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Abstract

Prompt learning has emerged as a promising paradigm for adapting pre-trained
vision-language models (VLMs) to few-shot whole slide image (WSI) classification
by aligning visual features with textual representations, thereby reducing annotation
cost and enhancing model generalization. Nevertheless, existing methods typically
rely on slide-level prompts and fail to capture the subtype-specific phenotypic
variations of histological entities (e.g., nuclei, glands) that are critical for cancer
diagnosis. To address this gap, we propose Multi-scale Attribute-enhanced Prompt
Learning (MAPLE), a hierarchical framework for few-shot WSI classification that
jointly integrates multi-scale visual semantics and performs prediction at both the
entity and slide levels. Specifically, we first leverage large language models (LLMs)
to generate entity-level prompts that can help identify multi-scale histological enti-
ties and their phenotypic attributes, as well as slide-level prompts to capture global
visual descriptions. Then, an entity-guided cross-attention module is proposed
to generate entity-level features, followed by aligning with their corresponding
subtype-specific attributes for fine-grained entity-level prediction. To enrich entity
representations, we further develop a cross-scale entity graph learning module that
can update these representations by capturing their semantic correlations within
and across scales. The refined representations are then aggregated into a slide-level
representation and aligned with the corresponding prompts for slide-level predic-
tion. Finally, we combine both entity-level and slide-level outputs to produce the
final prediction results. Results on three cancer cohorts confirm the effectiveness
of our approach in addressing few-shot pathology diagnosis tasks. Codes will be
available at https://github.com/JJ-ZHOU-Code/MAPLE.

1 Introduction

Whole slide images (WSIs) have become the clinical gold standard for cancer diagnosis, offering
gigapixel-resolution views of tissue architecture and cellular morphology [5, 6]. However, their huge
size (e.g., 150,000 × 150,000 pixels) and hierarchical structure render dense annotation of individual
patches impractical. To overcome this challenge, multiple instance learning (MIL) has emerged as an
effective way for weakly supervised WSI analysis [18, 32, 23, 39, 9], where each WSI is divided into
thousands of patches, encoded via a pre-trained feature extractor, and aggregated into a slide-level
representation for classification [17]. Beyond weak supervision, WSI classification faces another
critical challenge: the scarcity of the labeled images [26, 31]. This limitation stems from factors such
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Figure 1: Comparison of MAPLE with existing slide-level alignment methods for the classification of lung
adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). (a) Existing methods align slide-level
features with corresponding prompts for classification. (b) Our proposed MAPLE introduces additional entity-
level features and incorporates subtype-specific phenotypic attributes for more interpretable and precise alignment.
For simplicity, only the single-scale data stream of MAPLE is visualized.

as privacy constraints, the difficulty of acquiring expert-labeled slides, and the low prevalence of
certain cancer subtypes [12, 37, 16, 36]. Consequently, few-shot learning has become an attractive
paradigm for developing robust classifiers on limited labeled data.

Recent progress in vision–language models (VLMs), such as CLIP [30], offers a promising path for
few-shot learning by aligning image and text representations in a shared embedding space. Building
upon VLMs, prompt learning techniques [44, 43, 25, 21, 4] adapt textual inputs using a small number
of labeled examples, enabling effective transfer to new tasks without fine-tuning the vision backbone.
However, applying these methods for WSI classification remains non-trivial. Unlike natural images,
WSIs are extremely large and are typically divided into thousands of instances, making it difficult to
construct a unified visual representation suitable for prompt alignment [29, 10]. At the same time,
designing prompts that accurately reflect the complex tissue morphology and subtype-specific patterns
within a WSI is also challenging. Simple prompts like “a WSI of [CLASS]” often fail to capture the
localized, fine-grained attributes that are crucial for cancer diagnosis [34]. These limitations highlight
a central question: how can we bridge the gap between fine-grained instance-level visual details and
semantically rich prompts for effective few-shot WSI classification?

Recently, several methods have attempted to work on it. For instance, TOP [29] introduces instance-
level phenotypic prompts to guide patch aggregation into slide-level features, while ViLa-MIL [34]
leverages learnable visual prototypes to guide the fusion process of patch features and considers dual-
scale visual descriptive text prompt to boost the performance. However, these approaches generally
focus solely on slide-level feature alignment after the aggregation of instance-level representations,
and fail to capture the subtype-specific phenotypic variations of histological entities (e.g., nuclei,
cytoplasm, glands) that are critical for cancer diagnosis. For instance, nucleoli are typically small and
inconspicuous in lung adenocarcinoma (LUAD) but appear large and prominent in lung squamous cell
carcinoma (LUSC). Furthermore, different resolution levels in WSIs naturally correspond to different
scales of histological entities, where low magnification reveals tissue architecture and organization
patterns, while high magnification exposes cellular details and nuclear morphology. Ignoring such
fine-grained, multi-scale entity variations limits the model’s ability to capture discriminative patterns
and reduces interpretability for cancer diagnosis.

To this end, we propose Multi-scale Attribute-enhanced Prompt Learning (MAPLE), a hierarchical
framework designed for few-shot WSI classification by the combination of entity-level and slide-level
predictions. Different from the previous slide-level alignment methods [29, 34, 10, 11], MAPLE
additionally considers that the diagnostic information among different cancer subtypes is also reflected
by the phenotypic attributes of histological entities across different scales, as illustrated in Fig. 1.
Specifically, we begin by leveraging large language models (LLMs) to construct two types of prompts:
entity-level prompts that identify multi-scale histological entities and their distinctive phenotypic
characteristics, and slide-level prompts that capture comprehensive global visual patterns. After
employing language-guided instance selection strategy to identify discriminative tumor-related
patches from WSIs, we subsequently introduce an entity-guided cross-attention module to extract
entity-level features, which are then aligned with their respective subtype-specific attributes to enable
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entity-level predictions. To enrich entity representations, we further develop a cross-scale entity
graph learning module that can update these representations by capturing their semantic correlations
within and across scales. The refined entity representations are aggregated to construct a slide-level
representation, which is then aligned with the corresponding prompts to enable slide-level prediction.
Finally, we combine both entity-level and slide-level outputs to produce the final prediction results.
We conduct experiments on three cancer cohorts derived from the cancer genome atlas (TCGA), and
the experimental results indicate the advantage of MAPLE on few-shot pathology diagnosis tasks.

2 Related Work

2.1 Multiple Instance Learning for WSI Classification

Due to the gigapixel size of WSIs and the infeasibility of dense patch-level annotation, MIL based
methods [3, 28, 33, 13, 32] have become the prevailing approaches for WSI analysis. In the MIL
framework, each WSI is represented as a bag of instances (patches), with only slide-level labels avail-
able for supervision. Early MIL approaches aggregate instance features using non-parametric max or
mean pooling operations. Subsequent approaches introduce attention-based pooling mechanisms that
learn to assign importance weights to instances, significantly enhancing discriminative power and
classification performance [15, 32, 39, 41, 40]. Recent works have further advanced the MIL frame-
work with more structured representations. For example, GTP [42] introduces a graph-based vision
transformer that models WSIs using sparse token selection and inter-instance relations. WiKG [19]
proposes a novel dynamic graph representation algorithm that conceptualizes WSIs as a form of
the knowledge graph structure. While these methods demonstrate strong performance under full
supervision, they typically require large annotated datasets for training, making them less suitable for
scenarios with limited data availability, which is a common challenge in clinical settings. In this work,
we propose a multi-scale attribute-enhanced prompt learning framework that combines MIL with
vision-language models to enable effective WSI classification in few-shot scenarios, substantially
reducing the annotation burden for practical clinical applications.

2.2 Prompt Learning for Few-shot WSI Classification

Prompt learning [44, 43, 25, 21, 4] has emerged as an efficient strategy for adapting VLMs to
downstream tasks in data-scarce settings by optimizing only a small set of textual tokens rather
than entire model parameters. Recent work has extended this paradigm to the WSI classification
by combining prompt learning with MIL for few-shot classification [29, 34, 10, 11]. TOP [29]
first introduces a two-level prompt learning strategy that incorporates linguistic priors to guide both
instance- and slide-level feature aggregation. ViLa-MIL [34] extends this direction by proposing dual-
scale visual prompts, enabling the fusion of features across high- and low-resolution magnifications.
FOCUS [10] introduces a three-stage compression strategy that leverages both foundation models
and language prompts for focused analysis of diagnostically relevant regions. MSCPT [11] employs
a graph prompt tuning module to capture spatial context within WSIs. However, these methods
primarily emphasize slide-level alignment and often overlook the fine-grained, subtype-specific
phenotypic attributes of histological entities. Despite TOP first introduces a two-level framework, it
solely focuses on slide-level alignment, treating histological instances implicitly through aggregation
rather than modeling them as explicit diagnostic targets. Consequently, it fails to capture the fine-
grained, subtype-specific phenotypic variations of nuclei, cytoplasm, glands, and other histological
entities that pathologists rely on for differential diagnosis. Our MAPLE framework addresses this
gap by introducing entity-level prompt learning that explicitly models these diagnostic cues across
multiple scales, enabling more accurate and interpretable few-shot WSI classification.

3 Preliminaries

3.1 Problem Formulation

Given a dataset X = {X1, X2, . . . , XN} consisting of N WSIs, each slide Xi can be associated
with a slide-level label yi ∈ {1, 2, . . . , C}, where C is the number of diagnostic categories. Due
to the extremely large size and high resolution of WSIs, it is computationally infeasible to process

3



Multi-scale Entity 

Aggregator

Entity-guided 

Cross-attention

Please Identify the key histological  

entity most relevant to distinguish 

[CATEGORIES] at high & low 

resolution.

L
L

M

T
ex

t E
n

co
d

er

StromaVascularityLumina

CytoplasmVacuoleNucleolus

0.2

0.2

0.4 

0.1

0.5

0.7

0.2

0.3 0.3

Entity-guided 

Cross-attention

Low

High

Entity-level

Stroma

LUAD: typically features 

prominent desmoplastic …

LUSC: displays denser and 

more collagenized stroma …

Cytoplasm

LUAD: moderate to abundant 

and appears pale …

LUSC: dense, eosinophilic, 

and lacks mucin …

Global

LUAD: tumor cells form 

irregular glandular …

LUSC: Cells are polygonal 

with sharply ...

