
Published in Transactions on Machine Learning Research (10/2024)

Graphon-Explainer: Generating Model-Level Explanations
for Graph Neural Networks using Graphons

Sayan Saha sayansaha181196@gmail.com
Machine Intelligence Unit
Indian Statistical Institute, Kolkata

Sanghamitra Bandyopadhyay sanghami@isical.ac.in
Machine Intelligence Unit
Indian Statistical Institute, Kolkata

Reviewed on OpenReview: https: // openreview. net/ forum? id= yHUtuvoIQv

Abstract

Graph Neural Networks (GNNs) form the backbone of several state-of-the-art methods for
performing machine learning tasks on graphs. As GNNs find application across diverse
real-world scenarios, ensuring their interpretability and reliability becomes imperative. In
this paper, we propose Graphon-Explainer, a model-level explanation method to elucidate
the high-level decision-making process of a GNN. Graphon-Explainer learns a graphon—a
symmetric, continuous function viewed as a weighted adjacency matrix of an infinitely large
graph—to approximate the distribution of a target class as learned by the GNN. The learned
graphon then acts as a generative model, yielding distinct graph motifs deemed significant
by the GNN for the target class. Unlike existing model-level explanation methods for GNNs,
which are limited to explaining a GNN for individual target classes, Graphon-Explainer can
also generate synthetic graphs close to the decision boundary between two target classes by
interpolating graphons of both classes, aiding in characterizing the GNN model’s decision
boundary. Furthermore, Graphon-Explainer is model-agnostic, does not rely on additional
black-box models, and does not require manually specified handcrafted constraints for expla-
nation generation. The effectiveness of our method is validated through thorough theoretical
analysis and extensive experimentation on both synthetic and real-world datasets on the task
of graph classification. Results demonstrate its capability to effectively learn and generate
diverse graph patterns identified by a trained GNN, thus enhancing its interpretability for
end-users.

1 Introduction

Graph Neural Networks(GNNs)(Zhang et al., 2020; Wu et al., 2020) have attained state-of-the-art perfor-
mance on various graph tasks such as node classification, graph classification and link prediction. They
are increasingly being deployed in the real world in diverse applications such as drug discovery and molec-
ular structure prediction(Merchant et al., 2023), weather forecasting(Lam et al., 2023) and recommender
systems(Wu et al., 2022). The integration of GNNs into real-world applications comes with the dire need
to make them interpretable and trustworthy for stakeholders who regularly interact with or rely on such
models. Although substantial research has been conducted on explainability in domains like vision and text
analysis (Kim et al., 2018; Selvaraju et al., 2017; Ribeiro et al., 2016; Chen et al., 2018), these methods
are challenging to directly apply to graphs. This difficulty stems from the discrete nature of graph data,
which poses challenges for optimization using gradient-based techniques. Moreover, unlike images, graph
data exhibits irregularity as each graph may contain a varying number of nodes, and its validity often hinges
upon adhering to domain specific structural constraints.

1

https://openreview.net/forum?id=yHUtuvoIQv

Published in Transactions on Machine Learning Research (10/2024)

Existing post hoc explainability methods for GNNs can be categorized into two classes(Yuan et al., 2022):
Instance-Level methods and Model-level methods. Instance-level methods offer explanations for the model’s
predictions on individual inputs, while model-level methods investigate the general behavior of the model
without reference to specific inputs. When the aim is to evaluate the reliability and trustworthiness of a
model, one needs to examine instance-level explanations across several instances to draw a rigorous conclu-
sion about the behavior of the model. Therefore, model-level explanations are more apt in such contexts.
Furthermore, it has been demonstrated in Faber et al. (2021) that instance-level explanations fail to produce
faithful explanations when the GNN model is trained on a binary classification problem and suffers from the
bias-attribution issue. Model-level explanations can not only produce faithful explanations in this scenario
but also diagnose the bias attribution issue. Although model-level explanation methods offer substantial
benefits over instance-level approaches, they have received comparatively less attention in the literature.
Current methods such as XGNN (Yuan et al., 2020), D4Explainer (Chen et al., 2024), and GNNInterpreter
(Wang & Shen, 2022) focus on providing explanations for specific target classes but fall short in elucidating
the decision boundary of the underlying model. On the other hand, GNNBoundary (Wang & Shen, 2024) can
generate graphs near the decision boundary between two target classes but lacks class-specific explanations.

In this paper, we introduce Graphon-Explainer, a holistic model-level explanation method that can not only
generate explanations for individual target classes but also produce synthetic motifs that help characterize
the decision boundaries between two classes. To the best of our knowledge, this is the first method capable
of offering both class-specific explanations and insights into the decision boundary of the target classes.
Graphon-Explainer approximates the distribution of graphs classified to a particular target class by the GNN
model by estimating a graphon function for that target class. The learned graphon serves as a generator,
producing graph motifs that capture the distinctive features learned by the GNN about the target class.
Unlike graphs, graphons possess a regular structure and alignment, facilitating the interpolation of graphons
from two target classes to produce a graphon that can generate synthetic graphs lying close to the decision
boundary between the two classes. Graphon-Explainer has several advantages over current state-of-the-art
model-level methods. Unlike, XGNN(Yuan et al., 2020) and D4Explainer(Chen et al., 2024) it does not need
another black box deep learning model to generate explanations. Similarly, unlike GNNInterpreter (Wang &
Shen, 2022), which requires access to training data embeddings to generate explanations, Graphon-Explainer
only requires access to the embeddings of the query dataset that the user possesses, while seeking to explain
the model’s behavior.

2 Preliminaries

We introduce some graphon related mathematical concepts in this section that we use later for the theoretical
analysis.

Graphon: A graphon S : [0, 1]2 → [0, 1] is a symmetric, continuous, and measurable function which can be
viewed as a weighted adjacency matrix of a graph with infinitely many nodes. Given two points xi, xj ∈ [0, 1],
S(i, j) can be interpreted as representing an weighted edge between nodes i and j. Graphons arise as limits
of sequences of dense graphs sharing a common set of topological attributes in the graph theory literature
and can serve as a generator of graphs having similar topological properties. For instance, sampling n
points uniformly from the unit interval and setting S(x, y) = p ∀x, y ∈ [0, 1], where p ∈ [0, 1] is a constant
generates a Erdős-Rényi random graph G(n, p).
Cut Norm: The cut norm of a graphon S can be defined as:

∥S∥□ = sup
X,Y ⊂[0,1]

∣∣∣∣∫
X×Y

S(x, y)
∣∣∣∣ (1)

For two graphons,S1 and S2, a measure of distance between them can be defined using the cut norm
∥S1−S2∥□. Lower values of the cut norm indicate that the graphons S1 and S2 have a high degree of struc-
tural similarity. Graphon estimation methods frequently use step functions as it has been proven (Lovász,
2012) that graphons can always be approximated with arbitrary accuracy in the cut norm using step func-
tions.
Graph Homomorphism: Given two graphs F and G, let their node sets be denoted as V (F) and

2

Published in Transactions on Machine Learning Research (10/2024)

Trained
Classifier

Synthetically Generated Graphs
on the Decision Boundary

Explanation for Class Labelled c1

Explanation for Class Labelled c2

. . .

Graphs Labelled c2

. . .
Graphs Labelled c1

Dataset

. . .

Sampling from

Sampling from

Figure 1: A demonstration of the Graphon-Explainer workflow on a binary classification problem. First, a
trained classifier categorizes a dataset of graphs into two classes c1 and c2. Then, a graphon is estimated
for each class (Sc1 and Sc2) using the graphs assigned to that class. These estimated graphons are sampled
to generate explanations for both classes by optimizing their class scores, with the classifier evaluating the
explanations. Additionally, the estimated graphons are interpolated to create a new graphon Sb, which is
sampled to produce graphs that lie near the decision boundary of both the classes. These graphs exhibit a
mixture of motifs from both classes.

V (G) respectively and their edge sets be denoted as E(F) and E(G) respectively. A graph homomor-
phism ψ is a map from V (F) → V (G) such that if (u, v) ∈ E(F) then (ψ(u), ψ(v)) ∈ E(G). Let,
hom(F,G) denote the total number of graph homomorphisms from F to G. Then, the homomorphism
density t(F,G) can be defined as t(F,G) = hom(F,G)

|V (G)||V (F)| . Homomorphism density measures the fraction of
structure-preserving maps from F to G. The notion of homomorphism density can be naturally extended
to graphons. Given a graph F , its homomorphism density with respect to a graphon S can be defined as
t(F, S) =

∫
[0,1]V (F)

∏
i,j∈E(F) S(xi, xj)

∏
i∈V (F) dxi.

