Under review as a conference paper at ICLR 2025

DEEP LEARNING AIDED BROADCAST CODES
WITH FEEDBACK

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning aided codes have been shown to improve code performance in feed-
back codes in high noise regimes due to the ability to leverage non-linearity in
code design. In the additive white Gaussian broadcast channel (AWGN-BC), the
addition of feedback may allow the capacity region to extend far beyond the ca-
pacity region of the channel without feedback, enabling higher data rates. On the
other hand, there are limited deep-learning aided implementations of broadcast
codes. In this work, we extend two classes of deep-learning assisted feedback
codes to the AWGN-BC channel; the first being an RNN-based architecture and
the second being a lightweight MLP-based architecture. Both codes are trained
using a global model, and then they are trained using a more realistic vertical
federated learning based framework. We first show that in most cases, using an
AWGN-BC code outperforms a linear-based concatenated scheme. Second, we
show in some regimes, the lightweight architecture far exceeds the RNN-based
code, but in especially unreliable conditions, the RNN-based code dominates.
The results show the promise of deep-learning aided broadcast codes in unreli-
able channels, and future research directions are discussed.

1 INTRODUCTION

Error correcting codes are an integral component of wireless communication systems, allowing
reliable communication over noisy channels. Codes should be designed to be as efficient as possible
without sacrificing error correction capabilities. In this work, we focus on designing codes for the
additive white Gaussian noise broadcast channel (AWGN-BC) with feedback. Unlike the single user
feedback case, where the capacity of the AWGN channel with addition of feedback cannot exceed
that of the AWGN channel without feedback, the use of feedback in the AWGN-BC channel can
far exceed the capacity of the AWGN-BC channel without feedback |Shannon| (1956); |Ahmad et al.
(2015). The design of good codes for the AWGN-BC channel with feedback can enable high data
rate communication with high reliability in unfavorable channel conditions.

Codes designed for the AWGN-BC channel with feedback have been linear in nature due to more
simplicity in code design, yet this requirement limits the design of optimal codes |Ahmad et al.
(2015). These codes include Ozarow’s extension of Shakwijk and Kailath’s linear scheme to the
AWGN-BC channel with perfect feedback |Ozarow & Leung-Yan-Cheong| (1984); [Schalkwijk &
Kailath| (1966). There are also linear control-oriented schemes that show performance improvement
beyond Ozarow’s scheme [Elia| (2004)); |Ardestanizadeh et al.| (2012). Most purely linear schemes
operate under the assumption of perfect feedback and suffer greatly with feedback noise. In response
to this, a concatenated scheme relying on linear codes for the inner code for the AWGN-BC for the
noisy feedback channel was proposed [Ahmad et al.| (2015).

Dropping the linearity assumption of these codes could unlock the higher data rates of AWGN-BC
codes with potentially noisy feedback, but designing non-linear codes is a challenging task. Recent
innovations in deep learning, though, allow seemingly intractable wireless problems to be solved
and can be used to design high performing non-linear codes. For example, in the single user AWGN
channel with feedback, it has been shown that deep-learning aided codes can outperform linear
schemes in terms of probability of block error in scenarios where feedback noise is high and/or the
forward SNR is low Kim et al.|(2020). In this work, we seek to design codes that outperform linear
schemes in the aforementioned noisy regions using deep-learning for the AWGN-BC channel, where

Under review as a conference paper at ICLR 2025

there are limited implementations of deep-learning aided broadcast codes, in order to improve per
user data rate and reliability in poor channel conditions.

1.1 EXISTING DEEP-LEARNING AIDED BROADCAST CODES AND FEEDBACK CODES

There are very few existing implementations of deep-learning aided codes for the AWGN-BC chan-
nel. In Li et. al, a deep-learning based approach to the fading AWGN broadcast channel with
two users and binary phase shift keying (BPSK) modulation is proposed. The scheme involves two
phases, where in the first phase two separate time slots are allocated for transmission to each of
two users, where the information bits are modulated using BPSK and the weights of the modulated
bits are optimized. In phase 2, a deep learning aided two-phase scheme is used which involves
passing the input through a deep recurrent neural network (RNN), through a dense layer, and then
through a weighted parameter. The decoding scheme involves two bi-directional GRUs, followed by
a bi-drectional LTSM, and finally a dense layer Li et al.|(2022). This scheme is not fully learnable
and restrictive as it requires an initial BPSK modulation scheme. For the multiple-access channel
(MAC), Ozfatura et. al propose a deep-learning based code with two users with noiseless feed-
back |Ozfatura et al.| (2023). In this work, block attention feedback (BAF) codes are used, where
the encoding and decoding process consists of transforming the knowledge vector at the receiver
and transmitters into a sequence of vectors and using self-attention mechanism on these to emulate
encoding and decoding processes. BAF codes have high computational complexity which may not
be suitable for many communication applications, and in many applications feedback codes could
benefit from complexity reduction |Ozfatura et al.| (2022).