Slide-level

KNN

Cross-scale 

Entity Graph
Similarity Matrix

Generic Entity 

Textual Features
Entity DiscoveryQuestion

WSI

Instance Features Region Selection Selected Features

Entity Features

Slide-level Features

(a) (b)

(c)

Entity-level Prompts (High)

Slide-level Prompts (High/Low)

T
ex

t E
n

co
d

er

Prompt Construction

Low

High

Multi-scale 

Entity-level Logits

Learnable Prompts

Region SelectionInstance Features Selected Features

Final 

Logits

Avg

Avg

Multi-scale 

Slide-level LogitsEntity-level 

Logits

Slide-level 

Logits

1 − 𝜆

𝜆

Entity-level Prompts (Low)

Frozen

Trainable

Addition

Concatenation

Figure 2: Framework of our proposed MAPLE. (a) MAPLE leverages the LLM to identify multi-scale his-
tological entities, and then builds a cross-scale entity graph by modeling the semantic relationships wthin
and across scales. (b) Both entity-level and slide-level prompts are enriched with learnable context vectors to
enable effective alignment with corresponding visual features. (c) MAPLE jointly integrates multi-scale visual
semantics and performs prediction at both the entity and slide levels.

entire slides directly. Instead, each WSI is divided into a set of non-overlapping Ki patches Xi =
{xi,1, xi,2, . . . , xi,Ki

}, where xi,j ∈ Rd denotes the feature vector of the j-th patch for slide Xi.

To address the WSI classification task, a common approach is to formulate such weakly supervised
learning problem as multiple instance learning (MIL) [18, 32, 23, 9]. In the binary classification
setting, MIL assumes that a bag (i.e., a slide) is labeled positive if at least one of its instances is
positive; otherwise, it is labeled negative [39, 17]:

yi = 1 ⇐⇒ ∃xi,j ∈ Xi is positive. (1)

For multi-class scenarios, this formulation extends to identifying the dominant cancer subtype
represented by the most discriminative patches within the slide.

In the few-shot classification setting, the problem becomes even more challenging: the objective is
to learn a reliable classifier using only a limited number of labeled WSIs per class. The term “shot”
refers to the number of labeled examples per class, commonly set to 1, 2, 4, 8, or 16.

3.2 Prompt Learning for Few Shot WSI classification

VLMs such as CLIP [30] typically consist of two parallel encoders: a vision encoder fv(·) and a
text encoder ft(·), which are jointly trained using contrastive learning over large-scale image–text
pairs. Prompt learning has emerged as a parameter-efficient strategy to adapt pre-trained VLMs
to downstream tasks, such as few-shot WSI classification, without extensive fine-tuning [29, 34].
The typical pipeline for prompt learning-based few-shot WSI classification involves two key steps:
instance-level feature aggregation and slide-level alignment with learnable prompts [29].

Given a WSI Xi = {xi,1, xi,2, . . . , xi,Ki} partitioned into Ki patches, each patch xi,j is first
embedded using a frozen image encoder fv. The instance embeddings are then aggregated via a
pooling operation (e.g., max, mean or attention-based) to obtain a compact slide-level representation
zvi = Aggregate(fv(xi,j)

Ki

j=1). Prompt learning then adapts the text encoder by introducing a
set of M learnable context vectors V = {v1, v2, . . . , vM}. For each class k, a textual prompt
tk = {v1, . . . , vM , ck} is constructed by concatenating these context vectors with the embedding of
the class name ck, and passed through the text encoder to generate the class-specific textual feature
ztk = ft(tk). The prediction probability for class k is computed based on the cosine similarity
between the slide-level visual feature and the class-specific textual features:

P (y = k|Xi) =
exp(sim(zvi , z

t
k)/τ)∑C

k′=1 exp(sim(zvi , z
t
k′)/τ)

(2)
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where τ is a learnable temperature parameter and sim(·, ·) denotes cosine similarity. The learnable
context vectors V are optimized by minimizing the standard cross-entropy loss between the prediction
and the ground-truth label:

LCE = −
N∑
i=1

logP (y = yi | Xi), (3)

where yi is the ground-truth label for slide Xi.

4 Method

In this section, we present the details of our proposed method MAPLE, Multi-scale Attribute-enhanced
Prompt Learning for few-shot WSI classification. An overview of the framework is illustrated in
Fig. 2. Given a WSI Xi, we partition it into two sets of non-overlapping patches at both high

resolution i.e., Xh
i = {xh

i,j}
Kh

i
j=1 and low resolution i.e., X l

i = {xl
i,j}

Kl
i

j=1, where Kh
i and Kl

i denote
the number of patches at different scales. Then, each patch is embedded with a frozen vision encoder
fv of the vision-language model (PLIP [14] in our implementation), resulting in the feature sets

Zh
i = {zhi,j}

Kh
i

j=1 and Zl
i = {zli,j}

Kl
i

j=1. We leverage the LLM to construct entity-level and slide-level
prompts (Section 4.1), and employ a language-guided instance selection strategy to identify tumor-
related regions that are most relevant for the discrimination of different cancer subtypes (Section 4.2).
Next, the selected features are aggregated to construct entity representations and aligned with subtype-
specific attributes to enable fine-grained entity-level classification (Section 4.3). Then, we refine
entity representations via the cross-scale graph learning module and subsequently aggregate them to
obtain slide-level representations that align with corresponding prompts for slide-level prediction
(Section 4.4). Finally, MAPLE jointly optimizes entity-level and slide-level alignment, enabling
robust and interpretable few-shot classification (Section 4.5).

4.1 LLM-powered Prompt Construction

For the cancer diagnosis from WSIs, pathologists usually combine the observations from key tissue
entities (e.g., nuclei, cytoplasm, glands) and the overall context of the entire slide to make decisions [1].
Specifically, for the WSIs observed at high resolution, pathologists analyze cellular components
such as nuclear pleomorphism and cytoplasmic features for cancer diagnosis. As to the image with
low-resolution, they distinguish different cancer subtypes by examining tissue architecture such as
gland formation and tumor-stroma interfaces [20, 16]. Inspired by the aforementioned diagnostic
way from the pathologists, we construct multi-scale prompts at both the entity and slide levels to
capture discriminative visual attributes associated with specific cancer subtype patterns. Accordingly,
the prompt construction process is composed of two parts, i.e., Entity-level Prompt Discovery and
Slide-level Prompt Summary, as detailed below.
Entity-level Prompt Discovery. Let C = {c1, c2, . . . , cC} denote the set of cancer subtypes. We
construct entities from two scales E = Eh ∪ E l, where Eh and E l represent the entities derived from
high-resolution and low-resolution images, respectively. For each entity e ∈ Es at scale s ∈ {h, l},
we query the LLM to generate two types of textual prompts:
(1) Generic visual description pgen,s

e : summarizes the general appearance of entity e at scale s;
(2) Subtype-specific attributes {pse,c}c∈C : describes the attribute of entity e in subtype c at scale s.
Slide-level Prompt Summary. In prior works [29, 34], slide-level prompts are often defined
using class names (e.g., “a WSI of [CLASS]”) or with global descriptions directly generated from
LLMs. However, such templates fail to reflect the fine-grained entity-level information. To address
this, we use the LLM to generate the slide-level prompt pslide,s

c for each cancer subtype c ∈ C at
scale s ∈ {h, l} by the combination of entity names Es, and thus can integrate fine-grained entity
information into the slide-level representation. More details on prompt construction using LLMs are
provided in Appendix A.

4.2 Language-guided Instance Selection

Accurate identification of tumor-related regions within gigapixel WSIs is crucial for cancer subtype
classification, as these regions contain the most discriminative diagnostic information [7, 27]. There-
fore, we propose a language-guided instance selection strategy that can help identify tumor-associated
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patches by leveraging the pre-trained vision-language models. Specifically, we first query the LLM
with the following instruction: “What are the visually descriptive characteristics of the tumor-related
region in a WSI at high/low resolution?” Based on this query, the LLM generates region prompts
preg = {phreg, p

l
reg} for high and low resolution, respectively. Then, each prompt is processed by

the frozen text encoder ft to obtain the corresponding text embeddings: threg and tlreg. Given the
extracted patch features Zh

i and Zl
i for slide Xi from different resolutions, we compute the cosine

similarity scores between the region text embeddings and patch features from different scales as
Sh
i = sim(threg, Z

h
i ) and Sl

i = sim(tlreg, Z
l
i). Based on these similarity scores, we select the top-k

instances with the highest similarity scores at each scale to form the tumor-related instance sets:

Z̃h
i =

{
zhi,j | rank(Sh

i [j]) < kh
}
, Z̃l

i =
{
zli,j | rank(Sl

i[j]) < kl
}
, (4)

where kh and kl denote the number of selected instances at high and low resolutions, respectively.

4.3 Entity-guided Attribute-enhanced Classification

To incorporate semantic guidance from entity-level prompts, we encode both the generic descriptions
and subtype-specific attributes into learnable embeddings. For each entity e ∈ Es at scale s ∈ {h, l},
we prepend a shared set of learnable context vectors V = {v1, . . . , vM} to the textual descriptions,
forming the learnable prompt tokens tgen,s

e = {v1, . . . , vM , pgen,s
e } and tse,c = {v1, . . . , vM , pse,c}.

These tokens are then encoded by a frozen text encoder ft to obtain the final prompt embeddings:

dgen,se = ft(t
gen,s
e ), dse,c = ft(t

s
e,c). (5)

Furthermore, we introduce an Entity-guided Cross-attention module to derive the visual representation
of each entity by aggregating instance features. Given the instance set Z̃s

i = {zsi,j}
Ks

i
j=1 from slide Xi

at scale s ∈ {h, l} and the generic prompt embedding dgen,se ∈ Rd for entity e, the entity-specific
feature is computed as:

zse,i = Norm

(
softmax

(
Wqd

gen,s
e (WkZ̃

s
i )

⊤
√
dk

)
WvZ̃

s
i

)
+ dgen,se , (6)

where Wq,Wk,Wv ∈ Rd×dk are learnable projection matrices, and Norm(·) denotes layer normal-
ization. This attention mechanism enables the model to selectively aggregate instances that exhibit
strong semantic alignment with entity e, yielding a compact and discriminative representation of its
visual characteristics within the slide.

