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Abstract

Optionally typed dynamic languages can permit multiple valid type assignments.
When this happens, developers can prefer one valid type assignment over another
because it better reflects how they think about the program and the problem it
solves. Natural type inference (NTI) uses natural language text within source code,
such as identifiers, to help choose valid programming language types. A growing
body of techniques has been proposed for NTI. These techniques predict types;
they seek to return natural type assignments (assignments that reflect developer
preferences) while striving for correctness. They are empirically effective, but
they are not sound by construction: they do not leverage programming language
theory to formalize their algorithms and show correctness and termination. Filling
this foundational gap is the purpose of this paper. We are the first to present a
detailed algorithm for NTI that is validated with theorems and proofs. Valid type
assignments obey logical constraints arising from type rules; natural type assign-
ments obey natural constraints arising from the natural language text associated
with a variable and its uses. The core intuition of this work is that logical and
natural constraints can interact to speed finding a type valuation that 1. type checks
(satisfies the logical constraints) and 2. is most natural. We formulate NTI as
a joint optimization problem. To do this, we define a numerical relaxation over
boolean logical constraints that give us a condition that we treat as a hard constraint,
while simultaneously we minimize distance from natural constraints, which we
treat as soft constraints for our optimization problem. Our main result, the first
formal proof of soundness for natural type inference, is that our algorithm always
terminates, either with an error or with a tuple that is guaranteed to be a type
signature for its input.

1 Introduction

To code is to name. While coding, developers must name parameters, local variables, functions,
modules, and programs themselves. Often these names are meaningful. For instance, naming a
variable username or password , gives different connotation to the developer, although both should
have all the attributes of a type string. Names can also mislead, when poorly chosen or when the
program has evolved to use them quite differently to when they were first given. This is why analyses
often ignore names and treat them just as nonces that tie a definition to a set of uses. This approach
can, however, be too conservative.

Consider the standard problem of type inference for an untyped language (such as Javascript or
Python). For a canonical example, consider the definition of a function f that has formal arguments
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x1, . . . , xn, and whose result is determined by the untyped expression E:

function f(x1, . . . , xn) return E

Although E is untyped (like JavaScript), we assume there is a type assignment relation for untyped
expressions (like the one for TypeScript Microsoft [2020]), and a library of types ti available for
typing expressions. Given this input, type inference is the task of computing a type signature for f ,
that is, a tuple (t1, . . . , tn, t), such that the following is derivable in the type assignment relation for
expressions:

x1 : t1, . . . , xn : tn ` E : t

There may be many valid type signatures for the same untyped input, creating a challenge for type
inference: which valid signature to return? An algorithm for natural type inference is an inference
algorithm that exploits natural language information, such as the identifiers x1, . . . , xn, f and other
lexical information in E, when selecting which valid type signature to return.

By now, there are several systems of natural type inference that resolve the ambiguity by relying on
the textual cues in the natural language already present in source code. From these textual cues, we
can learn natural constraints, which capture an affinity (or aversion) between identifiers based on how
they are used. They are manifestations of Firth’s famous observation — “You shall know a word by
the company it keeps.” — in source code Firth [1957]. In the context of type inference, we formalize
them as distributions over types. Natural type inference approaches learn to predict types from their
training data, which is some representation of source code. Most approaches, like the pioneering work
JSNice Raychev et al. [2015] or the first neural approach DeepTyper Hellendoorn et al. [2018], learn
both logical and natural constraints. This uniform treatment puts logical and natural constraints on the
same level and is inherently unsound. LambdaNet Wei et al. [2020] explicitly models some logical
constraints in its graph neural network. Despite biasing its architecture toward logical constraints, it
sometimes fails to learn them.

The exceptions are TypeWriter Pradel et al. [2019] and OptTyper Pandi et al. [2020], which obey
logical constraints. As usual, TypeWriter’s learns both logical and natural constraints, ranks its type
predictions, then relies on an external, optional type checker to filter them. OptTyper explicitly
separates logical and natural constraints. It infers logical constraints and learns natural constraints,
then combines them in a joint optimization, but does not prove the result to be sound.

Despite their success in utilizing natural language cues extracted from code corpora to resolve typing
ambiguities, an important problem with these previous works on natural type inference is the absence
of any programming language theory to formalize the algorithms and to show correctness. Filling
this foundational gap is the purpose of this paper.

1.1 Three Example Functions each with Multiple Type Signatures

Here are three examples of untyped function definitions, to illustrate some of the sources of ambiguity
that can be resolved by natural type inference.

function uppercase(str) return // 1st
{length = str .length,
items = λ(i) let char = str .items(i) in char < 97 ? char : char < 123 ? char − 32 : char}

function diffRange(range1 , range2 ) return range1 .length − range2 .length // 2nd
function intEqual3 (int1 , int2 , int3 ) return int1 == int2 ? int2 == int3 : false // 3rd

Consider the following library of type definitions.

type Char = Int
type String = {length : Int, items : Int → Char}
type IntArray = {length : Int , items : Int → Int}
type Range = {length : Int , breadth : Int}

We work in a λ-calculus with scalar types Bool and Int , record, and function types, and a type
system where equivalence of named types is determined by structure, as in TypeScript, and not by
name. For instance, although the types String and IntArray are syntactically different (because they
are different type names), they are structurally equivalent (because they have the same structure, if
we ignore the names). This is not a purely academic concern: it arises naturally in TypeScript. For
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example, when given 2nd example, TypeScript infers the uninformative intersection string | any
[]’ for both range1 and range2 and, when given the 3rd example, TypeScript infers any for each
parameter, which is utterly uninformative.

Given such a type library, a function definition may have multiple type signatures for several reasons:

(1) Two different named types may actually be structurally equivalent. For example, String and
IntArray are structurally equivalent. A function such as uppercase can be typed using either
of these types, resulting in syntactically distinct but structurally equivalent type signatures:
for example, (String ,String) versus (IntArray , IntArray).

(2) Differently structured types may share the same field. For example, String , IntArray , and
Range share the field name length . A function such as diffRange can be typed using any of
these types, resulting in syntactically and structurally distinct type signatures: for example,
(Range,Range, Int) versus (String , IntArray , Int).

(3) A primitive operator such as equality == is overloaded over multiple primitive types,
such as Bool and Int . A function such as intEqual3 can be typed using either of these
types, resulting in syntactically and structurally distinct type signatures: for example,
(Int , Int , Int ,Bool) versus (Bool ,Bool ,Bool ,Bool).

1.2 Natural Type Inference by Solving Logical and Natural Constraints

This paper presents a new formal algorithm and theory for natural type inference. To do so we are
using two types of constraints. The logical constraints, represent the constraints classically produced
by type inference algorithms. The natural constraints which are the output of a learning procedure
and refer generically to indirect, statistical constraints about types. In this work we consider a specific
kind of natural constraints, which maps an identifier name to a probability vector. The key idea of the
algorithm is to extract both logical and natural constraints from the input program, and to consider
natural type inference as an optimization problem.

During optimization, we frame logical constraints as hard constraints that must be satisfied, while
the natural constraints are soft constraints that ought to be satisfied. To enforce this, we introduce
a natural distance that measures the degree to which the natural constraints are satisfied, and then
we optimize this function, subject to the constraint that the logical constraints are satisfied. This
optimization problem optimizes a continuous function of type assignments, subject to a logical
constraint. This is a difficult optimization problem. In this paper we analyze an optimization
approach based on a numerical relaxation that converts this combinatorial optimization problem to
an unconstrained continuous optimization problem. This formulation allows us to use off the shelf
algorithms to effectively solve our problem.

Finally, the output is a type signature that is provably sound because the logical constraints are
satisfied, which implies that the input program is well typed.

For example, given diffRange (see above) as input, what is the type signature (t1, t2, t) to output?

Our type inference algorithm generates the following logical and natural constraints.

• The logical constraints, after simplification, are that (t1, t2, t) is a type signature for
diffRange if and only if (1) t1 = String or t1 = IntArray or t1 = Range , (2) t2 = String
or t2 = IntArray or t2 = Range , and (3) t = Int .

• A natural constraint is a mapping from each identifier {range1 , range2 , diffRange} to a
probability vector over possible types.

In the context of the library types Char , String , IntArray , and Range , and the builtin types Int and
Bool , the natural constraints (range1 , t1) and (range2 , t2) bias the choice of both t1 and t2 to be
Range, consistent with logical constraints (1) and (2). The natural constraint (diffRange, t) biases
the choice of t to be Range , but this violates the logical constraint (3), which takes priority.

In all, we get that:

• The algorithm assigns diffRange the type signature (Range,Range, Int).

Similarly, on our other examples we get:
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• The algorithm assigns uppercase the type signature (String ,String).

• The algorithm assigns intEqual3 the type signature (Int , Int , Int ,Bool).

1.3 Contributions: Formal Foundations for Natural Type Inference

As the setting for our study, we define an exemplary type inference task as finding a type signature
for an untyped function definition within a λ-calculus, whose types are defined by a global set of
equations between type names and scalar, record, and function types. The operational semantics and
type system satisfy preservation and progress properties.

Our contributions are as follows:

• We present a new algorithmic type system that given an expression yields logical and natural
constraints. The algorithm is terminating and the logical constraints are sound and complete
with respect to the declarative type system. Our overall task is finding a type signature for
an untyped function definition, is equivalent to satisfying the logical constraint extracted
from the function definition.

• We show how to combine a numerical relaxation of the logical constraints with probability
distributions over the library of types to form a joint optimization problem. Firstly, we show
how to relate the logical semantics and its relaxations. And then we present our key theorem
where we shod that the optimizer is guaranteed to terminate with the optimal solution to the
natural constraints that satisfies the logical constraints.