On the other hand, there are numerous schemes for deep-learning codes for the single user AWGN
channel with feedback. One scheme, Deepcode, was proposed for a finite length, fixed rate block
code over the AWGN channel with noisy feedback Kim et al.| (2020). In this scheme, the encoder
and decoder are both modeled as recurrent neural networks (RNNs) in order to process the bit stream
sequentially over the AWGN channel to minimize block error rates, but it appears to be limited to
rate 1/3 only. In Kim et al.[(2023), a RNN-based power constrained deep-learning architecture is
proposed. This work combines GRUs and an attention mechanism to optimize code design across
time and take advantage of noise averaging. In addition, a power control layer is proposed, to en-
sure optimal utilization of the power budget. In Ozfatura et al., generalized block attention feedback
codes (GBAF) were proposed, which is a transformer-based feedback code scheme |Ozfatura et al.
(2022). GBAF operates generally by breaking message blocks into symbols, encoding individual
symbols with feature extractors, and then encoding these symbols across the entire codeblock us-
ing a transformer based architecture. Transformer-based and RNN-based encoders and decoders,
in general, may have large computational demands, which may not be feasible for communica-
tion systems with limited resources. To this end, LightCode was proposed, whose performance is
shown to be comparable or, in some cases, superior to GBAF with fewer parameters and complexity
Ankireddy et al|(2024). Unlike the aforementioned codes which utilize RNN or transformer based
architectures, LightCode is a relatively lightweight symbol by symbol scheme consisting of a feature
extractor (FE) architecture followed by an multi-layer perceptron (MLP) at the encoder and decoder.

1.2 IMPLEMENTATION OF DEEP-LEARNING AIDED AWGN-BC CODES WITH FEEDBACK

Now, we discuss our implementation of codes for the AWGN-BC channel. As mentioned before, the
existing implementation in|Li et al.|(2022)) is not fully learnable, imposing restrictive structure to the
learned scheme, so we look to the existing single user AWGN with feedback codes in our design. In
this work, we focus on extending the Robust Power-Constrained Deep Learning Algorithm (hereby
referred to as the RPC scheme) in |Kim et al.|(2020) and LightCode in|Ankireddy et al.|(2024) to the
AWGN-BC channel. We choose to evaluate the performance of RPC due to its robustness to noise
as it employs a GRU and attention mechanisms to leverage noise averaging which may be useful
in adverse channel conditions Kim et al.| (2020). Conversely, since the model in RPC may contain
many hidden states requiring a great deal of memory, we choose to compare the performance against
the newly proposed LightCode as it has demonstrated near state of the art performance in certain
regimes and at a code rate of R = 1/3 while using a less memory intensive architecture |Ankireddy
et al.[(2024).

Under review as a conference paper at ICLR 2025

In the case of both codes, we demonstrate an extension of these codes to two receivers by imple-
menting multiple decoder modules and adjusting the loss function accordingly. In this way, the
entire system consisting of the encoder and decoders is treated as a global model in which the pur-
pose of training is to minimize the overall loss between all users. We train each model for two users,
and show the performance of each algorithm in different noise regimes and for various code rates.

Beyond this, we view vertical federated learning (VFL) as a promising direction for training feed-
back codes across the AWGN-BC channel, instead of utilizing a global model framework as outlined
above. To the best of our knowledge, there have been no deep learning aided feedback codes which
have employed a federated training approach. A federated framework could allow the implementa-
tion of deep learned feedback codes in practice— for example, it could allow the training of codes
when decoders do not know the number of other users in the system a priori. Also, a federated
training approach could offload computation from end-user devices which may be more resource
constrained to the base station. This could also allow adaptive learning of codes in dynamic wireless
environment Niknam et al.| (2020). We consider the encoder and decoders each to have their own
local model of the communication system and view the encoder as the active party. In this case,
all parties share the same sample space, but each party’s local model is updated according to it’s
own loss function [Liu et al.| (2024). To this end, we propose a VFL training framework where each
decoder transmits its model output to the encoder over the feedback link and, conversely, the en-
coder transmits the new computed gradients to each decoder at the end of a batch. In the proposed
VFL algorithm, we transmit the uncoded gradients across the downlink channel which are corrupted
by AWGN. We choose to explore the uncoded downlink versus a quantized method as it has been
shown that there is better convergence behavior in federated learning with noisy downlinks Amiri
et al. (2021). We observe the effect of noise in the VFL training process.

In summary, we discuss the implementation and training of the RPC-based and the LightCode-
based AWGN-BC code both for the global model and the extension to the VFL framework. Results
are compared to the concatenated scheme in Ahmad et al. since it is designed for noisy feedback
specifically, whereas purely linear codes suffer greatly with feedback noise/Ahmad et al.|(2015)). We
compare the performance of each scheme in various SNR scenarios and with various code rates. We
also observe the performance of the VFL algorithm with AWGN training noise. Finally, we discuss
limitations and future research directions.

Notation— x denotes a scalar, x denotes a vector, and x[¢] denotes the ¢th index of the vector x. The
set {0,1,2,---, N} is denoted by [N]. The cardinality of a set X is denoted |X|. The set {z,}},
is short hand notation for the set {z1, 22, - , 2N }.