3 Related Work

Graph Neural Networks: GNNs work by learning a node’s representation by a message passing mech-
anism. Each node’s representation is learned by aggregating features of neighboring nodes and combining
them with its own features. Different architectures (Veličković et al., 2018; Kipf & Welling, 2016; Gilmer
et al., 2017) differ in their aggregation functions and message passing functions but the learning strategy
remains similar across architectures.
Instance-Level Explanations: Instance level methods provide an explanation corresponding to each in-
put. Typically, they aim to identify salient subgraphs, nodes or edges that is deemed important by the GNN
for the graph to be classified into a particular class. According to the survey (Kakkad et al., 2023) they
can be categorized into: decomposition based methods(Pope et al., 2019; Feng et al., 2023), gradient based
methods(Baldassarre & Azizpour, 2019; Huang et al., 2022), surrogate methods(Zhang et al., 2021; Vu &
Thai, 2020) and perturbation based methods(Schlichtkrull et al., 2020; Yuan et al., 2021; Lucic et al., 2022;
Lin et al., 2022). Sharing a similar goal as our method, MotifExplainer(Yu & Gao, 2023) employs domain
specific motif extraction rules to identify a candidate set of explanation motifs and uses an attention based
mechanism to identify motifs from the candidate set in an instance graph that is important for the catego-
rization of the graph to a particular class by the GNN classifier. However, our approach differs significantly
in two key ways. First, while MotifExplainer relies on domain-specific rules for motif extraction, our method
does not. Second, MotifExplainer provides instance-level explanations, which are not generalizable across
different graphs. In contrast, our model-level explanation method generates motifs that reflect the features
the GNN has learned for an entire target class, rather than focusing on individual instance graphs.
Model-Level Explanations: The goal of model-level explainability is to understand a model’s general
behavior by generating graph patterns that trigger specific predictions. Different model-level methods differ
in their graph generation methods. XGNN(Yuan et al., 2020) trains a reinforcement learning model using
the policy gradient method to maximize a reward function designed using handcrafted constraints to gen-
erate graphs that serve as explanations of a target class. D4Explainer(Chen et al., 2024) generates graphs

3

Published in Transactions on Machine Learning Research (10/2024)

by training a diffusion model which requires significant computational resources and time to generate an
explanation. GNNInterpreter(Wang & Shen, 2022) was the first model-level method that did not rely on
another black-box neural network architecture to generate explanations. However, during training, it re-
quires the embeddings of the GNN’s training data as input for an objective function it aims to maximize,
necessitating access to both the training data and the hidden layers of the GNN. It is worthwhile to mention
here that Graphon-Explainer does not require access to the GNN’s internal components, does not use hand-
crafted constraints or employ another black-box model to generate explanations. Another recent method
GNNBoundary(Wang & Shen, 2024) is a model-level explanation method that illustrates the decision mak-
ing process of a GNN by generating graphs that lie close to the decision boundary between two classes,
however, it cannot produce explanations for individual target classes. Other notable works in model-level
explainability include GDM (Nian et al., 2024), which generates model-level explanations by minimizing
the distance between its explanations and training graph embeddings during the GNN’s training process,
and MAGE (Yu & Gao, 2024), which provides motif-based model-level explanations for classification tasks
on molecular datasets. However, it is important to note that these methods also share the limitation of
producing explanations only for individual target classes, without illustrating the decision boundary.
Other Methods of GNN Explanations: There are also GNN explanation methods that do not strictly
belong to either the instance-level or model-level categories, and some approaches combine both. A notable
example of the former is GraphChef (Müller et al., 2024), which develops an intrinsically explainable GNN
capable of explaining its decision-making process on any dataset by generating a decision tree. An example
of the latter category (Azzolin et al., 2022) uses instance-level explanations as input and combines them
using Boolean operations to construct model-level explanations.
Graphons: Graphons have been extensively studied as limits of graph sequences in the literature (Lovász
& Szegedy, 2006; Lovász, 2012). They have also been explored in the contexts of Graph Neural Networks
(GNNs) (Han et al., 2022; Ruiz et al., 2020) and network theory (Vizuete et al., 2021). Approaches to
approximating graphons can be categorized into two main lines of work. The first utilizes stochastic block
models, including methods like stochastic block model approximation (SBA)(Airoldi et al., 2013) and sorting
and smoothing (SAS)(Chan & Airoldi, 2014). The second line employs low-rank matrix approximations, such
as matrix completion(Keshavan et al., 2010) and universal singular value thresholding (USVT)(Chatterjee,
2015).

4 Method

Algorithm 1 Generating Explanations using Graphon-Explainer

Hyperparameters:
• nsamples: Number of samples to be generated by the estimated generative model.
• K: Number of nodes in the generated explanation
• λ: Weight of a graphon during linear interpolation of graphons of two target classes
Input: Trained GNN graph classifier model f(·), Sets of graphs {Dc1 , · · · , Dck} labeled by f as belonging
to classes {c1, · · · , ck}, Graphon Estimator g
Procedure:
• Generating explanations for class c:

– Estimate graphon Sci for class ci on K partitions and USVT graphon extimator using Algorithm 4.
– Sample nsamples from the estimated graphon using as described in Algorithm 4.
– Select the sample having the highest target class score as the explanation.

• Generating graphs close to the decision boundary of two classes c1 and c2:
– Combine estimated graphons Sc1 and Sc2 linearly with weights λ to get the boundary graphon
Sb = λSc1 + (1− λ)Sc2 .

– Sample nsamples from Sb using equation 4.
– Select the sample that minimizes equation 3.

4

Published in Transactions on Machine Learning Research (10/2024)

4.1 Problem Setup:

The goal of model-level explanation is to pinpoint discriminative graph patterns that trigger a specific
class prediction from a trained graph classification model f(.). Formally, the goal of producing model level
explanation for a target class c can be stated as identifying G∗ for which,

G∗ = argmax
G

P(f(G) = c) (2)

Assuming, we have an unknown joint distribution of graphs and class labels P (G,C), the optimization takes
place over the samples drawn from the class conditional distribution P (G|C = c) which we assume in line
with prior works (Wang & Shen, 2022; 2024) can be written as P (X|C = c)P (A|C = c), the product of
the distribution of node feature matrices and adjacency matrices. In this work, the distribution of the
adjacency matrices is approximated by the estimated graphon and the distribution of the node feature
matrices is approximated by a probabilistic weighting mechanism on the pool of node features of graphs that
are classfied to a particular target class by f(.). It should be noted that there might exist multiple distinct
motifs G∗ that maximize the equation 2. Such motifs shed light on the graph patterns learnt by the model
f(.) for the particular target class.
Beyond the generation of explanations for individual target classes, Graphon-Explainer can also generate
graphs that lie close to the decision boundary of two target classes. Formally stated, for a pair of classes c1,
c2, the objective is to find motifs Gb such that

Gb = argmin
G

|P(fc1(G))− P(fc2(G))| subject to P(fci
(G)) > P(fcj

(G)) ∀i ∈ {1, 2},∀j /∈ 1, 2 (3)

P(fci
(G)) denotes the probability assigned by f(.) to G for class ci. Minimizing this objective ensures that

Gb lies close to the decision boundary of both classes.

4.2 Implementation Setting

Graphon-Explainer is a model-agnostic method that can be used to explain any GNN classifier model. It
does not need access to hidden layers of the GNN classifier or knowledge of the process by which the GNN
classifier outputs a label for an input graph. Graphon-Explainer only assumes the ability to query the trained
GNN classifier for predictions. Figure 1 illustrates the workflow of Graphon-Explainer, which we will explain
in detail below.

We begin with a dataset of graphs, represented as D, wherein each graph is associated with a distinct
class label, denoted by c, with c taking on values within the set {1, · · · , C}. Additionally, a trained GNN
graph classifier, represented as f(.), can be queried to predict the class of a given graph within this dataset.
Consequently, when presented with a collection of graphs Dc ⊆ D, identified by f(.) as belonging to a
specific target class c, Graphon-Explainer proceeds to generate explanations for the class c. Graphon-
Explainer generates explanations in two steps. First, it estimates a graphon for the target class c using the
graphs in Dc. Second, it samples from the estimated graphon while optimizing the objective in Equation
2 to generate graphs that exhibit the discriminative motifs characteristic of class c as identified by f(.).
Further, when provided with datasets Dc1 and Dc2 of graphs that belong to two target classes c1 and c2
according to f(.), Graphon-Explainer can generate examples that lie close to the decision boundary of the
two classes. Generating examples that lie on the decision boundary involves estimating the graphon for each
class from the corresponding datasets as a first step. This step is followed by taking a convex combination
of the graphons of both these classes to estimate the graphon of graphs that lie on the boundary. Finally,
sampling from this graphon while optimizing the objective in Equation 3 yields examples that lie on the
decision boundary. We contain a combination of discriminative motifs present in classes c1 and c2.

4.3 Graphon Estimation

The first step in generating explanations using Graphon-Explainer involves approximating graphons of each
target class using graphs classified into a target class by the trained classifier f . Estimating a graphon for a

5

Published in Transactions on Machine Learning Research (10/2024)

class of real-world graphs is inherently difficult as it is an unknown function lacking a closed-form expression.
Therefore, in line with previous research (Xu et al., 2021; Han et al., 2022; Airoldi et al., 2013) we employ a
step function method for graphon estimation. Let, P = {P1, · · · , PK} be a partition of [0, 1] into K disjoint
intervals. A step function SP : [0, 1]2 → [0, 1] can be defined as SP (x, y) =

∑K
k,k′=1 skk′(x, y)IPk×Pk′ , where

each skk′ ∈ [0, 1] and I is an indicator function which is equal to 1 when (x, y) ∈ Pk × Pk′ otherwise it
is equal to 0. Hence, the step function SP over K partitions of the unit interval can also be seen as a
matrix SP = [skk′] ∈ [0, 1]K×K . For our purposes, we set K to be equal to the median number of nodes
in the dataset D across all target classes. We use the USVT method (Chatterjee, 2015) to estimate the
step function. This method aligns the nodes of the graph in each dataset based on certain node properties
and then proceeds to estimate the step function from the aligned adjacency matrices. The weak regularity
lemma of graphons (Lovász & Szegedy, 2006) guarantees that any graphon can be accurately approximated
well in the cut norm by step functions. Algorithm 4 describes the method we use to approximate graphons.
The algorithm and the lemma are detailed in Appendix C.

