
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DEEP LEARNING AIDED BROADCAST CODES
WITH FEEDBACK

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning aided codes have been shown to improve code performance in feed-
back codes in high noise regimes due to the ability to leverage non-linearity in
code design. In the additive white Gaussian broadcast channel (AWGN-BC), the
addition of feedback may allow the capacity region to extend far beyond the ca-
pacity region of the channel without feedback, enabling higher data rates. On the
other hand, there are limited deep-learning aided implementations of broadcast
codes. In this work, we extend two classes of deep-learning assisted feedback
codes to the AWGN-BC channel; the first being an RNN-based architecture and
the second being a lightweight MLP-based architecture. Both codes are trained
using a global model, and then they are trained using a more realistic vertical
federated learning based framework. We first show that in most cases, using an
AWGN-BC code outperforms a linear-based concatenated scheme. Second, we
show in some regimes, the lightweight architecture far exceeds the RNN-based
code, but in especially unreliable conditions, the RNN-based code dominates.
The results show the promise of deep-learning aided broadcast codes in unreli-
able channels, and future research directions are discussed.

1 INTRODUCTION

Error correcting codes are an integral component of wireless communication systems, allowing
reliable communication over noisy channels. Codes should be designed to be as efficient as possible
without sacrificing error correction capabilities. In this work, we focus on designing codes for the
additive white Gaussian noise broadcast channel (AWGN-BC) with feedback. Unlike the single user
feedback case, where the capacity of the AWGN channel with addition of feedback cannot exceed
that of the AWGN channel without feedback, the use of feedback in the AWGN-BC channel can
far exceed the capacity of the AWGN-BC channel without feedback Shannon (1956); Ahmad et al.
(2015). The design of good codes for the AWGN-BC channel with feedback can enable high data
rate communication with high reliability in unfavorable channel conditions.

Codes designed for the AWGN-BC channel with feedback have been linear in nature due to more
simplicity in code design, yet this requirement limits the design of optimal codes Ahmad et al.
(2015). These codes include Ozarow’s extension of Shakwijk and Kailath’s linear scheme to the
AWGN-BC channel with perfect feedback Ozarow & Leung-Yan-Cheong (1984); Schalkwijk &
Kailath (1966). There are also linear control-oriented schemes that show performance improvement
beyond Ozarow’s scheme Elia (2004); Ardestanizadeh et al. (2012). Most purely linear schemes
operate under the assumption of perfect feedback and suffer greatly with feedback noise. In response
to this, a concatenated scheme relying on linear codes for the inner code for the AWGN-BC for the
noisy feedback channel was proposed Ahmad et al. (2015).

Dropping the linearity assumption of these codes could unlock the higher data rates of AWGN-BC
codes with potentially noisy feedback, but designing non-linear codes is a challenging task. Recent
innovations in deep learning, though, allow seemingly intractable wireless problems to be solved
and can be used to design high performing non-linear codes. For example, in the single user AWGN
channel with feedback, it has been shown that deep-learning aided codes can outperform linear
schemes in terms of probability of block error in scenarios where feedback noise is high and/or the
forward SNR is low Kim et al. (2020). In this work, we seek to design codes that outperform linear
schemes in the aforementioned noisy regions using deep-learning for the AWGN-BC channel, where

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

there are limited implementations of deep-learning aided broadcast codes, in order to improve per
user data rate and reliability in poor channel conditions.

1.1 EXISTING DEEP-LEARNING AIDED BROADCAST CODES AND FEEDBACK CODES

There are very few existing implementations of deep-learning aided codes for the AWGN-BC chan-
nel. In Li et. al, a deep-learning based approach to the fading AWGN broadcast channel with
two users and binary phase shift keying (BPSK) modulation is proposed. The scheme involves two
phases, where in the first phase two separate time slots are allocated for transmission to each of
two users, where the information bits are modulated using BPSK and the weights of the modulated
bits are optimized. In phase 2, a deep learning aided two-phase scheme is used which involves
passing the input through a deep recurrent neural network (RNN), through a dense layer, and then
through a weighted parameter. The decoding scheme involves two bi-directional GRUs, followed by
a bi-drectional LTSM, and finally a dense layer Li et al. (2022). This scheme is not fully learnable
and restrictive as it requires an initial BPSK modulation scheme. For the multiple-access channel
(MAC), Ozfatura et. al propose a deep-learning based code with two users with noiseless feed-
back Ozfatura et al. (2023). In this work, block attention feedback (BAF) codes are used, where
the encoding and decoding process consists of transforming the knowledge vector at the receiver
and transmitters into a sequence of vectors and using self-attention mechanism on these to emulate
encoding and decoding processes. BAF codes have high computational complexity which may not
be suitable for many communication applications, and in many applications feedback codes could
benefit from complexity reduction Ozfatura et al. (2022).

