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Abstract

Preference-based feedback is important for many
applications where direct evaluation of a reward
function is not feasible. A notable recent exam-
ple arises in reinforcement learning from human
feedback on large language models. For many
of these applications, the cost of acquiring the
human feedback can be substantial or even pro-
hibitive. In this work, we take advantage of the
fact that often the agent can choose contexts at
which to obtain human feedback in order to most
efficiently identify a good policy, and introduce
the offline contextual dueling bandit setting. We
give an upper-confidence-bound style algorithm
for this setting and prove a regret bound. We also
give empirical confirmation that this method out-
performs a similar strategy that uses uniformly
sampled contexts.

1. Introduction

In many decision making problems in information retrieval,
question answering, clinical trials, advertising, and other
fields, feedback about the performance of a particular choice
is only available in the form of a preference between sev-
eral options. Such feedback often takes the form of a user
clicking on a link in the wild but can also be collected from
labelers in an attempt to understand their underlying pref-
erences and train a system to optimize them. This is an
especially useful method for collecting human feedback be-
cause humans are unreliable in giving scalarized feedback
compared to the accuracy of their preferences (Ouyang et al.,
2022). Often, these settings come with some context that
can provide information about the associated distribution
over preferences. This could be the search term, some infor-
mation about a trial participant, or the prompt in a question
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answering setting.

Recently, these techniques have seen large amounts of at-
tention when popularized through reinforcement learning
from human feedback (RLHF). RLHF is one of the ma-
jor techniques for aligning large language models (LLMs)
for use as a chat assistant or for other specialized applica-
tions after pretraining on a sequence modeling objective.
In these applications, human raters are provided with a
prompt and several possible responses taken from the LLM.
They are asked to rank the human responses based on their
preferences given the prompt. This process requires a rela-
tively large number of samples from human raters (tens of
thousands) in order for the alignment process to succeed.
This can incur large costs for the data collection. For more
specialized problems than a general chatbot assistant, the
feedback required may be impractical or expensive relative
to the desired application.

In many applications, the feedback is collected online as
the policy is learned. Under these circumstances, the con-
texts are typically assumed to be drawn from an (unknown)
stationary probabity distribution and the agent’s object is
to quickly find a near optimal decision rule. Currently, in
the RLHF setting, the prompts presented to the model in
order to sample responses and then to the raters are typi-
cally sampled uniformly from a response set intended to be
representative of the test-time distribution.

In such cases, the aforementioned online setting does not
allow us to fully take advantage of the problems structure —
we can control which prompts and responses are presented
to the human raters for feedback and we are not interested
in the performance of the actions chosen during labeling,
just the performance of the policy at test time afterwards.
Instead of the standard contextual bandit problem it is then
more appropriate to consider the so-called offline contex-
tual bandit (Char et al., 2019) where we are additionally
allowed to select the contexts for which we receive feed-
back. By leveraging this control over this less restrictive
data-generating process, we show how to select contexts
and actions in order output policies with stronger optimality
guarantees without the need to collect more data.

Here, we tackle the special case of pairwise feedback where
a pair of actions are compared given a particular context.
Following Xu et al. (2020), we first reduce the problem
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of finding the optimal action given pairwise feedback to
finding the action that optimizes the Borda function given
a particular context. The Borda function is the probability
that for a particular context, a selected action is preferred
over another action selected uniformly at random. We select
contexts which maximize the uncertainty over the Borda
‘value function’ and then select one action optimistically
and the other uniformly.

In this work, we show that our method provably achieves
suboptimality at most O (% (B + &7y /log %)) every-
where in the context space after T iterations with probabil-
ity 1 — 9 under the assumption that the Borda function is
bounded by B in RKHS norm. We also demonstrate on
a distribution of synthetic problems that it performs well
when implemented and outperforms a baseline with uni-
formly selected contexts and an optimistic policy as well as
entirely uniform sampling.