4.4 Generation of Explanation for a Target Class

Once, the graphon for the target class c is approximated by the step function Sc using graphs in Dc, one
can sample from this graphon to generate explanations for the target class c. Given Sc, we can generate a
N node graph through the following two-step sampling procedure:

un ∼ Uniform([0, 1]) ∀n ∈ {1, · · · , N}
ann′ ∼ Bern(Sc(un, un′)) ∀n, n′ ∈ {1, · · · , N}

(4)

The first step samples N nodes from a uniform distribution on the unit interval [0, 1]. The second step
generates an adjacency matrix A = [ann′] ∈ {0, 1}N×N by sampling each entry from a Bernoulli distribution
with parameters defined using the estimated graphon Sc. Graphs sampled from Sc using this sampling
process would contain discriminative motifs that are significant for the classifier f(.) to label the generated
graphs as belonging to the target class c. The generation of node features of synthetic graphs is done in
two phases. During the graphon estimation phase, we align the original node features with the adjacency
matrices, resulting in a set of aligned node features for each graphon. We pool these aligned features and
assign probabilistic weights to them depending on the their frequency of occurence. Node features are then
sampled according to their probabilistic weight from the pool. The graph generation process is detailed in
Algorithm 4.

4.5 Generation of Graphs near the Decision Boundary

Generation of synthetic examples lying on the decision boundary of two target classes requires estimation
of the graphon functions of the corresponding target classes as a first step. Given two target classes c1
and c2 and their estimated graphons Sc1 and Sc2 , we take a convex combination of these graphons : Sb =
λSc1 + (1 − λ)Sc2 . Interpolating graphons of two target classes yields a graphon which is a mixture of the
graphons of both classes. Graphs can be sampled from Sb through the same sampling procedure as shown
in Equation 4. The node features of the boundary motifs are generated by first sampling the node features
from each graphon, as outlined in Algorithm 4. Next, the sampled features in each node feature matrix
are reweighted according to the mixup parameter of each graphon. Finally, each node of the generated
graph is resampled using the corresponding weights as probabilities. Graphs sampled from the interpolated
graphon partially contain discriminative features of both the classes which places them close to the decision
boundary of the two target classes. In a multi-class classification problem, an evaluation is performed to
determine if two classes share a decision boundary. This process begins by randomly sampling N pairs of
graphs from the two target classes. For each pair, the corresponding graph embeddings are extracted from
the penultimate layer of the classifier, before the final linear layer that produces class-specific logits. Next,
these embeddings are interpolated, and the classifier’s output on the interpolated embeddings is analyzed
to see if it crosses into the decision region of another class. A score is then calculated for each pair based
on this analysis. If the cumulative score across the K pairs exceeds a predefined threshold, the two target
classes are considered adjacent, sharing a decision boundary. The pseudocode of this procedure is detailed

6

Published in Transactions on Machine Learning Research (10/2024)

in Algorithm 5 in Appendix E. Synthetic graphs close to their decision boundary can then be obtained by
sampling from their interpolated graphon of obtained by a mixup of graphons of both the target classes.
Algorithm 1 describes the method to generate explanations and boundary motifs using Graphon-Explainer.

5 Theoretical Analysis

We give theoretical guarantees to demonstrate that graphs generated from a graphon that is a convex
combination of the estimated graphons of two target classes would contain discriminative motifs belonging
to both classes. We have shown (in Section 4.5) how such graphons can be used to generate synthetic graphs
that lie close to the decision boundary of the two target classes. This validates the intuitive notion that
graphs that lie on or close to the decision boundary of two target classes contain discriminative features of
both classes. We first give a concrete definition of a discriminative motif and state a few basic assumptions
on which the theoretical guarantees rely on.
Definition A discriminative motif MG of graph G is the smallest subgraph of G that gives G its class
identity. In, other words MG is a subgraph with a minimal number of nodes and edges, which is essential
for G to be identified as belonging to its corresponding class.
Note that, if there exists a graph homomorphism from a motif MG to a graph G, then the motif MG exists in
graph G. Thus, the homomorphism density t(MG, G) gives a measure of the frequency of occurence of MG

in G We assume that every graph belonging to a target class c contains a discriminative motif Mc. Further,
we also assume that any collection of graphs Dc that has been identified by a classifier as belonging to a
class c contains a finite set of discriminative motifs Mc. The following theorem shows that the boundary
graphon partially contains discriminative motifs belonging to both the target classes.
Theorem 5.1. Let Dc1 and Dc2 be two collections of graphs belonging to the target classes c1 and c2,
respectively, with their estimated graphons Sc1 and Sc2 . Define the boundary graphon as Sb = λSc1 + (1 −
λ)Sc2 . For any discriminative motif Mc1 ∈Mc1 and Mc2 ∈Mc2 , the difference in the homomorphism density
of Mc1 and Mc2 with the boundary graphon Sb compared to their respective graphons Sc1 and Sc2 is bounded
above by:

|t(Mc1 , S
c1)− t(Mc1 , S

b)| ≤ (1− λ)|E(Mc1)|∥Sc1 − Sc2∥□
|t(Mc2 , S

c2)− t(Mc2 , S
b)| ≤ λ|E(Mc2)|∥Sc1 − Sc2∥□

Proof. The proof is detailed in Appendix D.1.

Theorem 5.1 establishes an upper bound on the difference in homomorphism densities between a discrimi-
native motif of a target class and both the graphon of the target class and the boundary graphon. In other
words, the difference between the frequency of occurence of a motif in the graphon of a target class and in
the boundary graphon is upper bounded. This upper bound is solely dependent on the hyperparameter λ,
since the values of |E(Mc1)| and |E(Mc2)| are constants determined by the discriminative motifs.

Next, we present a theoretical guarantee that graphs generated from the graphon Sb will inherit the motifs
contained in Sb.
Theorem 5.2. Let Sb be the boundary graphon and assume that it contains a discriminative motif Mb.
Then any random graph G on n nodes generated from Sb satisfies:

P(|t(Mb, G)− t(F, Sb)| > ϵ) ≤ 2 exp
(
− ϵn2

18|V (Mb)|2

)
Proof. The proof is detailed in Appendix D.3

Theorem 5.2 demonstrates that the topology of a random graph sampled from the boundary graphon closely
resembles the topology of the boundary graphon itself, which includes discriminative motifs from both
classes. Consequently, the theoretical analysis in this section confirms that graphs generated by the boundary
graphon Sb will contain discriminative motifs from both target classes. Further, a time complexity analysis
and a theoretical guarantee of diversity in the generated explanations of Graphon-Explainer is provided in
Appendix D.3 and D.2.

7

Published in Transactions on Machine Learning Research (10/2024)

6 Experimental Analysis

We evaluate the explanation generation capabilities of Graphon-Explainer through meticulously designed
experiments using three real-world datasets and three synthetic datasets. Initially, we train a GNN classifier
on each dataset and employ Graphon-Explainer to generate explanations for specific target classes and
synthetic motifs that lie close to the decision boundary between two target classes.

6.1 Metrics for Quantitative Evaluation of Generated Explanations

Unlike instance-level explanations, model-level explanations lack a corresponding ground truth because it’s
impossible to determine the exact graph patterns the classifier has learned to distinguish between classes.
For generating explanations for individual target classes, the objective is to maximize the class score for the
target class when the generated explanation is provided as input to the classifier. For generating graphs that
lie on the decision boundary, the objective is to achieve a class score indicating that the generated graphs
belong to all classes with equal probability according to the classifier. With this goal in mind, we evaluate
our method using the metrics established in the literature(Wang & Shen, 2022; Chen et al., 2024; Yuan et al.,
2020) to assess model-level explanations. We report the performance based on the following metrics:
Target Class Score: The target class score of a generated explanation represents the probability with
which the explanation belongs to the target class, as determined by the classifier f(.). When generating
explanations for a target class c, each generated explanation is inputted into f(.), and the probability for
class c is recorded. We report the mean and standard deviation for 50 generated explanations for each
target class. For synthetic graphs generated on the decision boundary, we report the class score of the
generated graph across all classes. For target class explanations, a higher class score suggests that the
generated explanation includes discriminative motifs identified by the classifier as belonging to the target
class, resulting in the classifier confidently classifying the explanation into the target class. Conversely, for
synthetic motifs intended to lie close to the decision boundary, the goal is to achieve class scores that assign
the generated motif an equal probability of belonging to both the classes.
Density: This metric assesses the sparsity of the generated explanations. In a graph G, density is calculated
as Density = |E|

|V |2 , where E represents the edge set and V denotes the vertex set of G. It is crucial
that explanations generated for a class include only edges that distinctly characterize that class and are
essential for classification, thereby minimizing non-vital edges. Lower-density explanations facilitate clearer
interpretation for users, enhancing model transparency and trustworthiness. We provide the average density
and standard deviation of 50 explanation graphs for each target class.
Time Efficiency: Following the evaluation setting in GNNInterpreter (Wang & Shen, 2022), we also note
the time taken to generate 10 explanations for each target class and report the mean time taken across all
target classes in a particular dataset. We denote this using T10 in Table 2.

Figure 2: Examples of Graphs in all Target Classes on all Datasets

8

Published in Transactions on Machine Learning Research (10/2024)

6.2 Metrics for Evaluation of the Decision Boundary of the Classifier

Boundary Margin: The boundary margin (Yang et al., 2020) measures the minimum distance between
the embeddings of graphs from a class c1/c2 and those at the boundary between classes c1 and c2. For a
class c1, it is defined as:

Ψ(f, c1) = min
(Gc1 ,Gb)

∥ϕ(Gc1)− ϕ(Gb)∥

where (Gc1 , Gb) represents a pair of graphs such that Gc1 belongs to class c1 by having the highest class score
for class c1 according to f and Gb is on the boundary between class c1 and c2. Here, ϕ denotes the embedding
function of the GNN classifier f . A wider boundary margin implies better chance of generalization properties
of the classifier since the risk of misclassification decreases during test time. In this paper, for the choice of
ϕ we use the embedding of the last hidden layer, after which a linear layer is applied to get the class specific
logits. This ensures that we compute this measure with linearly separable embeddings.

