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ABSTRACT

As Large Language Models (LLMs) evolve into proficient Al assistants, the demand
for high-quality data becomes increasingly critical. Existing methods to create question-
answer (QA) datasets often depend on limited self-generated data from LLMs or labor-
intensive manual annotations, which restrict both the scope and size of the resulting datasets.
To overcome these challenges, we propose a comprehensive pipeline for acquiring and
filtering high-quality QA data from web searches, utilizing the vast and diverse content
available online. Our approach includes training the High-Quality Knowledge Model,
which ensures dataset robustness by filtering queries based on clarity and static knowledge
criteria. Additionally, we introduce the Knowledge Boundary Model to pinpoint and
address knowledge boundaries within LLMs, enhancing their ability to manage novel
scenarios effectively. Our approach not only results in the generation of an extensive QA
dataset but also implements training strategies that boost LLM capabilities. Our method
improves the baseline by 22.96% on Chinese SimpleQA, 4.66% on SimpleQA, 4.78% on
seven single-hop datasets, and 17.47% on eight multi-hop datasets. Our code and data will
be released.

1 INTRODUCTION

As Large Language Models (LLMs) gradually demonstrate their potential as advanced Al assistants, the
need for vast amounts of high-quality data becomes paramount (Radford et al., 2019} [Brown et al., 2020
Touvron et al.,|2023} Dubey et al.,2024)). This necessity is driven by effective training, where the quantity and
quality of the training dataset play a pivotal role (Li et al., [2023a; |Brown et al., [2020; Chowdhery et al., |[2023;
Touvron et al., [2023; Dubey et al., [2024). Compared to general text data, question-answer (QA) data can
better enhance a model’s ability to identify and address knowledge gaps, similar to how humans consolidate
learning through practice problems. Existing methods for creating QA datasets frequently use LLMs for
self-improvement on limited datasets (Xu et al.|[2023} [Lewkowycz et al.,|2022)), or rely on manually annotated
data (Brown et al.|[2020; Al@Metal 2024 [Li et al.l 2023b)), which is time-intensive and requires substantial
effort. Additionally, these sources tend to be restricted in both scope and size.

To address this challenge, we propose a pipeline for acquiring and filtering high-quality QA data from web
searches. Web contents offer a wealth of diverse, high-quality data across various domains. Therefore, our
pipeline initially crawls web content from sites like Wikipedia and Baidu. It then uses LLMs to construct
queries from the web content. To obtain high-quality queries, we trained an High-Quality Knowledge Model
specifically used to filter queries based on their clarity, static nature, and knowledge basis. This model
effectively weeds out ambiguous, ephemeral, or opinion-based questions, ensuring the dataset’s longevity and
reliability. Afterward, we use Google search to acquire knowledge relevant to the questions and answers. We
then input the search content and questions to the LLM to generate responses using a retrieval-augmented
generation (RAG) method. Finally, we implement a refusal filtering process to ensure quality. During this
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phase, generated answers are validated to confirm that they provide comprehensive and pertinent responses
to the original queries. As a result, from the initially generated QA dataset of 26B tokens, we filtered out a
high-quality QA dataset consisting of 18B tokens.

Recognizing that simply reinforcing known knowledge offers limited developmental gains, our framework
incorporates a Knowledge Boundary Model to identify knowledge boundaries within language models. By
systematically evaluating the consistency of model-generated answers to known queries, we categorize them
into known and unknown. This distinction enables us to channel training efforts towards resolving knowledge
gaps, thereby advancing model performance in handling novel or complex scenarios. Our approach achieves
significant improvements over the baseline: 22.96% on Chinese SimpleQA and 4.66% on SimpleQA. It also
demonstrates robust gains across multi-hop and single-hop QA datasets, with improvements of 17.47% (eight
multi-hop datasets) and 4.78% (seven single-hop datasets), respectively.

Our contributions are as follows:

1. We introduce a comprehensive pipeline for acquiring and filtering high-quality QA data from web searches.
This pipeline employs the Knowledge Boundary Model to enhance the model’s knowledge of unknown
areas, and we thoroughly validate its effectiveness through extensive experimentation.

2. Through our pipeline, we generated an extensive high-quality QA dataset consisting of 18B tokens. We
will release this corpus to the research community to facilitate and advance further studies.