2. Related Work

Learning from Comparative Feedback There is a rich
literature on reinforcement learning from comparative hu-
man feedback, including work by Fiirnkranz et al. (2012),
Akour (2014) and Christiano et al. (2017). Many of these
works grappled with the heightened need for sample ef-
ficiency given the cost of acquiring human feedback. In
particular, Christiano et al. (2017) made it feasible to use
human feedback for deep reinforcement learning by training
a reward model that is then used as the target for reinforce-
ment learning. In their Atari test case, where naive deep RL
would have required thousands of hours of gameplay, they
were able to achieve superior performance with only 5,500
or several hours of human queries.

More recently, methods of using comparative human feed-
back have gained prominence as a means of improving
the performance of language models. These methods have
been shown to be effective at improving stylistic continu-
ation (Ziegler et al., 2019), text summarization (Stiennon
et al., 2020), translation (Kreutzer et al., 2018), seman-
tic parsing (Lawrence & Riezler, 2018), review generation
(Cho et al., 2018), and evidence extraction (Perez et al.,
2019). However, while effective, incorporating human feed-
back brought substantial costs. For example, Stiennon et al.
(2020) achieved significant improvements to baseline, but
needed summaries on 123,169 posts from the TL;DR dataset
generated by a small team of labelers (more than 21 persons)
from Upwork, Scale, and Lionbridge to train.

This heavy-resource requirement is again reflected even in
later, state-of-the-art work. Ouyang et al. (2022) focused
on using RLHF to improve alignment of the GPT-3 model
(at 175B parameters) with human values on a variety of
directions, including toxicity, hallucinations, moral opinion,

and overall quality. The results are spectacular, with the
1.3B parameter InstructGPT matching the 175B GPT-3 in
performance on a variety of tasks. Because the focus was
ensuring representation both in the inputs to models used in
real life and in the human feedback received, the team used
40 labelers and worked with a dataset of more than 100,000
examples.

A related paper from Zhu et al. (2023) also explores a sim-
plified version of this problem and showed that under the
strong assumption of a linear model given a known feature
mapping, the policy obtained by optimizing the pessimistic
MLE given a fixed dataset is provably optimal for learn-
ing in the k-wise comparison context. Given these strong
assumptions, the authors point out that a G-optimal exper-
imental design for online data collection as in Soare et al.
(2014) would be maximally informative. However, these
assumptions are unrealistic and do not represent the meth-
ods used in practice as reward model training is usually
conducted over all layers of a deep model.

Dueling Bandits At the same time, the bandit literature
has also explored the effectiveness of comparative feedback
(“dueling bandit”) while considering the cost of acquiring
such information. This was first studied by Yue et al. (2012)
in settings where comparative information is relatively easy
to extract but absolute rewards (i.e., direct queries) are ill-
defined and have no absolute scale. Later, Bengs et al.
(2021) surveyed methods used in the online learning setting,
where the trade off with cost of information is most acute,
including those used in the online contextual dueling bandit
setting by Dudik et al. (2015). These constraints motivate a
kernelized approach that can incorporate the nonlinearities
in the models used in practice.

Offline Contextual Bandit Optimization When there are
distinct phases of learning and then deployment, an agent
can make maximal use of every example during learning to
acquire information that can be exploited once deployed.

Char et al. (2019) introduce this idea for black-box function
approximation by considering a setting where at test time
the goal is to perform well on average across a context distri-
bution while during learning the goal is to choose contexts
and actions that are most useful for that goal. Given a reward
function for each task, the authors proposed a multi-task
version of Thompson sampling during the offline training
phase, which allows provable regret bounds in that prob-
lem setting. We extend this setting from cardinal to ordinal
rewards as is appropriate for comparative feedback.

In Li et al. (2023), the agent queries the states (or contexts,
in a bandit setting) where the value function is most uncer-
tain and acts optimistically. Combined with least-squares
value iteration, this method leads to provable polynomial-
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sample convergence in the worst-case error of the value
function estimate in reinforcement learning in general, and
as a corollary the setting from Char et al. (2019) as a spe-
cial case. This sets the foundation that we will adapt to the
comparative feedback setting.

