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Abstract— Unlike conventional vision systems that rely on
passive observation, biological agents learn through physical
interaction. Can a robot similarly develop an understanding
of its environment purely through interaction, without prior
knowledge or external supervision? In this work, we explore
how artificial agents can autonomously learn via intrinsic
motivation, much like how children engage in curious free
play. We propose a novel, fully self-supervised, object-centric
learning framework. The system first segments visual input
into discrete entities using Slot Attention, trained on data
collected from random robotic actions. A graph-based world
model is then trained to predict object-centric dynamics but
initially struggles to capture object motion due to the limited
diversity of the initial interactions. To overcome this, we
introduce an intrinsically motivated reward signal based on
world model’s prediction error, which drives a policy to collect
more informative trajectories. This results in up to three times
more object displacement than random actions, significantly
enriching the dataset. Fine-tuning both the vision and world
model on these data improves prediction and reconstruction
performance. We validate our method in a simulated robotic
environment with diverse objects, demonstrating that mean-
ingful visual and physical representations can emerge entirely
from self-supervised interaction. This highlights the potential of
intrinsically motivated, object-centric learning for autonomous
world perception and modeling [1].

Index Terms— Robotics and Embodied AI, Active Perception,
Object-Centric Computer Vision, World Models

I. INTRODUCTION

Today’s state-of-the-art AI models continue to break new
ground in computer vision and machine learning [2], [3]
advancing rapidly across various domains, including image
and video classification, semantic segmentation and decision-
making. Despite these impressive achievements, the cogni-
tive abilities and world understanding of animals and humans
still surpass those of current machine learning (ML) systems.
Unlike humans, who require minimal exposure to new tasks
to adapt and succeed, ML systems depend on vast amounts of
data along with carefully designed supervisory signals from
human experts. These data samples must be independent
and identically distributed (i.i.d.); when the domain or data
distribution shifts, typical AI models struggle to generalize
effectively. Humans, on the other hand, can master new
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tasks with limited practice and data. For example, children
learn new tasks and objects fast by re-exploiting structured
knowledge from previous interactions and actively testing
predictions [4], [5]. Therefore, it is essential to thoroughly
study and draw inspiration from biological cognition and its
underlying principles in our attempt to develop more reliable
and efficient artificial systems [6].

In this work, we explore active perception through a cog-
nitively inspired approach while leveraging recent advances
in machine learning. Our goal is to emulate the behavior
of a human infant, who perceives the world and interacts
with it to incrementally enhance their understanding of the
environment and develop an internal model of it. Unlike
traditional AI models that rely heavily on supervisory signals
and large datasets, we aim to investigate whether a model
can learn in a self-supervised manner within a novel, open-
ended environment. To achieve this, we study world model
learning while a robotic arm actively explores objects on a
table so as to maximize an intrinsically motivated epistemic
reward function. Importantly, while to our knowledge most
previous developmental robotics approaches to world model
learning used a precalibrated fixed visual module [7], [8],
here we use the data generated through active interaction
with objects to simultaneously learn the world model and
the vision module entirely from scratch, without any external
supervision, pretrained modules or external datasets. We first
show that our proposed epistemic reward generates actions
that lead up to three times more object displacement than
random actions. We then show that the resulting policy leads
to both world model improvement (i.e., better prediction of
state-action-state dynamics) and visual reconstruction.

To validate the proposed methodology, we conduct exper-
iments using a simulated robotic arm in a tabletop environ-
ment with a diverse set of objects. Our results demonstrate
that the proposed approach is effective in scenarios where
no supervision signals, pretrained modules or large datasets
are available.

In summary, our key contributions are:
1) We adopt an object-centric approach and develop a

world model capable of predicting the future states of
object representations across frames.

2) We train both the vision and world models entirely
from scratch, without any supervision or external
datasets.