• We describe an overall algorithm for natural type inference, building on the algorithmic
type system and the constraint satisfaction algorithm. By the correctness theorem, the
algorithm always terminates, either with an error, or with a tuple that is guaranteed to be a
type signature for its input.

This work is the first to formalize and prove termination and soundness for a natural type inference
algorithm. Our specific algorithm deals with ambiguities arising from overloading, dot-notation, and
structural equality of type names. It provides formal foundations for OptTyper Pandi et al. [2020]
and shows that the resulting type signatures are sound. Some of our definitions, including logical
and natural constraints, the continuous relaxations, and the core optimization problem are based on
Pandi et al. [2020], but all the theorems of this paper are new, as is the formulation of an algorithm
for type-checking function definitions in a typed λ-calculus.

As our literature review makes clear, all work in learning-based type inference to date focuses on
formalising their method, none states theorems or formally proves its approach to be sound by
construction, and all are empirically validated. The present work rises to address this challenge.
We have formally developed an inference system, from the ground up, that assigns type names to
arbitrary type structures. This type system captures key aspects of type inference in optionally typed
languages used in industry, like TypeScript and Python. Crucially, we have validated this system by
theorem and proof. This work is the first to formalize and prove termination and soundness for a
natural type inference algorithm.

Still, there are limitations that can be addressed in future work. Our algorithm only chooses types
from the given library of type definitions. Hence, an input expression will be rejected if it needs a
record or function type missing from the library. Another limitation is that we ignore field names
when generating natural constraints. We expect it would be straightforward to extend the inference
algorithm to augment the given library with type equations defining additional record or function
types, as needed, and to take field names into account.

A bigger challenge is to extend natural type inference to features including subtyping, parametric
polymorphism, and intersection and union types, important for TypeScript and other languages.
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This appendix details the sound, probabilistic type inference outlined in the submission. Appendix A
presents the syntax and typing rules of a core calculus . In Appendix B we show how these typing
rules correspond to an algorithmic type system that gathers logical constraints, which we need to
satisfy. Appendix C we show how we transform a type inference problem to a joint optimization that
allows us to combine classic type rules and learning in a sound way that guarantees type correctness.
First we show present a relaxation of the logical constraints and then we present our main theorem
Theorem 4 which guarantees that the optimizer will terminate with a solution that satisfies the logical
constraints. Appendix D presents our overall algorithm based on the algorithmic type system. Finally
Appendix E discuss the related work in this field.

A A Type System for a Core Language with Named Types

We assemble a typed λ-calculus to formalize and verify natural type inference, and in particular the
essence of the OptTyper algorithm Pandi et al. [2020]. Given a function definition, OptTyper infers
types for its arguments and result, where each type is the name of a type definition from a given
TypeScript library.

In our formalism, a type t is simply a name drawn from a finite set of type names (such as Int or
IntArray). Each type name t is defined by a type equation type t = S where S is a type structure,
either a base, record, or function type. For instance, the type equation type Range = {length :
Int , breadth : Int} defines the type Range to equal the type structure {length : Int , breadth :
Int}.
The core judgment of our type system determines when a expression E may be assigned a type
name t. Unusually for a λ-calculus, our formalism assigns type names t but not type structures S to
expressions because of our aim to formalize OptTyper, which only infers type names and not type
structures. Still, this aspect of our formalism does not limit which expressions may be typed, because
we can introduce a new type name for any desired type structure.

OptTyper resolves ambiguities arising from dot-notation, overloading of arithmetic operators, and
type aliases for structurally equivalent types. Our formalism represents each of these ambiguities.

A.1 Types, Type Structures, and Type Equality

Here are the formal definitions of types t and type structures S.

Definition 1 (Types).
t, u type (drawn from a finite set of names, including Bool and Int)
ι ::= Bool | Int base type
` label for field in a record
S, T ::= type structure

ι base type
{`i : ti

i∈1..n} record type
t1 → t2 function type

Each type t has a unique type equation: type t = S
In particular, each base type ι has the type equation: type ι = ι

Our core syntax does not allow for a type alias type t1 = t2, and nor does it allow nested type
structures such as S1 → S2 or {`i : Si

i∈1..n}. However, we can interpret these as shorthands for the
core syntax. Given the definition type t2 = S for t2, we can interpret the alias type t1 = t2 as
being short for type t1 = S. We can interpret type t = S1 → S2 as meaning type t = t1 → t2
where t1 and t2 are fresh type names defined by type t1 = S1 and type t2 = S2. Hence, we
consider the notation type tf = t1 → · · · → tn → t for a curried type definition as implicitly
introducing intermediate types with fresh names. Similarly, we can interpret type t = {`i :
Si

i∈1..n} by introducing fresh names ti each defined to be Si.

For example, our type library from Section 1 uses these shorthands, and omits the definitions of
the base types Bool and Int . Here is the library in the core syntax, where we have introduced the
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Int2Char and Int2Int as names for the function types used in the example.

type Bool = Bool
type Int = Int
type Char = Int
type Int2Char = Int→ Char
type Int2Int = Int→ Int
type String = {length : Int, items : Int2Char}
type IntArray = {length : Int , items : Int2Int}
type Range = {length : Int , breadth : Int}

Amadio et al. define recursive types as types defined by recursive type equations Amadio and Cardelli
[1993]. Here is an example from their paper, the recursive type Cell of an integer-containing memory
cell:

type Unit = {}
type Read = Unit→ Int
type Write = Int→ Cell
type Add = Cell→ Cell
type Cell = {read : Read,write : Write, add : Add}

Type equality in our formalism is by structure rather than by name. According to Amadio and Cardelli
[1993], Algol 68 was the first language based on structural type equality in the presence of recursive
types. Intuitively, the abstract structure of a type is a potentially infinite tree induced by the nested
unfolding of its definition. Two types are equal if their abstract structures are equal.

Building on the literature on subtyping recursive types, we formalize equality of two types’ abstract
structure as a co-inductive bisimulation relation Milner [1989]Gordon [1994], following Brandt and
Henglein [1998].
Definition 2 (Simulation, Bisimulation, and Type Equality).

• A binary relation on typesR is a simulation if and only if:

(1) whenever t R t′ and type t′ = ι, then type t = ι;
(2) whenever t R t′ and type t′ = {`i : t′i

i∈1..n}, there are ti with type t = {`i :
ti
i∈1..n} and ti R t′i for each i ∈ 1..n;

(3) whenever t R t′ and type t′ = t′1 → t′2 there are t1, t2 such that type t = t1 → t2
and t′1 R t1 and t2 R t′2.

• A relationR is a bisimulation if and only if bothR and its converseR−1 are simulations.

• The type equality relation <:> is the union of all bisimulations.

The following holds by standard constructions Milner [1989].
Lemma 1. Type equality is reflexive, symmetric, and transitive, and is the largest bisimulation.
Proposition 1. Type equality t <:> t′ is decidable.

Proof. As a corollary of Lemma 1, it follows that t <:> t′ if and only if there is a bisimulation R
such that t R t′. Since there is a finite number of types, there is a finite number of bisimulations.
Hence, equality of two types t and t′ can be decided in principle by enumerating all the bisimulations
in search of the pair (t, t′).

To check type equality in practice, we can adapt existing algorithms for typing and subtyping recursive
types to our system Amadio and Cardelli [1993], Brandt and Henglein [1998].

To exemplify reasoning with bisimulations, we show that the types from Section 1 partition into five
equivalence classes:

• {Bool}
• {Int ,Char}
• {Int2Char , Int2Int}
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• {String , IntArray}
• {Range}

To check that the pairs of types in these classes are equal, consider this relation.

R , {(Int ,Char), (Int2Char , Int2Int), (String , IntArray)}

We can see that both R and R−1 are simulations, and therefore that R is a bisimulation. By
Lemma 1, <:> is the largest bisimulation and therefore R ⊆ <:>. It follows that Int <:> Char ,
Int2Char <:> Int2Int and String <:> IntArray .

Conversely, we can easily check that types from each of the five equivalence classes cannot be in a
bisimulation with types from any of the others, and therefore cannot be equal.

Most presentations of λ-calculi with recursive types use the notation µt.S for the recursive type
defined by the equation type t = S. Patrignani et al. include a comprehensive survey Patrignani
et al. [2021]. We do not use the µt.S notation because our goal is an explicit formalism of named
types defined by type equations; although recursive types are not needed for the motivating examples
in Section 1, they arise naturally from our formalism and in practice.

A.2 Expressions and Values

We have a set of variables used both for values and for functions. It is a single set, but we conven-
tionally use the metavariable x for variables used as values, and metavariable f for variables used as
functions. Variables can occur either free or bound in an expression.

Separately, we have a set of labels used to name the fields of a record. We consider labels to be a
separate name space from identifiers; labels cannot be bound.
Definition 3 (Syntax of Expressions and Values).
x, y, z (value) variable
` record label
E ::= expression

x variable
b Boolean literal (b ∈ {true, false})
c integer literal (c ∈ Z)
E1 ⊕ E2 ⊕ ∈ {−, <,==} selection of binary operators
{`i = Ei

i∈1..n} record (n ≥ 0)
E.` projection
E1 ?E2 : E3 conditional expression
let x = E1 in E2 let-expression
λ(x)E lambda abstraction
E1 (E2) application

V ::= value
b | c | {`i = Vi

i∈1..n} | λ(x)E

Two of the expression forms are variable binders. In the binder let x = E1 in E2, the variable x is
bound, with scope E2. In the binder λ(x)E, the variable x is bound, with scope E. Let fv(E) be the
set of variables occurring free in expression E. Let a binder be shadowed by an inner scope in two
cases: (1) it is let x = E1 in E2 with a binder for x in E2; (2) it is λ(x)E with a binder for x in E.
Let an expression be well-scoped if and only if it has no subexpression that is a binder shadowed
by an inner scope, and its bound variables are distinct from its free variables. Intuitively, no binder
within a well-scoped expression E re-defines either a variable free in or bound within E. Our type
system rejects inputs that are not well-scoped, a minor limitation because every expression has a
well-scoped alpha-variant obtained by renaming bound variables.