3. Problem Setting

In this paper, we consider a dueling variant of the so-called
offline contextual bandit problem introduced in Char et al.
(2019). An instance of this problem is defined by a tuple
(X, A, f) where X denotes the context space, .4 denotes
the action space and f : X x Ax A — [0, 1] is a preference
function so that f(x, a,a’) denotes the probability that the
action a is preferred to the action a’ when the underlying
context is . We will design algorithms that operate under
the following interaction protocol, which occurs for 7" time
steps. During each time step ¢ € [T, the agent selects a con-
text z; € X and a pair of actions ay, a} € A and observes
a binary random variable R; ~ Bern(f(x¢,as, a;)) which
equals one if a; is preferred to a} (denoted a; > a;) and
zero otherwise.

We assume that the preference function takes the following
form

f(x,a,d") = o (r(z,a) —r(z,ad")), (1)

where 0 : R — [0,1] is the link function and r : X x
A — R is the reward function. Common link functions
include the logistic function, which leads to the Bradley-
Terry-Luce (BTL) model (Bradley & Terry, 1952) as well as
the Gaussian CDF (Thurstone, 1927). We also place some
additional assumptions on the reward function which we
discuss at the end of this section.

Our objective within this protocol is to design algorithms
that are able to quickly identify policies with small subopti-
mality. We define the suboptimality of a policy 7 as

SubOpt(7) = sup (sup r(z,a) —r(z, w(x))) . @
z€X \ac€A

We remark that this notion of suboptimality is much stronger

than usual notions that look at the expected suboptimality

of the final policy when the contexts are sampled from some

known distribution. In contrast, the form of suboptimality

we consider here looks at the worst-case context for each

policy.

Before discussing the assumptions we place on the reward
function, we first introduce a closely related function, called
the contextual borda function f,., which generalizes the
borda function introduced in by Xu et al. (2020). The Borda
function as introduced in Xu et al. (2020) for dueling-choice
optimization is defined as the probability that a particular
action a will be preferred over a random action a’ uniformly
sampled from the action space. We generalize this definition

to the contextual setting as follows, given as f,. : X x A —
[0,1] where f,(z,a) = Ey ) [P(a > a' | z)], where
U(A) is the uniform measure over the action space. It is
clear from the definition that f, and r will have the same
maximizers.

We conclude this section by discussing the structural as-
sumptions we place on the reward function as well as the
contextual Borda function. Our first assumption restricts the
reward and contextual Borda functions to be ‘smooth’ in an
underlying Reproducing Kernel Hilbert Space (RKHS).

Assumption 3.1. Let x denote a Positive Semi-Definite
kernel and let H,, denote its associated RKHS. We assume
that ||7||,. , || fr]|, < B, where B is a known constant.

Note that this assumption is different than the standard as-
sumption which only requires that » has bounded RKHS
norm. This is due to the generality of our setting which
allows for multiple different link functions. While this as-
sumption is not ideal, it is difficult to bound the norm of
fr given a bound on the norm of . We investigate this
issue more in Section B where we empirically find that the
norm of the Borda function is almost always smaller than
the norm of the reward function.

Our second assumption relates the reward function to the
contextual Borda function.

Assumption 3.2. Let f*(x) = max, f,(z,a) and r*(z) =
max, 7(z, a). There exists a constant L such that for every
x € X, a € Awe have L%(r*(x) —r(z,a)) < fr(x) —

fr(z,a).

This assumption implies that differences in r will cause
a similar magnitude of difference in f, In fact, when o
is Lipschitz continuous, it is sufficient for the Lipschitz
constant of ¢ to be at least 1/L; for this condition to hold.

4. Method and Analysis

At a high level, our approach reduces the dueling feedback
problem to contextual optimization over a single action via
the contextual Borda function introduced in Section 3. Once
reduced appropriately, we apply techniques adapted from
recent work on active exploration in reinforcement learning
to construct a sampling rule and policy selection rule which
allows us to output a policy with provably small suboptimal-
ity. Broadly, our sampling rule samples contexts at which
there is maximum uncertainty over the Borda ‘value func-
tion’ and then compares the optimistic action with an action
sampled uniformly from the action set.

4.1. Estimating The Contextual Borda Function

By design, we can easily estimate the contextual Borda

?
function from data of the form {z;,a; > a;}, where the
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contexts x; and first actions a, are arbitrary and the second
actions aj are uniformly selected. In this work, we model
the contextual Borda function using standard kernelized
ridge regression (KRR) (Rasmussen et al., 2006). The key
feature of KRR is that besides an estimate of the contextual
Borda function after ¢ observations u;(x, a), we can also
estimate the uncertainty over the prediction oy (z, a) using
standard results; under the assumptions in Section 3 and
given an value for 3 appropriate chosen for our confidence
level, we can bound |f,(x,a) — ut(z, a)| < Boi(x,a) with
the desired confidence.