On the other hand, there are numerous schemes for deep-learning codes for the single user AWGN
channel with feedback. One scheme, Deepcode, was proposed for a finite length, fixed rate block
code over the AWGN channel with noisy feedback Kim et al. (2020). In this scheme, the encoder
and decoder are both modeled as recurrent neural networks (RNNs) in order to process the bit stream
sequentially over the AWGN channel to minimize block error rates, but it appears to be limited to
rate 1/3 only. In Kim et al. (2023), a RNN-based power constrained deep-learning architecture is
proposed. This work combines GRUs and an attention mechanism to optimize code design across
time and take advantage of noise averaging. In addition, a power control layer is proposed, to en-
sure optimal utilization of the power budget. In Ozfatura et al., generalized block attention feedback
codes (GBAF) were proposed, which is a transformer-based feedback code scheme Ozfatura et al.
(2022). GBAF operates generally by breaking message blocks into symbols, encoding individual
symbols with feature extractors, and then encoding these symbols across the entire codeblock us-
ing a transformer based architecture. Transformer-based and RNN-based encoders and decoders,
in general, may have large computational demands, which may not be feasible for communica-
tion systems with limited resources. To this end, LightCode was proposed, whose performance is
shown to be comparable or, in some cases, superior to GBAF with fewer parameters and complexity
Ankireddy et al. (2024). Unlike the aforementioned codes which utilize RNN or transformer based
architectures, LightCode is a relatively lightweight symbol by symbol scheme consisting of a feature
extractor (FE) architecture followed by an multi-layer perceptron (MLP) at the encoder and decoder.

1.2 IMPLEMENTATION OF DEEP-LEARNING AIDED AWGN-BC CODES WITH FEEDBACK

Now, we discuss our implementation of codes for the AWGN-BC channel. As mentioned before, the
existing implementation in Li et al. (2022) is not fully learnable, imposing restrictive structure to the
learned scheme, so we look to the existing single user AWGN with feedback codes in our design. In
this work, we focus on extending the Robust Power-Constrained Deep Learning Algorithm (hereby
referred to as the RPC scheme) in Kim et al. (2020) and LightCode in Ankireddy et al. (2024) to the
AWGN-BC channel. We choose to evaluate the performance of RPC due to its robustness to noise
as it employs a GRU and attention mechanisms to leverage noise averaging which may be useful
in adverse channel conditions Kim et al. (2020). Conversely, since the model in RPC may contain
many hidden states requiring a great deal of memory, we choose to compare the performance against
the newly proposed LightCode as it has demonstrated near state of the art performance in certain
regimes and at a code rate of R = 1/3 while using a less memory intensive architecture Ankireddy
et al. (2024).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

In the case of both codes, we demonstrate an extension of these codes to two receivers by imple-
menting multiple decoder modules and adjusting the loss function accordingly. In this way, the
entire system consisting of the encoder and decoders is treated as a global model in which the pur-
pose of training is to minimize the overall loss between all users. We train each model for two users,
and show the performance of each algorithm in different noise regimes and for various code rates.

Beyond this, we view vertical federated learning (VFL) as a promising direction for training feed-
back codes across the AWGN-BC channel, instead of utilizing a global model framework as outlined
above. To the best of our knowledge, there have been no deep learning aided feedback codes which
have employed a federated training approach. A federated framework could allow the implementa-
tion of deep learned feedback codes in practice– for example, it could allow the training of codes
when decoders do not know the number of other users in the system a priori. Also, a federated
training approach could offload computation from end-user devices which may be more resource
constrained to the base station. This could also allow adaptive learning of codes in dynamic wireless
environment Niknam et al. (2020). We consider the encoder and decoders each to have their own
local model of the communication system and view the encoder as the active party. In this case,
all parties share the same sample space, but each party’s local model is updated according to it’s
own loss function Liu et al. (2024). To this end, we propose a VFL training framework where each
decoder transmits its model output to the encoder over the feedback link and, conversely, the en-
coder transmits the new computed gradients to each decoder at the end of a batch. In the proposed
VFL algorithm, we transmit the uncoded gradients across the downlink channel which are corrupted
by AWGN. We choose to explore the uncoded downlink versus a quantized method as it has been
shown that there is better convergence behavior in federated learning with noisy downlinks Amiri
et al. (2021). We observe the effect of noise in the VFL training process.

In summary, we discuss the implementation and training of the RPC-based and the LightCode-
based AWGN-BC code both for the global model and the extension to the VFL framework. Results
are compared to the concatenated scheme in Ahmad et al. since it is designed for noisy feedback
specifically, whereas purely linear codes suffer greatly with feedback noise Ahmad et al. (2015). We
compare the performance of each scheme in various SNR scenarios and with various code rates. We
also observe the performance of the VFL algorithm with AWGN training noise. Finally, we discuss
limitations and future research directions.

Notation– x denotes a scalar, x denotes a vector, and x[t] denotes the tth index of the vector x. The
set {0, 1, 2, · · · , N} is denoted by [N]. The cardinality of a set X is denoted |X |. The set {xℓ}Nℓ=1
is short hand notation for the set {x1, x2, · · · , xN}.