For entity-level classification, we compute the cosine similarity between the visual representation zse,i
of entity e in slide Xi and the corresponding subtype-specific prompt embedding dse,c for subtype c:

ℓc,se,i = sim(zse,i, d
s
e,c). (7)

Next, we will integrate ℓc,se,i with slide-level predictions to derive the final classification results, as
detailed in Section 4.5.

4.4 Multi-scale Entity Aggregator for Slide-level Classification

In this section, we propose a multi-scale entity aggregator, where we firstly construct a cross-scale
entity graph that connects semantically related entities within and across different entity scales
to enrich entity representation, and then aggregate the refined entity features to obtain slide-level
representations which are aligned with corresponding prompts for slide-level prediction.

Cross-scale Entity Graph Learning. Let Zi = {zhe,i}e∈Eh ∪ {zle,i}e∈El denote the set of entity
features at different scales for slide Xi. We define a graph Gi = (Vi, Ei), where each node v ∈ Vi
corresponds to an entity feature in Zi. To capture semantic relationships between entities across
different scales, we compute the cosine similarity between features zv and zv′ as sim(zv, zv′) =

z⊤
v zv′

∥zv∥·∥zv′∥ . For each node v, its neighborhood N (v) is defined as the set of top-k most similar nodes:

N (v) = TopKv′ (sim(zv, zv′)) . (8)
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Then, the Graph Attention Network (GAT) [35] is applied to propagate information across nodes
based on learned attention weights. For each node v, the updated entity representation is computed
as:

ẑv = σ(
∑

v′∈N (v)

αv,v′ Wgzv′), (9)

where Wg ∈ Rd′×d is a learnable weight matrix, σ(·) denotes a non-linear activation function (e.g.,
ReLU), and αv,v′ is the attention coefficient:

αv,v′ =
exp

(
LeakyReLU(a⊤[Wgzv ∥Wgzv′ ])

)∑
u∈N (v) exp (LeakyReLU(a⊤[Wgzv ∥Wgzu]))

, (10)

with a ∈ R2d′
being a learnable attention vector, and ∥ denoting vector concatenation operation.

Slide-level Representation. We adopt a gated attention mechanism [23] to derive the slide-level
visual representation by aggregating the refined entity features. Let Ĥs

i = {ẑe,i}e∈Es ∈ RNs×d

denote the entity features at scale s, where Ns = |Es|. The slide-level feature for scale s can be
obtained via the following weighted sum form:

zslide,s
i = αsĤs

i ∈ R1×d, (11)

AV = tanh(Ĥs
iWV ),A

U = σ(Ĥs
iWU ),α

s = softmax
(
(AV ⊙AU )w

)⊤
, (12)

where WV ,WU ∈ Rd×d,w ∈ Rd are learnable parameters, ⊙ denotes element-wise multiplication,
and αs ∈ R1×Ns represent the normalized attention scores.

Prompt-based Slide-level Alignment. For each subtype c ∈ C and scale s ∈ {h, l}, we construct
the slide-level textual prompt by concatenating the learnable context vectors V with the scale-specific
slide-level token pslide,s

c :

tslide,s
c = {v1, . . . , vM , pslide,s

c }, dslide,sc = fT (t
slide,s
c ), (13)

where fT (·) denotes the text encoder. The slide-level classification logits for subtype c at scale s can
be computed as:

ℓslide,s
i,c = sim(zslide,s

i , dslide,sc ). (14)

4.5 Training Strategy

For each slide Xi, we obtain the slide-level logits ℓslide,s
i,c (shown in Eq. 14) and entity-level logits ℓc,se,i

(shown in Eq. 7). To integrate both slide-level and fine-grained entity-level logits across different
scales, the final classification logits can be computed via weighted combination:

ℓfinal
i,c =

1

2

∑
s∈{l,h}

λ · ℓslide,s
i,c + (1− λ) · 1

|Esi |
∑
e∈Es

i

ℓc,se,i

 , (15)

where λ is the hyperparameter that controls the contributions of the slide- and entity-level predictions.
Finally, the objective function for our MAPLE is formulated as follows:

L = LCE(ℓ
final
i,c , yi), (16)

where LCE is the cross-entropy loss defined in Eq. 3 and yi ∈ C is the ground-truth label for slide
Xi.

5 Experiments
Datasets. We evaluate MAPLE on three benchmark WSI datasets from The Cancer Genome Atlas
(TCGA): TCGA-BRCA, TCGA-RCC, and TCGA-NSCLC. More details for the classification task
on each cohort are provided in Appendix B.1. To simulate the few-shot learning scenario in clinical
practice, we randomly sample K WSIs per class, where (K = 4, 8, 16 in our implementation).
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Table 1: Few-shot WSI classification results on TCGA-BRCA, TCGA-RCC, and TCGA-NSCLC datasets under
4-shot, 8-shot, and 16-shot settings. The best results are in bold, and the second-best results are underlined.

Dataset Methods TCGA-BRCA TCGA-RCC TCGA-NSCLC
AUC F1 ACC AUC F1 ACC AUC F1 ACC

4-
sh

ot
ABMIL 0.665 ± 0.097 0.555 ± 0.061 0.607 ± 0.068 0.876 ± 0.028 0.650 ± 0.053 0.681 ± 0.053 0.626 ± 0.057 0.581 ± 0.063 0.586 ± 0.061

TransMIL 0.646 ± 0.036 0.558 ± 0.109 0.621 ± 0.139 0.881 ± 0.024 0.656 ± 0.057 0.662 ± 0.063 0.629 ± 0.047 0.565 ± 0.049 0.581 ± 0.041
GTMIL 0.679 ± 0.048 0.542 ± 0.105 0.604 ± 0.136 0.883 ± 0.017 0.685 ± 0.042 0.713 ± 0.048 0.663 ± 0.046 0.600 ± 0.051 0.608 ± 0.040
WiKG 0.653 ± 0.029 0.536 ± 0.107 0.615 ± 0.163 0.890 ± 0.030 0.658 ± 0.098 0.680 ± 0.094 0.620 ± 0.050 0.563 ± 0.072 0.579 ± 0.049
TOP 0.652 ± 0.024 0.515 ± 0.149 0.611 ± 0.186 0.854 ± 0.035 0.626 ± 0.067 0.657 ± 0.069 0.624 ± 0.050 0.531 ± 0.123 0.588 ± 0.061

ViLa-MIL 0.663 ± 0.092 0.503 ± 0.101 0.616 ± 0.159 0.878 ± 0.052 0.635 ± 0.038 0.658 ± 0.037 0.629 ± 0.043 0.580 ± 0.045 0.589 ± 0.037
MSCPT 0.678 ± 0.045 0.550 ± 0.050 0.593 ± 0.077 0.872 ± 0.067 0.654 ± 0.052 0.673 ± 0.062 0.626 ± 0.020 0.582 ± 0.040 0.588 ± 0.038
FOCUS 0.703 ± 0.051 0.564 ± 0.095 0.633 ± 0.148 0.880 ± 0.035 0.663 ± 0.059 0.702 ± 0.054 0.713 ± 0.093 0.631 ± 0.078 0.646 ± 0.067
MAPLE 0.722 ± 0.063 0.594 ± 0.076 0.664 ± 0.134 0.909 ± 0.020 0.705 ± 0.055 0.728 ± 0.057 0.740 ± 0.056 0.663 ± 0.052 0.675 ± 0.053

8-
sh

ot

ABMIL 0.748 ± 0.061 0.557 ± 0.098 0.593 ± 0.118 0.917 ± 0.014 0.752 ± 0.028 0.768 ± 0.042 0.724 ± 0.026 0.632 ± 0.031 0.634 ± 0.032
TransMIL 0.746 ± 0.063 0.578 ± 0.035 0.630 ± 0.035 0.915 ± 0.019 0.751 ± 0.040 0.765 ± 0.048 0.715 ± 0.086 0.627 ± 0.127 0.631 ± 0.095
GTMIL 0.764 ± 0.056 0.586 ± 0.092 0.633 ± 0.113 0.917 ± 0.018 0.765 ± 0.036 0.781 ± 0.039 0.746 ± 0.041 0.626 ± 0.072 0.644 ± 0.054
WiKG 0.709 ± 0.047 0.537 ± 0.073 0.579 ± 0.100 0.909 ± 0.017 0.728 ± 0.069 0.752 ± 0.065 0.740 ± 0.071 0.654 ± 0.070 0.666 ± 0.066
TOP 0.733 ± 0.047 0.546 ± 0.059 0.580 ± 0.078 0.900 ± 0.026 0.702 ± 0.067 0.736 ± 0.060 0.752 ± 0.068 0.652 ± 0.038 0.663 ± 0.041

ViLa-MIL 0.770 ± 0.062 0.605 ± 0.065 0.653 ± 0.080 0.931 ± 0.003 0.745 ± 0.032 0.777 ± 0.034 0.709 ± 0.048 0.643 ± 0.042 0.649 ± 0.039
MSCPT 0.768 ± 0.064 0.558 ± 0.067 0.596 ± 0.080 0.926 ± 0.021 0.771 ± 0.038 0.792 ± 0.033 0.768 ± 0.066 0.685 ± 0.072 0.692 ± 0.067
FOCUS 0.767 ± 0.054 0.579 ± 0.100 0.616 ± 0.124 0.944 ± 0.016 0.765 ± 0.043 0.783 ± 0.050 0.818 ± 0.054 0.737 ± 0.066 0.739 ± 0.063
MAPLE 0.786 ± 0.070 0.618 ± 0.024 0.673 ± 0.018 0.957 ± 0.015 0.791 ± 0.024 0.806 ± 0.024 0.855 ± 0.041 0.762 ± 0.031 0.766 ± 0.030