2 PROBLEM SETUP

2.1 CHANNEL MODEL

We consider the real L user AWGN broadcast channel with noisy feedback (AWGN-BC). That is,
there is one transmitter which has L independent, uniformly distributed messages W1 € Wy, Wy €
Wa, -+, W € Wy that are to be conveyed to receives 1 through L, respectively. W, denotes the
set of all messages for receiver £. At channel use ¢ > 0, the channel output at receiver ¢, £ € [L], is
given by

volt] = x[t] +n][¢])

where x[t] € R is the transmitted symbol at time , ng [t] isi.i.d. noise distributed n,{ [t] ~ N (O, 0']2c)

(where the superscript f indicates the noise on the forward link). We impose an average transmit
power constraint so that

N
E (Z x2[t]> <N)

where N is the length of the transmission block.

Each receiver has a feedback link to the transmitter that is corrupted with i.i.d. AWGN noise. We
assume the channel output given in equation[I]is immediately sent back to the transmitter in a causal

Under review as a conference paper at ICLR 2025

manner. The feedback from receiver £ is given by
2[t] = y,[t — 1] + ng[t] (3)

where y, [t — 1] is described as in equationand n}[t] is i.i.d. noise distributed n}[¢] ~ N (0,07)
(where the superscript b indicates the noise on the backward link).

2.2 CODING DEFINITIONS

We define R, € R as the rate of transmission for user ¢ in bits per channel use. The sum-rate is
defined as Ry, = ZJL=1 Rj. Then, a ([2NF1] [2NB2] ... [2NEL]) code for the AWGN-BC
with feedback consists of

1. A single encoder denoted by functions f;(-), ¢ € [N] that maps all the messages
{Wy,Ws,--- W} and the feedback from each user {z¢[1],2¢[2], - ,2z¢[N]}, £ =
1,---,L to {x[1],--- ,x[IN]} such that the power constraint in equation [2| is obeyed.
Specifically, define the encoding procedure at time ¢ as

x[t] = fe({Webimy, {zell], - 2elt = 1]}iey)

2. L decoders g1(-), g2(-), -+ , g (-) such that ge(-) maps {y,[1],- -~ y,[N]} to Wz € Wy to
decode the message for receiver ¢. Specifically, denote the decoding procedure as

We = ge (yo[1], -+, ¥,[N]) “4)

After decoding, the block error probability for receiver ¢ given a message Wy is defined as
P. ((Wy) := Pr (Wg # W[). In the global model, the goal is to design a set of encoding functions

ft for t € [N] and decoding function g, for each user ¢ that minimizes the average probability of
error P, ¢y = E (P, ¢(W¢)) where the expectation is taken over all possible messages and all users.
Specifically, for any encoder-decoder design, we specify that the objective for the broadcast channel
is

minimize E¢ (Peye) (5)
{ft}te[N»91,92, 591

N
subject to E (Z x? [t]) <N
=1

3 FEEDBACK CODE DESIGN

3.1 RPC-BASED BROADCAST CODE (RPC-BC)

In the Robust Power Constrained (RPC) scheme, hereby referred to as RPC-BC, the encoding
scheme consist of three layers: 1) a gated recurrent unit layer (GRU), 2) a non-linear layer, and
3) a power control layer. We outline the modules below. Referring to the objective function in equa-
tion[5] we see that the optimization problem requires N encoding functions to be designed. To save
complexity, a single encoding generation function f is designed such that

x[t] = f ({Wel iz, {zelt — 1132y, (1)

where s[t] is called the state vector which propagates over time through a state propagation function
h given by

slt] = h ({W iy, {zelt — 1]}y, slt — 1))

This state-based encoding procedure is a non-linear extension of the state-space model used for
linear encoding in feedback systems, and is intended to capture the time correlation of the feedback
signals throughout time |[Kim et al.| (2020); |[Elial (2004).

Under review as a conference paper at ICLR 2025

1. GRU layer: The GRU layer consists of two unidirectional GRUs to capture the time corre-
lation of the feedback signals causally. The input-output relationship of this layer is given
by

s1lt] = GRU; ({Wo} by, {ze by sit — 1))
So [t] = GRU2 (Sl[ﬂ, So [t — 1])
where GRU; denotes the function of GRU i and the initial condition for the state vector

and the feedback are given as s;[—1] = 0 and z;[—1] = 0. The dimension of the ith state
vector is given by N, ;. Then, the overall state is represented as

slt] = [su[t], s2[t]] = h ({Webizy, {ze}icy slt — 1])
where h represents the overall function of the two GRU layers.
2. Non-linear Layer: An additional non-linear layer is utilized at the output of the GRUs
whose input-output relationship is given by
x[t] = ¢ (W''s2[t] +b)
where w € RY+2 and b are trainable weights and biases, and ¢ is a hyperbolic tangent
activation function.

3. Power Control Layer: Since power allocation across time is necessary for robust perfor-
mance Kim et al.| (2020), a final power control layer is utilized before transmission. The
input-output relationship of this layer is given by

J) =
x[t] = wiry” (&)
where %E‘]) is a normalization function applied to Z[k] consisting of sample mean and sam-
ple variance computed from data with size .J, and wy; is a trainable power weight which
satisfies

N
S up =N
k=1

It can be shown that with large J the power control layer satisfies the power constraint in
equation [5]almost surely [Kim et al|(2020).