2 PROBLEM SETUP

2.1 CHANNEL MODEL

We consider the real L user AWGN broadcast channel with noisy feedback (AWGN-BC). That is,
there is one transmitter which has L independent, uniformly distributed messages W1 ∈ W1, W2 ∈
W2, · · · ,WL ∈ WL that are to be conveyed to receives 1 through L, respectively. Wℓ denotes the
set of all messages for receiver ℓ. At channel use t ≥ 0, the channel output at receiver ℓ, ℓ ∈ [L], is
given by

yℓ[t] = x[t] + nf
ℓ [t] (1)

where x[t] ∈ R is the transmitted symbol at time t, nf
ℓ [t] is i.i.d. noise distributed nf

ℓ [t] ∼ N
(
0, σ2

f

)
(where the superscript f indicates the noise on the forward link). We impose an average transmit
power constraint so that

E

(
N∑
t=1

x2[t]

)
≤ N (2)

where N is the length of the transmission block.

Each receiver has a feedback link to the transmitter that is corrupted with i.i.d. AWGN noise. We
assume the channel output given in equation 1 is immediately sent back to the transmitter in a causal

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

manner. The feedback from receiver ℓ is given by

zℓ[t] = yℓ[t− 1] + nb
ℓ[t] (3)

where yℓ[t − 1] is described as in equation 1 and nb
ℓ[t] is i.i.d. noise distributed nb

ℓ[t] ∼ N
(
0, σ2

b

)
(where the superscript b indicates the noise on the backward link).

2.2 CODING DEFINITIONS

We define Rℓ ∈ R+ as the rate of transmission for user ℓ in bits per channel use. The sum-rate is
defined as Rsum =

∑L
j=1 Rj . Then, a (⌈2NR1⌉, ⌈2NR2⌉, · · · , ⌈2NRL⌉, N) code for the AWGN-BC

with feedback consists of

1. A single encoder denoted by functions ft(·), t ∈ [N] that maps all the messages
{W1,W2, · · · ,WL} and the feedback from each user {zℓ[1], zℓ[2], · · · , zℓ[N]}, ℓ =
1, · · · , L to {x[1], · · · ,x[N]} such that the power constraint in equation 2 is obeyed.
Specifically, define the encoding procedure at time t as

x[t] = ft
(
{Wℓ}Lℓ=1, {zℓ[1], · · · , zℓ[t− 1]}Lℓ=1

)
2. L decoders g1(·), g2(·), · · · , gL(·) such that gℓ(·) maps {yℓ[1], · · · yℓ[N]} to Ŵℓ ∈ Wℓ to

decode the message for receiver ℓ. Specifically, denote the decoding procedure as

Ŵℓ = gℓ (yℓ[1], · · · , yℓ[N]) (4)

After decoding, the block error probability for receiver ℓ given a message Wℓ is defined as
Pe,ℓ(Wℓ) := Pr

(
Ŵℓ ̸= Wℓ

)
. In the global model, the goal is to design a set of encoding functions

ft for t ∈ [N] and decoding function gℓ for each user ℓ that minimizes the average probability of
error Pe,ℓ = E (Pe,ℓ(Wℓ)) where the expectation is taken over all possible messages and all users.
Specifically, for any encoder-decoder design, we specify that the objective for the broadcast channel
is

minimize
{ft}t∈[N],g1,g2,··· ,gL

Eℓ (Pe,ℓ) (5)

subject to E

(
N∑
t=1

x2[t]

)
≤ N

3 FEEDBACK CODE DESIGN

3.1 RPC-BASED BROADCAST CODE (RPC-BC)

In the Robust Power Constrained (RPC) scheme, hereby referred to as RPC-BC, the encoding
scheme consist of three layers: 1) a gated recurrent unit layer (GRU), 2) a non-linear layer, and
3) a power control layer. We outline the modules below. Referring to the objective function in equa-
tion 5, we see that the optimization problem requires N encoding functions to be designed. To save
complexity, a single encoding generation function f is designed such that

x[t] = f
(
{Wℓ}Lℓ=1, {zℓ[t− 1]}Lℓ=1, s[t]

)
where s[t] is called the state vector which propagates over time through a state propagation function
h given by

s[t] = h
(
{W}Lℓ=1, {zℓ[t− 1]}Lℓ=1, s[t− 1]

)
This state-based encoding procedure is a non-linear extension of the state-space model used for
linear encoding in feedback systems, and is intended to capture the time correlation of the feedback
signals throughout time Kim et al. (2020); Elia (2004).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

1. GRU layer: The GRU layer consists of two unidirectional GRUs to capture the time corre-
lation of the feedback signals causally. The input-output relationship of this layer is given
by

s1[t] = GRU1

(
{Wℓ}Lℓ=1, {zℓ}Lℓ=1, s1[t− 1]

)
s2[t] = GRU2 (s1[t], s2[t− 1])

where GRUi denotes the function of GRU i and the initial condition for the state vector
and the feedback are given as si[−1] = 0 and zi[−1] = 0. The dimension of the ith state
vector is given by Ns,i. Then, the overall state is represented as

s[t] = [s1[t], s2[t]] = h
(
{Wℓ}Lℓ=1, {zℓ}Lℓ=1, s[t− 1]

)
where h represents the overall function of the two GRU layers.