16
-s

ho
t

ABMIL 0.724 ± 0.048 0.587 ± 0.047 0.637 ± 0.056 0.937 ± 0.012 0.757 ± 0.024 0.790 ± 0.028 0.815 ± 0.041 0.747 ± 0.049 0.753 ± 0.048
TransMIL 0.738 ± 0.092 0.597 ± 0.082 0.639 ± 0.091 0.941 ± 0.029 0.812 ± 0.037 0.829 ± 0.046 0.807 ± 0.057 0.740 ± 0.052 0.741 ± 0.053
GTMIL 0.743 ± 0.051 0.619 ± 0.069 0.681 ± 0.090 0.930 ± 0.009 0.803 ± 0.046 0.829 ± 0.042 0.827 ± 0.040 0.750 ± 0.040 0.752 ± 0.038
WiKG 0.754 ± 0.036 0.593 ± 0.054 0.637 ± 0.072 0.943 ± 0.018 0.793 ± 0.037 0.816 ± 0.037 0.832 ± 0.040 0.755 ± 0.039 0.756 ± 0.039
TOP 0.775 ± 0.025 0.636 ± 0.067 0.682 ± 0.113 0.939 ± 0.015 0.769 ± 0.043 0.791 ± 0.037 0.804 ± 0.066 0.738 ± 0.125 0.730 ± 0.069

ViLa-MIL 0.789 ± 0.026 0.651 ± 0.041 0.703 ± 0.043 0.952 ± 0.007 0.797 ± 0.046 0.827 ± 0.042 0.824 ± 0.055 0.757 ± 0.046 0.757 ± 0.047
MSCPT 0.758 ± 0.043 0.642 ± 0.047 0.702 ± 0.046 0.940 ± 0.013 0.813 ± 0.027 0.834 ± 0.027 0.833 ± 0.027 0.765 ± 0.029 0.766 ± 0.029
FOCUS 0.745 ± 0.052 0.633 ± 0.046 0.693 ± 0.093 0.951 ± 0.008 0.826 ± 0.021 0.851 ± 0.021 0.862 ± 0.056 0.781 ± 0.064 0.783 ± 0.064
MAPLE 0.801 ± 0.031 0.672 ± 0.076 0.735 ± 0.039 0.969 ± 0.014 0.838 ± 0.034 0.867 ± 0.031 0.903 ± 0.033 0.806 ± 0.060 0.810 ± 0.055

Implementation Details. We utilize CLAM [23] for WSI pre-processing, followed by ViLa-
MIL [34] to crop both high-resolution (10×) and low-resolution (5×) WSIs into patches with the
size of 256×256. We employ PLIP [14] as our vision-language backbone, with a feature dimension
of 512 for both visual and textual modalities. GPT-4 [2] is taken as the frozen large language model
(LLM). For hyperparameter settings, the the number of entities at each scale nk is tuned from 4 to 20
with an interval of 4 (Section 4.1), while the number of neighbors for constructing the cross-scale
entity graph ne = 7 is tuned from 1 to 13 with interval 2 (Section 4.4). Since WSIs are with different
numbers of divided patches, we select the top %r percentage tumor-related patches for each WSI as
the the top-k patches, and we tune r from 0.1 to 1 with interval 0.2. Finally, the weighting parameter
λ (Section 4.5) for combining entity-level and slide-level predictions is tuned from 0 to 1 with interval
0.1. The model is optimized using AdamW with a learning rate of 1× 10−4 and trained for up to 80
epochs with early stopping based on validation performance. All experiments are conducted using
PyTorch 2.0.1 and CUDA 11.7 on Python 3.8 with NVIDIA RTX 3090 GPUs.

Evaluation Metrics. The area under the curve (AUC) score, F1 score (F1), and accuracy (ACC)
are utilized as the evaluation metrics in our experiment. We conduct five-fold cross-validation and
the mean and standard deviation are calculated according to the results of all folds.

5.1 Main Results

We compare MAPLE with SOTA MIL based methods including ABMIL [15], TransMIL [32],
GTMIL [42], and WiKG-MIL [19], as well as SOTA prompt based methods in few-shot WSI
classification methods like TOP [29], ViLa-MIL [34], MSCPT [11] and FOCUS [10]. PLIP [14] is
applied to extract both visual and textual features for all methods. We compare MAPLE with these
methods across three datasets under three few-shot settings (4-shot, 8-shot, and 16-shot), as shown
in Tab. 1. We provide additional comparison results using different vision-language models (i.e.,
CLIP [30] and CONCH [24]) in Appendix C.1 and C.3 and further comparisons of model complexity
and efficiency in Appendix B.3.

TCGA-BRCA (2 classes). On the TCGA-BRCA dataset, our proposed MAPLE consistently
outperforms all baseline methods across all few-shot settings. In the 16-shot scenario, MAPLE
achieves an AUC of 80.1%, F1 of 67.2% and ACC of 73.5%, surpassing the second-best performing
ViLa-MIL with an improvement of 1.2% in AUC, 2.1% in F1 and 3.2% in ACC. This advantage is
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Table 2: Effects of different levels and entity scales under the 16-shot setting.
Methods TCGA-BRCA TCGA-RCC TCGA-NSCLC

AUC F1 ACC AUC F1 ACC AUC F1 ACC

MAPLE-Low 0.790 ± 0.052 0.640 ± 0.079 0.704 ± 0.101 0.949 ± 0.009 0.796 ± 0.037 0.832 ± 0.030 0.866 ± 0.045 0.780 ± 0.046 0.782 ± 0.045
MAPLE-High 0.779 ± 0.046 0.651 ± 0.057 0.729 ± 0.080 0.956 ± 0.016 0.817 ± 0.044 0.842 ± 0.041 0.875 ± 0.050 0.789 ± 0.049 0.791 ± 0.048
MAPLE-Entity 0.792 ± 0.052 0.653 ± 0.077 0.714 ± 0.104 0.960 ± 0.014 0.815 ± 0.032 0.846 ± 0.031 0.879 ± 0.060 0.787 ± 0.045 0.796 ± 0.044
MAPLE-Slide 0.789 ± 0.036 0.644 ± 0.050 0.702 ± 0.076 0.951 ± 0.011 0.819 ± 0.041 0.850 ± 0.037 0.891 ± 0.033 0.777 ± 0.046 0.785 ± 0.043
MAPLE 0.801 ± 0.031 0.672 ± 0.076 0.735 ± 0.039 0.969 ± 0.014 0.838 ± 0.034 0.867 ± 0.031 0.903 ± 0.033 0.806 ± 0.060 0.810 ± 0.055

Table 3: Ablation study of each component under the 16-shot setting. “w/o Selection” refers to MAPLE without
language-guided instance selection step, “w/o EGCA” refers to MAPLE without entity-guided cross-attention
module, and “w/o Graph” refers to MAPLE without the module of cross-scale entity graph learning.
Methods TCGA-BRCA TCGA-RCC TCGA-NSCLC

AUC F1 ACC AUC F1 ACC AUC F1 ACC

MAPLE (w/o Selection) 0.792 ± 0.059 0.655 ± 0.040 0.710 ± 0.045 0.962 ± 0.015 0.828 ± 0.056 0.859 ± 0.053 0.885 ± 0.064 0.786 ± 0.058 0.791 ± 0.057
MAPLE (w/o EGCA) 0.784 ± 0.019 0.651 ± 0.043 0.710 ± 0.061 0.959 ± 0.015 0.820 ± 0.031 0.852 ± 0.032 0.879 ± 0.042 0.782 ± 0.048 0.790 ± 0.047
MAPLE (w/o Graph) 0.793 ± 0.038 0.658 ± 0.073 0.716 ± 0.101 0.957 ± 0.011 0.823 ± 0.036 0.855 ± 0.031 0.887 ± 0.039 0.791 ± 0.047 0.792 ± 0.046
MAPLE 0.801 ± 0.031 0.672 ± 0.076 0.735 ± 0.039 0.969 ± 0.014 0.838 ± 0.034 0.867 ± 0.031 0.903 ± 0.033 0.806 ± 0.060 0.810 ± 0.055

maintained with extremely limited training data. In the challenging 4-shot setting, MAPLE achieves
an AUC of 72.2%, F1 of 59.4%, and ACC of 66.4%, demonstrating significant improvements over
the second-best method FOCUS (AUC: 70.3%, F1: 56.4%, ACC: 63.3%).

TCGA-RCC (3 classes). For the multi-class TCGA-RCC dataset, MAPLE delivers exceptional
performance across all metrics and settings. In the 16-shot scenario, MAPLE achieves the highest
AUC (96.9%), F1 (83.8%), and ACC (86.7%), showing significant improvements over the second-
best method FOCUS. As the number of shots decreases to 8 and 4, MAPLE maintains its superior
performance with AUC scores of 95.7% and 90.9%, respectively.

TCGA-NSCLC (2 classes). For the TCGA-NSCLC dataset, MAPLE again achieves superior
performance across all metrics, with AUCs of 74.0%, 85.5%, and 90.3% in the 4, 8, and 16-shot
settings respectively, consistently outperforming FOCUS (AUC: 71.3%, 81.8%, and 86.2%).

Overall, MAPLE consistently outperforms all baselines across three cancer datasets under different
few-shot settings, validating the effectiveness of MAPLE in few-shot WSI classification.

5.2 Ablation Study

We conduct comprehensive ablation studies to investigate the effectiveness of each component in
MAPLE. The more detailed analysis of the hyperparameters (i.e., ne, nk, r, and λ mentioned in
implementation details) and the impact of different large language models is provided in Appendix D.

(a) Nucleolus (b) Keratinization 

(c) Cytoplasm (d) Slide-level

Number of Neighbors

(a) (b)

M
et

ri
cs

M
et

ri
cs

Number of Entities

Figure 3: t-SNE results of entity-level (a–c)
and slide-level (d) embeddings on the TCGA-
NSCLC dataset.