Boundary Thickness: A thicker boundary signifies greater robustness while a thinner boundary is more
prone to an adversarial attack. The boundary thickness (Yang et al., 2020) between a target class c1/c2 and
the decision boundary separating the two classes, can be defined for the class c1, as:

Θ(f, δ, c1, c2) = E(Gc1 ,Gb)

[
∥ϕ(Gc1)− ϕ(Gb)∥

∫ 1

0
I (δ > σ(h(t))c1 − σ(h(t))c2) dt

]

where: h(t) = (1 − t) · ϕ(Gc1) + t · ϕ(Gb) is the linear interpolation between embeddings, σ(h(t))c1 and
σ(h(t))c2 are the probabilities for classes c1 and c2 respectively, I is the indicator function, δ is a threshold,
commonly set to 0.75.

Boundary Complexity: The boundary complexity(Guan & Loew, 2020) quantifies the intricacy of the
data and the classifier’s decision-making process by assessing the entropy of the eigenvalue distribution from
the covariance matrix of boundary embeddings. It is expressed as:

Ξ(g, c1, c2) =
H

(
µ

∥µ∥1

)
logK

where: µ are the eigenvalues of the covariance matrix of the boundary embedding set ϕ(Gb), ∥µ∥1 is the L1
norm of µ, H

(
µ

∥µ∥1

)
is the entropy of the normalized eigenvalues, K is the dimensionality of the embeddings.

Datasets with real-world complexity or more classes typically exhibit more intricate decision boundaries
compared to synthetic datasets or those with fewer classes.

6.3 Datasets

We conduct experiments on three synthetic and three real-world datasets.

Table 1: Dataset Properties and Classifier Accuracy

Dataset #Classes #Graphs Average #Nodes Average #Edges Classifier Accuracy
IMDB-B 2 1000 19.77 96.53 0.7050
Reddit-B 2 2000 429.63 497.75 0.8250
MUTAG 2 188 17.93 19.79 0.88297
2Shapes 2 200 9.32 10.37 1.0
BA2Motif 2 1000 25 25.48 0.958
4Shapes 4 4000 15.89 22.98 0.94

Synthetic Datasets: We generate the 2Shapes and 4Shapes datasets. 2Shapes contains graphs belong-
ing to two classes: Lollipop and Tree. 4Shapes contains graphs belonging to 4 classes: Windmill, Wheel,

9

Published in Transactions on Machine Learning Research (10/2024)

Star, and Barbell. A graph belonging to a particular class has the shape as described by the name of the
corresponding class. Examples of graphs in all the target classes are shown in Figure 2. The method to
generate the datasets is detailed in Appendix A. We also demonstrate the effectiveness of our method on the
BA2Motif (Luo et al., 2020) dataset which consists of graphs with two classes of motifs: house and cycle.
Real Datasets: For real datasets, we conduct experiments using the IMDB-BINARY (IMDB-B),
REDDIT-BINARY (REDDIT-B), and MUTAG datasets. The IMDB-B dataset comprises 1,000 movie
collaboration networks, where nodes represent actors or actresses and edges denote co-appearances in movies.
The graphs are categorized into Action or Romance genres. The REDDIT-B dataset represents Reddit
discussions, where nodes correspond to users and edges indicate replies. Each graph is labeled as belonging
to either a question/answer-based or discussion-based community. The MUTAG dataset contains chemical
compound graphs, with nodes as atoms and edges as bonds, labeled as either mutagenic or non-mutagenic.
Examples of graphs from all datasets are shown in Figure 2. Dataset properties and classifier test accuracy
are summarized in Table 1, with the architecture of the GNN classifiers detailed in Appendix B.

6.4 Results

We assess the performance of Graphon-Explainer both qualitatively and quantitatively. We also demonstrate
comparative results by comparing our method with GNNInterpreter and XGNN. Our code repository is
provided at https://github.com/amisayan/Graphon-Explainer. Results on all metrics are presented in
Table 2 for synthetic datasets and real datasets. An overarching trend observed across almost all datasets
is that Graphon-Explainer can generate explanations around 10 times faster than GNNInterpreter. Table
3 presents the results for motifs generated near the decision boundary. The class scores clearly shows that
Graphon-Explainer produces boundary motifs with competitive, or even superior, boundary scores compared
to those generated by GNNBoundary. It should be noted that the decision boundary metrics in Table 3 with
respect to the classifier are computed using the motifs generated by Graphon-Explainer. Qualitative results
in Figure 3a and 3b show the estimated graphon for each target class and the corresponding explanation
generated by Graphon-Explainer and GNNInterpreter. Since XGNN, on most classes generates a single
node or a line graph as explanations, the generated explanations are deferred to Figure 6 in the Appendix
F. The boundary motifs generated by GNNBoundary is also deferred to the Appendix K. It can be observed
that the estimated graphons of each target class clearly look different. Hence, each class has a distinct motif
based on which the classifier categorizes them into separate classes. The visualization of the estimated
graphons of different target classes in Figure 3a and 3b gives added insight into the structure of graphs
contained in various target classes and help make the generative model itself more interpretable.

Table 2: Quantitative Results

Dataset Classes Graphon-Explainer GNNInterpreter XGNN

Class Score Density
T10

(seconds)
Class Score Density

T10

(seconds)
Class Score Density

T10

(seconds)

Synthetic Dataset

2Shapes
Lollipop 1.0 ± 0.00 0.1481 ± 0.021

0.34
0.8576 ± 0.271 0.088 ± 0.041

17.23
0.999 ± 0.003 0.25 ± 0.00

415.918
Tree 1.0 ± 0.00 0.1389 ± 0.034 0.9123 ± 0.042 0.2353 ± 0.0140 0.0010 ± 0.00 0.0 ± 0.00

BA2Motif
House 1.0 ± 0.00 0.0667 ± 0.0042

0.47
0.9812 ± 0.0002 0.1823 ± 0.0234

22.35
0.4918 ±0.0001 0.25 ± 0.00

396.96
Cycle 1.0 ± 0.00 0.0663 ± 0.0034 0.9475 ± 0.0006 0.3821 ± 0.0416 0.5027 ±0.00 0.25 ± 0.00

4Shapes

Barbell 0.96 ± 0.0001 0.0902 ± 0.0036

0.72

0.5921 ± 0.0023 0.1423 ± 0.1033

15.78

1.0 ±0.00 0.25 ± 0.00

328.05
Windmill 1.0 ± 0.00 0.1067 ± 0.0240 0.6713 ± 0.2423 0.1260 ± 0.0744 0.0 ± 0.0001 0.0 ± 0.00

Wheel 0.98 ± 0.0002 0.1111 ± 0.0315 0.8521 ± 0.0102 0.1100 ± 0.0245 0.0 ± 0.0007 0.25 ± 0.00

Star 1.0 ± 0.00 0.0663 ± 0.0038 0.99 ± 0.0001 0.1705 ± 0.0303 0.0 ± 0.0000 0.0 ± 0.00

Real Dataset

Mutag
Mutagenic 1.0 ± 0.00 0.0675 ± 0.0047

2.65
0.99 ± 0.0031 0.1044 ± 0.0565

2.75
1.0 ± 0.00 0.1523 ± 0.0039

198.61
Non-Mutagenic 1.0 ± 0.00 0.0900 ± 0.0032 0.9691 ± 0.0012 0.1566 ± 0.0687 1.0 ± 0.00 0.1536 ± 0.0012

IMDB-Binary
Class0

(Action)
1.0 ± 0.00 0.2158 ± 0.0191

1.34
0.6500 ± 0.0201 0.2461 ± 0.0135

254.32
0.4990 ± 0.00 0.0 ± 0.00

409.57

Class1

(Romance)
1.0 ± 0.00 0.2094 ± 0.0314 0.3540 ± 0.0201 0.2193 ± 0.061 0.5320 ± 0.00 0.0 ± 0.00

Reddit-Binary
Class0

(Question/ Answer)
0.9834 ± 0.0002 0.0168 ± 0.0007

2.48
0.8216 ± 0.0142 0.0154 ± 0.0021

45.15
0.004 ± 0.00 0.3056 ± 0.0482

356.78

Class1

(Discussion)
0.9827 ± 0.0001 0.0170 ± 0.0018 0.9889 ± 0.0000 0.0173 ± 0.0003 0.99 ± 0.00 0.0 ± 0.00

Synthetic Datasets: The quantitative results in Table 2 demonstrate that Graphon-Explainer consistently
outperforms GNNInterpreter and XGNN across nearly all metrics. This indicates that Graphon-Explainer is

10

https://github.com/amisayan/Graphon-Explainer

Published in Transactions on Machine Learning Research (10/2024)

Table 3: Quantitative Results on all Datasets for the Decision Boundary

Dataset c1 c2
Boundary Metrics of the Classifier Graphon-Explainer GNNBoundary

Boundary Margin Boundary Thickness
Boundary

Complexity
Class Scores Class Scores

c1 c2 c1 c2 p(c1) p(c2) p(c1) p(c2)

2Shapes Lollipop Tree 1.6910 1.7109 0.6864 2.733 0.00844 0.4912 ± 0.0002 0.5123 ± 0.0004 0.2988 ± 0.3502 0.7010 ± 0.3502

BA2Motif House Cycle 0.214 0.300 0.9988 1.91867 0.1380 0.5315 ± 0.0480 0.4836 ± 0.0402 0.4691± 0.0841 0.5285 ± 0.0890

IMDB-B
Class0

(Action)