2. Non-linear Layer: An additional non-linear layer is utilized at the output of the GRUs
whose input-output relationship is given by

x̃[t] = ϕ
(
wT s2[t] + b

)
where w ∈ RNs,2 and b are trainable weights and biases, and ϕ is a hyperbolic tangent
activation function.

3. Power Control Layer: Since power allocation across time is necessary for robust perfor-
mance Kim et al. (2020), a final power control layer is utilized before transmission. The
input-output relationship of this layer is given by

x[t] = wtγ
(J)
t (x̃[t])

where γ(J)
t is a normalization function applied to x̃[k] consisting of sample mean and sam-

ple variance computed from data with size J , and wt is a trainable power weight which
satisfies

N∑
k=1

w2
t = N

It can be shown that with large J the power control layer satisfies the power constraint in
equation 5 almost surely Kim et al. (2020).

The decoding mechanism for each of the L receivers of the RPC-based code consists of 1) a GRU
layer, 2) an attention layer, and 3) a non-linear layer. Each layer is discussed below.

1. GRU Layer: Two layers of bi-directional GRUs are used in this layer. The input-output
relationship of the forward direction of the ℓth user are given by

rℓf,1[t] = GRUf,1

(
y[t], rℓf,1[t− 1]

)
rℓf,2[t] = GRUf,2

(
rℓf,1[t], rℓf,2[t− 1]

)
and the input-output relationship of the backward direction of the ℓth user are given by

rℓb,1[t] = GRUb,1

(
y[t], rℓb,1[t+ 1]

)
rℓb,2[t] = GRUb,2

(
rb,1[t], rℓb,2[t+ 1]

)
where the dimension of rℓb,i and rℓfi are given by N b

r,i and Nf
r,i, respectively.

2. Attention Layer: The state vectors at the last layer over all communication rounds t =
1, · · · , N are the input to attention layer. The attention layer is used to capture the long term
time dependency of the received signals Kim et al. (2020). The input-output relationship
of this layer for the ℓth user is given by

rℓf,att =
N∑
t=1

αℓ
f,tr

ℓ
f,2[t], rℓb,att =

N∑
t=1

αℓ
b,tr

ℓ
b,2[t]

where αf,t and αb,t are trainable attention weights. The final output of this layer is given
by

rℓatt = [rℓf,att, rℓb,att]
T

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3. Non-Linear Layer: Lastly, a non-linear layer is used to produce the estimate Ŵℓ.The input-
output relationship of this layer for the ℓth user is given by

pℓ = θ
(
Wℓ

drℓatt + vℓ
d

)
where θ is a softmax activation function and Wℓ

d ∈ R|Wℓ|,Nb
r,2+Nf

r,2 and vℓ
d ∈ R|Wℓ| are

the trainable weights and biases for user ℓ. The number of outputs is |Wℓ| and therefore pℓ
denotes the probability distribution of the |Wℓ| possible messages. Fig. 4 in the appendix
contains a pictorial representation of the coding scheme.

3.2 LIGHTCODE-BASED BROADCAST CODE (LIGHTBC)

In the LightCode based scheme, hereby referred to as LightBC, the encoding scheme consists of two
layers: 1) the feature extractor and 2) the MLP, and 3) a power control layer. We outline the modules
below.

1. Feature Extractor: At each transmission round, a feature extractor (FE) is utilized. The
purpose of the FE is to map the data for each message block to a vector representation
Ozfatura et al. (2022). The input-output relationship of the FE is given by

r[t] = FEe

(
{Wℓ}Lℓ=1, {x[t− 1], · · · ,x[1]}, {zℓ[t− 1], · · · , zℓ[1]}Lℓ=1

)
where FEe represents the function of the FE at the encoder and the output dimension of r[t]
is Nr,e. In our simulations, we choose to use the same structure of the FE as in the single
user LightCode Ankireddy et al. (2024).

2. MLP: After the FE, the signal is fed into a two-layer MLP module whose input-output
relationship is given by

x̃[t] = MLPe (r[t])

where MLPe represents the function of the MLP at the encoder.
3. Power Control: Finally, the output x̃[t] is fed through a power control layer. We utilize the

same power control method as in the RPC coding scheme, given by

x[t] = wtγ
(J)
t (x̃[t])

where once again γ
(J)
t is a normalization function applied to x̃[k] consisting of sample

mean and sample variance computed from data with size J , and wt is a trainable power
weight which satisfies

N∑
k=1

w2
t = N

The decoding scheme is very similar to that of the encoder, consisting of the same FE module and
an MLP. In this case, a single layer MLP is used. Specifically,

1. The FE at the ℓth decoder inputs the received symbols across time and outputs a feature
vector

rℓ = FEℓ
d (yℓ[1], · · · , yℓ[N])

where FEℓ
d represents the function of the FE at the ℓth decoder and the output dimension of

rℓ is Nr,d.
2. Following the FE, a single layer MLP is used to decode the output. The input output

relationship is given by

pℓ = MLPℓ
d (rk)

where MLPℓ
d represents the function of the MLP at the the ℓth decoder. The output of the

MLPℓ
d module goes through a softmax function, so that the output of the MLP returns a

probability vector of length |Wℓ| of each possible value of Ŵℓ.