Impact of Combining Slide-level and Entity-level Log-
its. To evaluate the effectiveness of combining both slide-
level and entity-level logits for cancer diagnosis, we com-
pare MAPLE with its competitors that only using entity-
level (MAPLE-Entity) and slide-level (MAPLE-Slide)
logits under the 16-shot setting in Tab. 2. Notably, the
entity-level information can achieve comparable or even
slightly superior performance to the results using slide-
level logits, demonstrating the effectiveness of modeling
fine-grained histological entities and their subtype-specific
attributes for cancer diagnosis. In addition, it is obviously
that our MAPLE performs better than MAPLE-Entity and
MAPLE-Slide, which confirms the complementary nature
of entity-level and slide-level information for cancer sub-
type classification. We also discuss the effects of parame-
ter λ that is applied to balance the contribution of slide-level and entity-level logits in Appendix D.4.

To further demonstrate the discriminative power of entity-level and slide-level representations, we
visualize the learned representations from the entities of Nucleolus (Fig. 3 (a)), Keratinization (Fig. 3
(b)) and Cytoplasm (Fig. 3 (c)), and slide-level embeddings ((Fig. 3 (d))) on the TCGA-NSCLC
dataset using t-SNE. As shown in Fig. 3, all representations exhibit clear separation among different
cancer subtypes, confirming their ability to capture subtype-specific patterns.

Impact of Multi-scale Entities. To evaluate the effectiveness of integrating multi-scale entities for
few-shot WSI classification, we compare MAPLE with its two variants that rely solely on entities
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Attribute

Stroma may appear lighter and less dense.

Entity: Stroma (Low-resolution)

Attribute

Displays denser and more collagenized stroma.

Entity-related patches Entity-related patches

Attribute

Frequently small, inconspicuous.

Entity: Nucleolus (High-resolution)

Attribute

Typically large, prominent, and sometimes multiple. 

Entity-related patches Entity-related patches

5×

10×

5×

10×

TCGA-55-6970 TCGA-58-A46M

LUAD LUSC

Figure 4: Visualization of entity-relevant patches selected by the entity-guided cross-attention module for lung
adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) on the TCGA-NSCLC dataset. Top rows
show patches and their corresponding entity attributes (e.g., stroma) at low resolution, while bottom rows show
patches and their corresponding entity attributes (e.g., nucleoli) at high resolution.

extracted from high-resolution (MAPLE-High) or low-resolution (MAPLE-Low) images. As shown
in Tab. 2, MAPLE yields higher classification results to MAPLE-High and MAPLE-Low, which
validates the superiority of integrating multi-scale entities for cancer subtype classification.

Impact of Each Component. We further ablate three key components of MAPLE, i.e., language-
guided instance selection module, entity-guided cross-attention module and cross-scale entity graph
learning module, to assess their contributions. As shown in Tab. 3, each ablation study achieves
inferior performance to MAPLE, indicating that each component contributes positively to the results.

5.3 Visualization Results

To validate entity-level interpretability of MAPLE, we visualize instances identified by our entity-
guided cross-attention module on the TCGA-NSCLC dataset. Fig. 4 presents patches selected
using generic entity descriptions, which exhibit subtype-specific characteristics matching their
corresponding attribute prompts. For example, for the image patch at low resolution, stroma-related
patches from lung adenocarcinoma (LUAD) appear lighter and less dense, while those from lung
squamous cell carcinoma (LUSC) display denser and more collagenized patterns. Similarly, for the
image patch at high resolution, nucleolus-focused patches from LUAD contain small, inconspicuous
nucleoli, whereas those from LUSC exhibit large, prominent nucleoli. These visualizations confirm
that MAPLE effectively captures the relationships between entity-related patches and their subtype-
specific phenotypic attributes described in our LLM-generated prompts, providing visual evidence
for our classification decisions. More visualization results on the TCGA-BRCA and TCGA-RCC
datasets are provided in Appendix E.

6 Conclusion

In this paper, we introduce MAPLE, a hierarchical prompt learning framework for few-shot WSI
classification that explicitly models multi-scale histological entities and their phenotypic attributes.
By bridging the semantic gap between fine-grained visual details and textual descriptions through
entity-level and slide-level alignment, MAPLE provides both enhanced classification accuracy and
improved interpretability for cancer diagnosis. Extensive experiments across three cancer datasets
demonstrate that our approach consistently outperforms state-of-the-art methods. The hierarchical
nature of MAPLE aligns well with pathologists’ diagnostic workflow, offering a promising direction
for computer-aided diagnosis in computational pathology.
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Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
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Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the boarder impact of our paper in Appendix F.2.
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• The answer NA means that there is no societal impact of the work performed.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not include generative models and typically uses open-source
datasets for training and evaluation.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original papers that produced the code package and datasets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
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Answer: [NA]
Justification: Although we will submit the code in the supplementary materials, we will
continue to improve the codebase and make it publicly available after the paper is officially
accepted. Currently, we have not released any new assets.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
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• The paper should discuss whether and how consent was obtained from people whose
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Prompt Construction

A.1 Algorithms

The detailed prompt construction process described in Section 4.1 can be conducted by using an LLM
(e.g., GPT-4) as outlined in Algorithm 1. This includes iterative entity-level prompt discovery, and
slide-level prompt synthesis. Specifically, we begin by iteratively expanding a pool of histologically
meaningful entities, where each selected entity highlights distinct structures relevant to subtype
classification. For each entity, the LLM is queried to generate both a general visual description
and subtype-specific morphological characteristics. These outputs are formatted into structured
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Algorithm 1 LLM-powered Prompt Construction

Require: Subtype list C = {c1, c2, . . . , cC}; maximum number of entities Ne

Ensure: Entity-level prompts Ps
entity, slide-level prompts Ps

slide
1: Initialize entity pool Es ← ∅, prompts Ps

entity ← ∅
2: while |Es| < Ne do
3: e ← QUERYLLM(“Suggest a discriminative histological entity not in E

that helps distinguish subtypes in C at scale s”)
4: Add e to Es
5: pgen, s

e ← QUERYLLM(“Describe generic visual characteristics of e at
scale s”)

6: for each subtype c ∈ C do
7: pse,c ← QUERYLLM(“Describe how e appears in subtype c at scale s”)
8: end for
9: pse ← FORMATPROMPT(e, pgen, s

e , {pse,c}c∈C)
10: Append pse to Ps

entity
11: end while
12: Initialize Ps

slide ← ∅
13: for each subtype c ∈ C do
14: contextc ← COLLECTENTITIES(c,Ps

entity)
15: pslide, s

c ← QUERYLLM("Describe a WSI of c at scale s based on: contextc)
16: Append pslide, s

c to Ps
slide

17: end for
18: return Ps

entity,Ps
slide

prompts used for fine-grained entity-level alignment. After constructing the entity-level prompts, we
generate slide-level prompts by prompting the LLM to compose holistic WSI descriptions. These
are conditioned on the entity attributes associated with each subtype, thereby enriching slide-level
prompts with fine-grained context. This approach enables our model to jointly capture both entity-
level and slide-level semantic cues essential for few-shot classification.

A.2 Examples

We provide examples of the constructed prompts at low and high resolutions on the TCGA-NSCLC
in Fig. 5 and 6, respectively.

B Experimental Details

B.1 Dataset Details

TCGA-BRCA. This dataset contains 1,054 whole-slide images (WSIs) of breast invasive carcinoma
(BRCA) collected from TCGA2. It comprises 843 slides of invasive ductal carcinoma (IDC) and 211
slides of invasive lobular carcinoma (ILC).

TCGA-RCC. This dataset includes 873 WSIs of renal cell carcinoma (RCC) obtained from TCGA.
It consists of 455 chromophobe RCC (CHRCC), 121 papillary RCC (PRCC), and 297 clear cell RCC
(CCRCC) slides.

TCGA-NSCLC. This dataset comprises 1,039 WSIs of non-small cell lung cancer (NSCLC) from
TCGA, including 530 slides of lung adenocarcinoma (LUAD) and 509 slides of lung squamous cell
carcinoma (LUSC).

2https://portal.gdc.cancer.gov
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"low": {

    "entities": [

      {

        "name": "Architecture",

        "general_feature": "Overall pattern or arrangement of tumor cells and structures 

within the tumor region visible at low magnification.",

        "attributes": {

          "lung adenocarcinoma": "Shows glandular, acinar, or papillary arrangements with 

well-formed gland-like spaces and frequent areas of lepidic (growth along alveolar spaces) 

pattern.",

          "lung squamous cell carcinoma": "Displays solid nests, sheets, or islands of tumor 

cells with evidence of keratinization or central necrosis (keratin pearls), lacking glandular 

or papillary structures."

        }

      },

      {

        "name": "Stroma",

        "general_feature": "The connective tissue and extracellular matrix surrounding tumor 

cell nests; appears as fibrous or desmoplastic regions.",

        "attributes": {

          "lung adenocarcinoma": "Typically features prominent desmoplastic reaction with 

loose, myxoid, or fibrous stroma separating irregular glandular structures; stroma may 

appear lighter and less dense at low magnification.",

          "lung squamous cell carcinoma": "Displays denser and more collagenized stroma, 

often with fewer desmoplastic changes and a tendency for stromal tissue to tightly encase 

solid sheets or nests of tumor cells."

        }

      },

      {

        "name": "Lumina",

        "general_feature": "Round to oval empty spaces or gland-like areas within tumor cell 

nests seen under low magnification.",

        "attributes": {

          "lung adenocarcinoma": "Frequent presence of well-formed glandular lumina, 

sometimes with mucin, demonstrating distinct glandular differentiation in the tumor 

nests.",

          "lung squamous cell carcinoma": "Rare to absent true lumina; if present, are 

irregular, slit-like, or represent necrotic debris rather than glandular differentiation, with 

tumor nests generally appearing solid."

        }

      },      

……

Examples

Figure 5: Example of the constructed prompts at low resolution on the TCGA-NSCLC dataset.
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"high": {

    "entities": [

      {

        "name": "Cytoplasmic Border",

        "general_feature": "The outline or edge of the cytoplasm surrounding the nucleus, 

often seen as the boundary between adjacent tumor cells.",

        "attributes": {

          "lung adenocarcinoma": "Cytoplasmic borders are generally indistinct and poorly 

defined, with cells often demonstrating overlapping or poorly separated cytoplasm. Cell 

cohesion is low.",

          "lung squamous cell carcinoma": "Cytoplasmic borders are well-delineated and 

sharp, with clear cell-to-cell boundaries. Tumor cells exhibit strong cohesion and 

polygonal shapes."