Class1

(Romance)
1.0035 0.8864 1.6602 3.7237 0.2246 0.5136 ± 0.0002 0.5023 ± 0.0001 0.4994 ± 0.0000 0.5005 ± 0.0000

Reddit-B
Class0

(Question/ Answer)

Class1

(Discussion)
0.2739 0.31 1.84 2.44 0.132 0.5005 ± 0.0000 0.5003 ± 0.0000 0.4883 ± 0.0227 0.5184 ± 0.0315

Mutag Mutagenic Non-mutagenic 29.303 30.746 43.896 34.811 0.096 0.5014 ± 0.0522 0.4982 ± 0.0418 0.2896 ± 0.3962 0.7103 ± 0.3964

4Shapes

Barbell Wheel 0.7243 0.9656 5.64008 3.6377 0.02906 0.4762 ± 0.0302 0.4812 ± 0.0291 0.4333 ± 0.1465 0.5584 ± 0.1563

Barbell Star 0.8292 2.807 7.3156 0.5376 0.07444 0.5001 ± 0.0989 0.4124 ± 0.0992 0.2965 ± 0.3129 0.5781 ± 0.2941

Windmill Wheel 0.4993 0.4907 2.4315 4.6429 0.0855 0.4995 ± 0.0010 0.5002 ± 0.0014 0.7953 ± 0.1527 0.1695 ± 0.1485

Windmill Star 0.4511 3.803 6.140 0.596 0.01686 0.4812 ± 0.0232 0.4882 ± 0.0196 0.8876 ± 0.0021 0.1122 ± 0.0460

not only capable of generating discriminative motifs that closely align with the classifier’s learned patterns
but does so more efficiently, producing sparser explanations in significantly less time than existing methods.

The qualitative analysis in Figure 3a further supports these findings, showing that the explanations generated
by Graphon-Explainer align well with the class identities when the classifier performs accurately, as seen with
the 2Shapes dataset. The classification task on this dataset is relatively straightforward for the classifier, as
evidenced by the minimal boundary complexity shown in Table 3 and the confusion matrix in Figure 4.

However, the 4Shapes dataset presents a more challenging scenario. While the explanations for the Barbell,
Windmill, and Wheel classes may not perfectly match the class identities, they still achieve high class scores,
suggesting a greater likelihood of misclassification for these classes. Analysis of the adjacency scores in
Figure 5 and decision boundary metrics in Table 3 reveals that within the 4Shapes dataset, the Windmill
and Wheel classes share the thinnest boundary margins and the highest boundary complexity. Additionally,
the Windmill class has a thinner boundary in its decision boundary with the Wheel class, indicating a
higher propensity for misclassification as Wheel rather than the other way around. This suggests that the
embeddings of these classes are more closely aligned, making it more difficult for the classifier to distinguish
between them, as reflected in both the confusion matrix in Figure 4 and the similarity of their explanations
in Figure 3a.

The highest boundary complexity among the synthetic datasets is observed for the BA2Motif dataset, likely
due to the more complex task of classifying random graphs based on the presence of a specific motif—a prob-
lem that is inherently more challenging due to the noise within these graphs. Moreover, graphs containing
a House motif are more likely to be misclassified as Cycle, as indicated by the thinner boundary margin for
the House class. This finding is corroborated by the confusion matrix in Figure 4. Finally, an analysis of the
motifs generated near the decision boundary in Figure 3a shows that motifs close to the boundary between
two target classes often represent a mixture of motifs from both classes.
Real Datasets: The results in Table 2 clearly highlight the superiority of Graphon-Explainer over existing
methods. A qualitative analysis of the explanations from Figure 3b on the MUTAG dataset shows that
Graphon-Explainer can generate more realistic molecular features compared to GNNInterpreter. It’s worth
noting that XGNN also performs well on this dataset, producing more realistic explanations than GNNIn-
terpreter, as illustrated in Figure 6. For the Mutagenic class, Graphon-Explainer’s explanations include the
fused ring structure and the NO2 subgroup—key distinguishing features of this class—whereas these are ab-
sent in other explanations. For the Non-Mutagenic class, no O atom is present in the explanations, aligning
with the class identity. An analysis of the boundary metrics from Table 3 reveals that the Non-Mutagenic
class has a lesser boundary thickness, which increases the likelihood of misclassification of Non-Mutagenic
compounds as Mutagenic. This observation is supported by the confusion matrix in Figure 4. Moreover, the
boundary complexity score is the lowest on this dataset compared to other real datasets, indicating that the
decision rules for class assignment on the MUTAG dataset are simpler.

On the REDDIT-B dataset, both Graphon-Explainer and GNNInterpreter perform well, as shown in Table
2. Explanations for Class 0 (the Question-Answer class) in Table 3b reveal a pattern of one high-degree

11

Published in Transactions on Machine Learning Research (10/2024)

(a) Synthetic Dataset

(b) Real Dataset

Figure 3: Qualitative results across all datasets. Graphon-Explainer’s explanations have class scores of 1,
and boundary motifs score close to 0.5. The top-scoring GNNInterpreter explanations are also shown. In
the approximated graphons, colors transition from dark to bright, reflecting values from 0 to 1, with brighter
colors indicating higher values.

node connected to several low-degree nodes, capturing the characteristic of a single user answering multiple
questions—a key feature of this class. In contrast, explanations for Class 1 (the Discussion class) show a few
users frequently interacting among themselves, with other users on the fringe engaging with only a single
user, typical of discussion groups. Boundary analysis from Table 3 indicates that the boundary margin and
thickness are both smaller for the Question-Answer class, increasing the risk of misclassification as belonging
to the Discussion class. This finding is corroborated by the classifier’s confusion matrix in Figure 4.

On the IMDB-B dataset, Graphon-Explainer comprehensively outperforms competing methods, as demon-
strated in Table 2. Explanations for Class 0 (Action genre) in Table 3b feature the signature motif of multiple
co-actors who have previously worked together, reflecting the typical structure of an Action movie with mul-
tiple popular actors in key roles. In contrast, explanations for Class 1 (Romance genre) show a distinct motif

12

Published in Transactions on Machine Learning Research (10/2024)

of one popular actor interacting with multiple groups of actors, consistent with the genre’s focus on one or
two central characters. The boundary graph appears to combine these two distinct motifs. Additionally,
boundary metrics analysis indicates that this task has the highest boundary complexity, suggesting that the
classifier’s decision-making process to distinguish between these two classes of graphs is particularly complex.
Furthermore, graphs in the Action class are more prone to misclassification due to lesser boundary thickness,
which is validated by the confusion matrix in Figure 4.

6.5 Sensitivity Analysis

Figure 12 in Appendix L illustrates how class scores vary with changes in Graphon-Explainer’s hyperpa-
rameters as listed in Algorithm 1. For explanations of individual target classes, we adjust the number of
partitions K used to approximate the graphon, which alters the number of nodes in the generated graphs.
For graphs generated to belong close to the decision boundary, we vary the linear interpolation parameter λ
and report the class score variations for a single class. We also detail the nsample hyperparameter used for
each dataset in Table 8 in Appendix L. It can be concluded from the plots in Figure 12 and Table 8 that
the target class scores for explanations do not vary much with change in K, class scores for boundary motifs
remain in the desirable range when λ is around 0.5 and nsamples used is reasonably low which makes our
method robust to hyperparameter changes.

7 Conclusion

This study introduces Graphon-Explainer, a model-level explanation approach for GNNs that leverages
graphons, approximating one for each target class, to serve as generators for discriminative motifs identified
by the GNN as indicative of each class. Unlike existing model-level techniques limited to generating expla-
nations for individual target classes, Graphon-Explainer transcends this constraint by producing synthetic
motifs close to the decision boundary of two target classes. This capability not only elucidates what the
GNN has learned for each class but also aids in delineating the decision boundary of the trained GNN.
Through extensive experiments and theoretical analysis, we demonstrate that Graphon-Explainer faithfully
elucidates any GNN, highlighting its strengths and pitfalls in graph classification tasks. Notably, it achieves
this while generating diverse explanations significantly faster than current state-of-the-art methods.

We believe Graphon-Explainer can be used in many real-world applications to inform users about the induc-
tive biases and underlying classification logic of a GNN model deployed in practical scenarios. For example,
our experiment on the MUTAG dataset demonstrates how the classifier identifies fused rings as key motifs
for mutagenic classes. Similarly, our method could explain a GNN classifying toxic and non-toxic drugs,
revealing the basis on which the GNN classifies a molecule as toxic. Analyzing the decision boundary of
such a GNN could provide critical insights into the model’s robustness and the risk of misclassifying toxic
molecules as non-toxic.

Furthermore, as demonstrated by additional experiments in Appendix H, even when two classifiers perform
accurately, their interpretations of a single class can vary significantly based on their inductive biases. This
insight can help users choose between classifiers with equal accuracy based on their unique interpretative
properties in real-world settings. Moreover, our approach can generate explanations tailored to the specific
dataset a user possesses since estimated graphons effectively capture the dataset’s distribution. This person-
alized approach offers tailored insights depending on the types of instances present in a user’s query dataset,
rather than providing uniform explanations regardless of dataset variations.

Overall, Graphon-Explainer not only advances our understanding of GNN behavior but also equips users with
a powerful tool to assess, interpret, and trust the decisions made by GNNs in diverse application domains.

Acknowledgments

SB acknowledges the JC Bose Fellowship grant No. JBR/2021/000036/SSC from ANRF-SERB, Govt. of
India.

13

Published in Transactions on Machine Learning Research (10/2024)

References
Edo M Airoldi, Thiago B Costa, and Stanley H Chan. Stochastic blockmodel approximation of a graphon:

Theory and consistent estimation. Advances in Neural Information Processing Systems, 26, 2013.