The decoding and encoding modules are shown pictorially in Figure 5 in the Appendix.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 TRAINING METHODOLOGY

We consider two models for training the codes. The first is a global model, where all parameters
are updated according to the same loss function. On the other hand, in practical wireless systems, a
federated approach may be more useful and more practical as mentioned in the introduction. Thus,
we propose a VFL-like framework in addition to training the global model with uncoded parameter
passing between encoder and decoders.

4.1 GLOBAL MODEL

In the global model, we consider the objective function in equation 5. Noting that the output of
the decoders for each algorithm represent a probability distribution for each of the |Wℓ| possible
message words at the ℓth decoder, then the probability of error at the ℓth decoder is empirically

Pe,ℓ =
1

Ntrain

Ntrain∑
x=1

1

(
Wℓ[x] ̸= Ŵℓ[x]

)
where 1 (·) is an indicator function that is 1 when the argument is true, zero otherwise, and Wℓ[x]

is the true message vector for sample x and Ŵℓ[x] is the decoded message vector for sample x. The
overall expected probability of error over all users is then given by

Eℓ (Pe,ℓ) =
1

L

L∑
ℓ=1

Pe,ℓ

Since each decoder is essentially performing its own classification problem, then, like the single user
case, we can define the individual loss function of the ℓth user using the cross-entropy loss as

Lℓ
CE =

1

Nbatch

Nbatch∑
x=1

|Wℓ|∑
n=1

cℓxn log p
ℓ
xn

where Nbatch is the batch size, cxn is the actual probability of message vector is x at sample time n,
P (Wℓ[n] = x), and pxn is the predicted probability that Wℓ[n] = x for sample n. Treating all users
as equally important, the global loss is

LCE =
1

L

L∑
ℓ=1

Lℓ
CE (6)

By letting cℓxn = 1 only for Wℓ[n] = x, else zero, the objective of minimizing the probability of
error in equation 5 is instead transformed into a classification problem.

4.2 FEDERATED MODEL

We also train the RPC-BC model using a vertical federated learning approach. Assume that the
ℓth decoder has its own local model Gℓ parameterized by θℓ, and the encoder has its own model F
parameterized by θe. We argue that since each decoder is attempting to minimize its own probability
of error Pe,ℓ, it is not necessary for each decoder ℓ to store a global model. On the other hand, since
the encoder is sending one signal to all decoders, the encoder should own a global model in order to
contribute to minimizing the overall probability of error for all decoders.

Let Nbatch be the communication batch size. Then, over Nbatch × N communication rounds, the
encoder broadcasts Nbatch codewords to the L users, where each codeword is transmitted over N
channel uses. We assume that each of the ℓ users does not know the intended codeword a priori.
We shall call each set of N channel uses a sample. For the nth sample of the Nbatch samples, each
local model Gℓ computes its output Hℓ[n] = Gℓ (Wℓ[n], θℓ). This output Hℓ[n] is transmitted via
the feedback link to the encoder. After the Nbatch × N communication rounds, and with all of
the outputs from each decoder, the encoder computes the overall loss of the system according to
equation 6. The encoder computes the gradients of its global model F and then updates its model.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

LightBC RPC-BC
Batch Size 105 Batch Size 105

Total Epochs 120 Total Epochs 100
Ntrain 108 Ntrain 107

Learning Rate 10−3 Learning Rate 10−2

Optimizer AdamW Optimizer Adam
Scheduler LambdaLR Scheduler StepLR

Table 1: Training Parameters for RPC-BC and LightBC

Then, the encoder computes the loss with respect to each local model Gℓ and computes the gradients
with respect to each local model. These gradients are transmitted to each receiver, which then update
their model Gℓ accordingly. The training process is shown in Figure 6 in the appendix.

Note that in this process, noise may impact both the value of the model output Hℓ which is sent to
the encoder, as well as the gradients which are transmitted to each decoder. We note that the output
of the decoder is a |Wℓ| −length vector of probabilities. The decoder sends the length |Wℓ| −length
vector of probabilities over |Wℓ| − channel uses. Likewise, when the gradients are computed for
each decoder, they must also be transmitted to each respective decoder. We assume that the gradients
are sent across the downlink in an uncoded manner in an orthogonal fashion, such as time division
duplexing (TDD). In the federated approach, we assume that the batch size Nbatch is the same as
the global model, outlined in the training parameters table. When sending the gradients from the
encoder to the decoders, we scale the gradients to obey an average power constraint. That is, if the
gradient vector for the ℓth user are given by θ′ℓ =

∂Lℓ
CE

∂θℓ
, then the transmission power Pgrad is scaled

such that

Pgrad∥θ′ℓ∥22 = Nℓ,grad (7)

somewhat like the power constraint in equation 2, where Nℓ,grad is the length of the gradient vector
for the ℓth user.