The decoding mechanism for each of the L receivers of the RPC-based code consists of 1) a GRU
layer, 2) an attention layer, and 3) a non-linear layer. Each layer is discussed below.

1. GRU Layer: Two layers of bi-directional GRUs are used in this layer. The input-output
relationship of the forward direction of the /th user are given by

rya[t] = GRU (y[t], x4 [t — 1)
l'ff,z[ﬂ = GRUy 2 (l'fm[tL rﬁf,z[t - 1])
and the input-output relationship of the backward direction of the /th user are given by
1y, [t] = GRU,1 (y[t], x4 [t + 1)
r} ,[t] = GRUp 3 (ry1[t], 1) o[t + 1])

where the dimension of rf’i and rfci are given by nyi and N/ respectively.

7,47
2. Attention Layer: The state vectors at the last layer over all communication rounds ¢ =
1,---, N are the input to attention layer. The attention layer is used to capture the long term
time dependency of the received signals |[Kim et al|(2020). The input-output relationship
of this layer for the /th user is given by
N N
¢ A ¢ T
Tsatt = Z af,trf,Z[tL patt = Z ab,trb,z[t]
t=1 t=1
where o and oy, ¢ are trainable attention weights. The final output of this layer is given
by

¢ ¢
Cote = [rf,attvrb,utt]

Under review as a conference paper at ICLR 2025

3. Non-Linear Layer: Lastly, a non-linear layer is used to produce the estimate W,.The input-
output relationship of this layer for the ¢th user is given by

p, =10 (Wflrg,tt + sz)

where 6 is a softmax activation function and W% € RM¢l:N %2tz and v € RIWel are
the trainable weights and biases for user £. The number of outputs is [WW,| and therefore p,
denotes the probability distribution of the [WWy| possible messages. Fig. %]in the appendix
contains a pictorial representation of the coding scheme.

3.2 LIGHTCODE-BASED BROADCAST CODE (LIGHTBC)

In the LightCode based scheme, hereby referred to as LightBC, the encoding scheme consists of two
layers: 1) the feature extractor and 2) the MLP, and 3) a power control layer. We outline the modules
below.

1. Feature Extractor: At each transmission round, a feature extractor (FE) is utilized. The
purpose of the FE is to map the data for each message block to a vector representation
Ozfatura et al.| (2022)). The input-output relationship of the FE is given by

r[t] = FEe ({Webioy, {x[t — 1], x[1} {zeft — 1], 2ze[1]}iey)

where FE, represents the function of the FE at the encoder and the output dimension of r([t]
is N, .. In our simulations, we choose to use the same structure of the FE as in the single
user LightCode |Ankireddy et al.|(2024).

2. MLP: After the FE, the signal is fed into a two-layer MLP module whose input-output
relationship is given by
x[t] = MLP, (r[t])
where MLP, represents the function of the MLP at the encoder.

3. Power Control: Finally, the output X[¢] is fed through a power control layer. We utilize the
same power control method as in the RPC coding scheme, given by

x[t] = wrl” (E[t])

where once again %(J) is a normalization function applied to Z[k] consisting of sample
mean and sample variance computed from data with size J, and w; is a trainable power
weight which satisfies

N
S uf =
k=1

The decoding scheme is very similar to that of the encoder, consisting of the same FE module and
an MLP. In this case, a single layer MLP is used. Specifically,

1. The FE at the /th decoder inputs the received symbols across time and outputs a feature

vector
ro = FEf (y,[1], - ,y,[N])

where FEfl represents the function of the FE at the /th decoder and the output dimension of
rpis Ny q.

2. Following the FE, a single layer MLP is used to decode the output. The input output
relationship is given by

p, = MLP; (ry)

where MLPﬁ represents the function of the MLP at the the ¢th decoder. The output of the
MLPﬁ module goes through a softmax function, so that the output of the MLP returns a
probability vector of length |W;| of each possible value of W/.

The decoding and encoding modules are shown pictorially in Figure [5]in the Appendix.

Under review as a conference paper at ICLR 2025

4 TRAINING METHODOLOGY

We consider two models for training the codes. The first is a global model, where all parameters
are updated according to the same loss function. On the other hand, in practical wireless systems, a
federated approach may be more useful and more practical as mentioned in the introduction. Thus,
we propose a VFL-like framework in addition to training the global model with uncoded parameter
passing between encoder and decoders.

4.1 GLOBAL MODEL

In the global model, we consider the objective function in equation [5] Noting that the output of
the decoders for each algorithm represent a probability distribution for each of the |W;| possible
message words at the ¢th decoder, then the probability of error at the ¢th decoder is empirically

Nirain

! 1 (Wila] # Wifa])

Ntrain

Pe,Z:

where 1 (+) is an indicator function that is 1 when the argument is true, zero otherwise, and W[z

is the true message vector for sample x and W, [x] is the decoded message vector for sample . The
overall expected probability of error over all users is then given by

L
1
E¢ (Pey) = 7 ZPe,e
=1

Since each decoder is essentially performing its own classification problem, then, like the single user
case, we can define the individual loss function of the /th user using the cross-entropy loss as

1 Neaten [1Wel
4 1 4
Con 108 Doy
n=1

where Nyq:ch 1S the batch size, ¢, is the actual probability of message vector is x at sample time 7,
P(Wy[n] = z), and p,y, is the predicted probability that W [n] = x for sample n. Treating all users
as equally important, the global loss is

z=1

L
1
Leg = 7 52—21 Lég (6)

By letting c£,, = 1 only for W;[n] = x, else zero, the objective of minimizing the probability of
error in equation [3]is instead transformed into a classification problem.