3. Our method achieves consistent improvements over the baseline across Chinese SimpleQA, SimpleQA,
and multiple single-hop and multi-hop QA datasets.

2 RELATED WORKS

Data Pipelines for LLMs. The rise of LLMs has led to efforts focusing on building larger-scale and
higher-quality datasets from web content to aid training. For instance, The Pile (Gao et al., [2020) used
jusText (Endrédy & Novak,[2013)) to extrapolate text from web content, creating Pile-CC. LLaMA (Touvron
et al.,[2023)) adapted the CCNet pipeline to produce a vast close-sorced pre-training dataset. RedPajama (Com/
puter}, 2023)) subsequently replicated LLaMA’s dataset and made it publicly accessible. Advancing data
quality further, RedPajama v2 (Computer, 2023)) introduced 46 distinct quality metrics for multi-dimensional
data characterization. RefinedWeb (Penedo et al., [2023)) applied content extraction techniques on HTML
documents from Common Crawl, obtaining cleaner, higher-quality text with a limited amount was shared
publicly. In response, FineWeb (Penedo et al.| 2024)) replicated RefinedWeb, released the data publicly, and
developed a filtering strategy to omit educational content, creating the FineWeb-edu pre-training dataset.
DCLM (Li et al.} [2024) extracted extensive textual data from web content and crafted a tailored filter to gather
a substantial body of instruction-style data, enhancing its quality significantly. Lastly, Redstone (Chang et al.,
2024) introduced an efficient data pipeline focusing on general, code, math, and QA data by simplifying
processing and expanding dataset size. However, past approaches used a unified model to handle all data, even
though the data on the internet is vast and varied, and the patterns required for data from different sources are
obviously different. Unlike past methods such as Redstone (Chang et al.| |2024)), which manually designed
different filtering matches for general, code, math, and QA data, we train two filtering models and leverage
the rich priors of LLMs to learn how to extract valuable knowledge from the vast content on the internet.

QA data pipeline for LLMs. Interactive QA capacities are fundamental to the applications of LLM.
Yet, current approaches to developing QA datasets commonly depend either on LLMs for limited dataset
self-improvement (Xu et al.| 2023 |Lewkowycz et al.,|2022), or on manually annotated data (Brown et al.|
2020; Al@Meta, [2024; L1 et al., | 2023b)), which is both time-consuming and labor-intensive. Moreover, these
methods are often constrained in terms of the scope and size of the generated data. Consequently, there is an
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Figure 1: The pipeline for acquiring and filtering high-quality QA data involves multiple steps: web scraping
to gather content, query extraction to generate questions, query filtering through a high-quality knowledge
model, answer generation using a RAG approach, validation via refusal filtering to ensure informative
responses, and knowledge boundary augmentation to address and enhance model uncertainties.

urgent need for a comprehensive pipeline focused on effectively extracting and generating large-scale QA
datasets.

3

METHODS

Our framework involves a systematic multi-step process designed to ensure the collection of high-quality,
accurate question-answer pairs, as illustrated in Fig. [T} The complete workflow is outlined as follows:

1.

Web Scraping: We begin by batch scraping web content from sources such as Wikipedia and other
informative websites. This step involves gathering extensive textual data that can be used to generate QA
pairs.

. Query Extraction: Subsequently, we employ prompts to extract QA pairs from the scraped web content.

In this step, the answers generated by the prompts are discarded while retaining the questions. The rationale
for discarding these answers is that they tend to be short and incomplete, often being merely factual
entities within a paragraph. Therefore, we proceed to re-generate the answers in a more comprehensive
manner in the next step.

. Query Filtering: Next, we use High-Quality Knowledge Model, which is a high-quality question filter

model, to extract static, clear, and knowledge-based questions.

. Answer Generation: Using the retained questions as Google search queries, we retrieve the top 10+ most

relevant search results. These results are then fed to a LLM through a Retrieval-Augmented Generation
approach to generate detailed and accurate answers. This process results in the formation of QA pairs
which are compiled as the CPT data.

. Validation: This step involves a refusal filtering process, where we assess whether the generated answer

contains the response to the query. This validation ensures that only those QA pairs where the answer
containing valid information are included in the dataset.