The details of the training parameters for RPC-BC and LightBC are outlined in Tables 1 and 2. We
keep the training parameters relatively consistent with the training parameters proposed in the single
user versions of these codes. The outline for training each model is given in the Appendix.

5 NUMERICAL EXPERIMENTS AND DISCUSSION

In this section, we simulate the performance of Light-BC and RPC-BC for various code rates and
noise regimes. We assume that in the broadcast case, there are 2 receivers, though we note that either
code may be extended to an arbitrary number of users. In the following, we refer to the number of
message bits as K, given by K = log2 (|Wℓ|). In our training, we set Ninference to 10−8 with the
rest of the training parameters outlined in Table 1. In the inference stage, the ℓth decoder chooses
the message corresponding to the entry of pℓ with the highest value as Ŵℓ. In some cases, we
compare results against the concatenated scheme based off linear codes, using the closed form SNR
expressions for the concatenated coding scheme of the symmetric AWGN-BC with noisy feedback
for the scheme when λ → 0 and L̃ → ∞ (see (42) in Ahmad et al. (2015)). In the linear scheme, we
assume that the signal is modulated to a 2K–PAM symbol and transmitted using the concatenated
scheme outlined by equation 41 in Ahmad et al. (2015).

5.1 PERFORMANCE WITH NOISELESS FEEDBACK

First, we compare the performance of LightBC versus RPC-BC in the noiseless feedback case for
sum rates R = 1/3 and R = 2/3. For the sum rate R = 1/3 case, we let K = 3 per user and
set N = 18, while for the sum rate R = 2/3 case, we let K = 6 per user and keep N = 18.
The forward SNR is swept from −3 to 1 dB. Fig. 1 shows the results of the experiments. We see
for the low rate case of 2 dB, at low SNR, the RPC-BC code performs better, but from −1dB and
beyond, no errors occurred in the inference stage (that is, the probability of error is less than 10−8).
For this lower SNR region, both RPC-BC and LightBC outperform the concatenated scheme, but

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 1: LightBC versus RPC-BC with Perfect Feedback

rate R = 2/3 appears to be too high of a rate code for this SNR region in all cases. We note that
LightBC behaves somewhat like a linear feedback code in that its performance is more severely
impacted by noise as opposed to RPC-BC, but its performance rapidly improves as the channel gets
more reliable.

5.2 PERFORMANCE WITH NOISY FEEDBACK

Here, we compare the performance of LightBC versus RPC-BC in the noisy feedback case for sum
rates R = 1/3, , R = 5/9, and R = 2/3. We also compare the broadcast codes against TDD
for rate 2/3, meaning that instead of using a broadcast code for two users for N = 18 commu-
nication rounds, the transmitter sends to each of two users over 9 communication rounds using a
non-broadcast code. It is seen in Fig. 2 that for the rate R = 2/3 RPC-BC code, the RPC-BC code
outperforms TDD. On the other hand, in the rate R = 2/3 regime, LightBC performs around the
same or slightly worse than the single user LightCode.

In the rate R = 1/3 regime, we see in Fig. 2, that LightBC outperforms RBC-BC as the feedback
noise becomes smaller, where at −20dB noise power and smaller, the average BLER falls below
10−8. For the rate R = 5/9 regime, we see that for low feedback noise, LightBC outperforms RPC-
BC, but as the feedback noise increases, the RPC-BC slightly outperforms LightBC. In most cases,
both RPC-BC and LightBC outperform the concatenated scheme, except in the low rate regime
of R = 1/3, where as the feedback noise tends to 0, the probability of block error also tends
to 0. Once again, LightBC demonstrates linear-like code behavior, where the probability of error
drastically improves with improving channel conditions. For example, there is a steep performance
improvement past a certain feedback threshhold for all of the rates in Fig. 2 (b).

(a) (b)

Figure 2: (a) Comparison of Performance with Noisy Feedback for Rate R = 2/3 Against TDD
Scheme and (b) Comparison of Performance with Noisy Feedback for Different Code Rates

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.3 FEDERATED LEARNING APPROACH

Now, we train the RPC-BC and the LightBC code using the proposed federated approach. We show
the performance of both using rate R = 2/3 and scale the power accordingly using equation 7 to
simulate the desired SNR when transmitting the gradients. It can be seen in Fig. 3, the performance
is considerably degraded with noise in the uncoded transmission of parameters as the average BLER
increases by orders of magnitude. When the SNR when transmitting gradients is high, LightBC
performs well relative to the global baseline. However, it is not a realistic assumption that the
downlink will be extremely reliable in practice. In both cases, it seems that the models are sensitive
to training noise and more reliable methods for passing model parameters between users needs to be
developed for training broadcast codes in practice.