4.2. Selecting Contexts and Actions

Our sampling rule builds on top of the one established in
Li et al. (2023) —put simply the rule is to sample the state
with the maximum uncertainty over the value function and
then act optimistically. We will now present our algorithm
which highlights how to extend these idea to the dueling
setting via the contextual Borda function f;.

For now, we assume that there is a known bonus term /3, ")
for all £. We can then define upper and lower confidence

bounds fZ(z,a) = pe(z,a) + B oy (x, a) and fi(x,a) =

we(z,a) — Bt(r)at(x, a). Our rule is to sample a context

Ty € argmax, ¢ y <rgl€aj{ﬁ(z,a) — gleaj(fi(x, a)) . (3

Here, we are choosing a context that maximizes the dif-
ference between the optimistic ‘value function’ and the
pessimistic ‘value function’ (both of which require a maxi-
mization over actions to compute).

We then optimistically choose an action by
a; € argmax, ¢ 4 fL(74, ). )

After repeating this process T times, we output a pessimistic
policy against the tightest lower bound we can find, which
is the maximizer of all our lower bounds through the opti-
mization process. Put formally we return 7 : X — A such
that

X t
7p(x) € argmax, e 4 Enéag&(x, a). Q)

From these pieces we construct the full algorithm, Borda-
AE, which we present in Algorithm 1.

4.3. Bounding the regret of Borda-AE

Before proceeding with our algorithm’s formal guarantees,
we first introduce the maximal-information gain which plays
an important role in our results. The maximum information
gain over ¢ rounds, denoted &, is defined as

o, = max I(ra+easra), (6)

;=
ACX X A:|A|=t

Algorithm 1 Borda-AE
1: Input: kernel function (-, -), exploration parameters

"), number of inital data ng

Let D,,, = {si,a; ; a;}ir, for s, a;, a; uniform.
fort =no+1,...,7do

Compute f1¢(, ), o¢(-, -) using KRR.

Choose z; according to (3).

Choose a; according to (4), a; ~ U(A).

?
Let Dt = thl @] {({Et, ag > aé)}
end for
Output a final policy 77 according to (5).

Wooed d2nsRd

where 74 = [r(2)],c4 > €4 ~ N(0,7*]) and I(X;Y) =
H(X) — H(X|Y) is the mutual information. With this
definition, we are now ready to state our result.

Theorem 4.1. Suppose we run Algorithm I with

. 2
ﬁ§)=23+\/2q>t+1+1og(5>, 7

then, with probability at least 1 — §, we have that

L
SubOpt(#7) < O (\/% (B + &7 /log ;)) G))

Proof Sketch. At a high-level the proof of this result is as
follows. First, we use standard results on KRR to show that
our choice of 3(") guarantees that our confidence bands con-
tain 7 (x, a) with high probability simultaneously for all ¢
and z,a € X x A. Next, we use assumption 3.2 to show
that the suboptimality of the pessimistic policy induced by
our estimated contextual borda function is small whenever
we are able to estimate the contextual borda function well.
Finally, we conclude the proof by showing that our sam-
pling rule indeed allows us to estimate thet contextual borda
function well.

Concrete Performance Bounds. To more concretely un-
derstand the performance of our algorithm, we instanti-
ate our results for three commonly studied kernels: the
linear, squared-exponential. For both of these settings,
the scaling of the information gain is well known (see
for example (Srinivas et al.,, 2010)). In the linear set-
ting, we have that &7 = dlogT leading to a bound of

0 (% (dB logT'y/log %) ) For squared exponential ker-
nels we have @7 = O (log(T")?*1) leading to a subopti-

mality bound of O (% (B log(T)%+1, /log %) )

When compared to existing results for dueling bandits (Xu
et al., 2020) as well as standard bandits (Chowdhury &
Gopalan, 2017), we see that our suboptimality bounds
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match, thus showing that our algorithm is able to achieve
the same performance under a stronger performance metric.