. Knowledge Boundary Augmentation: Finally, by utilizing the Knowledge Boundary Model to identify

knowledge boundaries, we focus on areas where the model’s understanding is uncertain or incomplete.
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(a) High Quality Filter Model Training Data Prompt

You are an expert in filtering high-quality questions. | hope you can determine
whether the input question is:

1. clear,

2. static (the answer does not change within ten years), and

(b) Refual Filtering Prompt
Please evaluate the provided
dialogue to determine if the
assistant refuses to answer the
question, indicating by phrases

3. a knowledge-based question. such as:

Here are some examples: * |don't know

User: By whom was the Nero Decree issued on March 19, 1945? * |don't want to answer
Assistant: High-quality question. e Insufficient information to
User: On what day did the sixth season of "How to Get Away with Murder" provide a definite answer
premiere? If the assistant refuses to answer,

Assistant: High-quality question.

User: Why use seven eight for him

Assistant: Question is unclear/incomplete.

User: How is his family of origin

Assistant: Question is unclear/incomplete.

User: The volunteer activity originally limited the number of registrants to 60,
increased to 80 due to high demand, explain the expansion to parents.
Assistant: Non-knowledge-based question.

User: What is the current stock price of Alibaba?

Assistant: Non-static question.

User: Linyi oil price today

Assistant: Non-static question.

output 0; otherwise, output 1. Do
not output any additional content.

(c) Knowledge Boundary Model
Training Data Prompt

You are an intelligent Al tasked to
determine if answers are correct or
incorrect. | will provide you with a
question, a standard answer, and
an input answer. Based on these,
please output Correct or Incorrect.

Figure 2: Prompts used in high-quality filtering data construction: (a) High-Quality Knowledge Model
training data piompt, (b) Refusal Filtering prompt, (c) Knowledge Boundary Model training data prompt.

This allows us to target and enhance specific knowledge gaps, thereby maximizing the efficiency of
continuous pre-training efforts.

By following this process, we are able to curate a high-quality dataset, and it is validated as effective for
enhancing the performance of CPT to improve LLM capabilities.

3.1 HIGH-QUALITY FILTER

In this section, we train the High-Quality Knowledge Model, which is a high-quality question filter model, to
extract static, clear, and knowledge-based questions. First, we collected a batch of query-answer data. The
data sources include Wiki in both Chinese and English and other online data. We annotated this data using
the Qwen2.5-72B-Instruct model. The filtering prompt is engineered to achieve the following objectives:

1. Clarity: The input question must be clearly articulated and free from ambiguity. Ambiguous or incomplete
questions can lead to incorrect or misleading responses from the model.

2. Static Nature: To maintain long-term knowledge representation consistency and usefulness, only ques-
tions whose answers are unlikely to change within a ten-year timeframe are considered.

3. Knowledge-Based: The questions must be fact-based and pertain to general knowledge rather than
subjective opinions or situational contexts.
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The filtering process is executed through a systematic prompt and is exemplified in Fig. [2(a). In total, we
obtained 103k annotated data points, of which 46.8% were high quality, 32.6% were non-static, 13.0% were
non-knowledge-based, and 7.5% were vague/incomplete. More details are in Sec. [A] We divided these
into training and validation sets in a 9:1 ratio and trained the High-Quality Knowledge Model based on
Qwen2.5-7B model, we utilized the training dataset with the following configuration: The training was
conducted on 4 GPUs with a per-device training batch size of 16. The model was trained for 1.0 epoch, with
a warmup ratio of 0.03 applied at the beginning. Gradient accumulation steps were set to 4. The learning rate
was initialized at 2.0 x 1075, and a cosine learning rate scheduler was employed.

3.2 REFUSAL FILTERING

In the previous sections, we have addressed the quality of queries by utilizing High-Quality Knowledge
Model. Using these refined queries as inputs for Google searches, we retrieve the top 10+ most relevant
search results. These results are then processed by the Qwen2.5-72B-Instruct model using the RAG approach
to generate answers. Following the answer generation, we conduct a refusal filtering process, which involves
reassessing all content using the Qwen2.5-72B-Instruct model to determine whether the generated answer
adequately addresses the query. The assessment is guided by the prompt in Fig. 2[b). We retain only the
content for which the LLM deems that the model has successfully answered the question. This validation
ensures that only those QA pairs containing valid information are included in the dataset.