A.3 Declarative Type System

The core judgment, Γ ` E : t, means that in environment Γ the expression E has the type t.

An environment Γ is a finite map from variables to types, written either as x1 : t1, . . . , xn : tn
where n > 0 and the xi are pairwise distinct, or as ∅ for the empty environment. The purpose of
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an environment is to assign types to variables. The domain dom(Γ) of an environment Γ is the set
of variables it assigns. Let dom(x1 : t1, . . . , xn : tn) = {x1, . . . , xn} and dom(∅) = ∅. In what
follows, we use as a convention that if Γ contains x : t we write Γ(x) = t.
Definition 4 (Declarative Typing Rules with Retyping).

(Expr Retype)
Γ ` E : t t <:> t′

Γ ` E : t′

(Expr x)
x ∈ dom(Γ) Γ(x) = t

Γ ` x : t

(Expr b)
b ∈ {true, false}

Γ ` b : Bool

(Expr c)
integer c

Γ ` c : Int

(Expr −)
Γ ` E1 : Int Γ ` E2 : Int

Γ ` E1 − E2 : Int

(Expr <)
Γ ` E1 : Int Γ ` E2 : Int

Γ ` E1 < E2 : Bool

(Expr ==) (t ∈ {Bool , Int})
Γ ` E1 : t Γ ` E2 : t

Γ ` E1 == E2 : Bool

(Expr Rcd)
Γ ` Ei : ti ∀i ∈ 1..n type t = {`i : ti

i∈1..n}
Γ ` {`i = Ei

i∈1..n} : t

(Expr Proj)
Γ ` E : t j ∈ 1..n type t = {`i : ti

i∈1..n}
Γ ` E.`j : tj

(Expr If)
Γ ` E1 : Bool Γ ` E2 : t Γ ` E3 : t

Γ ` (E1 ?E2 : E3) : t

(Expr Let) (x /∈ dom(Γ))
Γ ` E1 : t1 Γ, x : t1 ` E2 : t2

Γ ` let x = E1 in E2 : t2

(Expr Lambda) (x /∈ dom(Γ))
Γ, x : t1 ` E : t2 type t = t1 → t2

Γ ` λ(x)E : t

(Expr Appl)
Γ ` E2 : t Γ ` E1 : t1 type t = t1 → t2

Γ ` E2(E1) : t2

Given a type environment, the type of a well-typed expression is unique up to type equality:
Lemma 2. If Γ ` E : t1 and Γ ` E : t2 then t1 <:> t2.

Definition 20 in Appendix A consists of an alternative set of type rules for deriving judgments of the
form Γ ` E : t. The alternative set of rules is syntax-directed in the sense that there is one rule for
each syntactic form of expression, unlike the rules above because of (Expr Retype); the work done by
(Expr Retype) of closing the judgment up to type equality is moved into each of the syntax-directed
rules, using an auxiliary relation t <:> S defined in Appendix B.1. The relations inductively defined
by the rules in Definition 4 and Definition 20 are one and the same (Proposition 2). We introduce
the syntax-directed rules because they make some proofs easier, but we present the rules with (Expr
Retype) as primary because they do not need the auxiliary relation.

A.4 Operational Semantics, Preservation, and Progress

We define a standard small-step call-by-value reduction relation, E → E′, meaning that expression
E evolves in one step to expression E′. The relation is the least closed under the rules in Definition 21
in Appendix B. That appendix also includes standard preservation and progress theorems.

• If Γ ` E : t and E → E′ then Γ ` E′ : t.
• If ∅ ` E : t either (1) there is a value V such that E = V , or (2) there is E′ such that
E → E′.

These results amount to the type safety properties guaranteed by our type system.

A.5 The Type Inference Problem for Function Definitions

We have now assembled enough formal definitions to define the task introduced in Section 1.

Consider a top-level untyped function definition with the following syntax:

function f(x1, . . . , xn) return E

Let a type signature for f be a tuple (t1, . . . , tn, t) of type names, such that the following type
assignment is derivable:

x1 : t1, . . . , xn : tn ` E : t
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If (t1, . . . , tn, t) is a type signature, we can introduce a type so that the value λ(x1) . . . λ(xn)E has
type tf , and hence can be called as a function from typed code.

We want to show here that our three running examples all exhibit ambiguities that we will resolve
using natural information. For example, we can derive the following:

str : String ` Euppercase : String
range1 : Range, range2 : Range ` EdiffRange : Range
int1 : Int , int2 : Int , int3 : Int ` EintEqual3 : Bool

where:

Euppercase , {length = str .length,

items = λ(i) let char = str .items(i) in char < 97 ?

char : char < 123 ? char − 32 : char}
EdiffRange , range1 .length − range2 .length

EintEqual3 , int1 == int2 ? int2 == int3 : false.

Indeed, each function has multiple type signatures, some of which we list here:

• The uppercase function has signatures (String ,String),(String , IntArray),
(IntArray ,String)

• The diffRange function has signatures (String ,String ,String),
(IntArray , IntArray , IntArray), and (Range,Range,Range).

• The intEqual3 function has signatures (Bool ,Bool ,Bool ,Bool), (Int , Int , Int ,Bool), and
also (Char ,Char ,Char ,Bool).

B Constructing Logical Constraints and Natural Facts

The purpose of this section is to describe a new algorithm that given Γ and E returns a logical formula
C such that any type that can be ascribed to E corresponds to a variable valuation Ω that satisfies
the formula. Hence the formula captures logically the ways in which the expression may be type
correct. As well as returning the logical constraint, the algorithm returns natural facts, a set of texts
associated with the type variables.

The following section shows how to optimize simultaneously for logical constraints, corresponding
to the logical formula, and for natural constraints, induced by the natural facts.

B.1 Logical Constraints, Variable Valuations, and Logical Satisfaction

We let α and β range over a given infinite set of type variables. We use A to range over finite sets of
type variables.
Definition 5 (Type Variables).
α, β type variable
Let tyvar(α) = {α}.

Our logical constraints are an equational logic, whose variables α denote items from a finite domain,
the set of type names. The logic consists of propositional formulas, plus two equational predicates:
α = t, meaning that variable α denotes the type t, (An extension would be to allow equations between
two variables, α = α′ meaning that both α and α′ denote the same type, but these equations are not
needed by our algorithm.) The finite domain is the set of types; the logic considers types simply as
atomic names and does not depend on any other properties, such as type equality. Hence, a constraint
α = String holds if α denotes the type name String , but does not hold if α denotes IntArray , even
though String <:> IntArray .
Definition 6 (Logical Constraints).
C ::= logical formula or constraint

α = t equation, between type variable α and type name t

11



true truth
¬ C negation
C ∧ C conjunction
C ∨ C disjunction

Let tyvar(C) be the set of type variables occurring in C.

Definition 7 (Valuation Ω). A valuation Ω is a finite map {αi = ti
i∈1..n} such that for any type

variable αv , there is a type tτ with Ω(αv) = tτ . Let dom(Ω) = {αi | i ∈ 1..n}, the finite set of type
variables in the domain of Ω.

Definition 8 (Logical Satisfaction Relation). We define a logical satisfaction relation Ω |= C, when
tyvar(C) ⊆ dom(Ω), by induction on the size of C, as follows:

Ω |= true always
Ω |= α = t if and only if Ω(α) = t

Ω |= ¬ C if and only if not Ω |= C

Ω |= C1 ∧ C2 if and only if Ω |= C1 and Ω |= C2

Ω |= C1 ∨ C2 if and only if Ω |= C1 or Ω |= C2.

Let constraint C be satisfiable if and only if there is a valuation Ω such that Ω |= C.

Definition 9 (Logical Equivalence). Let C ∼ C ′ mean that for all Ω with tyvar(C,C ′) ⊆ dom(Ω),
Ω |= C if and only if Ω |= C ′.

Logical equivalence is reflexive, transitive, and symmetric, and is a congruence. The relation satisfies
expected laws of logical equivalence, including associative, commutative, identity, and domination
laws for each of ∧ and ∨, and distributive laws relating them.

We adopt standard conventions. We define false , ¬ true. If we have a set of constraints {Ci | i ∈ I}
for a finite indexing set I = {i1, . . . , in}, the notation

∧
i∈I Ci means the conjunction Ci1∧· · ·∧Cin ,

and in particular means true if I = ∅. Similarly, the notation
∨
i∈I Ci means the disjunction

Ci1 ∨ · · · ∨ Cin , and in particular means false if I = ∅.

Additionally, we adopt some type-specific notations for constraints. To do so, we introduce a relation
t <:> S meaning that the type t equals any other with the structure S.

Definition 10. Let the relation t <:> S between type t and type structure S hold as follows:

(1) t <:> ι, means type t = ι;

(2) t <:> {`i : ti
i∈1..n} means there are t′i with type t = {`i : t′i

i∈1..n} and ti <:> t′i for
all i ∈ 1..n;

(3) t <:> t1 → t2 means there are t′i with type t = t′1 → t′2 and ti <:> t′i for all i ∈ 1..2.

Definition 11 (Derived Syntax for Constraints).