Steve Azzolin, Antonio Longa, Pietro Barbiero, Pietro Liò, and Andrea Passerini. Global explainability of
gnns via logic combination of learned concepts. arXiv preprint arXiv:2210.07147, 2022.

Federico Baldassarre and Hossein Azizpour. Explainability techniques for graph convolutional networks.
arXiv preprint arXiv:1905.13686, 2019.

Stanley Chan and Edoardo Airoldi. A consistent histogram estimator for exchangeable graph models. In
International Conference on Machine Learning, pp. 208–216. PMLR, 2014.

Sourav Chatterjee. Matrix estimation by universal singular value thresholding. Annals of Statistics, 2015.

Jialin Chen, Shirley Wu, Abhijit Gupta, and Rex Ying. D4explainer: In-distribution explanations of graph
neural network via discrete denoising diffusion. Advances in Neural Information Processing Systems, 36,
2024.

Jianbo Chen, Le Song, Martin Wainwright, and Michael Jordan. Learning to explain: An information-
theoretic perspective on model interpretation. In International conference on machine learning, pp. 883–
892. PMLR, 2018.

Lukas Faber, Amin K. Moghaddam, and Roger Wattenhofer. When comparing to ground truth is wrong: On
evaluating gnn explanation methods. In Proceedings of the 27th ACM SIGKDD conference on knowledge
discovery & data mining, pp. 332–341, 2021.

Qizhang Feng, Ninghao Liu, Fan Yang, Ruixiang Tang, Mengnan Du, and Xia Hu. Degree: Decomposition
based explanation for graph neural networks. arXiv preprint arXiv:2305.12895, 2023.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message
passing for quantum chemistry. In International conference on machine learning, pp. 1263–1272. PMLR,
2017.

Shuyue Guan and Murray Loew. Analysis of generalizability of deep neural networks based on the complexity
of decision boundary. In 2020 19th IEEE international conference on machine learning and applications
(ICMLA), pp. 101–106. IEEE, 2020.

Xiaotian Han, Zhimeng Jiang, Ninghao Liu, and Xia Hu. G-mixup: Graph data augmentation for graph
classification. In International Conference on Machine Learning, pp. 8230–8248. PMLR, 2022.

Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, and Yi Chang. Graphlime: Local interpretable
model explanations for graph neural networks. IEEE Transactions on Knowledge and Data Engineering,
2022.

Jaykumar Kakkad, Jaspal Jannu, Kartik Sharma, Charu Aggarwal, and Sourav Medya. A survey on ex-
plainability of graph neural networks. arXiv preprint arXiv:2306.01958, 2023.

Raghunandan H Keshavan, Andrea Montanari, and Sewoong Oh. Matrix completion from a few entries.
IEEE transactions on information theory, 56(6):2980–2998, 2010.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al. Inter-
pretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav). In
International conference on machine learning, pp. 2668–2677. PMLR, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

14

Published in Transactions on Machine Learning Research (10/2024)

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Ferran Alet,
Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, et al. Learning skillful medium-range global
weather forecasting. Science, 382(6677):1416–1421, 2023.

Wanyu Lin, Hao Lan, Hao Wang, and Baochun Li. Orphicx: A causality-inspired latent variable model for
interpreting graph neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 13729–13738, 2022.

László Lovász. Large networks and graph limits, volume 60. American Mathematical Soc., 2012.

László Lovász and Balázs Szegedy. Limits of dense graph sequences. Journal of Combinatorial Theory,
Series B, 96(6):933–957, 2006.

Ana Lucic, Maartje A Ter Hoeve, Gabriele Tolomei, Maarten De Rijke, and Fabrizio Silvestri. Cf-
gnnexplainer: Counterfactual explanations for graph neural networks. In International Conference on
Artificial Intelligence and Statistics, pp. 4499–4511. PMLR, 2022.

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang. Pa-
rameterized explainer for graph neural network. Advances in neural information processing systems, 33:
19620–19631, 2020.

Amil Merchant, Simon Batzner, Samuel S Schoenholz, Muratahan Aykol, Gowoon Cheon, and Ekin Dogus
Cubuk. Scaling deep learning for materials discovery. Nature, 624(7990):80–85, 2023.

Peter Müller, Lukas Faber, Karolis Martinkus, and Roger Wattenhofer. Graphchef: Decision-tree recipes
to explain graph neural networks. In The Twelfth International Conference on Learning Representations,
2024.

Yi Nian, Yurui Chang, Wei Jin, and Lu Lin. Globally interpretable graph learning via distribution matching.
In Proceedings of the ACM on Web Conference 2024, pp. 992–1002, 2024.

Phillip E Pope, Soheil Kolouri, Mohammad Rostami, Charles E Martin, and Heiko Hoffmann. Explainability
methods for graph convolutional neural networks. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10772–10781, 2019.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?" explaining the predictions
of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining, pp. 1135–1144, 2016.

Luana Ruiz, Luiz Chamon, and Alejandro Ribeiro. Graphon neural networks and the transferability of graph
neural networks. Advances in Neural Information Processing Systems, 33:1702–1712, 2020.

Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. Interpreting graph neural networks for nlp with
differentiable edge masking. arXiv preprint arXiv:2010.00577, 2020.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and
Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. In
Proceedings of the IEEE international conference on computer vision, pp. 618–626, 2017.

Ana Vasilcoiu, T.H.F. Stessen, Thies Kersten, and Batu Helvacioglu. [re] GNNInterpreter: A probabilistic
generative model-level explanation for graph neural networks. Transactions on Machine Learning Research,
2024. ISSN 2835-8856. URL https://openreview.net/forum?id=8cYcR23WUo.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph attention networks. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=rJXMpikCZ.

Renato Vizuete, Federica Garin, and Paolo Frasca. The laplacian spectrum of large graphs sampled from
graphons. IEEE Transactions on Network Science and Engineering, 8(2):1711–1721, 2021.

15

https://openreview.net/forum?id=8cYcR23WUo
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ

Published in Transactions on Machine Learning Research (10/2024)

Minh Vu and My T Thai. Pgm-explainer: Probabilistic graphical model explanations for graph neural
networks. Advances in neural information processing systems, 33:12225–12235, 2020.

Xiaoqi Wang and Han Wei Shen. GNNInterpreter: A probabilistic generative model-level explanation for
graph neural networks. In The Eleventh International Conference on Learning Representations, 2022.

Xiaoqi Wang and Han Wei Shen. GNNBoundary: Towards explaining graph neural networks through the
lens of decision boundaries. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=WIzzXCVYiH.

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recommender systems:
a survey. ACM Computing Surveys, 55(5):1–37, 2022.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A comprehensive
survey on graph neural networks. IEEE transactions on neural networks and learning systems, 32(1):4–24,
2020.

Hongteng Xu, Dixin Luo, Lawrence Carin, and Hongyuan Zha. Learning graphons via structured gromov-
wasserstein barycenters. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp.
10505–10513, 2021.

Yaoqing Yang, Rajiv Khanna, Yaodong Yu, Amir Gholami, Kurt Keutzer, Joseph E Gonzalez, Kannan
Ramchandran, and Michael W Mahoney. Boundary thickness and robustness in learning models. Advances
in Neural Information Processing Systems, 33:6223–6234, 2020.

Zhaoning Yu and Hongyang Gao. Motifexplainer: a motif-based graph neural network explainer, 2023. URL
https://openreview.net/forum?id=0YXmOFLb1wQ.

Zhaoning Yu and Hongyang Gao. Mage: Model-level graph neural networks explanations via motif-based
graph generation. arXiv preprint arXiv:2405.12519, 2024.

Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn: Towards model-level explanations of graph neural
networks. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery &
data mining, pp. 430–438, 2020.

Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural networks via
subgraph explorations. In International conference on machine learning, pp. 12241–12252. PMLR, 2021.

Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks: A taxonomic
survey. IEEE transactions on pattern analysis and machine intelligence, 45(5):5782–5799, 2022.

Yue Zhang, David Defazio, and Arti Ramesh. Relex: A model-agnostic relational model explainer. In
Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, pp. 1042–1049, 2021.

Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey. IEEE Transactions on
Knowledge and Data Engineering, 34(1):249–270, 2020.

A Synthetic Dataset Generation

We detail the method to generate the datasets 2Shapes and 4Shapes in Algorithm 2 and Algorithm 3
respectively.

16

https://openreview.net/forum?id=WIzzXCVYiH
https://openreview.net/forum?id=0YXmOFLb1wQ

Published in Transactions on Machine Learning Research (10/2024)

Algorithm 2 2shapes dataset generation

Graph Classes: {LOLLIPOP, TREE}
Output: A collection of pairs consisting of a graph and its label
Procedure:
• For every class, C ∈ Graph Classes, do 1000 times:

– if C = LOLLIPOP:
∗ Sample lollipop graph Glollipop with random number of head nodes m ∈ {2, · · · , 6} and random

number of tail nodes k ∈ {4, · · · , 16}
∗ Return (GC , C).

– if C = TREE:
∗ Sample a r-ary tree Gtree with random r ∈ {2, 3, 4} and random number of nodes
n ∈ {3, 4, · · · , 13}

∗ Return (GC , C).

Algorithm 3 4Shapes dataset generation

Graph Classes:{BARBELL, WINDMILL, WHEEL, STAR}
Output: A collection of pairs consisting of a graph and its label
Procedure:
• For every class, C ∈ Graph Classes, do 1000 times:

– if C =BARBELL:
∗ Sample barbell graph GBarbell with random number of head nodes m,n ∈ {1, · · · , 4} and random

number of connector nodes k ∈ {4, · · · , 15}
∗ Return (GC , C).