3.3 KNOWLEDGE BOUNDARY FILTERING

LLMs have demonstrated remarkable prowess in capturing and leveraging vast amounts of world knowledge
through robust pre-training processes. However, simply reinforcing known knowledge during continuous
pre-training offers limited benefits, primarily serving as a review and consolidation exercise. To advance
these models, it is imperative to focus on areas where their understanding is uncertain or under-mastered.
By identifying knowledge boundaries and enhancing specific knowledge gaps, we improve the model’s
performance in novel or complex scenarios, maximizing the efficiency of continuous pre-training efforts. This
approach is inspired by the human learning process, where targeted practice in weaker areas leads to more
comprehensive mastery of a subject.

Initially, a set of queries with known answers was compiled. For each query, we interrogated our target model
using a temperature setting of 0.8, generating 30 responses. This non-greedy sampling allows for a more
accurate and comprehensive evaluation of the model’s grasp of specific knowledge. The generated answers
were then evaluated using Qwen2.5-72B-Instruct with the prompt illustrated in Fig. [2[c) and categorized as
Correct/Incorrect. Subsequently, we set accuracy thresholds to categorize the knowledge: queries with an
accuracy greater than 0.9 were labeled as known, whereas those with an accuracy less than 0.1 were labeled
as unknown. Queries with accuracy between 0.1 and 0.9 were disregarded. This strict classification standard
mitigates misleading conclusions due to the uncertainty in the LLMs’ outputs.

For models within the same series, while their capabilities evolve with model size and data iteration, the data
they are trained on remains substantially overlapping. Thus, the known or unknown data for them likely
reflects similar trends. To ensure that our knowledge boundary model is not a one-off for the pre-training
process but applicable at least across different sizes and versions within the same series, we replicated this
procedure with three distinct models: Qwen2-7B, Qwen2.5-7B, and Qwen2.5-72B. We aggregated the results
by identifying data points with consistent labels across all three models. As shown in Fig. 3] data points
marked as unknown by all models were tagged as unknown, and those marked as known by all models were
tagged as known, ignoring the data points with mixed labels across the models. This consistency ensures
robustness across various sizes and versions within the same model series. Consequently, this method resulted
in the creation of a dataset comprising 24k training entries. The prompt used was as follows: If you know the
answer to the following question, please answer “known”; otherwise, answer “unknown”.
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Unknown Chinese SimpleQA
Qwen2-7B a2k Model F-Score 1 Corr. 1 Incorr. | N.A. | A.A. 1
s le=al Baseline 26.15 2390 5887 17.23 28.88
Known Qwen2.5- t@l IxUnknown 37.62 36.87 59.13 4.00 40.37
2xUnknown 39.95 38.93 56.00 5.07 41.01

Knowledge Boundary Figure 4: Ablation results of the Knowledge

Boundary Model on Chinese SimpleQA, with met-
rics include Not Attempted (N.A.), Correct (Corr.),
Incorrect (Incorr.), and Attempted Accuracy (A.A.).
Arrows indicate the desired direction of metric im-
provement: 1 for increase and | for decrease. Bold
indicates best results.

Figure 3: Knowledge boundary aggregation across
model variants. Dotted lines demarcate individ-
ual models’ knowledge boundaries (Qwen2-7B,
Qwen2.5-7B, and Qwen2.5-72B).

Metric Val Chinese SimpleQA Model Validation A.A.(%)
SimpleQA Qwen2.5-72B 81.0

Accuracy 95.4 100.0 99.0 Qwen2.5-7B 79.2

Precision  94.9 100.0 100.0 Qwen2-7B 82.1

Recall 94.8 100.0 99.0 Unified 83.7

F1 Score  94.8 100.0 99.5 Average 81.5

Figure 5: High-Quality Knowledge Model valida-
tion performance. Val refers to the validation set,
while ChineseSimpleQA and SimpleQA refer to the

Figure 6: Knowledge Boundary Model valida-
tion performance. Unified: union where the
known/unknown labels are consistent across all three

validation sets extracted from these two test datasets.

models.