α <:> ι ,
∨
t∈I α = t where I = {t | ∃ι : t <:> ι}

α <:> α′ ,
∨

(t,t′)∈I(α = t ∧ α′ = t′) where I = {(t, t′) | t <:> t′}
α <:> {`i : αi

i∈1..n} ,
∨

(t,t1,...,tn)∈I(α = t ∧
∧
i∈1..n αi = ti)

where I = {(t, t1, . . . , tn) | t <:> {`i : ti
i∈1..n}}

α′ <:> α.` ,
∨

(t,t′)∈I(α = t ∧ α′ = t′)

where I = {(t, t′) | ∃n, j ∈ 1..n, `1, t1, . . . , `n, tn : t <:> {`i : ti
i∈1..n}, ` = `j , t

′ = tj}
α <:> α1 → α2 ,

∨
(t,t1,t2)∈I(α = t ∧ α1 = t1 ∧ α2 = t2) where I = {(t, t1, t2) | t <:> t1 → t2}

These derived forms of constraints are satisfied as follows:

Lemma 3 (Logical Satisfaction for Derived Syntax).

a. Ω |=
∧
i∈I Ci if and only if ∀i ∈ I : Ω |= Ci

b. Ω |=
∨
i∈I Ci if and only if ∃i ∈ I : Ω |= Ci
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c. Ω |= α <:> ι if and only if Ω(α) <:> ι

d. Ω |= α <:> α′ if and only if Ω(α) <:> Ω(α′)

e. Ω |= α <:> {`i : αi
i∈1..n} if and only if Ω(α) <:> {`i : Ω(αi)

i∈1..n}

f. Ω |= α′ <:> α.` if and only if ∃ n, `1, t1, . . . , `n, tn and j ∈ 1..n : Ω(α) <:> {`i :
ti
i∈1..n} and Ω(α′) <:> tj and ` = `j

g. Ω |= α <:> α1 → α2 if and only if Ω(α) <:> Ω(α1)→ Ω(α2).

B.2 Natural Facts

A natural fact is a pair (text , α), where text is a text, and α is a type variable, meaning that the text
text, an identifier in this paper, is associated with the type variable αi. Let N range over finite sets of
natural facts. Appendix C.3 shows how we construct natural constraints from these facts.

Definition 12 (Natural Facts).
N ::= {(text1, α1), . . . , (textn, αn)} natural facts

Let tyvar(N) = {α1, . . . , αn} where N = {(text1, α1), . . . , (textn, αn)}.

B.3 Algorithmic Type System

An algorithmic environment Γ is a finite map from variables to types variables, written either as x1 :
α1, . . . , xn : αn where n > 0 and the xi are pairwise distinct, or as ∅ for the empty environment. Let
dom(x1 : α1, . . . , xn : αn) = {x1, . . . , xn} and dom(∅) = ∅. Let tyvar(x1 : α1, . . . , xn : αn) =
{α1, . . . , αn} and tyvar(∅) = ∅. (We use the same metavariable Γ both for these algorithmic
environments and also for the environments of Appendix A.3, which map variables to type names.)

The judgment of our algorithmic type system takes the form Γ ` E ⇒ α (C,N) meaning that in
Γ the expression E has type α, a variable constrained by C, and that N is a set of natural facts that
associate variables in E with type variables from Γ or C.

The rules are as follows. We rely on the notation tyvar(ψ1, . . . , ψn) that means the set of variables
tyvar(ψ1) ∪ · · · ∪ tyvar(ψn), where each ψi is a syntactic phrase that is either an environment Γ, a
type variable α, a logical constraint C, or a natural constraint N .

Definition 13 (Algorithmic Typing Rules).
Let fresh(Γ, α, C,N) = tyvar(α,C,N) \ tyvar(Γ).

(Algo x)
x ∈ dom(Γ) Γ(x) = α

Γ ` x⇒ α (true,∅)

(Algo b) (α /∈ tyvar(Γ))
b ∈ {true, false}

Γ ` b⇒ α (α <:> Bool ,∅)

(Algo c) (α /∈ tyvar(Γ))
integer c

Γ ` c⇒ α (α <:> Int ,∅)

(Algo −) (α /∈ tyvar(Γ, C1, C2) and fresh(Γ, α1, C1, N1) ∩ fresh(Γ, α2, C2, N2) = ∅)
Γ ` E1 ⇒ α1 (C1, N1) Γ ` E2 ⇒ α2 (C2, N2)

Γ ` E1 − E2 ⇒ α (α <:> Int ∧ α1 <:> Int ∧ α2 <:> Int ∧ C1 ∧ C2, N1 ∪N2)

(Algo <) (α /∈ tyvar(Γ, C1, C2) and fresh(Γ, α1, C1, N1) ∩ fresh(Γ, α2, C2.N2) = ∅)
Γ ` E1 ⇒ α1 (C1, N1) Γ ` E2 ⇒ α2 (C2, N2)

Γ ` E1 < E2 ⇒ α (α <:> Bool ∧ α1 <:> Int ∧ α2 <:> Int ∧ C1 ∧ C2, N1 ∪N2)

(Algo ==) (α /∈ tyvar(Γ, C1, C2) and fresh(Γ, α1, C1, N1) ∩ fresh(Γ, α2, C2, N2) = ∅)
Γ ` E1 ⇒ α1 (C1, N1) Γ ` E2 ⇒ α2 (C2, N2)

Γ ` E1 == E2 ⇒ α (α <:> Bool ∧
∨
ι∈{Bool,Int}(α1 <:> ι ∧ α2 <:> ι) ∧ C1 ∧ C2, N1 ∪N2)

(Algo Rcd) (α /∈
⋃
i∈1..n tyvar(Γ, αi, Ci, Ni) and sets fresh(Γ, αi, Ci, Ni) disjoint)

Γ ` Ei ⇒ αi (Ci, Ni) ∀i ∈ 1..n

Γ ` {`i = Ei
i∈1..n} ⇒ α (α <:> {`i : αi

i∈1..n} ∧
∧
i∈1..n Ci,

⋃
i∈1..nNi)
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(Algo Proj) (α′ /∈ tyvar(Γ, α, C,N))
Γ ` E ⇒ α (C,N)

Γ ` E.`⇒ α′ (α′ <:> α.` ∧ C,N)

(Algo If) (sets fresh(Γ, αi, Ci, Ni) disjoint)
Γ ` E1 ⇒ α1 (C1, N1) Γ ` E2 ⇒ α2 (C2, N2) Γ ` E3 ⇒ α3 (C3, N3)

Γ ` (E1 ?E2 : E3)⇒ α2 (α1 <:> Bool ∧ α2 <:> α3 ∧
∧
i∈1..3 Ci,

⋃
i∈1..3Ni)

(Algo Let) (x /∈ dom(Γ) and fresh(Γ, α1, C1, N1) ∩ fresh(Γ, α2, C2, N2) = ∅)
Γ ` E1 ⇒ α1 (C1, N1) Γ, x : α1 ` E2 ⇒ α2 (C2, N2)

Γ ` let x = E1 in E2 ⇒ α2 (C1 ∧ C2, {(x, α1)} ∪N1 ∪N2)

(Algo Lambda) (x /∈ dom(Γ) and α /∈ tyvar(Γ, α2, C,N))
Γ, x : α1 ` E ⇒ α2 (C,N)

Γ ` λ(x)E ⇒ α (α <:> α1 → α2 ∧ C, {(x, α1)} ∪N)

(Algo Appl) (α /∈ tyvar(Γ, C2, C1) and fresh(Γ, α2, C2, N2) ∩ fresh(Γ, α1, C1, N1) = ∅)
Γ ` E2 ⇒ α2 (C2, N2) Γ ` E1 ⇒ α1 (C1, N1)

Γ ` E2(E1)⇒ α (α2 <:> α1 → α ∧ C1 ∧ C2, N1 ∪N2)

We call this relation algorithmic because it is a nondeterministic specification for an algorithm that
given inputs Γ and E computes outputs α, C, and N such that Γ ` E ⇒ α (C,N). Most of the
rules pick a variable α to represent the type of the expression; these variables are freshly generated in
the sense of being chosen arbitrarily so long as they are distinct from existing variables. The only
nondeterminism in the rules arises from the choice of these fresh type variables.

Take the rule (Algo −) for example.

(Algo −) (α /∈ tyvar(Γ, C1, C2) and fresh(Γ, α1, C1, N1) ∩ fresh(Γ, α2, C2, N2) = ∅)
Γ ` E1 ⇒ α1 (C1, N1) Γ ` E2 ⇒ α2 (C2, N2)

Γ ` E1 − E2 ⇒ α (α <:> Int ∧ α1 <:> Int ∧ α2 <:> Int ∧ C1 ∧ C2, N1 ∪N2)

The rule illustrates the two kinds of side-condition needed for freshness.

(1) The first kind, exemplified by α /∈ tyvar(Γ, C1, C2), ensures that the fresh variable α is
distinct from other variables in the current derivation: distinct either from the input Γ or the
output components C1 and C2.

(2) The second kind, exemplified by fresh(Γ, α1, C1, N1) ∩ fresh(Γ, α2, C2, N2) = ∅, ensures
the disjointness of the sets of fresh variables picked by independent parallel derivations,
such as Γ ` E1 ⇒ α1 (C1, N1) and Γ ` E2 ⇒ α2 (C2, N2). The auxiliary function
fresh(Γ, α, C,N) determines the type variables that are fresh in the derivation of Γ `
E ⇒ α (C,N), that is, the variables tyvar(α,C,N) occurring in the output that are not in
tyvar(Γ), the variables of the input.

A third kind of side-condition is x /∈ dom(Γ) in (Algo Let) and (Algo Lambda); these ensure that the
input expression E is well-scoped, and that environments only bind distinct variables.