Figure 3: Performance with Federated Training Scheme and Uncoded Transmission of Training
Parameters

6 CONCLUSION

In this work, we have extended deep-learning aided feedback codes to broadcast channels and evalu-
ated their performance. Our numerical studies indicated that there appears to be not much advantage
over using the simple extension of LightBC in the broadcast setting versus utilizing TDD with the
single user LightCode in the high rate, noisy regime. On the other hand, with certain noise regimes
and code rates, there does appear to be an advantage in using RPC-BC versus TDMA with the sin-
gle user RPC. The experiments indicate that in especially noisy environments and higher code rates,
RPC-BC tends to outperm LightBC, whereas LightBC tends to perform exceptionally well in lower
noise, lower code rate scenarios. The more robust performance in higher noise scenarios of RPC-
BC could possible be attributed to the RNN architecture of RPC-BC since it allows noise averaging
across communication rounds. On the other hand, LightBC behaves much like linear feedback codes
in that its probability of error steeply drops off as the channel gets more reliable. Nonetheless, this
seems to suggest that more work needs to be done tailoring Deep Learning algorithms specifically to
the broadcast communication scheme in order to improve performance in more unreliable commu-
nication settings, where it may be necessary to employ RNN-based models in especially unreliable
channels to leverage noise averaging.

In addition, we also explored the performance of a federated approach to training each of the codes
where AWGN noise was added to parameters when being passed between encoder and decoders.
We found that the addition of AWGN to the gradients and feedback channel generally resulted in
considerable performance degradation, suggesting that a reliable communication protocol of model
parameters is necessary when using federated learning. Though a federated approach makes sense
for training deep learned codes, one practical restriction is that decoders that may leverage noise
averaging such as in RPC-BC typically have many parameters due to the hidden states in the GRUs.
Thus, more research is necessary to compress parameters or design lower complexity decoder mod-
ules that perform well in high noise scenarios.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

The code for both the global and federated approach to LightBC and RPC-BC are included in
the supplementary materials via a link to an anonymous repository which may also be accessed
at https://anonymous.4open.science/r/ICLRsub-D721/.

REFERENCES

Ziad Ahmad, Zachary Chance, David J Love, and Chih-Chun Wang. Concatenated coding us-
ing linear schemes for Gaussian broadcast channels with noisy channel output feedback. IEEE
Transactions on Communications, 63(11):4576–4590, 2015.

Mohammad Mohammadi Amiri, Deniz Gündüz, Sanjeev R Kulkarni, and H Vincent Poor. Conver-
gence of federated learning over a noisy downlink. IEEE Transactions on Wireless Communica-
tions, 21(3):1422–1437, 2021.

Sravan Kumar Ankireddy, Krishna Narayanan, and Hyeji Kim. Lightcode: Light analytical and
neural codes for channels with feedback. arXiv preprint arXiv:2403.10751, 2024.

Ehsan Ardestanizadeh, Paolo Minero, and Massimo Franceschetti. LQG control approach to Gaus-
sian broadcast channels with feedback. IEEE transactions on information theory, 58(8):5267–
5278, 2012.

Nicola Elia. When Bode meets Shannon: Control-oriented feedback communication schemes. IEEE
transactions on Automatic Control, 49(9):1477–1488, 2004.

Hyeji Kim, Yihan Jiang, Sreeram Kannan, Sewoong Oh, and Pramod Viswanath. Deepcode: Feed-
back codes via deep learning. IEEE Journal on Selected Areas in Information Theory, 1(1):
194–206, 2020.

Junghoon Kim, Taejoon Kim, David Love, and Christopher Brinton. Robust non-linear feedback
coding via power-constrained deep learning. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pp. 16599–16618. PMLR, 23–29 Jul 2023.

Siyao Li, Daniela Tuninetti, and Natasha Devroye. Deep learning-aided coding for the fading broad-
cast channel with feedback. In ICC 2022-IEEE International Conference on Communications, pp.
3874–3879. IEEE, 2022.

Yang Liu, Yan Kang, Tianyuan Zou, Yanhong Pu, Yuanqin He, Xiaozhou Ye, Ye Ouyang, Ya-Qin
Zhang, and Qiang Yang. Vertical federated learning: Concepts, advances, and challenges. IEEE
Transactions on Knowledge and Data Engineering, 36(7):3615–3634, 2024.

Solmaz Niknam, Harpreet S. Dhillon, and Jeffrey H. Reed. Federated learning for wireless commu-
nications: Motivation, opportunities, and challenges. IEEE Communications Magazine, 58(6):
46–51, 2020.

Lawrence Ozarow and Cyril Leung-Yan-Cheong. An achievable region and outer bound for the
Gaussian broadcast channel with feedback (corresp.). IEEE Transactions on Information Theory,
30(4):667–671, 1984.

Emre Ozfatura, Yulin Shao, Alberto G Perotti, Branislav M Popović, and Deniz Gündüz. All you
need is feedback: Communication with block attention feedback codes. IEEE Journal on Selected
Areas in Information Theory, 3(3):587–602, 2022.