3) We design an intrinsically motivated reward signal
based on the world model’s prediction error, which
effectively filters out noise introduced by imperfect
models and encourages policies that result in up to



three times more object displacement on average.
4) We show that fine-tuning the models on data col-

lected via the learned policy significantly improves the
robot’s world understanding, measured by prediction
and reconstruction performance of both the vision and
world models.

5) We validate our approach in a simulated robotic envi-
ronment, demonstrating meaningful improvements in
interaction quality and object-centric prediction.

II. RELATED WORK

A. Visual segmentation through self-supervised learning

This work builds upon several research domains at the in-
tersection of computer vision, robot learning, and cognitively
inspired machine learning. At its core, our problem can be
framed as a computer vision task: detecting and segmenting
objects in a scene through self-supervised learning. A grow-
ing body of work has focused on object-centric methods for
unsupervised video object segmentation, where “objects” are
treated as fundamental building blocks of representation.

Most object-centric approaches rely on a reconstruction
objective to uncover meaningful structure in visual scenes
and can be broadly categorized into scene-mixture and
spatial-attention models. Scene-mixture models [9], [10],
[11] interpret a scene as a composition of multiple latent
components, each reconstructed by a generative model. In
contrast, spatial-attention models [12], [13], [14] encode
geometric properties of objects, such as location, scale, and
presence, by decomposing an image into background and
foreground elements, with the foreground further represented
as a set of individual object representations. These represen-
tations have been shown to support downstream control tasks
[15]. Generally, this object-centric paradigm aligns with the
causal structure of the physical world [16].

B. Intrinsically-motivated RL

Our approach is also grounded in the principles of
intrinsically-motivated reinforcement learning (RL), where
agents acquire useful representations or behaviors without
externally defined rewards. Instead, intrinsic objectives or
self-supervised signals guide learning. For instance, off-
policy deep RL has been applied to learn visual grasping
strategies from self-supervised data collection [17], [18].

A central element of our method is an intrinsic reward
function that promotes exploration and the generation of
novel, informative trajectories. Pathak et al. [19] introduced
curiosity-driven exploration using prediction error as an
intrinsic reward. Related approaches [20], [21] include lever-
aging ensembles of predictive models to quantify uncertainty
and encouraging exploration where model predictions dis-
agree most, or maximizing entropy in the learned state space.

C. Robot active perception

While approaches mentioned above study intrinsic mo-
tivations to learn policies or world models relying on a
fixed perception module, here we are interested in simul-
teanously improving perception, which corresponds to an

active perception process. Several studies in the literature
have explored active perception [22], [23], [24]. More re-
cently, researchers have begun integrating deep learning into
this concept. Pinto et al [25] in The Curious Robot, argue
that biological agents learn visual representations through
physical interactions and build a system that pushes, pokes,
grasps and observes objects in a tabletop environment to
learn such representations. This system is trained to predict
the outcomes of these robotic tasks with data annotated in
a self-supervised manner. The extracted representations have
been shown to be beneficial for simple downstream control
tasks.

Similarly, Pathak et al. [26] propose a self-supervised
approach to object segmentation through interaction with
the environment. Their agent maintains a segmentation hy-
pothesis, manipulates a hypothesized object through random
actions, and updates the model based on the difference
between visual frames captured before and after each action.
These interactions provide a noisy yet informative signal that
enhances the initial segmentation hypothesis over time. In
[27], Sancaktar et al. demonstrated that a preliminary phase
of curiosity-driven free play can enhance downstream task
performance. Their system employs an ensemble of world
models to plan actions that maximize epistemic uncertainty.
Cobra [28] also adopts a task-free intrinsically motivated ex-
ploration approach. Using unsupervised learning, they build
object-based transition models of their environment optimiz-
ing a pixel-based loss function, which they use in a model-
based reinforcement learning setting. Although similar in
spirit, [27] relies on proprioceptive state information to train
world models from which rewards are derived, while [28]
evaluates their approach only in a two-dimensional, visually
simplistic environment. To the best of our knowledge, we
are the first to propose a fully self-supervised, object-centric
framework that intrinsically enhances an agent’s world per-
ception and modeling in a visually complex environment.