Altogether, these three kinds of side-conditions ensure the following basic property:
Lemma 4. If Γ ` E ⇒ α (C,N) then tyvar(α,N) ⊆ tyvar(Γ, C) and E is well-scoped.

Proof. By induction on the depth of derivation of Γ ` E ⇒ α (C,N).

Disjunctive logical constraints represent alternative typings in the following rules:

• (Algo ==): which overloading of the equality operator;
• (Algo Rcd): which named record type to return;
• (Algo Proj): which named record type from which to extract a field;
• (Algo Lambda): which named function type to return;
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• (Algo Appl): which named named function type to apply.

While it is standard to accumulate sets of constraints on type variables, since Milner’s Algorithm W
Milner [1978], our introduction of disjunctive constraints to handle ambiguity is less common. While
Milner’s system finds the principal type scheme of a function definition, ours finds the most natural
subject to being sound.

B.4 Formal Properties: Termination, Soundness, and Completeness

Every well-scoped expression determines a logical constraint and natural facts.
Theorem 1 (Termination). Suppose E is well-scoped and fv(E) ⊆ {x1, . . . , xn}. For pairwise
distinct α1, . . .αn, there are α, C, N such that x1 : α1, . . . , xn : αn ` E ⇒ α (C,N).

Proof. Existence holds by induction on the structure of E.

To state soundness and completeness of the algorithmic type system with respect to the syntax-
directed declarative type system Definition 20, we introduce a notation Ω(Γ) that lifts a variable
valuation Ω to apply to an algorithmic environment Γ. Let Ω(Γ) = x1 : Ω(α1), . . . , xn : Ω(αn) if
environment Γ = x1 : α1, . . . , xn : αn,
Theorem 2. Suppose Γ ` E ⇒ α (C,N) and A = tyvar(Γ, α) and A′ = tyvar(C) \A.
For all Ω with dom(Ω) = A:

(1) (SOUNDNESS) For all Ω′ with dom(Ω′) = A′, if Ω ∪ Ω′ |= C then Ω(Γ) ` E : Ω(α).

(2) (COMPLETENESS) If Ω(Γ) ` E : Ω(α) then Ω ∪ Ω′ |= C for some Ω′ with dom(Ω′) = A′.

The following corollary can prove the claims made in Section 1.1 about our three motivating examples
of untyped function definitions.
Corollary 1. Suppose that:

• function f(x1, . . . , xn) return E is an untyped function definition with fv(E) ⊆
{x1, . . . , xn}

• Γ = x1 : β1, . . . , xn : βn for pairwise distinct type variables βi

• Γ ` E ⇒ β (C,N)

• A = {β1, . . . , βn, β} and A′ = tyvar(C) \A

Then, for all tuples (t1, . . . , tn, t), the following propositions are logically equivalent:

(1) (t1, . . . , tn, t) is a type signature for f

(2) x1 : t1, . . . , xn : tn ` E : t

(3) {β1 = t1, . . . , βn = tn, β = t} ∪ Ω′ |= C for some Ω′ with dom(Ω′) = A′.

B.5 Revisiting our Three Motivating Examples

In this section we show how Corollary 1 applies to our motivating examples (see Appendix A.5).
We show in full details how we extract these for the type signature for the diffRange function. For
uppercase and intEqual3 we present only the first and the final step of our reasoning.

B.5.1 Example: diffRange

Recall that the definition for diffRange is:
function diffRange(range1 , range2 ) return range1 .length − range2 .length // 2nd

Starting with Γ = range1 : β1, range2 : β2, let:

E1 , range1 .length

E2 , range2 .length

EdiffRange , E1 − E2
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By Definition 13, the following is derivable:

Algo x
Γ ` range1 ⇒ β1 (true,∅) α1 /∈ {β1, β2}

Algo Proj
Γ ` E1 ⇒ α1 (α1 <:> β1.length ∧ true,∅)

Algo x
Γ ` range2 ⇒ β2 (true,∅) α2 /∈ {β1, β2}

Algo Proj
Γ ` E2 ⇒ α2 (α2 <:> β2.length ∧ true,∅) β /∈ {β1, β2, α1, α2} and {a1} ∩ {a2} = ∅

Algo−
Γ ` EdiffRange ⇒ β (β <:> Int ∧ α1 <:> Int ∧ α2 <:> Int ∧ α1 <:> β1.length ∧ α2 <:> β2.length ∧ true,∅)

Given this result, for all tuples (t1, t2, t), Corollary 1 tells us that each of the following propositions
are logically equivalent:

(1) (t1, t2, t) is a type signature for diffRange

(2) range1 : t1, range2 : t2 ` EdiffRange : t

(3) there is Ω′ with dom(Ω′) = {α1, α2} and

{β1 = t1, β2 = t2, β = t} ∪ Ω′

|= (β <:> Int ∧ α1 <:> Int ∧ α2 <:> Int ∧ α1 <:> β1.length ∧ α2 <:> β2.length ∧ true)

By further simplification, the following propositions are also equivalent:

(4) by Lemma 3(f), there is Ω′ with dom(Ω′) = {α1, α2} and

{β1 = t1, β2 = t2, β = t} ∪ Ω′

|=
(
β = Int ∧ α1 = Int ∧ α2 = Int ∧

((β1 = String ∧ α1 = Int) ∨ (β1 = IntArray ∧ α1 = Int) ∨ (β1 = Range ∧ α1 = Int)) ∧
((β2 = String ∧ α2 = Int) ∨ (β2 = IntArray ∧ α2 = Int) ∨ (β2 = Range ∧ α2 = Int)) ∧ true

)
(5) by Definition 9, there is Ω′ with dom(Ω′) = {α1, α2} and

{β1 = t1, β2 = t2, β = t} ∪ Ω′

|=
(
β = Int ∧ α1 = Int ∧ α2 = Int ∧

(β1 = String ∨ β1 = IntArray ∨ β1 = Range) ∧
(β2 = String ∨ β2 = IntArray ∨ β2 = Range)

)
(6) by Definition 8(

(t1 = String or t1 = IntArray or t1 = Range) and (t2 = String or t2 = IntArray or t2 = Range)
)

To summarize our chain of reasoning, we have that:

(t1, t2, t) is a type signature for diffRange
if and only if(

(t1 = String or t1 = IntArray or t1 = Range) and (t2 = String or t2 = IntArray or t2 =

Range)
)

B.5.2 Example: uppercase

By Corollary 1 and similar reasoning to the previous example, we get:

(t1, t) is a type signature for uppercase
if and only if(

(t1 = IntArray or t1 = String) and (t = IntArray or t = String)
)

B.5.3 Example: intEqual3

Again, by Corollary 1 and similar reasoning we get:

(t1, t2, t) is a type signature for intEqual3
if and only if(

(t1 = Bool and t2 = Bool and t3 = Bool) or (t1 = Int and t2 = Int and t3 = Int)
)

and t =
Bool
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C Solving Logical and Natural Constraints using Numerical Relaxation

In this section, our goal is to determine a way of choosing the valuation Ω to combine the logical
constraints C and the natural facts N in a way that satisfies both requirements. To achieve this,
we propose a method based on an optimization perspective, in which we numerically relax the
problem of satisfying the logical constraints into a continuous optimization problem. First, we
perform the numerical relaxation of the logical constraints, introducing a relaxed semantics of the
constraints (Appendix C.1) and describing its properties (Appendix C.2). Afterwards, we define a
continuous typing environment by introducing probability distributions over these relaxed semantics.
This provides a numerical connection between the value of the relaxed semantics and the logical
constraints satisfaction.

Next, we turn our attention towards the natural aspect of the problem and explain how to obtain natural
typing constraints which are compatible with the logical constraints (Appendix C.3). Further, we
describe how to combine the logical and natural constraints into a single formulation by introducing
a joint optimization problem (Appendix C.4). Most importantly, we provide conditions under which
the joint optimization problem converges to a solution that is guaranteed to satisfy both the logical
and the natural constraints simultaneously.

Finally, we note that throughout this section we consider a finite sequence of V > 0 type variables
α1, . . . , αV , and a finite sequence of T > 0 type names t1, . . . , tT .

C.1 Numerical Relaxation of the Logical Constraints

We proceed by defining a numerical relaxation for the discrete logical constraints (see Definition 6).
For this purpose, we turn to soft logic, which relaxes the range of the truth function to [0, 1] and
is differentiable almost everywhere Hájek [1998]. First, we define a probability matrix P to hold
relaxed concrete type valuations. This is key object we optimise in our key theorem, Theorem 4,
below. We then define relaxed semantics for the logical constraints C over P , and establish important
properties of this semantics.
Definition 14 (Type Valuation Probability Matrix). For each type variable {αv | v ∈ 1..V}, we
define a probability matrix as P =

[
pT

1 . . . pT
V
]T

, where each pv = [pv,1 . . . pv,T ] is a
row vector that defines a probability distribution over concrete types. Let PV×T be the set of all
probability matrices.

As we discuss in Appendix E.2, soft logic offers different choices of triangular norms to represent
conjunction (t-norms). To be consistent with boolean first order logic, a t-norm is by definition
commutative, associative, non-decreasing, and 1 is a neutral element. Given a t-norm, we can derive
the corresponding t-conorm, which behaves like logical disjunction. Inspired by previous work on
relation inference in machine learning Rocktäschel et al. [2015], we chose to use product logic. The
main benefit of this choice is that its relaxations are smooth and well-suited for our optimization-based
approach.
Definition 15 (Relaxed Semantics). We define a relaxed semantics of C as a function [[C]]P :
PV×T × C → [0, 1], where v ∈ 1 . . .V , τ ∈ 1 . . . T and C is the set of logical constraints, defined
as:

[[true]]P = 1

[[αv = tτ ]]P = pv,τ
[[¬C]]P = 1− [[C]]P

[[C1 ∧ C2]]P = [[C1]]P · [[C2]]P
[[C1 ∨ C2]]P = [[C1]]P + [[C2]]P − [[C1]]P · [[C2]]P .