Chinese SimpleQA

Chinese SimpleQA

Model F-Score 1 Corr. 1 Incorr. | N.A. | A.A. T Model F-Score 1 Corr. 1 Incorr. | N.A. | AL A. T
Baseline 26.15 2390 58.87 17.23 28.88 Baseline 26.15 2390 58.87 17.23 28.88
Fully-Finetune 34.23 3340 57.90 8.70 34.92 Fully-Finetune  34.23 3340 5790 8.70 34.92
HQK 35.64 3423 57.87 790 37.17 Refusal Filtered 36.32 34.97 57.57 7.87 37.39

Figure 7: Ablation results of the High-Quality
Knowledge Model on Chinese SimpleQA.

Figure 8: Ablation results of the refusal filtering
process on Chinese SimpleQA.

Leveraging the generated training dataset supplemented with sampled SFT data, we trained the Knowledge
Boundary Model based on Qwen2.5-72B. The training process involved 3,000 iterations, with the learning
rate undergoing a warm-up phase for the initial 100 iterations. A batch size of 1 was utilized, aggregated into
a global batch size of 1,024 across 128 GPUs, with a gradient accumulation factor of 8. The learning rate
started at 7 x 105 and decayed linearly over the course of training, reaching a minimum learning rate of
7 x 1077, In Sec. we validate that Knowledge Boundary Model accurately determines the knowledge
boundary across models of varying parameters and versions, and enhancing the model’s knowledge where it
was previously unknown can effectively improve pre-training performance.

3.4 TRAINING PIPELINE

We propose a comprehensive framework for acquiring and curating high-quality QA datasets to enhance
LLM training. Our pipeline begins with data acquisition from diverse web sources, extracting rich textual
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Chinese SimpleQA SimpleQA
Model F-Score 1 Correct T Incorrect | N.A. | A.A.T F-Score 1 Correct 7 Incorrect | N.A. | A.A.T
Qwen2.5-7B-Instruct ~ 26.15 23.90 58.87 17.23 28.88  3.69 3.14 67.22  29.63 447
Our Data 44.07 41.30 46.13 12.57 4724  17.65 6.36 59.82  33.82 9.61
Our Approach 48.81 46.11 42.84 11.04 51.84 8.35 7.33 68.17 2450 9.71

Table 1: Performance on Simple Question-Answering with metrics include Not Attempted (N.A.), Correct,
Incorrect, and Attempted Accuracy (A.A.. Arrows indicate the desired direction of metric improvement: 1 for
increase and | for decrease. Bold indicates best results.

Complex Graph Web

Model WebQuestions FreshQA Questions TruthfulQA Question MultiRC TriviaQA  Avg

Qwen2.5-7B-Instruct 45.87 43.42 42.01 62.29 65.27 30.60 68.80 51.18
Our Data 47.43 50.35 47.08 61.95 67.04 38.32 7047  54.66
Our Approach 49.10 51.09 47.27 63.21 68.37 41.64 71.07 5596

Table 2: Performance on single-hop datasets including ComplexWebQuestions (Talmor & Berant, 2018)),
FreshQA (Vu et al., [2023)), GraphQuestions (Su et al., 2016), Truthful QA (Lin et al 2022), WebQues-
tions (Berant et al.,|[2013), MultiRC (Khashabi et al., [2018)), TriviaQA (Joshi et al., [2017).

content as the foundation for QA pair generation. Next, the high-quality query extraction phase employs our
High-Quality Knowledge Model to filter static, clear, and knowledge-based questions, eliminating ambiguous
or unstable queries. For answer generation and validation, we combine retrieval-augmented generation with
LLM:s to produce detailed answers, followed by refusal filtering to ensure response validity and completeness.
Finally, the knowledge boundary identification step leverages our Knowledge Boundary Model to pinpoint
gaps in LLM understanding, enabling targeted training on uncertain or deficient areas. As demonstrated
in Sec. d.1] the framework’s quality-control modules and training strategies significantly improve LLM
capabilities.

4 EXPERIMENT

In this section, we first introduce the validation results of our quality control modules in Sec. and then
present the performance of our final CPT model (Sec. 4.2).

4.1 ABLATION

The ablation study was conducted on a subset of the training data (3.6B tokens) to validate the efficacy of our
quality control modules: High-Quality Knowledge Model, refusal filtering, and Knowledge Boundary Model.
The evaluation datasets used in this process include SimpleQA (Wei et al.,2024) and ChineseSimpleQA.