        }

      },

      {

        "name": "Nucleolus",

        "general_feature": "Prominent, round to oval intranuclear structure, appears as a 

distinct spot within the nucleus under high magnification.",

        "attributes": {

          "lung adenocarcinoma": "Frequently small, inconspicuous or variably prominent; 

may be solitary or few per nucleus with generally fine chromatin background.",

          "lung squamous cell carcinoma": "Typically large, prominent, and sometimes 

multiple; often eosinophilic with hyperchromatic surrounding chromatin and increased 

irregularity."

        }

      },

      {

        "name": "Keratinization",

        "general_feature": "Presence and appearance of eosinophilic, dense, concentric 

cytoplasmic material or whorls within tumor cells.",

        "attributes": {

          "lung adenocarcinoma": "Typically absent; tumor cells rarely show keratin 

production or keratin pearls.",

          "lung squamous cell carcinoma": "Frequently present; keratin pearls and dense 

eosinophilic cytoplasmic material are prominent, often forming concentric whorled 

structures."

        }

      },

……

Examples

Figure 6: Example of the constructed prompts at high resolution on the TCGA-NSCLC dataset.

B.2 Descriptions of Compared Methods

ABMIL [15]. ABMIL introduces an attention-based multiple instance learning framework that
assigns importance weights to individual instances, enabling the model to aggregate instance features
into a slide-level representation with improved interpretability.

TransMIL [32]. TransMIL employs a transformer architecture to capture both morphological
features and spatial relationships among instances, enabling effective performance across binary and
multi-class classification tasks.

GTMIL [42]. GTMIL proposes a graph-based vision transformer that integrates structural WSI
representations with transformer-based feature modeling for whole slide image classification.

WiKG [19]. WiKG conceptualizes a WSI as a dynamic knowledge graph, where neighbor instances
and edge embeddings are dynamically constructed based on semantic relationships, enabling context-
aware graph reasoning.
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TOP [29]. TOP introduces a two-level prompt learning strategy that incorporates linguistic prior
knowledge to guide both instance- and slide-level feature aggregation within a vision-language
modeling framework.

ViLa-MIL [34]. ViLa-MIL designs dual-scale visual prompts using a frozen LLM to enhance
vision-language alignment, effectively boosting few-shot performance in pathology tasks.

MSCPT [11]. MSCPT presents a graph-based prompt tuning module to encode contextual depen-
dencies across WSI patches, followed by a cross-guided non-parametric aggregation scheme for
WSI-level representation learning.

FOCUS [10]. FOCUS integrates foundation models and language-guided patch selection to prior-
itize diagnostically relevant regions, enabling focused and efficient analysis in weakly supervised
settings.

Table 4: Comparisons of model complexity and efficiency. We report the number of trainable parameters (MB),
inference time per slide (ms), and training time per epoch (s) on the TCGA-NSCLC dataset under the 16-shot
setting.

Methods Trainable Inference Time Training Time
Params (ms / slide) (s / epoch)

TOP [29] 1.71 M 40.50 ± 4.75 8.91 ± 0.31
ViLa-MIL [34] 2.32 M 19.03 ± 2.07 5.42 ± 0.20
MSCPT [11] 1.35 M 41.86 ± 1.00 6.47 ± 0.40
FOCUS [10] 1.32 M 132.41 ± 2.26 30.11 ± 1.93
MAPLE 1.86 M 45.88 ± 1.18 10.52 ± 0.19

B.3 Computational Complexity

We analyze the computational efficiency of MAPLE in comparison with existing few-shot methods.
As shown in Table 4, we report the number of trainable parameters, inference time per slide, and
training time per epoch on the TCGA-NSCLC dataset. Among all methods, ViLa-MIL requires the
largest number of trainable parameters (2.32M) due to its dual-scale visual prompt tuning approach,
though it achieves the fastest inference and training speeds. In contrast, FOCUS has a relatively small
parameter count (1.32M) but incurs the highest computational cost during both inference (132.41
ms/slide) and training (30.11 s/epoch). MSCPT maintains low parameter count and reasonable
efficiency but requires an additional preprocessing step to select low-resolution patches, which is
not reflected in the runtime measurements. MAPLE strikes a balanced trade-off between model
complexity and computational efficiency. While it requires moderately more parameters (1.86M)
than TOP, MSCPT, and FOCUS, its inference and training times remain comparable to TOP and
significantly lower than FOCUS. Overall, MAPLE achieves strong performance in few-shot scenarios
without introducing significant additional trainable parameters or increasing much inference and
training time.

C Additional Results

C.1 Comparisons with SOTAs using CLIP

In addition to the main experiments using PLIP [14] as the feature extractor, we conducted parallel
experiments using CLIP [30] to extract visual and textual features. Tab. 5 presents the few-shot
weakly-supervised learning results on the same three datasets (TCGA-BRCA, TCGA-RCC, and
TCGA-NSCLC) across 4-shot, 8-shot, and 16-shot settings. With features extracted by the CLIP
encoder, MAPLE achieves the best results in nearly all configurations across the three datasets.
Particularly, in the 16-shot setting, MAPLE attains the highest AUC scores of 70.1%, 94.6%, and
76.0% on TCGA-BRCA, TCGA-RCC, and TCGA-NSCLC, respectively. The performance advantage
of MAPLE is maintained even in the challenging 4-shot scenario, where it achieves competitive or
superior results compared to other methods.
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Table 5: Few-shot WSI classification results using CLIP encoder on TCGA-BRCA, TCGA-RCC, and TCGA-
NSCLC datasets under 4-shot, 8-shot, and 16-shot settings. The best results are in bold, and the second-best
results are underlined.

Dataset Methods TCGA-BRCA TCGA-RCC TCGA-NSCLC
AUC F1 ACC AUC F1 ACC AUC F1 ACC

4-
sh

ot

ABMIL 0.549 ± 0.083 0.428 ± 0.104 0.526 ± 0.173 0.825 ± 0.033 0.586 ± 0.077 0.597 ± 0.086 0.589 ± 0.052 0.545 ± 0.042 0.557 ± 0.037
TransMIL 0.560 ± 0.058 0.396 ± 0.107 0.466 ± 0.161 0.759 ± 0.052 0.482 ± 0.081 0.518 ± 0.080 0.547 ± 0.064 0.519 ± 0.048 0.531 ± 0.052
GTMIL 0.570 ± 0.108 0.446 ± 0.126 0.456 ± 0.154 0.816 ± 0.046 0.598 ± 0.090 0.606 ± 0.115 0.579 ± 0.044 0.476 ± 0.044 0.531 ± 0.027
WiKG 0.581 ± 0.089 0.495 ± 0.036 0.615 ± 0.070 0.820 ± 0.048 0.572 ± 0.099 0.592 ± 0.121 0.600 ± 0.063 0.567 ± 0.054 0.576 ± 0.055
TOP 0.573 ± 0.053 0.480 ± 0.025 0.588 ± 0.110 0.816 ± 0.032 0.534 ± 0.117 0.576 ± 0.121 0.627 ± 0.029 0.490 ± 0.111 0.557 ± 0.047

ViLa-MIL 0.614 ± 0.066 0.499 ± 0.082 0.560 ± 0.120 0.806 ± 0.033 0.525 ± 0.129 0.565 ± 0.115 0.665 ± 0.080 0.585 ± 0.041 0.606 ± 0.046
MSCPT 0.610 ± 0.071 0.476 ± 0.090 0.544 ± 0.133 0.828 ± 0.027 0.608 ± 0.078 0.613 ± 0.079 0.581 ± 0.032 0.495 ± 0.062 0.531 ± 0.021
FOCUS 0.602 ± 0.067 0.483 ± 0.046 0.600 ± 0.133 0.823 ± 0.064 0.619 ± 0.105 0.618 ± 0.109 0.574 ± 0.069 0.511 ± 0.111 0.548 ± 0.064
MAPLE 0.613 ± 0.100 0.525 ± 0.043 0.637 ± 0.091 0.831 ± 0.038 0.635 ± 0.080 0.631 ± 0.086 0.678 ± 0.057 0.589 ± 0.086 0.616 ± 0.051

8-
sh

ot

ABMIL 0.577 ± 0.079 0.435 ± 0.111 0.534 ± 0.198 0.830 ± 0.023 0.618 ± 0.023 0.664 ± 0.048 0.590 ± 0.079 0.548 ± 0.059 0.561 ± 0.059
TransMIL 0.553 ± 0.051 0.451 ± 0.071 0.504 ± 0.135 0.777 ± 0.064 0.571 ± 0.068 0.596 ± 0.071 0.559 ± 0.061 0.474 ± 0.078 0.526 ± 0.526
GTMIL 0.594 ± 0.063 0.496 ± 0.024 0.565 ± 0.045 0.877 ± 0.013 0.668 ± 0.022 0.684 ± 0.020 0.629 ± 0.100 0.550 ± 0.050 0.563 ± 0.051
WiKG 0.652 ± 0.063 0.504 ± 0.080 0.542 ± 0.119 0.874 ± 0.020 0.671 ± 0.043 0.690 ± 0.046 0.609 ± 0.096 0.545 ± 0.053 0.559 ± 0.056
TOP 0.632 ± 0.067 0.536 ± 0.115 0.548 ± 0.113 0.786 ± 0.034 0.580 ± 0.065 0.625 ± 0.059 0.591 ± 0.020 0.401 ± 0.078 0.513 ± 0.026