III. METHODOLOGY

A. Overview

Our method follows a self-supervised, object-centric
pipeline composed of five key stages: a) We begin by
collecting an initial dataset of image sequences, generated
by an agent performing random actions in the environment.
b) We train a self-supervised vision model, based on Slot
Attention, to segment scenes into object-like components and
learn structured object-centric representations. c) Using the
frozen vision model, we train a world model to predict future
visual representations conditioned on the agent’s actions.
This world model is of low quality due to the mainly
uninformative actions in the initial dataset. d) We train a
policy using an intrinsic reward derived from the prediction
error of the world model, encouraging the agent to explore
states where the model is uncertain. e) Finally, we use
the learned policy to collect more informative trajectories
involving object interactions, and fine-tune both the vision
and world model on this richer dataset. A summary of the
proposed framework is illustrated in Fig. 1.



Fig. 1: Overview of our proposed framework: The input image It is processed by the vision encoder to extract K slot representations
which can be decoded to the reconstructed image Ît. A graph-based world model takes the K slots and the corresponding action as input
to predict the future frame It+r . A reward function is then computed based on the prediction error, which guides a Q-network to propose
informative actions.

B. Self-Supervised Vision Encoder

To achieve self-supervised, object-centric vision represen-
tations, we employ Slot Attention [29], a state-of-the-art
unsupervised method for object discovery and segmentation.
It introduces latent variables, referred to as slots, which bind
to perceptual inputs via a differentiable attention mechanism,
capturing distinct parts of the scene as object-like entities.

The core idea is simple: decompose an image into slots
and reconstruct it from them. This self-supervised pipeline
comprises two main components, a Vision Encoder and a
Slot Decoder, enabling Slot Attention to learn object-centric
representations without supervision.

Vision Encoder: Given a video with frames It at timestep
t, each frame is encoded into K slots St ∈ RK×D, where
the number of slots K and the slots’ dimensionality D are
predefined parameters set by the user. The image is first
processed by a DNN backbone, producing a feature map
ht = fenc(It) ∈ RN×Df , with N spatial locations and
feature dimensionality Df . The Slot Attention module then
iteratively binds slots to input features via a differentiable
attention mechanism. Slots compete to explain different
regions of the scene and are progressively refined through
learnable projection layers, an MLP, and a GRU [30]. This
process requires initializing slot representations, originally
done randomly.

Slot Decoder: Each slot is decoded using a spatial broad-
cast decoder [31] to reconstruct its corresponding scene
region. Each slot sk produces a reconstruction Îk and a mask
Πk, normalized via spatial softmax. The final image is then

formed by combining all components:

Î =

K∑
k=1

Πk ⊙ Îk. (1)

For simplicity, we use Ît = fdec(St), where fdec denotes the
entire slot decoder pipeline.

Training through Reconstruction: we can now train,
the CNN backbone of the encoder, the trainable parts of
the slot attention, as well as the decoder, jointly by simply
reconstructing the original input, across all frames:

Lrec =

T∑
t=1

∥Ît − It∥2 (2)

Modifications on Slot Attention: While object-centric
learning shows promise, most methods rely on weak su-
pervision or large-scale pretrained encoders. We instead
train Slot Attention from scratch using only data collected
autonomously by a robotic arm.

To improve performance, we modify the original pipeline
by (i) using a ResNet encoder with a larger receptive field,
and (ii) pretraining the encoder as part of an autoencoder on
our dataset to improve convergence and stability.

Entropy-based loss term: Optimizing Slot Attention to
produce clean, localized masks remains challenging in our
setting, thus we introduce an additional loss term that penal-
izes the entropy of the spatial masks Πk associated with each
slot. This promotes low-entropy, coherent masks, reducing
noise and improving segmentation.