High-Quality Filtering. First, we present the validation results of our trained High-Quality Knowledge
Model in Fig.[5] The model achieved an overall accuracy of 95.4% on the entire validation set. On the
validation sets derived from SimpleQA and Chinese SimpleQA, due to the obviously high quality of these
datasets, the classification accuracy reached over 99%. Next, we conduct ablation experiments to verify the
effectiveness of the High-Quality Knowledge Model (HQK) in enhancing pre-training performance. As shown
in Fig. |7} The accuracy of the model without fine-tuning is 26.2%, while the performance after complete
fine-tuning is 34.2%. We perform model quality filtering on CPT data, retaining only questions that are clear,
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2Wiki MultiHop
Model MuSiQue MultihopQA Bamboogle BeerQA CofCA FanOutQA FRAMES RAG Avg
Qwen2.5-7B-Instruct 16.28 46.26 40.59 34.26 38.20 32.58 1540 48.24 33.98
Our Data 22.78 47.50 42.20 42.83 47.15 49.12 33.50 54.99 42.51
Our Approach 26.21 49.79 45.83 43.21 53.76 50.05 34.06 56.04 44.87

Table 3: Performance on multi-hop datasets including MuSiQue (Trivedi et al. [2022), 2WikiMulti-
hopQA (Ho et al.; 2020), Bamboogle (Press et al., 2023)), BeerQA (Qi et al.l 2021), CofCA (Wu et al., 2024),
FanOutQA (Zhu et al.,|2024), FRAMES |Krishna et al.| (2025)), MultiHop-RAG (Tang & Yang|, [2024)).

static (answers remain unchanged within ten years), and knowledge-based. The filtered data accounts for
85% of the total data. The results showed substantial gains across all measures including enhanced F-Score,
increased correct rate, reduced incorrect rate, lower not attempted rate, and greater attempted accuracy. The
F-Score improved by 8.1% compared to the baseline when using full data for Fully-Finetune, while a 9.5%
gain was achieved with HQK model under the same training steps.

Refusal Filtering. We conduct ablation experiments to verify that the refusal module helps to enhance
the model’s pre-training performance. As shown in Fig.|8| the accuracy of the model without fine-tuning is
26.2%, and after full fine-tuning, the effectiveness improves to 34.2%. We performed refusal filtering, and the
filtered data accounted for 69% of the total data. The results demonstrated significant improvements across
all metrics. After applying the refusal filter, the F-score improvement rose from 8.1% for the standard dataset
to 10.2%.

Knowledge Boundary Filtering. We present the performance of the Knowledge Boundary Model on the
validation set, as shown in Fig.[6] We conducted validation using three models from the Qwen series: Qwen2.5-
72B, Qwen2.5-7B, and Qwen2-7B. The Knowledge Boundary Model achieved an average classification
accuracy of 80.7% across the three models. We conduct ablation experiments to validate the effectiveness of
the Knowledge Boundary Model. The model labels uncertain or under-mastered knowledge as unknown. The
results are presented in Fig.[d] To maintain a constant total number of training tokens, we use I x Unknown
for the standard dataset, while 2x Unknown increases the sampling probability of the unknown data by a
factor of two. As shown in the results, the standard training achieved an F-score improvement of 11.5%,
which increased to 13.8% after enhancing the unknown data.

4.2 PERFORMANCE

We first introduce the involved experimental configuration, followed by presenting the experimental setting
and evaluation results.

4.2.1 EXPERIMENTAL CONFIGURATION

Datasets. In addition to utilizing SimpleQA (Wei et al., [2024)) and ChineseSimpleQA (He et al.| 2024),
our study leverages a diverse array of datasets to validate the experimental results effectively. These datasets
encompass both single-hop and multi-hop question-answering tasks. For single-hop tasks, ComplexWebQues-
tions (Talmor & Berant, [2018)), FreshQA (Vu et al.,[2023), GraphQuestions (Su et al., 2016), Truthful QA (Lin
et al., [2022), WebQuestions (Berant et al., 2013, MultiRC (Khashabi et al., | 2018]), and TriviaQA (Joshi et al.,
2017) challenge models with questions requiring intricate reasoning and world knowledge. Furthermore,
for more complex reasoning, multi-hop datasets such as MuSiQue (Trivedi et al., 2022), 2WikiMulti-
hopQA (Ho et al.} [2020), Bamboogle (Press et al., 2023), BeerQA (Qi et al., 2021), CofCA (Wu et al., 2024)),
FanOutQA (Zhu et al., 2024), FRAMES (Krishna et al.,[2025), and MultiHop-RAG (Tang & Yang, [2024)
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assess interconnected reasoning skills and the integration of information across multiple documents. More
details are in Sec.