ViLa-MIL 0.645 ± 0.099 0.537 ± 0.134 0.558 ± 0.174 0.865 ± 0.022 0.685 ± 0.041 0.714 ± 0.041 0.652 ± 0.036 0.606 ± 0.032 0.615 ± 0.024
MSCPT 0.629 ± 0.077 0.524 ± 0.100 0.562 ± 0.182 0.866 ± 0.035 0.673 ± 0.050 0.705 ± 0.048 0.548 ± 0.034 0.507 ± 0.072 0.531 ± 0.039
FOCUS 0.641 ± 0.074 0.541 ± 0.064 0.605 ± 0.102 0.888 ± 0.029 0.695 ± 0.037 0.719 ± 0.044 0.599 ± 0.088 0.567 ± 0.072 0.575 ± 0.064
MAPLE 0.658 ± 0.072 0.566 ± 0.045 0.631 ± 0.052 0.886 ± 0.026 0.689 ± 0.038 0.708 ± 0.048 0.668 ± 0.043 0.612 ± 0.055 0.620 ± 0.042

16
-s

ho
t

ABMIL 0.629 ± 0.082 0.536 ± 0.059 0.590 ± 0.074 0.900 ± 0.018 0.714 ± 0.041 0.728 ± 0.042 0.687 ± 0.044 0.634 ± 0.052 0.638 ± 0.049
TransMIL 0.590 ± 0.031 0.464 ± 0.114 0.537 ± 0.169 0.860 ± 0.029 0.587 ± 0.127 0.614 ± 0.115 0.684 ± 0.016 0.599 ± 0.033 0.618 ± 0.027
GTMIL 0.652 ± 0.082 0.532 ± 0.053 0.593 ± 0.092 0.917 ± 0.026 0.757 ± 0.045 0.766 ± 0.054 0.693 ± 0.037 0.632 ± 0.036 0.635 ± 0.036
WiKG 0.686 ± 0.067 0.515 ± 0.098 0.558 ± 0.130 0.926 ± 0.010 0.757 ± 0.041 0.777 ± 0.034 0.730 ± 0.042 0.680 ± 0.031 0.684 ± 0.032
TOP 0.630 ± 0.053 0.483 ± 0.102 0.505 ± 0.160 0.914 ± 0.020 0.745 ± 0.024 0.760 ± 0.042 0.672 ± 0.063 0.618 ± 0.046 0.624 ± 0.043

ViLa-MIL 0.690 ± 0.047 0.533 ± 0.083 0.582 ± 0.106 0.937 ± 0.009 0.779 ± 0.026 0.774 ± 0.024 0.744 ± 0.057 0.674 ± 0.062 0.682 ± 0.056
MSCPT 0.669 ± 0.073 0.540 ± 0.050 0.601 ± 0.092 0.925 ± 0.010 0.755 ± 0.048 0.773 ± 0.048 0.732 ± 0.056 0.658 ± 0.043 0.675 ± 0.044
FOCUS 0.662 ± 0.073 0.528 ± 0.065 0.575 ± 0.076 0.939 ± 0.012 0.789 ± 0.020 0.788 ± 0.020 0.732 ± 0.050 0.666 ± 0.050 0.669 ± 0.048
MAPLE 0.701 ± 0.062 0.583 ± 0.049 0.689 ± 0.097 0.946 ± 0.009 0.804 ± 0.025 0.807 ± 0.027 0.760 ± 0.072 0.687 ± 0.068 0.693 ± 0.065

C.2 Comparisons between PLIP and CLIP

Comparing the results obtained with CLIP (Tab. 5) and PLIP (Tab. 1 in the main paper), we observe
that PLIP generally provides better feature representations for pathology images, resulting in higher
overall performance across all metrics and settings. This observation is consistent with previous
studies [14, 11] suggesting that PLIP, which is pre-trained specifically on pathology images, captures
more relevant pathological features than the general-purpose CLIP model.

C.3 Comparisons with SOTAs using CONCH

We provide further results with stronger pathology VLMs such as CONCH on the three datasets
(TCGA-BRCA, TCGA-RCC and TCGA-NSCLC) in Tab. 6. MAPLE consistently outperforms
baseline methods across different datasets and few-shot settings. Specifically, in the 16-shot setting,
MAPLE achieves the highest AUC scores of 91.6%, 98.4%, and 98.1% on TCGA-BRCA, TCGA-
RCC, and TCGA-NSCLC, respectively. In the challening 4-shot setting, MAPLE maintains its
superior performance with AUC scores of 84.4%, 94.7% and 88.9%. In summary, MAPLE can
achieve consistently superior prediction results under different vision-language foundation models
(e.g., CLIP, PLIP, CONCH), highlighting the advantages of our MAPLE to jointly integrate multi-
scale visual semantics and perform prediction at both the entity and slide levels.

C.4 Comparisons with multi-scale MIL methods

We further compare MAPLE with representative multi-scale MIL baselines, including DTFD-
MIL [40], Dual-Stream-MIL [18] and Cross-Scale MIL [8]. As shown in Table 7, MAPLE con-
sistently surpasses these approaches under all the settings across different datasets, highlighting
the advantage of our multi-scale prompt-guided VLM-based method. These results further confirm
that the performance gain of MAPLE arises not merely from multi-scale integration, but from the
combination of multi-scale modeling and language-guide prompt supervision via vision-language
models.
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Table 6: Few-shot WSI classification results using CONCH encoder on TCGA-BRCA, TCGA-RCC, and TCGA-
NSCLC datasets under 4-shot, 8-shot, and 16-shot settings. The best results are in bold, and the second-best
results are underlined.

Dataset Methods TCGA-BRCA TCGA-RCC TCGA-NSCLC
AUC F1 ACC AUC F1 ACC AUC F1 ACC

4-
sh

ot

ABMIL 0.770 ± 0.069 0.591 ± 0.070 0.648 ± 0.105 0.924 ± 0.026 0.755 ± 0.063 0.773 ± 0.062 0.832 ± 0.041 0.714 ± 0.049 0.721 ± 0.044
TransMIL 0.757 ± 0.127 0.602 ± 0.111 0.672 ± 0.126 0.938 ± 0.019 0.761 ± 0.098 0.778 ± 0.099 0.848 ± 0.059 0.756 ± 0.125 0.762 ± 0.109
GTMIL 0.728 ± 0.102 0.552 ± 0.094 0.630 ± 0.141 0.923 ± 0.031 0.743 ± 0.070 0.765 ± 0.054 0.836 ± 0.093 0.750 ± 0.080 0.754 ± 0.081
WiKG 0.768 ± 0.109 0.605 ± 0.105 0.651 ± 0.123 0.925 ± 0.010 0.761 ± 0.038 0.777 ± 0.036 0.820 ± 0.087 0.730 ± 0.084 0.733 ± 0.083
TOP 0.728 ± 0.170 0.583 ± 0.117 0.638 ± 0.105 0.916 ± 0.033 0.743 ± 0.057 0.758 ± 0.053 0.816 ± 0.066 0.683 ± 0.130 0.707 ± 0.092

ViLa-MIL 0.783 ± 0.108 0.590 ± 0.110 0.635 ± 0.130 0.919 ± 0.030 0.768 ± 0.058 0.793 ± 0.051 0.853 ± 0.073 0.759 ± 0.081 0.756 ± 0.082
MSCPT 0.782 ± 0.087 0.605 ± 0.072 0.632 ± 0.088 0.931 ± 0.019 0.770 ± 0.057 0.785 ± 0.050 0.842 ± 0.059 0.730 ± 0.068 0.748 ± 0.066
FOCUS 0.810 ± 0.115 0.632 ± 0.135 0.667 ± 0.160 0.930 ± 0.032 0.767 ± 0.075 0.780 ± 0.065 0.875 ± 0.077 0.762 ± 0.060 0.769 ± 0.061
MAPLE 0.844 ± 0.109 0.653 ± 0.126 0.695 ± 0.166 0.947 ± 0.017 0.791 ± 0.086 0.805 ± 0.069 0.889 ± 0.055 0.774 ± 0.032 0.786 ± 0.033

8-
sh

ot

ABMIL 0.857 ± 0.049 0.705 ± 0.057 0.763 ± 0.058 0.941 ± 0.013 0.835 ± 0.055 0.844 ± 0.047 0.925 ± 0.013 0.835 ± 0.021 0.835 ± 0.021
TransMIL 0.853 ± 0.044 0.710 ± 0.044 0.771 ± 0.046 0.940 ± 0.012 0.840 ± 0.030 0.851 ± 0.024 0.916 ± 0.010 0.821 ± 0.027 0.821 ± 0.027
GTMIL 0.861 ± 0.052 0.711 ± 0.068 0.780 ± 0.065 0.945 ± 0.006 0.845 ± 0.020 0.857 ± 0.016 0.928 ± 0.016 0.844 ± 0.020 0.844 ± 0.020
WiKG 0.851 ± 0.045 0.685 ± 0.050 0.741 ± 0.060 0.947 ± 0.012 0.834 ± 0.025 0.855 ± 0.020 0.919 ± 0.007 0.834 ± 0.021 0.834 ± 0.020
TOP 0.859 ± 0.028 0.701 ± 0.050 0.758 ± 0.054 0.929 ± 0.020 0.814 ± 0.039 0.828 ± 0.035 0.908 ± 0.043 0.817 ± 0.068 0.818 ± 0.067

ViLa-MIL 0.880 ± 0.081 0.726 ± 0.117 0.776 ± 0.090 0.945 ± 0.008 0.835 ± 0.037 0.858 ± 0.032 0.934 ± 0.037 0.856 ± 0.051 0.857 ± 0.051
MSCPT 0.882 ± 0.091 0.720 ± 0.132 0.774 ± 0.136 0.950 ± 0.011 0.849 ± 0.043 0.851 ± 0.041 0.924 ± 0.043 0.849 ± 0.055 0.849 ± 0.055
FOCUS 0.875 ± 0.060 0.719 ± 0.114 0.747 ± 0.145 0.959 ± 0.008 0.871 ± 0.033 0.875 ± 0.031 0.949 ± 0.030 0.873 ± 0.043 0.873 ± 0.042
MAPLE 0.900 ± 0.082 0.748 ± 0.110 0.797 ± 0.120 0.971 ± 0.011 0.888 ± 0.025 0.899 ± 0.023 0.964 ± 0.032 0.894 ± 0.033 0.894 ± 0.034