Now, we show that our relaxed semantics [[C]]P is bound within [0..1] and establish useful equiva-
lences on it, which we use to prove Theorem 3.
Lemma 5. For all C and all P ∈ PV×T , we have 0 ≤ [[C]]P ≤ 1.

Proof. By structural induction on the expression C.

Lemma 6. For all C, C1, C2, and P ∈ PV×T :
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i. ([[C]]P = 0) if and only if ([[¬ C]]P = 1)

ii. ([[¬ C]]P = 0) if and only if ([[C]]P = 1)

iii. ([[C1]]P = 1 and [[C2]]P = 1) if and only if ([[C1]]P · [[C2]]P = 1)

iv. ([[C1]]P = 1 or [[C2]]P = 1) if and only if ([[C1]]P + [[C2]]P − [[C1]]P · [[C2]]P = 1).

Proof. These follow by cases analyses based on Lemma 5.

C.2 Relaxation and Rounding of Type Valuations

In optimisation, relaxation approximates a difficult (usually discrete) problem with a nearby, easier
(often continuous) problem. Our approach relaxes the natural type inference problem and then
recovers a discrete type valuation from the relaxation, all the while preserving validity. So we first
show how to relax a type valuation, then define continuous probability distribution over all possible
type valuations, conditioned on a type valuation probability matrix P (Definition 14). We close by
showing that this relaxation preserves validity.

To relax a type valuation, we define a binary matrix that converts it into a probability matrix and
establish that the conversion preserves validity.
Definition 16 (Binary Environment). We define the binary matrix B(Ω) ∈ PV×T by setting each
element bv,τ = 1 if Ω(αv) = tτ , and 0 otherwise.

The following is Theorem 1 of Pandi et al. [2020], and is the main theoretical result of that paper.
Lemma 7 (Binary Relaxation). For all C and Ω:

[[C]]B(Ω) = 1 if and only if Ω |= C.

Proof. By structural induction on the constraint C.

We have just shown how to relax a type valuation. We also need to go the other way and recover
a type valuation from a continuous relaxation, a procedure known as rounding. To this end, we
marginalise the per variable type valuations into a set, over which we define a random variable. It is
this random variable that we sample to recover a discrete type valuation.
Definition 17 (Continuous Type Valuation Space). Given a probability matrix P , for each type
variable αv, let Av ∈ {t1, . . . tT } be a discrete random variable with marginal probability mass
function

Pr[Av = t | P ] =

T∏
τ=1

pδ(t=tτ )
v,τ , (1)

where δ is the Kronecker delta. In the above equation, we conventionally use 00 = 1. We define
{A1 . . .AV} to be independent.

Finally, define the random variable Ω̃ = {(αv,Av) | v ∈ 1 . . .V}; this is a random set whose
outcome is a valuation. We write its mass function as Pr[Ω̃ = Ω | P ]. Additionally, when we know
we are referring to Ω̃, we write Pr[Ω | P ].

Lemma 8. The probability mass function of Ω̃ is

Pr[Ω̃ = Ω | P ] =

V∏
v=1

T∏
τ=1

pδ(Ω(αv)=tτ )
v,τ . (2)

Proof. Observe that Ω̃ is in 1:1 correspondence with the set of random variables {A1, . . .AV}.
Because these variables are independent, their joint pmf is

Pr[A1 . . .Av | P ] =

V∏
v=1

T∏
τ=1

pδ(av=tτ )
v,τ . (3)

By change of variables, we obtain Equation (2).

18



Theorem 3 (Continuous Relaxation). Consider any Ω and any P ∈ PV×T , such that Pr[Ω | P ] > 0.
For all C, we have that:

[[C]]P = 1 implies Ω |= C (4a)
[[C]]P = 0 implies Ω |= ¬ C. (4b)

Proof. By structural induction on the expression C.

C.3 Natural Constraints

To generate probabilistic natural constraints from the natural facts (Definition 12) our typing rules
gather (Definition 13), we first introduce the function NC that returns a probability distribution from
texts to types. We then use NC to define natural typing constraints for each variable, which we
aggregate into a natural constraint matrix.

Let NC be a function from any set of texts to a distribution over type names. For any finite set of texts
X = {text1, . . . , textm}, NC(X) is a probability vector n of length T , the number of type names.
In the present work, NC corresponds to a pretrained machine learning model.
Definition 18 (Natural Constraints). For each type variable {αv (C,N) | v ∈ 1..V}, let Nv =
{text | (text, _) ∈ N}, be the texts bound to v in αv. A natural constraint is the probability vector
NC(Nv) = nv = [nv,1, . . . ,nv,T ] over T for v. We aggregate the natural constraints nv into a
natural probability matrix as N =

[
nT

1 . . . nT
V
]T

.

Each nv ∈ N is NC’s output on v’s natural facts Nv .

Intuitively, if we wish to find a P ∈ PV×T that is as close as possible to the natural constraints
N ∈ PV×T , we need to minimize the distance between these matrices. A simple and pragmatic
choice is the sum of the squared Euclidean distances between their rows. Recall that the Euclidean
distance between two vectors u = [u1, . . . , uD] and v = [v1, . . . , vD] is

‖u− v‖2 =

√√√√ D∑
d=1

(ud − vd)2.

This allows us to define the notion of natural distance.
Definition 19 (Natural Distance). Given a probability matrix P ∈ PV×T and a natural probability
matrix N ∈ PV×T , we define Natural Distance as the sum of the squared Euclidean distances of
each pv ∈ P from nv ∈ N .

NatDist(P,N ) ,
V∑
v=1

||pv − nv||22. (5)

C.4 The Joint Optimization Theorem

Given a program that admits multiple, correct, concrete type assignments given a type library (like
our motivating examples in Section 1.1), the core intuition of this work is that logical and natural
constraints can interact to speed finding a type valuation that 1) type checks (satisfies the logical
constraints [[C]]P ) and 2) is most natural, that is, that minimizes NatDist(P,N ) over all valuations
that type check.

In this section, we focus on finding a probability matrix P ∗ that has these properties; later we will
discuss how to obtain a valuation from P ∗. In particular, we will seek a P ∗ that is most natural in
the sense that it minimizes the natural distance over all probability matrices that satisfy the logical
constraints C in the relaxed semantics. More precisely, the probability matrix P ∗ is most natural
if NatDist(P ∗,N ) ≤ NatDist(P ′,N ), for all P ′ ∈ PV×T . Essentially, P ∗ is the solution to a
constrained continuous optimization problem.

To solve this optimization problem, we convert this problem to an unconstrained optimization
problem (Equation (6)), in an approach inspired by the penalty method Bertsekas [1982], Boyd and
Vandenberghe [2004]. In the unconstrained problem, we minimize the natural distance plus a penalty
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term that penalizes P ∗ if it does not satisfy C under the relaxed semantics. In fact, the following
theorem shows that this penalty can be chosen in such a way that the logical constraints must be
satisfied.
Theorem 4 (Penalty Existence). Suppose C is satisfiable. Given a natural probability matrix N
associated with C, there exists M ∈ R such that for all m > M , if

P ∗ = argmin
P∈PV×T

NatDist(P,N )−m[[C]]P (6)

then [[C]]P∗ = 1. Also P ∗ is the most natural probability matrix, in the sense that NatDist(P ∗,N ) ≤
NatDist(P ′,N ), for all P ′ ∈ PV×T with [[C]]P ′ = 1.

The proof first observes that satisfying C naturally defines a bipartition over P , dividing it into
nonsatisfying P<1 and satisfying P 1 assignments. Then it finds optimal values over these parts for
NatDist(P,N ), the natural constraints, and [[C]]P , the logical constraints. It uses these values to
construct an M such that, if m > M and P ∗ is optimal, P ∗ must fall into P 1, so [[C]]P∗ = 1 and it
is a most natural, satisfying type assignment relative to N .

Proof. First, we find a probabilistic type assignment P by solving the optimization problem

min
P∈PV×T

NatDist(P,N )−m[[C]]P . (7)

For clarity, we refer to this objective function below as:

Om(P ) = NatDist(P,N )−m[[C]]P . (8)

What we would like to show is that optimizing Om yields a continuous assignment P such that
[[C]]P = 1. Consider a fixed expression C. To analyse the optimum of the relaxed semantics, we
partition PV×T into two sets

P<1 , {P ∈ PV×T | [[C]]P < 1}
P1 , {P ∈ PV×T | [[C]]P = 1}. (9)

First, the above is indeed a partition. P<1 and P1 are disjoint, by definition. Further, we have
P<1 ∪ P1 = P since, for all P ∈ PV×T , [[C]]P ≤ 1, by Lemma 5. Second, observe that P1 is
nonempty. Because C is satisfiable, there is an Ω such that Ω |= C. Pick P = B(Ω). Then, by
Lemma 7, we obtain [[C]]P = 1. Therefore, B(Ω) is a member of P1, so P1 is nonempty. If P<1 is
empty, the theorem is trivially true, as every solution is in P1. Thus, without loss of generality, we
assume that P<1 is nonempty.