4.2 FEDERATED MODEL

We also train the RPC-BC model using a vertical federated learning approach. Assume that the
{th decoder has its own local model G, parameterized by 6, and the encoder has its own model F
parameterized by 6.. We argue that since each decoder is attempting to minimize its own probability
of error P, ¢, it is not necessary for each decoder £ to store a global model. On the other hand, since
the encoder is sending one signal to all decoders, the encoder should own a global model in order to
contribute to minimizing the overall probability of error for all decoders.

Let Npq:cn, be the communication batch size. Then, over Nyqicr, X N communication rounds, the
encoder broadcasts Ny,:.n, codewords to the L users, where each codeword is transmitted over [NV
channel uses. We assume that each of the ¢ users does not know the intended codeword a priori.
We shall call each set of N channel uses a sample. For the nth sample of the Ny, samples, each
local model G, computes its output H,[n] = G, (Wy[n],0,). This output He[n| is transmitted via
the feedback link to the encoder. After the Npgicr, X N communication rounds, and with all of
the outputs from each decoder, the encoder computes the overall loss of the system according to
equation [6] The encoder computes the gradients of its global model F and then updates its model.

Under review as a conference paper at ICLR 2025

LightBC RPC-BC
Batch Size 10° Batch Size 10°
Total Epochs 120 Total Epochs 100
Ntrain 108 Ntrain 107
Learning Rate 1073 Learning Rate | 102
Optimizer AdamW Optimizer Adam
Scheduler LambdalLR | Scheduler StepLR

Table 1: Training Parameters for RPC-BC and LightBC

Then, the encoder computes the loss with respect to each local model G, and computes the gradients
with respect to each local model. These gradients are transmitted to each receiver, which then update
their model G accordingly. The training process is shown in Figure[6]in the appendix.

Note that in this process, noise may impact both the value of the model output 7{, which is sent to
the encoder, as well as the gradients which are transmitted to each decoder. We note that the output
of the decoder is a |W,| —length vector of probabilities. The decoder sends the length |[W,| —length
vector of probabilities over |WW,| — channel uses. Likewise, when the gradients are computed for
each decoder, they must also be transmitted to each respective decoder. We assume that the gradients
are sent across the downlink in an uncoded manner in an orthogonal fashion, such as time division
duplexing (TDD). In the federated approach, we assume that the batch size Npqcp is the same as
the global model, outlined in the training parameters table. When sending the gradients from the
encoder to the decoders, we scale the gradients to obey an average power constraint. That is, if the
aLL,

96,

gradient vector for the (th user are given by 6, =
such that

£, then the transmission power Py,.qq is scaled

Pyraall0ill3 = Negraa 7

somewhat like the power constraint in equation |2, where Ny 4,44 is the length of the gradient vector
for the ¢th user.

The details of the training parameters for RPC-BC and LightBC are outlined in Tables 1 and 2. We
keep the training parameters relatively consistent with the training parameters proposed in the single
user versions of these codes. The outline for training each model is given in the Appendix.

5 NUMERICAL EXPERIMENTS AND DISCUSSION

In this section, we simulate the performance of Light-BC and RPC-BC for various code rates and
noise regimes. We assume that in the broadcast case, there are 2 receivers, though we note that either
code may be extended to an arbitrary number of users. In the following, we refer to the number of
message bits as K, given by K = log, (|W,]). In our training, we set Ny, ference t0 108 with the
rest of the training parameters outlined in Table (I} In the inference stage, the ¢th decoder chooses
the message corresponding to the entry of p, with the highest value as W,. In some cases, we
compare results against the concatenated scheme based off linear codes, using the closed form SNR
expressions for the concatenated coding scheme of the symmetric AWGN-BC with noisy feedback
for the scheme when A\ — 0 and L — oo (see (42) in|/Ahmad et al.[(2015)). In the linear scheme, we
assume that the signal is modulated to a 2X—PAM symbol and transmitted using the concatenated
scheme outlined by equation 41 in|Ahmad et al.| (2015).

5.1 PERFORMANCE WITH NOISELESS FEEDBACK

First, we compare the performance of LightBC versus RPC-BC in the noiseless feedback case for
sum rates R = 1/3 and R = 2/3. For the sum rate R = 1/3 case, we let X = 3 per user and
set N = 18, while for the sum rate R = 2/3 case, we let K = 6 per user and keep N = 18.
The forward SNR is swept from —3 to 1 dB. Fig. [l| shows the results of the experiments. We see
for the low rate case of 2 dB, at low SNR, the RPC-BC code performs better, but from —1dB and
beyond, no errors occurred in the inference stage (that is, the probability of error is less than 10~%).
For this lower SNR region, both RPC-BC and LightBC outperform the concatenated scheme, but

Under review as a conference paper at ICLR 2025

Ave. BLER v. Forward SNR with Perfect Feedback

1014

Average BLER per user
=
S

3 =« Light BC (K=3/user, N=18)
—— RPC (K=3/user, N=18)
107 3 —¥— Lin. (K=3/user, N=18)
-+ Light BC (K=6/user, N=18)

105 | =+ RPC (K=6/user, N=18)
-¥- Lin. (K=6/user, N=18) __,
-3 -2 -1 0 1

Forward SNR (dB)

Figure 1: LightBC versus RPC-BC with Perfect Feedback

rate R = 2/3 appears to be too high of a rate code for this SNR region in all cases. We note that
LightBC behaves somewhat like a linear feedback code in that its performance is more severely
impacted by noise as opposed to RPC-BC, but its performance rapidly improves as the channel gets
more reliable.