From Images to Videos: To capture temporal dynamics,
we employ a sequential extension of Slot Attention, designed
to operate on videos. Instead of randomly re-initializing the



slots for each consecutive input frame, a predictor module
serves as a transition function to model temporal relation-
ships, as done in SAVI [32].

C. World Model for Predicting Future Slots

Our goal is to enable models to decompose scenes into
objects, infer their properties, and understand inter-object
relations. A key step is training a world model that predicts
physical dynamics and action outcomes—e.g., what happens
when an object is pushed. Given that our system already
extracts structured slot representations, building such a model
becomes straightforward.

Following Kipf et al. [33], we use a fully connected graph
neural network (GNN) as an action-conditioned transition
model over slot representations. It learns object-level ab-
stractions from offline tuples (St, at,St+r), where St are the
slots at time t, at is the action, and St+r the resulting slots
after a fixed interval r, corresponding to the frame where the
action’s effect is observed.

Implementation-wise, a node update function fnode and
an edge update function fedge is shared across all nodes
and edges, both implemented as MLPs. A single round of
message passing updates is performed using the following
equations on individual slots skt : et(i, j) = fedge([s

i
t, s

j
t ])

and ∆sjt = fnode([s
j
t , a

j
t ,
∑

i ̸=j et(i, j)]).
Typically, we can train the world model using the MSE

loss over the predicted slots:

Lpred = ∥St + T (St, at)− St+r∥2 (3)

To improve sample efficiency, a contrastive hinge loss is also
employed, where the predicted state transition is compared
to a randomly corrupted state representation Sc:

Lhinge = max(0, γ − ∥St + T (St, at)− Sc∥2) (4)

We also introduce a third reconstruction loss term back on
the pixel space employing the frozen vision decoder fdec and
ensuring that the predicted slots can be decoded to actual
changes in the robot’s environment:

Lrec = ∥fdec(St + T (St, at))− It+r∥2 (5)

Overall, the loss is defined as Lwm = Lpred + Lhinge +
αLrec. In practice, we used γ = 10 and α = 103.

D. Designing an intrinsically motivated reward

A key component of our approach is an intrinsic reward
function that guides exploration by encouraging trajecto-
ries with high information gain for both the vision and
world models. Following [19], we base the reward on the
world model’s prediction error. Raw prediction error can be
noisy—especially early in training—due to limitations in the
models. To address this, we compute the error in pixel space
as the difference between predicted and actual future frames:

Epred = (fdec(St + T (St, at))− It+r)
2 (6)

However, this error may also capture biases introduced
by the decoder, reflecting the limitations of the current
vision model rather than true prediction error. To isolate this,

we compute a reference error using only the static vision
reconstruction pipeline:

Eref = (fdec(St)− It)
2 (7)

Only prediction errors exceeding this reference reflect epis-
temic uncertainty, namely the model’s current ignorance
about the outcome of its own actions.

To localize the learning signal, the reward is computed
only over a region of the image centered on the action,
denoted by a spatial mask M. This reduces the influence of
irrelevant changes and focuses the reward on action-relevant
areas. Overall, the intrinsic reward is calculated as:

rt =
∑
i

∑
j

[M⊙max((Epred −Eref ), 0)]ij (8)

E. Training a policy

In order to train a policy to maximize this reward, we
frame the problem as a Markov Decision Process (MDP).
States are defined by the K = 10 segmentation masks,
concatenated in the channel dimension, which are produced
by the frozen vision model at each timestep and actions
correspond to the robotic arm’s movements. We train the
policy using Double Q-learning [34], with the Q-network
implemented as a ResNet. The network takes as input the
segmentation masks and outputs a spatial map indicating the
expected value of performing a pushing action at each pixel.

F. Refining the models with informative trajectories

The learned policy generates image sequences that are
novel and informative for both the vision and world model.
We leverage these new trajectories by fine-tuning the models
on them. Unlike the initial dataset, which predominantly
featured static scenes or gripper motion, the new data in-
cludes rich object interactions. As a result, the models gain
exposure to object dynamics, allowing them to improve both
reconstruction quality and predictive accuracy.