– if C = WINDMILL:
∗ Sample windmill graph Gwindmill with random number of cliques k ∈ {3, · · · , 9} and each clique

of random size s ∈ {3, · · · , 5}
∗ Return (GC , C).

– if C = WHEEL:
∗ Sample wheel graph Gwheel with a central node and random number of non-central nodes
n ∈ {4, · · · , 16}

∗ Return (GC , C).
– if C = STAR:

∗ Sample star graph Gstar with random number of non-center nodes n ∈ {6, · · · , 30}
∗ Return (GC , C).

17

Published in Transactions on Machine Learning Research (10/2024)

B Classifier Architecture

On all datasets except MUTAG, we implement a deep GCN architecture comprising three GCN layers, each
with a dimension of 64. This is followed by a global mean pooling layer, a batch normalization layer, and
finally a linear layer to obtain the class logits. We utilize Leaky ReLU as the activation function between
the GCN layers and within the MLP. The model parameters are initialized using the Kaiming method.
Training is conducted using the Adam optimizer (Kingma & Ba, 2014) with an initial learning rate of 0.01.
Additionally, we use a learning rate scheduler to halve the learning rate every hundred epochs. On the
MUTAG dataset, the model architecture consists of three graph convolutional layers designed to extract
features from input graphs. The first and third layers are Graph Convolutional Networks (GCN), while the
second layer is a Graph Attention Network (GAT) with two attention heads, enabling the model to focus on
important nodes and edges. A residual connection from the input features to the output of the third layer
ensures better gradient flow and feature retention. The model employs a Jumping Knowledge mechanism
in concatenation mode, aggregating features from all three layers to capture hierarchical information. The
aggregated features are globally pooled, batch normalized, and passed through a dropout layer with a 0.5
probability to prevent overfitting. Finally, these processed features are fed into a linear classifier that outputs
the class logits. This architecture is trained the same way as the above architectures.

The confusion matrix for each of the trained classifier is shown in Figure 4.

Figure 4: Confusion Matrix of the Trained Classifier on all Datasets

C Graphon Estimation and Related Guarantees

The algorithm for estimating the graphon of a target class is detailed in Algorithm ??.

The weak regularity lemma for graphons(Lovász, 2012) can be stated as
Theorem C.1. Let S be any graphon and let K ≥ 1, K ∈ Z. Then, there exists a step function SP over a
partition P = {P1, · · · , PK} of the unit interval such that ∥S − SP ∥□ ≤ 2√

log K
∥SP ∥2

This theorem guarantees that there would always exist a step function and a partition with which any given
graphon can be approximated well in the cut norm. Also note that by increasing the number of partitions,
one can arbitrarily increase the accuracy of the approximation.

D Theoretical Guarantees

D.1 Proofs of the Theorems

Theorem D.1. Let Dc1 and Dc2 be two collections of graphs belonging to the target classes c1 and c2,
respectively, with their estimated graphons Sc1 and Sc2 . Define the boundary graphon as Sb = λSc1 + (1 −

18

Published in Transactions on Machine Learning Research (10/2024)

Algorithm 4 Estimating the Graphon of a Target Class and Generating Graphs from the Graphon

Input: Set of graphs Dc belonging to class c, threshold τ for clipping singular values, desired number of
nodes N (where N must not exceed the maximum number of nodes in any graph from Dc)
Init: List of sorted adjacency matrices A, List of sorted node features X
Output: Estimated graphon Sc for class c, Node feature of the generated graph Xc, Adjacency matrix of
the generated graph Ac

Procedure:
• Align and Sort Nodes:

– For each graph G = (A,X) in the set Dc:
∗ Compute node degrees from the adjacency matrix A.
∗ Sort nodes in descending order of their degrees to obtain the sorted adjacency matrix A and

sorted node features X.
∗ Pad A to size N ×N and X to size N × d, where d is the node feature dimension.
∗ Append the sorted and padded adjacency matrix A to the list A.
∗ Append the sorted and padded node features X to the list X.

• Graphon Estimation using USVT:
– Compute the mean adjacency matrix sum_graph = 1

|A|
∑|A|

i=1 Ai, where Ai represents each sorted
adjacency matrix in the set A.

– Perform Singular Value Decomposition (SVD) on sum_graph: sum_graph = UΣV T .
– Apply singular value thresholding: set σi = 0 if σi < τ ×

√
N .

– Reconstruct the graphon Sc = UΣV T using the modified singular values.
– Clip the values of Sc to the range [0, 1].

• Sampling Graphs from the Estimated Graphon:
– For each generation of a graph using the graphon, repeat the following steps to generate its node

feature Xc:
∗ For i = {1, · · · , N}:

· Collect the ith row from all matrices X in X into a pool.
· Assign a probabilistic weight to each unique row in the pool based on its frequency of

occurrence, excluding rows that are all zeroes to avoid padding effects.
· Randomly sample the ith row of the graph’s node feature using the assigned probabilistic

weights.
∗ Combine the sampled rows to form the node feature Xc of the generated graph.

– Sample Sc using Equation 4 to generate the adjacency matrix Ac of the sampled graph.
Return: Sc: Estimated graphon for class c, Xc: Node feature of the sampled graph, Ac: Adjacency
Matrix of the sampled graph

19

Published in Transactions on Machine Learning Research (10/2024)

λ)Sc2 . For any discriminative motif Mc1 ∈Mc1 and Mc2 ∈Mc2 , the difference in the homomorphism density
of Mc1 and Mc2 with the boundary graphon Sb compared to their respective graphons Sc1 and Sc2 is bounded
above by:

|t(Mc1 , S
c1)− t(Mc1 , S

b)| ≤ (1− λ)|E(Mc1)|∥Sc1 − Sc2∥□
|t(Mc2 , S

c2)− t(Mc2 , S
b)| ≤ λ|E(Mc2)|∥Sc1 − Sc2∥□

Proof. We use the following lemma from (Lovász & Szegedy, 2006) for the proof of this theorem.

Lemma D.2. Let U , W be two graphons. Then, for every simple graph F |t(F,U)− t(F,W)| ≤ |E(F)|∥U −
W∥□

Using D.2 we see that, |t(Mc1 , S
c1)− t(Mc1 , S

b) ≤ |E(Mc1)|∥Sc1 − Sb∥□
This can be rewritten as :

|E(Mc1)|∥Sc1 − Sb∥□ = |E(Mc1)|∥Sc1 − λSc1 − (1− λ)Sc2∥□
= |E(Mc1)|∥(1− λ)(Sc1 − Sc2)∥□

Now, note that for any graphon S and a positive constant α ∈ R, the cut norm has the following property
∥αS∥□ = supX,Y ⊂[0,1]

∣∣∣∫X×Y
αS(x, y)

∣∣∣ = α supX,Y ⊂[0,1]

∣∣∣∫X×Y
S(x, y)

∣∣∣ = α∥S∥□
Using this property, we conclude,

|E(Mc1)|∥(1− λ)(Sc1 − Sc2)∥□ = (1− λ)|E(Mc1)|∥Sc1 − Sc2∥□

The proof for a motif Mc2 can be done similarly by mimicking this proof

Next, we present a theoretical guarantee that graphs generated from the graphon Sb will inherit the motifs
contained in Sb.
Theorem D.3. Let Sb be the boundary graphon and assume that it contains a discriminative motif Mb.
Then any random graph G on n nodes generated from Sb satisfies:

P(|t(Mb, G)− t(F, Sb)| > ϵ) ≤ 2 exp
(
− ϵn2

18|V (Mb)|2

)

Proof. We begin by stating a lemma from Lovász (2006) (Lovász & Szegedy, 2006), from which the proof of
our theorem will follow as a straightforward corollary.

Lemma D.4. Let S be a graphon and F be a simple graph. Let G(n, S) be a random graph on n nodes
sampled from the graphon S. Then, P(|t(F,G)− t(F, S)| > ϵ) ≤ 2 exp

(
− ϵn2

18|V (F)|2

)
Setting, F = Mb and S = Sb in Lemma D.4, the bound follows

Theorem 5.2 demonstrates that the topology of a random graph sampled from the boundary graphon closely
resembles the topology of the boundary graphon itself, which includes discriminative motifs from both classes.
Consequently, the theoretical analysis in this section confirms that graphs generated by the boundary graphon
Sb will contain discriminative motifs from both target classes.

20

Published in Transactions on Machine Learning Research (10/2024)

D.2 Generation of Diverse Explanations

The estimated graphon Sc of a target class c is used to generate explanations for the target class c. When
the graphon is approximated using a step function over K partitions of the unit interval, then Sc ∈ RK×K ,
from which the adjacency matrix A is sampled as Aij ∼ BernSc

ij . Consequently, the probability of generating
two identical graphs using this sampling scheme is

∏K
i=1

∏K
j=1((Sc

ij)2 + (1− Sc
ij)2) which is extremely small

since Sc
ij ∈ [0, 1] and K is a reasonably large number K is set to be the median number of nodes of graphs

contained in the dataset D. This guarantees that Graphon-Explainer produces explanations that are distinct
from each other.

D.3 Time Complexity Analysis

The estimation of a graphon using the USVT method on g graphs, each with N nodes, and employing a
step function with K partitions, has a time complexity of O(N3) (Xu et al., 2021). After optimization,
generating a single explanation from s samples of the estimated graphon requires O(sK) time for node
feature generation and O(sK2) for edge generation, resulting in a total explanation generation complexity
of O(sK2).

This is more efficient than GNNInterpreter, which has a time complexity of O(TsK2) for a single explanation,
where T is the number of iterations needed for convergence, and s represents the number of Monte Carlo
samples. Notably, our method is non-iterative and does not require convergence for each explanation, as
the graphon is estimated once for a target class and then sampled from, making our approach significantly
faster than GNNInterpreter.