5.2 PERFORMANCE WITH NOISY FEEDBACK

Here, we compare the performance of LightBC versus RPC-BC in the noisy feedback case for sum
rates R = 1/3, ,R = 5/9, and R = 2/3. We also compare the broadcast codes against TDD
for rate 2/3, meaning that instead of using a broadcast code for two users for N = 18 commu-
nication rounds, the transmitter sends to each of two users over 9 communication rounds using a
non-broadcast code. It is seen in Fig. that for the rate R = 2/3 RPC-BC code, the RPC-BC code
outperforms TDD. On the other hand, in the rate R = 2/3 regime, LightBC performs around the
same or slightly worse than the single user LightCode.

In the rate R = 1/3 regime, we see in Fig. [2| that LightBC outperforms RBC-BC as the feedback
noise becomes smaller, where at —20dB noise power and smaller, the average BLER falls below
10~8. For the rate R = 5/9 regime, we see that for low feedback noise, LightBC outperforms RPC-
BC, but as the feedback noise increases, the RPC-BC slightly outperforms LightBC. In most cases,
both RPC-BC and LightBC outperform the concatenated scheme, except in the low rate regime
of R = 1/3, where as the feedback noise tends to 0, the probability of block error also tends
to 0. Once again, LightBC demonstrates linear-like code behavior, where the probability of error
drastically improves with improving channel conditions. For example, there is a steep performance
improvement past a certain feedback threshhold for all of the rates in Fig. 2] (b).

Ave.lBLER v. Feedback Noise Power for the Two User Broadcast Channel Ave. BQLER v. Feedback Noise Power with Various Code Rates (4dB fwd SNR)
10 10

—— RPC-BC (K=6/user, N=18, 4dB forward SNR) —3— RPC-BC (K=6/user, N=18)

=¥ RPC-BC SU (K=6, N=9, 4dB forward SNR) —%- RPC-BC (K=5/user, N=18)

10° -+ LightBC (K=6/user, N=18, 4dB forward SNR) 102 | %+ RPC-BC (K=3/user, N=18)
—+— LightCode SU (K=6, N=9, 4dB forward SNR) —&— LightBC (K=6/user, N=18)

—&~- LightBC (K=5/user, N=18)

100 4 -k LightBC (K=3/user, N=18) —— %

== Lin. (K=3/user, N=18) e
== Lin. (K=5/user, N=18) =

P

Average BLER per user
Average BLER per user
=
2

-30 —25 -20 15 -10 -5 0 30 25 20 15 1o s 0

Feedback Noise Power (dB) Feedback Noise Power (dB)
(@) (b)

Figure 2: (a) Comparison of Performance with Noisy Feedback for Rate R = 2/3 Against TDD
Scheme and (b) Comparison of Performance with Noisy Feedback for Different Code Rates

Under review as a conference paper at ICLR 2025

5.3 FEDERATED LEARNING APPROACH

Now, we train the RPC-BC and the LightBC code using the proposed federated approach. We show
the performance of both using rate R = 2/3 and scale the power accordingly using equation [7| to
simulate the desired SNR when transmitting the gradients. It can be seen in Fig. [3] the performance
is considerably degraded with noise in the uncoded transmission of parameters as the average BLER
increases by orders of magnitude. When the SNR when transmitting gradients is high, LightBC
performs well relative to the global baseline. However, it is not a realistic assumption that the
downlink will be extremely reliable in practice. In both cases, it seems that the models are sensitive
to training noise and more reliable methods for passing model parameters between users needs to be
developed for training broadcast codes in practice.

Ave. BLER v. Forward Noise Power (dB), (-30 dB Fdbk NP)

—— RPC-BC federated (K=6/user, N=18), 4 dB Fwd SNR
- RPC-BC global (K=6/user, N=18), 4dB Fwd SNR
—— LightBC federated (K=6/user, N=18), 4 dB Fwd SNR

+= LightBC global (K=6/user, N=18), 4dB Fwd SNR

10! 4

10° 4

Average BLER per user

4 6 8 10 12 14 16 18 20
Forward SNR (dB) when Broadcasting Gradients

Figure 3: Performance with Federated Training Scheme and Uncoded Transmission of Training
Parameters