IV. THE EXPERIMENTAL SETUP

To evaluate our proposed methods and hypotheses, we
designed an appropriate experimental setup using the Cop-
peliaSim simulation environment [35]. The experiment in-
volves a UR5 robotic arm interacting with objects placed on
a tabletop. These objects are simple three-dimensional geo-
metric shapes with unknown colors and physical properties.
The robotic arm executes non-preemptive motion primitives,
parameterized by three values: the x and y coordinates on
the table and the movement orientation. The orientation is
selected from 16 discretized options. The only type of action
performed is pushing. To simplify the experimental setup,
we restrict our experiments to pushing actions with a fixed
orientation. The primary objective of our system is to detect
objects in the scene and infer as much as possible about
their physical properties. A key challenge in this problem
setting is that our models have no access to any supervision
signal or prior knowledge. Instead, all models are trained
from scratch, relying solely on the sequences of interactions
experienced by the robotic arm.



Fig. 2: Experimental Setup: Sequences of robotic arm push actions
in our tabletop environment. Top: random push with no object
movement. Middle and bottom: heuristic pushes causing object
movement.

Initially, the robotic arm interacts randomly with the
environment, selecting from the available pushing actions.
During this phase, we construct a dataset comprising tuples
of robotic actions and corresponding image sequences. This
dataset, which we call initial dataset, is then used to train our
vision and world models. We also construct a control (oracle)
dataset, in which the robotic arm either interacts randomly
with the environment or pushes the objects in front of it
using heuristics. We demonstrate a few instances in Fig. 2.

A. Training the vision and world models

The initial dataset contains 400 episodes, each with up to
five randomly selected objects. The robot performs 10 pushes
per episode, and we record r = 5 frames per action. We train
the vision model with the Adam optimizer over 100 epochs
using a multi-step learning rate schedule and K = 10 slots.
As shown in Fig. 1, the model effectively learns to bind
distinct slots to different objects and reconstructs the input
frames adequately well.

For the world model, we adopt a training procedure similar
to that of [33], keeping the vision components (encoder, Slot
Attention, and decoder) frozen. However, due to the lim-
ited diversity of the dataset, collected under random action
policies, the world model struggles to develop a meaningful
understanding of object dynamics. In most episodes, the
only moving element is the gripper, which biases the model
toward learning only ego-motion. As a result, it fails to
capture or predict the movement of objects when interacted
with, as illustrated in the third column of Fig. 4.

B. Collecting informative trajectories

With a functional understanding of the environment in
place, we proceed to actively collect informative data. At this
stage, the vision model is capable of reasonably localizing
objects, and the world model can predict the gripper’s motion
with fair accuracy. These capabilities are sufficient to drive
a policy that seeks novel and informative trajectories.

Fig. 3: Policy visualization: We visualize the output of the Q-
network by marking as red the pixels that our policy suggests.
The red pixels clearly illustrate that the agent has learned to prefer
actions that push objects.

Our intrinsic reward signal, designed to filter out noise
from the partially trained vision and world models, success-
fully reflects the world model’s predictive uncertainty. The
policy is trained using Double Q-learning [34], for 1000
steps, with a classic decaying epsilon-greedy exploration
strategy. The Q-network is a ResNet that takes as input the
10 segmentation masks {Πk} concatenated in the channel
dimension. Interestingly, the learned policy predominantly
suggests pushing actions that cause object motion. We quan-
tify this observation by measuring that the average displace-
ment of object centers of mass is three times greater than
under random actions. We also demonstrate this qualitatively
in Fig. 3 by visualizing the positions of the best actions that
the learned policy suggests.

C. Enhancing World Perception and Modeling

We leverage the learned, intrinsically motivated policy to
collect a new dataset composed of more diverse and dynamic
interactions, particularly involving object motion. As before,
the new dataset contains 400 episodes of 10 actions each.
We initialize the vision and world models with parameters
from the initial training and fine-tune them for 100 epochs
using a reduced learning rate and the same training setup.