5. Experiments

In order to assess the validity of our theory we have begun an
experimental campaign starting with synthetic experiments
that allow us to come as close as possible to the theoretical
setting and empirically confirm our results. To do so, we im-
plemented the regression using the BernoulliGP model pro-
vided by GPyTorch (Gardner et al., 2018). We use a Matérn
kernal with automatic relevance detection with hyperparam-
eters fit via maximum a posteriori optimized by the Adam al-
gorithm (Kingma & Ba, 2014). We tested on distributions of
synthetic reward functions generated by sampling a random
linear combination of Random Fourier Features (Rahimi &
Recht, 2007) derived from a squared exponential kernel. For
each sampled reward function r, we used the Bradley-Terry
model where p(a > d | z) = 1+exp(r(lé,)_,_(w7a» to gen-
erate comparison data. For each trial we uniformly sampled
no = 25 datapoints and then selected data to observe until
T = 500 total datapoints had been collected according to
one of three methods:

¢ Borda-AE: our method, as described in Section 4.

* Borda-Uniform: uniform sampling of context and
actions.

* Borda-UCB: uniform sampling of contexts with UCB
actions as in Borda-AE.

This last method reduces to the method presented in Xu et al.
(2020) when naively generalized to the contextual setting.
All methods have the same test-time behavior of execut-
ing the action found by optimizing the pessimistic Borda
function estimate for the test context. By optimizing the
ground-truth reward function we were able to approximate
the optimal policy and therefore estimate the regret of our
policy against it. We give an example of the progression
of our method for 1D context and 1D actions in Figure 2
as well as a comparison against Borda-Uniform and Borda-
UCB in Figure 1. One can see that Borda-AE performs best
both on median regret and on the maximum regret, which
was the metric of interest in our theoretical analysis.

It is clear the method is quickly able to concentrate samples
in regions that could plausibly be the optimum and it is
similarly clear that the peaks in the acquisition function
over contexts are sensible given the mean and uncertainty
estimates of f,.

6. Conclusion and Future Work

In this work we introduced the offline contextual dueling
bandit setting and presented a first efficient algorithm for
solving it in the kernelized setting. Though our method is

1D Context 1D Action
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£ Borda-UCB

5 1.00 )
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Figure 1. Performance of all methods across 10 random functions
r with 1D Context and 1D action. The top plot shows the median
regret across contexts and the bottom shows the maximum. Error
regions are standard errors.

able to in theory and in controlled practical settings achieve
promising performance, it has a number of issues that pre-
vent its wider application. First, we reflect on the fact that
the Borda function is a blunt tool: in order to make sampling
tractable we must sample o’ uniformly during exploration.
Since we have the possibility of choosing both a and a’ this
seems somewhat wasteful of the a’ samples. In the context
of RLHF with language models this is especially grim as
uniformly chosen sequences are likely to be gibberish and
the obvious preference for plausible sequences vs uniform
ones will mean that the data selected via this strategy would
be less likely to be useful.

Many of these applications also benefit from the parallel
nature of modern hardware and only make sense when pre-
sented with large batches of data. The sequential nature of
Borda-AE makes it unsuitable for these applications as well.

With all this in mind, however, we still believe that there is
tremendous potential in finding methods for solving these
problems, especially with the worst-case style guarantees
such as the ones provided here. We hope to continue the
progress as we work towards solving these issues.
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Figure 2. Progress of Borda-AE across 50, 150, and 600 datapoints. From the top the charts show the ground truth function, the mean of
the posterior estimate of f,, the uncertainty function, the estimate of the value function as well as the acquisition function given in (3),
and the regret.
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A. Proof of Theorem 4.1

In this section we will prove our main Theorem, 4.1. The overall strategy of the proof is to use our Lipschitz assumption on
the link function (more precisely, the relative Lipschitzness of the reward r and the Borda function f;.) in order to go to the
Borda function, which we can directly model from data. Then, we use our selection criteria as well as confidence bounds
taken from Chowdhury & Gopalan (2017) and convergence rates taken from Kandasamy et al. (2019) in order to complete
the argument. We give these cited results as lemmas in what follows.