6 CONCLUSION

In this work, we have extended deep-learning aided feedback codes to broadcast channels and evalu-
ated their performance. Our numerical studies indicated that there appears to be not much advantage
over using the simple extension of LightBC in the broadcast setting versus utilizing TDD with the
single user LightCode in the high rate, noisy regime. On the other hand, with certain noise regimes
and code rates, there does appear to be an advantage in using RPC-BC versus TDMA with the sin-
gle user RPC. The experiments indicate that in especially noisy environments and higher code rates,
RPC-BC tends to outperm LightBC, whereas LightBC tends to perform exceptionally well in lower
noise, lower code rate scenarios. The more robust performance in higher noise scenarios of RPC-
BC could possible be attributed to the RNN architecture of RPC-BC since it allows noise averaging
across communication rounds. On the other hand, LightBC behaves much like linear feedback codes
in that its probability of error steeply drops off as the channel gets more reliable. Nonetheless, this
seems to suggest that more work needs to be done tailoring Deep Learning algorithms specifically to
the broadcast communication scheme in order to improve performance in more unreliable commu-
nication settings, where it may be necessary to employ RNN-based models in especially unreliable
channels to leverage noise averaging.

In addition, we also explored the performance of a federated approach to training each of the codes
where AWGN noise was added to parameters when being passed between encoder and decoders.
We found that the addition of AWGN to the gradients and feedback channel generally resulted in
considerable performance degradation, suggesting that a reliable communication protocol of model
parameters is necessary when using federated learning. Though a federated approach makes sense
for training deep learned codes, one practical restriction is that decoders that may leverage noise
averaging such as in RPC-BC typically have many parameters due to the hidden states in the GRUs.
Thus, more research is necessary to compress parameters or design lower complexity decoder mod-
ules that perform well in high noise scenarios.

10

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

The code for both the global and federated approach to LightBC and RPC-BC are included in
the supplementary materials via a link to an anonymous repository which may also be accessed
at [https://anonymous.4open.science/r/ICLRsub-D721/

REFERENCES

Ziad Ahmad, Zachary Chance, David J Love, and Chih-Chun Wang. Concatenated coding us-
ing linear schemes for Gaussian broadcast channels with noisy channel output feedback. IEEE
Transactions on Communications, 63(11):4576-4590, 2015.

Mohammad Mohammadi Amiri, Deniz Giindiiz, Sanjeev R Kulkarni, and H Vincent Poor. Conver-
gence of federated learning over a noisy downlink. IEEE Transactions on Wireless Communica-
tions, 21(3):1422-1437, 2021.

Sravan Kumar Ankireddy, Krishna Narayanan, and Hyeji Kim. Lightcode: Light analytical and
neural codes for channels with feedback. arXiv preprint arXiv:2403.10751, 2024.

Ehsan Ardestanizadeh, Paolo Minero, and Massimo Franceschetti. LQG control approach to Gaus-
sian broadcast channels with feedback. IEEE transactions on information theory, 58(8):5267—
5278, 2012.

Nicola Elia. When Bode meets Shannon: Control-oriented feedback communication schemes. /EEE
transactions on Automatic Control, 49(9):1477-1488, 2004.

Hyeji Kim, Yihan Jiang, Sreeram Kannan, Sewoong Oh, and Pramod Viswanath. Deepcode: Feed-
back codes via deep learning. IEEE Journal on Selected Areas in Information Theory, 1(1):
194-206, 2020.

Junghoon Kim, Taejoon Kim, David Love, and Christopher Brinton. Robust non-linear feedback
coding via power-constrained deep learning. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pp. 16599-16618. PMLR, 23-29 Jul 2023.

Siyao Li, Daniela Tuninetti, and Natasha Devroye. Deep learning-aided coding for the fading broad-
cast channel with feedback. In ICC 2022-IEEE International Conference on Communications, pp.
3874-3879. IEEE, 2022.

Yang Liu, Yan Kang, Tianyuan Zou, Yanhong Pu, Yuanqin He, Xiaozhou Ye, Ye Ouyang, Ya-Qin
Zhang, and Qiang Yang. Vertical federated learning: Concepts, advances, and challenges. IEEE
Transactions on Knowledge and Data Engineering, 36(7):3615-3634, 2024.

Solmaz Niknam, Harpreet S. Dhillon, and Jeffrey H. Reed. Federated learning for wireless commu-
nications: Motivation, opportunities, and challenges. IEEE Communications Magazine, 58(6):
46-51, 2020.

Lawrence Ozarow and Cyril Leung-Yan-Cheong. An achievable region and outer bound for the
Gaussian broadcast channel with feedback (corresp.). IEEE Transactions on Information Theory,
30(4):667-671, 1984.

Emre Ozfatura, Yulin Shao, Alberto G Perotti, Branislav M Popovi¢, and Deniz Giindiiz. All you
need is feedback: Communication with block attention feedback codes. IEEE Journal on Selected
Areas in Information Theory, 3(3):587-602, 2022.

Emre Ozfatura, Chenghong Bian, and Deniz Giindiiz. Do not interfere but cooperate: A fully learn-
able code design for multi-access channels with feedback. In 2023 12th International Symposium
on Topics in Coding (ISTC), pp. 1-5, 2023.

J Schalkwijk and Thomas Kailath. A coding scheme for additive noise channels with feedback—i:
No bandwidth constraint. IEEE Transactions on Information Theory, 12(2):172—-182, 1966.