As shown in Tables I, II, fine-tuning on this enriched
dataset leads to substantial improvements in both reconstruc-
tion and predictive accuracy, compared to models trained
exclusively on data from random actions. To showcase this,
we evaluate the models on the control dataset; namely
on newly, independent, collected test trajectories generated
using either random or heuristic action policies. In more
detail, Table I shows that the re-trained vision encoder
provides more balanced results across the test sets, compared
to the action-biased alternatives. The vision model can now
reconstruct better the instances corresponding to heuristic
actions, while maintaining its performance on instances of
random actions. In practice, we want good reconstruction
to both random and heuristic data to reflect our ability to
“perceive” our world.

Moreover, in the fourth column of Fig. 4 we demonstrate
that the world model is now able to predict the movement
of the object when pushed by the gripper, which is quantita-
tively shown in Table II. Here, we consider two enhancement
pipelines: 1) keep the initial vision encoder frozen and fine-
tune the world model and 2) use the previously enhanced
vision (EV) encoder frozen and fine-tune the world model.
As expected, the enhanced vision encoder further improves



Trained On Random Test Data Heuristic Test Data

Random Actions 0.062 0.084
Heuristic Actions 0.070 0.053
Intrinsic Reward Policy 0.063 0.069

TABLE I: Evaluation of Vision Models on Different Test
Datasets We report the reconstruction loss (MSE x10−2) across
three configurations. A vision model trained on random actions,
one trained on heuristic actions, and one trained on the dataset
collected using the intrinsically motivated policy.

Trained On Random Test Data Heuristic Test Data

Random Actions 0.209 0.235
Heuristic Actions 0.247 0.164
Intrinsic Reward Policy 0.131 0.143
Intrinsic Reward Policy (EV) 0.131 0.135

TABLE II: Evaluation of World Models on Different Test
Datasets We report the reconstruction loss (MSE x10−2) for the
predicted next frame across four configurations: a world model
trained on random actions, one trained on heuristic actions, and
two trained on the dataset collected using the intrinsically motivated
policy, either with the initial vision model or the enhanced vision
model (EV).

Fig. 4: Qualitative Evaluation: The first and second columns
show image frames before and after an action. The third and
fourth columns display the predicted motion from the world models
trained on the initial dataset and on the new, informative trajectories,
respectively. Note the improved accuracy of the refined model in
capturing object movement.

the reconstruction metric. Note that both enhancement ver-
sions, provide better results compared to the considered
biased alternatives, even with respect to the system trained
on heuristic actions.

D. Discussion

These results highlight the importance of data quality in
object-centric learning and further support the notion that
the models themselves can be used to drive the collection of
more informative trajectories. This can be seen as an iterative
process: discover informative trajectories of high reconstruc-
tion uncertainty and minimize the uncertainty by fine-tuning
the vision and the world models. The effectiveness of this
iterative process is out of the scope of this paper. However,

it paves the way for more intricate world exploration and
adaptation; for example one can progressively add new set
of objects into the scene, let the robot interact with them
and eventually learn their vision attributes, as well as their
dynamics.

V. CONCLUSIONS AND FUTURE DIRECTIONS

This work explores whether a robot can adequately per-
ceive its surrounding and their dynamics purely through
interaction, without prior knowledge. Drawing from cogni-
tive science, which links perception to predictive models
and sensorimotor learning [36], [37], we design a self-
supervised, object-centric framework inspired by how infants
interpret and interact with the world [38]. Our method
improves perception and prediction by fine-tuning vision and
world models on data collected via an intrinsically motivated
policy. This results in significant gains in both reconstruction
and dynamics modeling. Future work could extend this
to continual learning, where models are updated online,
or explore multiple intrinsic objectives (e.g., maximizing
visual entropy) to diversify exploration and enhance learning
efficiency.
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