Training Setting. The original dataset comprises 26 billion tokens, of which 32% of low-quality data is
filtered out by our filtering process. All data sources are derived from the Wiki. The dataset composition
includes 20.38 billion tokens from English sources and 5.27 billion tokens from Chinese sources. The SFT
phase follows the standard SFT process of Qwen. In addition to the regular SFT data, we incorporated 8,000
samples from CPT to enhance the dataset. We utilized 64 H800 GPUs for training, with the entire training
process taking approximately 20 hours.

4.2.2 RESULTS

Our evaluation systematically examines the model’s performance across three key dimensions: simple
question-answering, single-hop reasoning tasks, and complex multi-hop reasoning scenarios.

Simple Question-Answering. Table [T demonstrates results across Chinese SimpleQA and SimpleQA.
Normal training with our data increased the F-Score from the baseline by 17.92% on Chinese SimpleQA
and 3.96% on SimpleQA, validating the effectiveness of our constructed data. In contrast, our method
improved the F-Score by 22.96% on Chinese SimpleQA and 4.66% on SimpleQA from the baseline. On
Chinese SimpleQA, all metrics showed significant improvement, with increased accuracy, reduced error
rates, and a lower proportion of unattempted questions, along with higher accuracy for attempted questions.
On SimpleQA, the model showed a tendency to attempt more examples despite potential errors, leading to
improvements in overall accuracy and accuracy upon attempts.

Single-Hop Datasets. Table 2] presents the comparative evaluation of various models on single-hop datasets.
Notably, our approach consistently delivers improvements across all tested datasets, reflecting significant
performance enhancements. With an overall average improvement of 3.48% and 4.78% across these datasets,
our method demonstrates its efficacy in handling straightforward reasoning tasks. Specifically, on challenging
tasks like MultiRC and FreshQA, our approach improved performance by 11.04% and 7.67%, respectively.

Multi-Hop Datasets. As illustrated in Tab. [3} our data substantially elevates performance on complex
multi-hop datasets, achieving a leading average score improvement of 8.53%. Moreover, our method extends
this advantage, reaching an impressive 10.89%. The model exhibits significant gains in tasks demanding
intricate reasoning, such as those in the FRAMES and Bamboogle datasets, with enhancements of 18.66%
and 17.47%, respectively. These results underscore the model’s enhanced ability to synthesize and assess
information from multiple sources, reflecting progress in executing multi-hop reasoning tasks.

5 CONCLUSION

In conclusion, our study mitigates the limitations in existing QA dataset creation methods by introducing a
pipeline for the acquisition and filtering of QA data from diverse web sources. By leveraging the High-Quality
Knowledge Model, we ensure the clarity and reliability of queries, while the Knowledge Boundary Model
effectively identifies and resolves knowledge boundaries, enhancing the ability of LLMs to tackle novel
challenges. The pipeline not only facilitates the generation of a substantial QA dataset but also supports
advanced training strategies that significantly improve model performance.Our method achieves consistent
improvements over the baseline across Chinese SimpleQA, SimpleQA, and multiple single-hop and multi-hop
QA datasets, paving the way for future advancements in LLM training.
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LIMITATIONS

While our pipeline presents a novel approach to acquiring high-quality QA data, several limitations remain.
First, the reliance on web-sourced content introduces variability in data quality and may inadvertently
include biased or outdated information that could affect the reliability of the dataset. Although our High-
Quality Knowledge Model aims to filter out such content, the dynamic nature of web sources may necessitate
continuous updates and refinement of our filtering criteria. Additionally, while our framework enhances model
capacity in addressing novel scenarios, its ability to reinforce unknown knowledge may vary depending on the
diversity and depth of the training dataset. This underscores the importance of continuous experimentation
and validation to maximize the alignment between training data and evolving model requirements. These
limitations will guide future work aimed at refining our pipeline, extending its applicability, and further
enhancing the performance of large language models.

