality and alignment, our action pipeline is implemented using the official reasoning and tool-
 943 use template from Qwen3 (Yang et al., 2025), which inherently utilizes <think>, <tool_call>, and
 944 <tool_response> tags. In the Supervised Fine-Tuning (SFT) stage, we employ the Llama-Factory
 945 framework (Zheng et al., 2024), training for 2 epochs with a learning rate of 2×10^{-5} and a batch
 946 size of 128. Following this, the agent is refined through Reinforcement Learning (RL) using the verl
 947 framework (Sheng et al., 2025). The RL phase involves multi-turn agent training for 2 epochs, with
 948 a policy learning rate of 1×10^{-6} , a batch size of 128, a maximum of 7 interaction turns, and the
 949 rollout-num of 8. During the RL training, we observed the format error rate of 2% at the beginning.
 950 And this rate declined to 1.1% at step 50 and dropped to 0.04% by the final step (i.e., step-110),
 951 which also demonstrates the effectiveness of our RL optimization.

952 For our evaluation, we enabled Qwen3’s native thinking mode (Yang et al., 2025) for non-RAG
 953 and standard-RAG baselines to maximize their reasoning capabilities, while disabling it for prompt-
 954 based methods like IR-Cot and MA-RAG to ensure strict format adherence. All end-to-end trained
 955 agents, including our Interact-RAG, operated with their innate reasoning enabled. Furthermore, we
 956 addressed a corpus limitation: using the generic 2018 Wikipedia dump as a corpus often causes
 957 mismatches with QA benchmarks (e.g., entity name ambiguity, missing evidence). We therefore
 958 constructed a more faithful corpus as follows: for benchmarks with candidate passages, we used their
 959 metadata to obtain the corresponding documents from the 2018 Wikipedia snapshot, which mitigates
 960 the name ambiguity. If the document was unavailable, we used the provided passages directly. For
 961 benchmarks lacking explicit evidence (e.g., Bamboogle), we generated synthetic queries from the
 962 question and ground-truth answer to retrieve the top 20 most similar passages via a retriever. Our
 963 final evaluation corpus consists of approximately 280,000 text chunks, with each chunk averaging
 964 100 words. We will release this corpus to facilitate further research.

964 D.4 LLM PROMPTS

966 To ensure generality and alignment, our action pipeline is implemented using the official reasoning
 967 and tool-use template from Qwen3 (Yang et al., 2025). Therefore, we don’t need to specify special
 968 tags or define explicit rules for the model’s output structure. Actions described in Section 3.1 can
 969 simply be injected as tool-use arguments, where the template automatically formats the inputs into
 970 the required structure, and the model inherently generates standardized reasoning and tool calls.
 971 Therefore, we just need to craft the task prompt, the details of which are provided below.

972
973**End-to-End Prompt for Interactive RAG Agent**974
975
976

You are a strategic AI research assistant. Your task is to answer user questions by leveraging a search tool. You must operate in a systematic, iterative loop of planning, acting, and analyzing.

977

Your Research Process

978

1. Understand & Plan:

Understand the user's question and create a search plan.

980

- First, thoroughly analyze the user's question. Identify key concepts, entities, and any constraints.
- If the question is straightforward, formulate a single, comprehensive search query that is most likely to yield the final answer.
- If the question is complex, break it down and define the clear and specific sub-tasks. Please outline the sub-questions and desired outcomes for each step.
- If some sub-tasks can be executed parallelly, you should point out it.
- You should first perform thinking, and output the primary plan in the list format.

982

2. Execute the Search

983

Based on the current state and previous analysis, call the `execute_search_plan` tool to perform the search.

984

- The parameter `semantic_query` is primary and required. It should be a clear and concise query to search the needed information.
- There are also several optional parameters to improve the search results. You should perform analysis and adapt the parameters actively and reasonably.

985

3. Observe & Iterate

986

Analyze the retrieved context, and decide the next action.

987

- If the received context is not good, you should reflect to improve the search, and execute the search tool again with the refined parameters.

988

- If you get sufficient information for the sub-question, you can proceed to the next sub-task with another search execution. You should make sure the search for current step is enough, don't be overly confident about some noise.

989

- If you have gathered sufficient evidence to construct a complete answer for the whole question, you should conclude the final answer with no more function-calls.