Emre Ozfatura, Chenghong Bian, and Deniz Gündüz. Do not interfere but cooperate: A fully learn-
able code design for multi-access channels with feedback. In 2023 12th International Symposium
on Topics in Coding (ISTC), pp. 1–5, 2023.

J Schalkwijk and Thomas Kailath. A coding scheme for additive noise channels with feedback–i:
No bandwidth constraint. IEEE Transactions on Information Theory, 12(2):172–182, 1966.

Claude Shannon. The zero error capacity of a noisy channel. IRE Transactions on Information
Theory, 2(3):8–19, 1956.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A DIAGRAMS OF RPC-BC AND LIGHTBC

Here we include the diagrams for the RPC-BC and LightBC architectures, respectively. In Fig. 4,
Nhidden refers to the dimension of the hidden state in each GRU module.

Figure 4: Encoder and Decoder Diagram for the RPC-BC scheme

Figure 5: Feature Extractor Module and Encoder/Decoder MLP diagrams for LightBC

B TRAINING RPC-BC AND LIGHTBC

Here, we give the outline for the training process for LightBC and RPC-BC trained against the global
model in Algorithm 1. Figure 6 gives a pictorial representation of the federated training process, and
the details of the federated training process are outlined in Algorithm 2.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Figure 6: Federated Training Process Diagram

Algorithm 1 Training RPC-BC and LightBC: Global
1: Input: Encoder Model, Decoder Models, K bits per user, L users, noise variances σ2

b , σ2
f ,

training parameters, number of epochs E, batch size Nbatch, number of training samples Ntrain

2: for e ≤ E do
3: for n ≤ Nbatch/Ntrain do
4: Generate Nbatch random messages for each of L users
5: for t ≤ N do ▷ Iteratively code across communication rounds
6: x[t] = f({Wℓ}Lℓ=1, {zℓ[t− 1]}Lℓ=1, s[t]) ▷ Encode during channel use i

7: yℓ[t] = x[t] + nf
ℓ [t]

8: zℓ[t] = yℓ[t− 1] + nb
ℓ[t]

9: end for
10: pℓ = gℓ (yℓ[1], · · · , yℓ[N]) ▷ Decode after all rounds
11: Compute the cross entropy loss LCE = 1

L

∑L
ℓ=1 L

ℓ
CE

12: Clip gradients (.5 for LightBC, 1 for RPC-BC)
13: Update parameters for Encoder f and Decoders gℓ with specified optimizer and learning

rate.
14: end for
15: Update learning rate with specified scheduler.
16: end for

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Algorithm 2 Training RPC-BC: Federated
1: Input: Encoder Model, Decoder Models, K bits per user, L users, noise variances σ2

b , σ2
f ,

training parameters, number of epochs E, batch size Nbatch, number of training samples Ntrain

2: for e ≤ E do
3: for n ≤ Nbatch/Ntrain do
4: Generate Nbatch random messages for each of L users
5: for t ≤ N do ▷ Code across communication rounds
6: x[t] = f({Wℓ}Lℓ=1, {zℓ[t− 1]}Lℓ=1, s[t]) ▷ Encode during channel use i

7: yℓ[t] = x[t] + nf
ℓ [t]

8: zℓ[t] = yℓ[t− 1] + nb
ℓ[t]

9: end for
10: pℓ = gℓ (yℓ[1], · · · , yℓ[N]) ▷ Decode after all rounds
11: p̂ℓ = pℓ[t

′] + nb
ℓ[t

′], t′ = 0, · · · , |Wℓ| − 1 ▷ Send decoded output to encoder
12: Compute the cross entropy loss at encoder LCE = 1

L

∑L
ℓ=1 L

ℓ
CE

13: Compute decoder gradients θ′ℓ =
∂Lℓ

CE

∂θℓ
14: Clip gradients (.5 for LightBC, 1 for RPC-BC)
15: Transmit decoder gradients θ̂′ℓ = θℓ+nf

ℓ [t
′], t′ = 0, 1, · · · , Nℓ,grad−1 (with appropriate

power scaling to achieve desired SNR)
16: Update parameters for Encoder f and Decoders gℓ with specified optimizer and learning

rate.
17: end for
18: Update learning rate with specified scheduler.
19: end for

14

	Introduction
	Existing Deep-Learning Aided Broadcast Codes and Feedback Codes
	Implementation of Deep-Learning Aided AWGN-BC Codes with Feedback

	Problem Setup
	Channel Model
	Coding Definitions

	Feedback Code Design
	RPC-based Broadcast Code (RPC-BC)
	LightCode-based Broadcast Code (LightBC)

	Training Methodology
	Global Model
	Federated Model

	Numerical Experiments and Discussion
	Performance with Noiseless Feedback
	Performance with Noisy Feedback
	Federated Learning Approach

	Conclusion
	Diagrams of RPC-BC and LightBC
	Training RPC-BC and LightBC