In order to attain a particular policy performance with probability 1 — §, we must bound the error of the estimates given by
our KRR process for a particular confidence level. In order to do so, we adapt the result from Chowdhury & Gopalan (2017),
Theorem 2.

Lemma A.1. Let Bt(r) =2||frlls + /2(@i—1(X) + 1 +log(2/0)). Then with probability 1 — & /2 we have for all time t
and any point x € X,

le—1(z) — fr(@)| < B ov1(2).

This lemma jointly bounds the modeling error over the Borda function for all time ¢ though it introduces a dependence on
the RKHS norm of f,.. This dependence is inherited from prior work, but we empirically study the relationship between the
RKHS norm of a particular reward function and that of the associated Borda function in Section B.

We also adapt a result from Lemma 8 of Kandasamy et al. (2019) in order to understand the convergence of our uncertainty
function o;.

Lemma A.2. Suppose we have n queries (q;)}_, taken from X x A. Then the posterior oy satisfies

2
ZO’?—I(Qt) S WCDH(X X .A)

qt

Lemma A.2 gives us a handle on how quickly we can expect the uncertainty function to shrink as additional datapoints are
observed.

Now that we have lemmas A.1 and A.2 in place, we can proceed to the proof of the main result.

Proof. In this proof, we condition on the event in Lemma A.1 holding true. Given that occurence, we can say the following
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foreveryx € X.

Assumption 3.2
maxr(z,a) — r(z,7r(s)) < Ly (max fr(z,a) — f,«(x,frT(:v))> )
acA acA
LemrgaA.l I + 10
2L (s o,0) — s £ () (10)
Der of 77 ({?Eajffr(x’a) maemie e, )> (11)
=1 tIél[IZIFI] (maj( fr(z,a) — max ft(x a)) (12)
LemrgdAl I 7 + 13
< i (e e ) — g S 13
Def<ofz I t toot 14
g r;leaff o) ey £lethe) o
Def. of a'
I ettt 15
1}2[1%1]( Q(fma)) (15)
L __
< Tl (f}f(xt,at) - fi(mt,at)> (16)
t=1
T
= LS 2ot ) (1)
t=1
ﬁér) is increasing 2L1ﬁ(r) T ?
s (Zat(wt,at)> (18)
Cauchy-Schwarz 9], B(T”)
< L 19
< T (19)
Lemma A.2 2L1ﬁ¥)
< ——\/C1® 20
< T 197 (20)
2L
defof:ﬁT 1 QB+\/2 (®,_1 + 1+ log(2/9))) \/Clq)T 21

\/T

L1 1
_O<ﬁ <B+¢T1/10g5>>. (22)

B. RKHS norms of r and f,

In order to understand the dependence of our estimation bound on the RKHS norm || f,.|| x, we ran numerical experiments on
sampled reward functions. For a variety of context and action dimensions, we sampled 1000 reward functions as in Section 5
and numerically approximated their RKHS norms. We also made a Monte-Carlo estimate of the Borda function f, for each
of the reward functions sampled and numerically approximated its RKHS norm. To do this, we uniformly sample 1,000
points z; from the input space, compute the regularized kernel matrix K for this set x;, solve the KRR problem Ko = f(z)
for a. Then we compute the quadratic form v a” K« as an estimate of the RKHS norm.

In Table 1, we present the results of comparing the RKHS norms of 1000 reward functions and their associated Borda
functions sampled as in Section 5. A ‘win’ was counted when the Borda function had smaller RKHS norm and a ‘loss’
otherwise. The win margin is the average difference in RKHS norms of the reward and Borda functions, with a positive
value when the Borda function was of smaller norm. It is clear here that in general (though not always) the RKHS norm of
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Context Dimension ~ Action Dimension ~Win Rate  Win Margin
0 1 0.16 -6.3

1 1 0.89 5.1

1 3 1 214

3 1 1 21.5

3 3 1 38.7

10 10 1 19.6

Table 1. Comparison of RKHS norms of reward functions and associated Borda functions

the Borda function f,. for a particular reward function r is smaller than the RKHS norm of the reward function r itself. This
relationship seems to grow stronger as the input dimensionality of the reward function grows larger.