Moreover, the XGNN method exhibits a considerably higher time complexity of O(TRM3), where T is the
number of episodes, R is the number of rollout operations per episode step, and M is the number of edges
in the generated graph. Given that M typically exceeds K − 1, XGNN’s time complexity is substantially
worse.

E Adjacency Score in a Multi-Class Scenario

E.1 Algorithm for Computing Adjacency Score

Algorithm 5 Adjacency Score Computation

Input:
• L: Last linear layer of the classifier that outputs class specific logits
• Embeddings Ec1 : Set of embeddings for class c1.
• Embeddings Ec2 : Set of embeddings for class c2.
• Class indices c1, c2: Indices of the two target classes for adjacency check.
• Number of samples N : Number of samples to draw from each list for checking.
• Number of interpolation steps T : Number of steps for linear interpolation.
Procedure:
• Initialize adjacency score adjscore← 0
• for i = 1 to N :

– Initialize score S ← 1
– Randomly sample ec1 ∈ Ec1 and ec2 ∈ Ec2

– for α = 0 to 1 with step size 1
T :

∗ Compute linear combination c← α · ec1 + (1− α) · ec2
∗ Pass c through the model: p← softmax(L(c))
∗ if argmax(p) /∈ {c1, c2}:

· Set S ← 0
· break

• adjscore = adjscore + S
• return adjscore/N

21

Published in Transactions on Machine Learning Research (10/2024)

In this section, we detail in Algorithm 5 the computation of adjacency scores for two target classes in a
multi-class scenario. If the score is above a certain threshold, we consider two classes to be adjacent. We
use a threshold of 0.75 in this paper.

E.2 Adjacency Score on 4Shapes

Figure 5: Adjacency Scores between all classes in 4Shapes dataset

The confusion matrix depicting the scores which is used for choosing the boundary in 4Shapes dataset is
shown in Figure 5.

F XGNN Results

The visual results for XGNN is shown in Figure 6.

Figure 6: Visual Results from XGNN for real and synthetic dataset

22

Published in Transactions on Machine Learning Research (10/2024)

G Code Usage for Comparison

We use the code for XGNN from the DIG repository https://github.com/divelab/DIG/tree/main/dig/
xgraph/XGNN. We use the code for GNNInterpreter from their official repository https://github.com/
yolandalalala/GNNInterpreter and the code from this reproducibility study(Vasilcoiu et al., 2024) https:
//github.com/MeneerTS/FACT2024_GNNInterpreter.

H Analysis of Explanations Generated by Different Architectures

Table 4: Boundary Metrics for the GIN architecture

Boundary Margin Boundary Thickness Boundary Complexity
Windmill Wheel Windmill Wheel

4.1341 4.7986 3.1721 9.2698 0.21000
Barbell Wheel Barbell Wheel
3.2143 2.9876 5.6178 5.2197 0.14100

Windmill Barbell Windmill Barbell
1.2149 0.6987 1.4561 3.8654 0.09870
Star Barbell Star Barbell

0.4129 3.9851 5.7614 3.2198 0.06842
Windmill Star Windmill Star

2.1965 7.2684 2.4976 8.6514 0.10820

Table 5: Boundary metrics for the GCN architecture

Boundary Margin Boundary Thickness Boundary Complexity
Barbell Wheel Barbell Wheel
0.7243 0.9656 5.64008 3.6377 0.02906
Barbell Star Barbell Star
0.8292 2.807 7.3156 0.5376 0.07444

Windmill Wheel Windmill Wheel
0.4993 0.4907 2.4315 4.6429 0.0855

Windmill Star Windmill Star
0.4511 3.803 6.14 0.596 0.01686

Figure 7: Explanations on the Barbell Class of the 4Shapes dataset for 2 different classifier architectures.

In this section, we demonstrate how different two classifiers are in their intrinsic interpretation of a target
class and their decision boundaries even in the scenario when they classify a dataset almost perfectly and
even in the case when they have a 100% accuracy on some classes in the dataset. For this, we use the
previous GCN architecture detailed in Appendix B and a GIN of the same architecture on the 4Shapes
dataset.

23

https://github.com/divelab/DIG/tree/main/dig/xgraph/XGNN
https://github.com/divelab/DIG/tree/main/dig/xgraph/XGNN
https://github.com/yolandalalala/GNNInterpreter
https://github.com/yolandalalala/GNNInterpreter
https://github.com/MeneerTS/FACT2024_GNNInterpreter
https://github.com/MeneerTS/FACT2024_GNNInterpreter

Published in Transactions on Machine Learning Research (10/2024)

Figure 8: Adjacency Scores on 4Shapes for the GIN model

As seen in Figure7, even though both the classifier have a 100% accuracy on the Barbell class and the
learned graphon generative model is the same, sampling using equation 2 yields very different explanations.
We find that the GCN model identifies Barbell using the branch like structures of the Barbell while the
GIN model distinguishes the barbell class using the head like structure of the barbell. Also, as shown in
Figure8 and Figure 5 different pairs of classes share decision boundaries for both models as their inherent
graph embeddings are different. Further, even when a pair of common classes share a decision boundary,
the boundary metrics are very different(demonstrated in Table 4 and 5) like in the case of Star and Barbell
where the boundary thickness of Star is greater for the GIN and the thickness for Barbell is greater for
the GCN architecture. However, they also share certain common grounds like the boundary complexity for
the Windmill-Wheel pair is the highest for both the models indicating that separating these two classes is
significantly harder. This is also validated by the confusion matrices of both the models in Figure 7.

I Smaller Explanations for IMDB-B and REDDIT-B

Figure 9: Simpler Explanations of IMDB-Binary and REDDIT-Binary

24

Published in Transactions on Machine Learning Research (10/2024)

Figure 9 shows some smaller sized explanations generated by Graphon-Explainer on the IMDB-Binary and
Reddit-Binary datasets.

J Comparative Results with other Metrics and Methods

In this section, we compare the performance of Graphon-Explainer with GDM(Nian et al., 2024) on three
datasets. We report class score averages for 10 explanations generated per class on the dataset as a whole
as reported by the authors of GDM in Table 6. Further, we also adopt a metric proposed by the authors
called model fidelity. Model fidelity demonstrates the usefulness of the generated explanations by training
a surrogate model on the explanations having a similar structure as the classifier and measuring the ratio
of cases on the test set where the surrogate model gives the same decision as the original classifier. As
shown in Table 6 and Table 7 Graphon-Explainer performs better or equally on all except on one metric on
one dataset. Figure 10 also shows the explanations and graphons generated by Graphon-Explainer on the
SHAPE dataset.

Table 6: Class Scores

Dataset GDM Graphon-Explainer
MUTAG 0.8267 ± 0.0470 1.0 ± 0.00
BA2Motif 1.0 ± 0.0000 1.0 ± 0.00
SHAPE 1.0 ± 0.0000 1.0 ± 0.00

Table 7: Model Fidelity

Dataset GDM Graphon-Explainer
MUTAG 94.73 ± 0.00 96.81 ± 0.005
BA2Motif 98.00 ± 0.00 96.19 ± 0.034
SHAPE 84.00 ± 8.00 92.41 ± 0.143

Figure 10: Explanations on SHAPE Dataset generated by Graphon-Explainer

25

Published in Transactions on Machine Learning Research (10/2024)

Figure 11: Visual Results of GNNBoundary

K Visual Results of GNNBoundary

Figure 11 demonstrates the motifs generated by GNNBoundary on all datasets for decision boundaries
between different target classes.

L Sensitivity Analysis

L.1 Setting number of samples on the dataset

The following is the hyperparameter setting for Graphon-Explainer used on the corresponding datasets.

Table 8: Hyperparameter values of nsamples on all datasets

Dataset #samples for class explanation #samples for boundary explanation
2Shapes 3 20
BA2Motif 10 50
4Shapes 4 800
IMDB-B 50 200
Reddit-B 10 150
MUTAG 20 100

L.2 Sensitivity Analysis on λ and Number of Nodes

Figure 12 outlines the variation in class scores for the explanation graphs with the number of nodes for all
the target classes and with varying mixup parameter λ on the boundary classes. On all the datasets for
scores reported in Table 2, we choose K to be the median number of nodes in the dataset and λ is varied
from 0.4 to 0.6 for generation of the boundary motifs, and the λ yielding the best score is chosen.

26

Published in Transactions on Machine Learning Research (10/2024)

Figure 12: Sensitivity Analysis on all Datasets

27

	Introduction
	Preliminaries
	Related Work
	Method
	Problem Setup:
	Implementation Setting
	Graphon Estimation
	Generation of Explanation for a Target Class
	Generation of Graphs near the Decision Boundary

	Theoretical Analysis
	Experimental Analysis
	Metrics for Quantitative Evaluation of Generated Explanations
	Metrics for Evaluation of the Decision Boundary of the Classifier
	Datasets
	Results
	Sensitivity Analysis

	Conclusion
	 Synthetic Dataset Generation
	Classifier Architecture
	Graphon Estimation and Related Guarantees
	 Theoretical Guarantees
	Proofs of the Theorems
	Generation of Diverse Explanations
	Time Complexity Analysis

	Adjacency Score in a Multi-Class Scenario
	Algorithm for Computing Adjacency Score
	Adjacency Score on 4Shapes

	XGNN Results
	Code Usage for Comparison
	Analysis of Explanations Generated by Different Architectures
	Smaller Explanations for IMDB-B and REDDIT-B
	Comparative Results with other Metrics and Methods
	Visual Results of GNNBoundary
	Sensitivity Analysis
	Setting number of samples on the dataset
	Sensitivity Analysis on and Number of Nodes