Claude Shannon. The zero error capacity of a noisy channel. IRE Transactions on Information
Theory, 2(3):8-19, 1956.

11

Under review as a conference paper at ICLR 2025

A DIAGRAMS OF RPC-BC AND LIGHTBC

Here we include the diagrams for the RPC-BC and LightBC architectures, respectively. In Fig. [
Nhidden refers to the dimension of the hidden state in each GRU module.

Encoder

Nhidgen = 50 50 %1

50 Power
N. Li tanh ™
in »‘ GRUt1 H GRUr2 }_’ inear Control !

Decoder £

Nhidden = 50

‘ GRUI1 4-1 GRUr2 199 100 X Nout
Attention
i N,
Ni'< Nhidden = 50 Mechanism Linear > Softmax = Nous
A GRUb,1 H GRUb,2 50

Figure 4: Encoder and Decoder Diagram for the RPC-BC scheme

Feature Extractor

Nip x 32 32x32 32x32

Linear H RelLU H Linear H ReLU H»Linear

y

l x—-1 |
» Linear ——» 16

64 x16

Nig d

Encoder MLP Decoder MLP

Noul
16—4 Linear H RelLU H Linear |1 16 —p{ Linear Softmax |+

16 x 32 32x1 16 X Nyyt

Figure 5: Feature Extractor Module and Encoder/Decoder MLP diagrams for LightBC

B TRAINING RPC-BC AND LIGHTBC

Here, we give the outline for the training process for LightBC and RPC-BC trained against the global
model in Algorithm 1. Figure[6|gives a pictorial representation of the federated training process, and
the details of the federated training process are outlined in Algorithm 2.

12

Under review as a conference paper at ICLR 2025

Do for N X Npy,¢cp, rounds:

x[t—-1]+nf[t-1]+nl[{]

Encoder |\7

Decoder k]

x[f]+n{[t]

In between the Ny, samples

o
{Wklllr e,
Encoder

W, Nowar])
- Decoder k

Decoder sends output from Ny, samples

Encoder
6

\{ Decoder k

Encoder sends back gradients for each decoder

Figure 6: Federated Training Process Diagram

Algorithm 1 Training RPC-BC and LightBC: Global

1: Input: Encoder Model, Decoder Models, K bits per user, L users, noise variances org, JJ%,
training parameters, number of epochs F, batch size Npych, number of training samples Nyyqin

2: for e < E do

3 for n < Nbatch/Ntrain do
4: Generate Nyqtc;, random messages for each of L users
5: fort < N do > Iteratively code across communication rounds
6 x[t] = fFUWe {zelt — U}, s[t]) > Encode during channel use i
7 velt] = x[t] + n/[1]
8: 24lt] = yolt — 1] + nlt]
9: end for
10 Py = g0 (¥o[1],- -+, ¥,[N]) > Decode after all rounds
11: Compute the cross entropy loss Log = % Zngl Lé B
12: Clip gradients (.5 for LightBC, 1 for RPC-BC)
13: Update parameters for Encoder f and Decoders g, with specified optimizer and learning
rate.
14: end for
15: Update learning rate with specified scheduler.
16: end for

13

Under review as a conference paper at ICLR 2025

Algorithm 2 Training RPC-BC: Federated

1: Input: Encoder Model, Decoder Models, K bits per user, L users, noise variances O’%, O’?,

2:
3
4:
5:
6
7
8

9:
10:
11:

12:
13:
14:
15:

training parameters, number of epochs E, batch size Nyqch, number of training samples Ny,.qin
for e < E do
for n S Nbatch/Ntrain do

Generate Nyq.c, random messages for each of L users

fort < N do > Code across communication rounds
x[t] = fFWeE {zelt — Y, s[t) > Encode during channel use ¢
velt] = x[f] +n/[1]
z[t] = y,[t — 1] + nplt]

end for
P = g0 (¥o[1],- -+, ¥,[N]) > Decode after all rounds
Py =Pt +ml[t'], ¢ =0, W, -1 > Send decoded output to encoder
Compute the cross entropy loss at encoder Log = % Zle Lé B

£
Compute decoder gradients 6, = agecg -

Clip gradients (.5 for LightBC, 1 for RPC-BC)
Transmit decoder gradients ¢, = 6, +n£ [t'].t' =0,1, -+, Ny grqa—1 (with appropriate

power scaling to achieve desired SNR)

16: Update parameters for Encoder f and Decoders g, with specified optimizer and learning
17: end for

18: Update learning rate with specified scheduler.

19: end for

14

	Introduction
	Existing Deep-Learning Aided Broadcast Codes and Feedback Codes
	Implementation of Deep-Learning Aided AWGN-BC Codes with Feedback

	Problem Setup
	Channel Model
	Coding Definitions

	Feedback Code Design
	RPC-based Broadcast Code (RPC-BC)
	LightCode-based Broadcast Code (LightBC)

	Training Methodology
	Global Model
	Federated Model

	Numerical Experiments and Discussion
	Performance with Noiseless Feedback
	Performance with Noisy Feedback
	Federated Learning Approach

	Conclusion
	Diagrams of RPC-BC and LightBC
	Training RPC-BC and LightBC