First, suppose we optimize the natural constraints only for assignments where [[C]]P < 1. Then, we
would get a potentially different optimum

ν<1 = min
P∈P<1

NatDist(P,N ) (10)

Now, consider the constrained optimum of the natural constraints

ν1 = min
P∈P1

NatDist(P,N ) (11)

Intuitively, ν1 is the best possible value of the natural constraints on environments that [[C]]P = 1.
We can define similar quantities for the logical constraints by maximizing [[C]] separately over P1

and P<1

`<1 = max
P∈P<1

[[C]]P (12)

`1 = max
P∈P1

[[C]]P . (13)

By the definition in Equation (9), we have that l<1 < 1 and l1 = 1.
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Choose

M = max

{
0,
ν<1 − ν1

1− l<1

}
. (14)

And assume that m > M , let P ∈ P<1. Finally, let P 1′ be an arbitrary element of P1 such that
NatDist(P 1′ ,N ) = ν1. Then we have

Om(P ) = NatDist(P,N )−m[[C]]P (15)

≥ ν<1 −ml<1 (16)

= ν<1 + ν1 − ν1 +m−m−ml<1 (17)

= ν1 −m− (ν1 − ν<1) +m(1− l<1) (18)

> ν1 −m− (ν1 − ν<1) + max

{
0,
ν1 − ν<1

1− l<1

}
(1− l<1) (19)

= ν1 −m+ max

{
−(ν1 − ν<1),−(ν1 − ν<1) + (1− l<1)

ν1 − ν<1

1− l<1

}
(20)

= ν1 −m+ max
{
−(ν1 − ν<1), 0

}
(21)

≥ ν1 −m = ν1 −ml1 = Om(P 1′) ≥ Om(P ∗). (22)

In the above, Equation (16) follows because NatDist(P,N ) ≥ ν<1 and [[C]]P ≤ l<1. Equation (19)
follows because m > M . Equation (20) relies on the fact that 1 − l<1 > 0, which follows from
Equation (9), and similarly Equation (22) uses the fact that l1 = 1.

We have shown that, for every P , if P ∈ P<1, thenOm(P ) > Om(P ∗). This implies that P ∗ 6∈ P<1.
It must be that P ∗ ∈ P1, so [[C]]P∗ = 1.

Finally, to show that P ∗ is most natural, consider P ′ such that [[C]]P ′ = 1. By definition of P ∗, we
have Om(P ∗) ≤ Om(P ′). But

NatDist(P ∗,N )−m = Om(P ∗) ≤ Om(P ′) = NatDist(P ′,N )−m.

Therefore NatDist(P ∗,N ) ≤ NatDist(P ′,N ).

D Algorithm for Natural Type Inference

Our algorithm has a couple of global parameters:

• We have an existing ambient library of type definitions:

type t1 = S1 . . . type tT = ST

• We assume a probability distribution NC from texts to type names as defined in Ap-
pendix C.3.

We consider as input the untyped function definition:

function f(x1, . . . , xn) return E

and our goal is to find the most natural type signature (t1, . . . , tn, t) for f .

(1) Check that E is well-scoped with fv(E) ⊆ {x1, . . . , xn}, and if not, terminate with an error.
(2) Let Γ = x1 : β1, . . . , xn : βn for fresh type variables βi.
(3) Run the algorithmic typing rules to derive Γ ` E ⇒ β (C,NE).

(4) Let A , {α1, . . . , αV} be the union of {β1, . . . , βn, β} with the set of type variables in C
or N .

(5) Let N = NE ∪ {(f, β1), . . . , (xn, βn)}.
(6) For each type variable αv ∈ A, let nv = NC(X) where X = {text | (text, αv) ∈ N}, the

set of texts associated with the type variable αv by N . Let N =
[
nT

1 . . . nT
V
]T

.
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(7) Decide whether C is satisfiable or not. If not, terminate with an error.

(8) Pick m ≥ 0 and solve the unconstrained problem:

P = argmin
P∈PV×T

NatDist(P,N )−m[[C]]P .

If the computed P satisfies the constraints, that is [[C]]P = 1, then we set P ∗ = P , and the
optimum solution is found. Otherwise, increase m and repeat.

(9) Define a valuation Ω as follows: for each v ∈ 1..V , we set Ω(αv) = tτ , where τ ∈ 1..T is
the index of αv’s most likely type in pv, that is, the maximum in the 1× T row-vector pv
(a component of P ∗). If there is a tie between maximum values we choose one at random.

(10) Terminate successfully, and return (Ω(β1), . . . ,Ω(βn),Ω(β)).

Theorem 5 (Correctness). Given a function definition,

function f(x1, . . . , xn) return E

the algorithm terminates, and if it terminates successfully with a tuple (t1, . . . , tn, t), then that tuple
is a type signature for f .

Proof. We prove termination first. Steps 1-2 terminate by construction. Step 3 terminates by
Theorem 1 because we have checked that E is well-scoped and fv(E) ⊆ {x1, . . . , xn} = dom(Γ)).
Steps 4-6 terminate by construction. To decide satisfiability of C we need to convert C to a CNF
sentence and use classic algorithms like DDPL Cook and Mitchell [2000] and DDPL(T)Nieuwenhuis
et al. [2004] to determine satisfiability. The DDPL algorithm always terminates and thus Step 7. Step
8 terminates because of Theorem 4. Steps 9–10 terminate by construction.

For the second part, suppose the algorithm terminates with a signature (t1, . . . , tn, t). By the final step,
the signature must take the form (Ω(β1), . . . ,Ω(βn),Ω(β)). We are to show that x1 : Ω(β1), . . . , xn :
Ω(β1) ` E : Ω(β).

Once the algorithm terminates we have from Theorem 4 that: [[C]]P∗ = 1, where P ∗ is the output of
the optimization step. The valuation Ω of Step 8 gives

Pr[Ω | P ∗] =

V∏
v=1

max(pv) > 0

as the max of each probability vector p is greater than zero. Thus, we have Pr[Ω | P ∗] > 0. By
Theorem 3, Pr[Ω | P ∗] > 0 and [[C]]P∗ = 1 imply that Ω |= C. Recall that x1 : β1, . . . , xn : βn `
E ⇒ β (C,NE) from Step 2 of the algorithm. We have both x1 : β1, . . . , xn : βn ` E ⇒ β (C,NE)
and Ω |= C, so, by Theorem 2(1), we have that x1 : Ω(β1), . . . , xn : Ω(βn) ` E : Ω(β), as
desired.

E Related Work

This section first positions our type system in the type system zoo, then succinctly presents soft
logic, how we use it and why. The bulk of the section surveys learning-based type inference systems,
focusing on what they formally detail and how they are evaluated.

E.1 Type Systems

Pierce writes: “Type systems like Java’s, in which names are significant and subtyping is explicitly
declared, are called nominalPierce [2002].” In contrast, a structural type system is one where “names
are inessential and subtyping is defined directly on the structures of types.” In our setting, names
are inessential to type equality (or to the subtyping relation obtained as the union of all simulations).
Therefore, our type system is structural and not nominal. Still, it is worth saying that our typing
judgment Γ ` E : t is name-based and not structure-based in the sense that it ascribes only a type
name t to an expression, and not a syntactic structure S. In contrast, Featherweight Java Igarashi
et al. [2001] has both a typing judgment that is name-based and a nominal type system.
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E.2 Soft Logic

Recently, there is a resurgence of interest in soft logic in machine learning. By soft logic, we
mean a many-valued logic where the truth values lie on the unit interval [0, 1] Hájek [1998]. The
reason for this resurgence is twofold: First, soft logic allows the modelling of multiple notions of
similarity. Second, and more relevant for our interests, the resulting compound formulas are amenable
to continuous optimization approaches. Thus, they provide a framework to exploit the relational
structure of different problems Kimmig et al. [2012]. Rocktäschel et al. use soft logic to improve the
neural inference of relations from textual data Rocktäschel et al. [2015].

Three widely used t-norms are Gödel logic Baaz [1996], Łukasiewicz logic Jaśkowski [1975], and
product t-norm Hájek [1998], with the latter two attracting more interest. For example, Bach et al.
use Łukasiewicz logic due to its convenient relationship with their relaxed MAX-SAT problem
formulation Bach et al. [2017]. Notably, the product t-norm admits backpropagation Evans and
Grefenstette [2018]. Two recent works compare and contrast these different t-norms on the task of
learning loop invariants Ryan et al. [2020], Yao et al. [2020]. In our natural type inference problem,
the logical constraints are non-convex and we focus on smooth optimization formulations, so we
choose product logic to represent them (Appendix C.1), because it is smooth while the other two are
not and would require relaxation.

E.3 Empirically Validated Work on Learning-based Type Inference

Learning-based type inference is a flourishing research area for at least two reasons. First, recent
breakthroughs in Machine Learning (ML) have enabled researchers to apply ML techniques to
effectively predict type annotations for dynamic programming languages, whose dynamism has
stymied traditional type inference. Second, popular dynamic languages are adopting optional type
annotations, generating the data ML needs in abundance in the form of huge, publicly available
repositories of code1. For instance, Python 3.5 was released with optional type annotations and the
Mypy type checker The-Mypy-Project [2014], or equivalent TypeScript Microsoft [2020], which
adds optional type definitions to JavaScript.

The pioneering work in this area builds probabilistic graphical models from structures extracted from
source code. JSNice Raychev et al. [2015] takes JavaScript code, extracts its abstract syntax tree,
and converts the AST into a conditional random field (CRF) Sutton et al. [2012]. JSNice employs
Maximum a Posteriori (MAP) inference over its CRF to predict both names and types. Its predictions
are unsound. Indeed, the authors state “where soundness is required, the approach presented here
will have value as part of a guess-and-check loop”. Xu et al. also construct a graphical model, in the
form of a factor graph Xu et al. [2016]. This work requires heuristically chosen weights in the factors
that integrate logical and natural constraints. Both works formalize the construction of their model
and validate their predictions empirically by reporting precision and recall over a corpus.