990

- You don't need to follow the primary search plan strictly. You can adapt your strategy based on the retrieved context and your analysis.

991

Final Answer Formulation

992

Once you have enough evidence to get the final answer, you can just conclude it. The final answer must be concise and direct words.

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026
1027**Prompt for the Global-Planner within our Workflow**1028
1029
1030

You are an expert research assistant, focused on high-level planning. There's a search tool available to you to fetch information. Your core goal is to plan a process to answer the user's query.

1031

Your Planning Process:

1032

- Thoroughly analyze the user's question. Identify key concepts, entities, and any constraints.
- If the question is direct or straightforward, formulate a single, comprehensive search query that is most likely to yield the final answer. Direct question example: "when was the last time france hosted the olympics".
- If the question is complex, break it down and define the clear and specific sub-tasks.
- Develop a specific plan to guide the research process, outlining sub-questions for each step. Sub-tasks must be simple and direct; if not, further divide them into smaller steps.
- Some sub-tasks may be executed parallelly, you should point out it.

1033

Other Requirements:

1034

In the analysis and planning, do not include your uncommon internal knowledge, as it may be inaccurate. Do not try to answer the question by yourself, just provide the research plan.

1035

Your expected output

1036

You should first perform the concise thinking as described above, and then output the analysis and output the research plan. The analysis should be organized in a natural language format, with fluent and connective expressions (e.g., Okay, Then, Therefore). And the primary plan should be in list format as:

1037

Primary Plan: 1. Determine the director of the film 'Polish-Russian War'. 2. Identify the birthplace of that director. 3. Formulate the final answer.

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

Prompt for the Adaptive-Reasoner within our Workflow1055
1056
1057

You are an expert research strategist. Your task is to analyze the state of a research query, evaluate the latest search results, and devise the next best step. You should only generate the plan for the next action, not execute it or answer it.

1058

Your Instructions:

1059

You should first briefly summarize the relevant key findings from the previous search. And state what information has been gathered and what is still missing.

1060

Based on the observation, you should reasonably choose one of the following three paths, then analyze and propose the next step.

1061

A) Proceed: Choose this path if the last search successfully answered the current sub-question. State the key information that was found, then propose the next logical search with appropriate parameters. You can propose up to two parallel searches if needed.

1062

B) Conclude: Choose this path if the whole tasks are resolved and you have sufficient information to answer the user's original query. Announce that the research is complete and provide a concise summary of all key findings.

1063

C) Reflect & Refine: Choose this path if the previous search was ineffective (e.g., irrelevant, incomplete, or low-quality results). First, briefly explain why the search failed. Then, think reasonably and propose a refined search action with improved parameters. If a sub-task remains unresolved after 3 attempts, consider moving on to the next one.

1064

Do not include your uncommon internal knowledge, as it may be inaccurate.

1065

Output Format:

1066

- For both PROCEED and REFINE step, you should concisely and reasonably analyze and suggest the parameters for the next search.

1067

- You should strictly format your entire output in a natural language format**. Please use more fluent and connective expressions.

1068

- You don't need to conclusively list the parameters at the end. Please make your output concise but clear.

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080
1081**Prompt for the Executor within our Workflow**1082
1083
1084

You are a specialized searching execution agent. You will be presented with a user's query and prior search results with analysis. Your sole purpose is to perform one of two specific actions: either call the execute_search_plan tool or provide the final answer.

Your Actions (Choose ONE):

1085
1086

1. Execute a Search:

1087
1088
1089

- Based on the provided instructive analysis, you should identify the proper query and parameters.

- Your task is to call the tool with the appropriate parameters.

1090
1091
1092

Note:
The semantic_query parameter is required. It should be clear and specific. If the previous instructions do not provide a query, you should formulate one.

There are also serval optional parameters to refine search results.

1093
1094
1095

You can make up to 2 seperate calls in one turn, if needed (i.e., some sub-tasks can be executed parallelly).

2. Formulate the Final Answer:

1096
1097
1098

Based on the provided information and the analysis, if the evidence is sufficient to answer the user's whole original question, you should provide a final answer. The final answer must be concise and direct words

1099
1100
11011102
1103
11041105
1106
11071108
1109
11101111
1112
11131114
1115
11161117
1118
11191120
1121
11221123
1124
11251126
1127
11281129
1130
11311132
1133