BROADER IMPACT

The development of an advanced pipeline for generating high-quality QA datasets presents significant potential
to enhance Large Language Models (LLMs) as Al assistants. By improving their ability to address complex
queries and identify knowledge gaps, this work contributes to advancing Al capabilities in both academic
and practical settings thereby benefiting fields like education, healthcare, and customer service through more
accurate and responsive interactions. However, the open-ended nature of Al technology and the vast internet
data sources leveraged in this pipeline also bring potential risks of misuse. As Al models become increasingly
adept at mimicking human responses, there is a risk that these systems could be used to create deceptive or
manipulative content. To mitigate these risks, developers and researchers should be mindful of data biases
and strive to implement ethical guidelines for responsible Al use. By doing so, we can maximize the positive
impacts of this work while minimizing its potential for misuse.

AT ASSISTANCE DISCLOSURE

This manuscript was composed with writing assistance from LLMs. After initial drafting utilizing Al tools,
the authors thoroughly reviewed and refined the material, ensuring its integrity and accuracy, and assume full
responsibility for the content of the final publication.
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A  HIGH-QUALITY KNOWLEDGE MODEL TRAINING DATASET DETAILS

The details of High-Quality Knowledge Model training dataset is shown in Tab. 4]

Filename Quantity High Non-static Non-knowledge Vague/
Quality (%) (%) -based (%) Incomplete (%)

Wiki CPT Data (zh) 20000 50.30 22.56 11.26 15.88
Wiki CPT Data (en) 20000 88.23 10.15 0.94 0.69
Other Online Data 55521 24.07 48.40 19.92 7.61
SimpleQA 4226 100.00 0 0 0
Chinese SimpleQA 2900 100.00 0 0 0
TOTAL 102847 46.83 32.62 13.03 7.52

B BENCHMARKS

Table 4: High-Quality Knowledge Model training data.

We used a wide range of datasets to validate our experimental results:

1.

10.

11.

SimpleQA (Wei et al.,|2024) is introduced from OpenAl to assess LLMs on their ability to answer short,
fact-seeking questions with a single, indisputable answer.

. ChineseSimpleQA (He et al.} 2024)) is a comprehensive Chinese benchmark, focusing on diverse topics

to test the factuality of language models in responding to concise, static questions.

. ComplexWebQuestions (Talmor & Berant, 2018)) is a dataset containing complex questions, including

semantic parsing, search engine interaction, and reading comprehension with over 12 million web snippets.

. FreshQA (Vu et al [2023) is a dynamic QA benchmark evaluating models on questions requiring

fast-changing world knowledge and debunking false premises.

. GraphQuestions (Su et al., 2016) is a dataset of factoid questions paired with logical forms and ground-

truth answers.

. TruthfulQA (Lin et al.| 2022) benchmarks language models on truthfulness, testing models with 817

questions across various domains to evaluate their mimicry of human misconceptions.

. WebQuestions (Berant et al., 2013) is a popular benchmarking dataset for QA systems using structured

knowledge bases, comprising 6,642 question/answer pairs.

. MultiRC (Khashabi et al.|[2018)) is a dataset posing questions that require multi-sentence answers from

diverse domains.

. TriviaQA (Joshi et al.,|2017) is a reading comprehension dataset with over 650K question-answer-evidence

triples, demanding complex reasoning.

MuSiQue (Trivedi et al.,[2022) introduces a multihop QA dataset created, featuring connected reasoning
questions.

2WikiMultihopQA (Ho et al., 2020)) is a multihop QA dataset using structured and unstructured data
from Wikidata.

. Bamboogle (Press et al., [2023) is a dataset designed to investigate language models’ compositional

reasoning capabilities.
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13.

14.

15.

16.

17.

BeerQA (Qi1 et al.,2021)) is a benchmark combining existing datasets with 530 new questions requiring
three Wikipedia pages to answer.

CofCA (Wu et al.l 2024) introduces a Step-wise Counterfactual benchmark, revealing gaps in LLM
reasoning between factual and counterfactual data.

FanOutQA (Zhu et al.| 2024)) presents a dataset of complex multi-hop, multi-document fan-out” ques-
tions.

FRAMES (Factuality, Retrieval, And reasoning MEasurement Set, Krishna et al.|(2025))) incorporates
challenging multi-hop questions.

MultiHop-RAG (Tang & Yang, 2024) provides a knowledge base for multi-hop queries with ground-truth
answers and supporting evidence, used to benchmark RAG methods.
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