Given sufficient training data, neural approaches learn features themselves, obviating manual feature
identification and extraction as well as the realization of heuristics to process them. DeepTyper Hellen-
doorn et al. [2018] was the first to use a sequence-to-sequence model to predict types for TypeScript.
Its core idea is to train a neural model on an aligned corpus of TypeScript and JavaScript code.
DeepTyper consumes its training data as a raw token stream. As such, this stream implicitly combines
the logical and natural constraints embedded within it; DeepTyper itself must learn to distinguish
and exploit both. DeepTyper formalizes its neural architecture and is unsound, sometimes predicting
multiple types for a variable across its uses in a single scope. Like its predecessors, DeepTyper
is empirically compared to JSNice using accuracy from information retrieval. NL2Type is trained
solely on function signatures and JSDoc comments Malik et al. [2019]. NL2Type formally defines
its features and how it constructs training data to expose them to its neural network; its evaluation
is empirical, reported using information retrieval measures and focused on how it can complement
JSNice. Type4Py employs a hierarchical neural network, consisting of two recurrent neural networks.
Its training data includes existing type annotations and, taking a page from Typilus below, it employs
triplet loss to advance the state of the art Mir et al. [2021]. Type4Py tersely describes its model and
validates its performance empirically. Like DeepTyper, NL2Type and Type4Py are both unsound.

1These repositories are the oil fields of the digital economy, if we believe that “Data is the new oil.”, as Clive
Humby observed Arthur [2013].
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Because source code is inherently graph-structured, graph neural networks (GNN) are a natural
architecture for learning-based type inference Gilmer et al. [2017], Allamanis et al. [2018]. Targeting
TypeScript, LambdaNet was the first to use a GNN for type inference; it applies static analysis to its
training data to build its model’s graph. LambdaNet combines logical and contextual (which includes
natural) constraints. It is the first approach to effectively predict user-defined types not encountered
during training by using a pointer-network-like architecture Vinyals et al. [2015], Allamanis et al.
[2016] over an open vocabulary. LambdaNet’s architecture explicitly models a fixed set of type
constraints as hypergraphs. Typilus Allamanis et al. [2020] is a GNN that employs metalearning using
triplet loss to predict an open vocabulary of types for Python, including rare, even unseen-during-
training, user-defined types. Both GNN models use an iterative computation called message passing
to compute predictions, which is closely related to the sum-product algorithm that Xu et al. use Xu
et al. [2016]. Even LambdaNet, which explicitly models some type constraints, does not enforce them
over its predictions. Indeed, in practice, we observe that LambdaNet, despite explicitly modeling
logical type constraints, produces annotations that do not respect the learnt logical relationships. In
short, both LambdaNet and Typilus are unsound. Both formally detail their models, which are their
core contributions. As is conventional in this space, both are evaluated empirically over code corpora
and the results are reported using accuracy.

Williams et al. present an algorithm to infer unit types for numbers in spreadsheets cells Williams
et al. [2020]. They first generate logical constraints—sets of equations—on unit types by analyzing
formulas and format information (such as currencies or percentages). Relying on a method due
to Orchard et al. [2015], they transform the constraints to linear equations and solve by matrix
reduction, to obtain a set of unconstrained critical variables, which amount to the most general unit
typing. Rather than present spreadsheet users with unknown variables, they use textual information
such as column headers or labels on cells together with a pre-trained language model to predict the
most likely concrete units for the critical variables (and hence the numeric cells in the workbook).
They formalize, but do not state or prove theorems about, their algorithm. Their evaluation is
empirical, reported in terms of the usual suspects of information retrieval measures.

None of the approaches covered so far, whether graphical or neural, explicitly model the underlying
type inference rules, so their predictions miss useful type constraints. As a result, all are unsound.
Recognising this problem, researchers proposed OptTyper and TypeWriter. OptTyper Pandi et al.
[2020] reformulates learning-based type inference as an optimization problem to predicts types.
OptTyper statically extracts logical and natural type constraints from a program, then combines
them into a single joint optimization problem to infer type signatures. Its presentation formally
presents type inference as optimization; its evaluation is empirical, comparing its performance to
baselines using accuracy. It is OptTyper’s approach that we formalize here. TypeWriter Pradel et al.
[2019] realizes the guess-and-check integration of prediction with type checking proposed by JSNice.
Targeting Python, TypeWriter enumerates the top-ranked predictions from a neural type predictor,
then invokes Python’s gradual type checker mypy The-Mypy-Project [2014] to filter out those that
do not type-check. TypeWriter is sound up to a fixed type context (as usual, changing a module’s
context may invalidate a correct prediction made in another context). Because of its reliance on mypy,
TypeWriter is not, however, sound by construction. As is standard, the authors formalize TypeWriter’s
model and present its guess-and-check procedure in pseudocode and report its performance using
information retrieval measures.

A Syntax-Directed Presentation of Declarative Type System

As discussed in Appendix A.3, this appendix presents an alternative syntax-directed set of rules for
the judgment Γ ` E : t, and shows that they define the same relation as the rules in that section.

Definition 20 (Syntax-Directed Declarative Typing Rules).
In these rules, the notation t1 <:> t2 <:> ι means t1 <:> ι and t2 <:> ι.

(Decl Expr x)
x ∈ dom(Γ) Γ(x) = t t <:> t′

Γ ` x : t′

(Decl Expr b)
b ∈ {true, false} t <:> Bool

Γ ` b : t

(Decl Expr c)
integer c t <:> Int

Γ ` c : t
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(Decl Expr −) (t1 <:> t2 <:> Int)
Γ ` E1 : t1 Γ ` E2 : t2 t <:> Int

Γ ` E1 − E2 : t

(Decl Expr <) (t1 <:> t2 <:> Int)
Γ ` E1 : t1 Γ ` E2 : t2 t <:> Bool

Γ ` E1 < E2 : t

(Decl Expr ==) (t1 <:> t2 <:> Bool or t1 <:> t2 <:> Int)
Γ ` E1 : t1 Γ ` E2 : t2 t <:> Bool

Γ ` E1 == E2 : t

(Decl Expr Rcd)
Γ ` Ei : ti ∀i ∈ 1..n t <:> {`i : ti

i∈1..n}
Γ ` {`i = Ei

i∈1..n} : t

(Decl Expr Proj) (t <:> {`i : ti
i∈1..n})

Γ ` E : t j ∈ 1..n

Γ ` E.`j : tj

(Decl Expr If) (t′ <:> Bool )
Γ ` E1 : t′ Γ ` E2 : t Γ ` E3 : t

Γ ` (E1 ?E2 : E3) : t

(Decl Expr Let) (x /∈ dom(Γ))
Γ ` E1 : t1 Γ, x : t1 ` E2 : t2

Γ ` let x = E1 in E2 : t2

(Decl Expr Lambda) (x /∈ dom(Γ))
Γ, x : t1 ` E : t2 t <:> t1 → t2

Γ ` λ(x)E : t

(Decl Expr Appl) (t2 <:> t1 → t)
Γ ` E2 : t2 Γ ` E1 : t1

Γ ` E2(E1) : t

Proposition 2. The judgment Γ ` E : t is derivable using the rules of Definition 4 if and only if
Γ ` E : t is derivable using the rules of Definition 20.

B Small-Step Operational Semantics

The reduction relation E → E′ means that expression E evolves in one step to E′. In the rules
below, we write E[V/x] for the outcome of a capture-avoiding substitution of the value V for each
free occurrence of the variable x in the expression E, with bound variables consistently renamed to
result in a well-scoped expression. If E and V are well-scoped so is E[V/x].

Definition 21 (Reduction Rules).
(Red-1 Oplus)
E1 → E′1 ⊕ ∈ {−, <,>,==}

E1 ⊕ E2 → E′1 ⊕ E2

(Red-2 Oplus)
E2 → E′2

V1 ⊕ E2 → V1 ⊕ E′2

(Red −)
c3 = c1 − c2
c1 − c2 → c3

(Red < True)
if c1 < c2 holds
c1 < c2 → true

(Red < False)
if c1 < c2 does not hold
c1 < c2 → false

(Red == True)
V1 = V2

V1 == V2 → true

(Red == False)
V1 6= V2

V1 == V2 → false

(Red-1 Proj)
E → E′

E.`→ E′.`

(Red-2 Proj)
j ∈ 1..n

{`i = Vi
i∈1..n}.`j → Vj

(Red Rcd)
Ej → E′j j ∈ 1..n

{`i = Vi
i∈1..j−1, `j = Ej , `k = Ek

k∈j+1..n} → {`i = Vi
i∈1..j−1, `j = E′j , `k = Ek

k∈j+1..n}

(Red If)
E1 → E′1

E1 ?E2 : E3 → E′1 ?E2 : E3

(Red If True)

true ?E2 : E3 → E2

(Red If False)

false ?E2 : E3 → E3

(Red-1 Let)
E1 → E′1

let x = E1 in E2 → let x = E′1 in E2

(Red-2 Let)

let x = V1 in E2 → E2[V1/x]

(Red-1 Lambda)
E1 → E′1

E1(E2)→ E′1(E2)

(Red-2 Lambda)
E2 → E′2

V (E2)→ V (E′2)

(Red Appl)

(λ(x)E)(V )→ E[V/x]
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Theorem 6 (Preservation). If Γ ` E : t and E → E′ then Γ ` E′ : t.

Theorem 7 (Progress). If ∅ ` E : t either (1) there is a value V such that E = V , or (2) there is an
expression E′ such that E → E′.
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