16
-s

ho
t

ABMIL 0.876 ± 0.017 0.759 ± 0.020 0.789 ± 0.018 0.954 ± 0.004 0.857 ± 0.009 0.859 ± 0.007 0.935 ± 0.013 0.865 ± 0.021 0.865 ± 0.021
TransMIL 0.884 ± 0.030 0.761 ± 0.057 0.795 ± 0.057 0.955 ± 0.003 0.854 ± 0.010 0.860 ± 0.013 0.926 ± 0.014 0.851 ± 0.027 0.851 ± 0.027
GTMIL 0.891 ± 0.025 0.770 ± 0.073 0.803 ± 0.083 0.962 ± 0.004 0.865 ± 0.008 0.878 ± 0.013 0.938 ± 0.016 0.874 ± 0.020 0.874 ± 0.020
WiKG 0.882 ± 0.013 0.762 ± 0.019 0.796 ± 0.018 0.957 ± 0.010 0.839 ± 0.031 0.856 ± 0.031 0.939 ± 0.007 0.864 ± 0.021 0.864 ± 0.020
TOP 0.887 ± 0.011 0.768 ± 0.016 0.790 ± 0.015 0.944 ± 0.003 0.829 ± 0.027 0.835 ± 0.027 0.924 ± 0.013 0.859 ± 0.025 0.859 ± 0.025

ViLa-MIL 0.902 ± 0.033 0.775 ± 0.038 0.812 ± 0.042 0.966 ± 0.006 0.862 ± 0.024 0.872 ± 0.016 0.941 ± 0.023 0.877 ± 0.028 0.877 ± 0.017
MSCPT 0.894 ± 0.018 0.767 ± 0.027 0.808 ± 0.024 0.958 ± 0.004 0.859 ± 0.021 0.871 ± 0.025 0.934 ± 0.017 0.866 ± 0.031 0.867 ± 0.031
FOCUS 0.893 ± 0.017 0.764 ± 0.041 0.805 ± 0.042 0.974 ± 0.006 0.884 ± 0.045 0.891 ± 0.051 0.964 ± 0.007 0.894 ± 0.052 0.895 ± 0.050
MAPLE 0.916 ± 0.024 0.790 ± 0.029 0.825 ± 0.030 0.984 ± 0.006 0.910 ± 0.016 0.919 ± 0.015 0.981 ± 0.005 0.914 ± 0.050 0.914 ± 0.047

Table 7: Comparisons of few-shot WSI classification results using multi-scale MIL methods on TCGA-BRCA,
TCGA-RCC, and TCGA-NSCLC datasets under 4-shot, 8-shot, and 16-shot settings.

Dataset Methods TCGA-BRCA TCGA-RCC TCGA-NSCLC
AUC F1 ACC AUC F1 ACC AUC F1 ACC

4-
sh

ot

DTFD-MIL 0.648 ± 0.050 0.520 ± 0.065 0.593 ± 0.068 0.869 ± 0.031 0.626 ± 0.057 0.660 ± 0.070 0.624 ± 0.049 0.555 ± 0.051 0.581 ± 0.046
Dual-Stream MIL 0.669 ± 0.052 0.562 ± 0.132 0.623 ± 0.162 0.877 ± 0.039 0.664 ± 0.037 0.693 ± 0.036 0.649 ± 0.122 0.564 ± 0.094 0.590 ± 0.080
Cross-Scale MIL 0.673 ± 0.097 0.552 ± 0.061 0.615 ± 0.068 0.876 ± 0.019 0.667 ± 0.037 0.690 ± 0.039 0.651 ± 0.103 0.560 ± 0.093 0.586 ± 0.084

MAPLE 0.722 ± 0.063 0.594 ± 0.076 0.664 ± 0.134 0.909 ± 0.020 0.705 ± 0.055 0.728 ± 0.057 0.740 ± 0.056 0.663 ± 0.052 0.675 ± 0.053

8-
sh

ot

DTFD-MIL 0.733 ± 0.048 0.546 ± 0.061 0.603 ± 0.086 0.907 ± 0.024 0.722 ± 0.036 0.748 ± 0.046 0.729 ± 0.040 0.632 ± 0.042 0.652 ± 0.030
Dual-Stream MIL 0.758 ± 0.073 0.548 ± 0.071 0.576 ± 0.088 0.926 ± 0.025 0.761 ± 0.041 0.789 ± 0.037 0.752 ± 0.074 0.651 ± 0.032 0.667 ± 0.034
Cross-Scale MIL 0.756 ± 0.062 0.554 ± 0.063 0.588 ± 0.075 0.924 ± 0.023 0.757 ± 0.028 0.782 ± 0.031 0.748 ± 0.037 0.645 ± 0.075 0.657 ± 0.071

MAPLE 0.786 ± 0.070 0.618 ± 0.024 0.673 ± 0.018 0.957 ± 0.015 0.791 ± 0.024 0.806 ± 0.024 0.855 ± 0.041 0.762 ± 0.031 0.766 ± 0.030

16
-s

ho
t DTFD-MIL 0.738 ± 0.044 0.623 ± 0.064 0.679 ± 0.088 0.919 ± 0.019 0.762 ± 0.051 0.799 ± 0.040 0.812 ± 0.047 0.742 ± 0.044 0.747 ± 0.042

Dual-Stream MIL 0.752 ± 0.038 0.636 ± 0.059 0.696 ± 0.062 0.946 ± 0.014 0.813 ± 0.030 0.827 ± 0.032 0.824 ± 0.029 0.760 ± 0.037 0.762 ± 0.032
Cross-Scale MIL 0.759 ± 0.052 0.632 ± 0.055 0.698 ± 0.060 0.948 ± 0.019 0.815 ± 0.034 0.830 ± 0.035 0.830 ± 0.042 0.764 ± 0.029 0.768 ± 0.028

MAPLE 0.801 ± 0.031 0.672 ± 0.076 0.735 ± 0.039 0.969 ± 0.014 0.838 ± 0.034 0.867 ± 0.031 0.903 ± 0.033 0.806 ± 0.060 0.810 ± 0.055

D More Ablation Studies

D.1 Number of Neighbors

To analyze the effect of the number of neighbors k used in the cross-scale entity graph, we set
nk ∈ {1, 3, 5, 7, 9, 11, 13}. As shown in Fig. 7, the performance improves as nk increases, and
achieves the best result at nk of 7. It demonstrates the importance of contextual information
propagation between semantically related entities. However, further increasing nk leads to slight
degradation, likely due to over-smoothing caused by excessive message propagation across weakly
related entities.

D.2 Number of Entities

We further investigate how the number of selected entities per scale affects the results. As illustrated
in Fig. 8, increasing the number of entities from 4 to 8 improves the performance, indicating the
importance of providing enough entities to capture different fine-grained subtype-specific patterns.
Beyond 8 entities, performance plateaus and even slightly decreases, suggesting that additional
entities may lack discriminative phenotypic attributes relevant to cancer subtype classification. These
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(a) (b) (c)

TCGA-BRCA TCGA-RCC TCGA-NSCLC

(a) (b) (c)

TCGA-BRCA TCGA-RCC TCGA-NSCLC

Figure 7: Impact of the number of neighbor nodes across three datasets under the 16-shot setting.

(a) (b) (c)

TCGA-BRCA TCGA-RCC TCGA-NSCLC

(a) (b) (c)

TCGA-BRCA TCGA-RCC TCGA-NSCLC

Figure 8: Impact of the number of entities across three datasets under the 16-shot setting.

redundant entities do not contribute to improving the model’s performance but increase computational
complexity and potentially introduce noise that interferes with the model’s decision-making process.

D.3 Number of Tumor-related Patches

To assess the effects of the number of tumor-related patches, we vary r from 0.1 to 0.9. As shown in
Fig. 9, performance improves steadily as r increases from 0.1 to 0.7, demonstrating the importance
of incorporating sufficient tumor-related patches for accurate diagnosis. Further increasing r yields
the slight performance degradation. This decline can be attributed to the inclusion of less informative
or non-tumor regions that compromise the quality of the selected patch set, introducing noise that
interferes with entity-level feature extraction.

D.4 Impact of Lambda

To balance contributions from entity-level and slide-level classification, we vary the fusion weight
λ from 0 to 1 in increments of 0.1 (Fig. 10). Results indicate that λ = 0.3 offers the best trade-off,
confirming the importance of leveraging both entity-level and slide-level information for few-shot
WSI classification.

(a) (b) (c)

TCGA-BRCA TCGA-RCC TCGA-NSCLC

(a) (b) (c)

TCGA-BRCA TCGA-RCC TCGA-NSCLC

Figure 9: Impact of the number of tumor-related patches across three datasets under the 16-shot setting.
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TCGA-BRCA TCGA-RCC TCGA-NSCLC

Figure 10: Impact of λ across three datasets under the 16-shot setting.

Table 8: Results of different large language models on the three datasets under the 16-shot setting.
LLMs TCGA-BRCA TCGA-RCC TCGA-NSCLC

AUC F1 ACC AUC F1 ACC AUC F1 ACC

Claude 3.5 Sonnet 0.786 ± 0.031 0.647 ± 0.083 0.719 ± 0.107 0.966 ± 0.018 0.822 ± 0.072 0.854 ± 0.073 0.886 ± 0.039 0.791 ± 0.013 0.795 ± 0.013
Qwen2.5 [38] 0.795 ± 0.041 0.664 ± 0.031 0.730 ± 0.054 0.961 ± 0.017 0.811 ± 0.055 0.845 ± 0.055 0.885 ± 0.018 0.790 ± 0.021 0.794 ± 0.021
Deepseek-V3 [22] 0.799 ± 0.027 0.665 ± 0.019 0.732 ± 0.045 0.968 ± 0.013 0.833 ± 0.038 0.863 ± 0.037 0.903 ± 0.027 0.813 ± 0.012 0.817 ± 0.012
GPT-4 [2] 0.801 ± 0.031 0.672 ± 0.076 0.735 ± 0.039 0.969 ± 0.014 0.838 ± 0.034 0.867 ± 0.031 0.903 ± 0.033 0.806 ± 0.060 0.810 ± 0.055

D.5 Impact of Large Language Models

To investigate how the choice of large language model affects performance of MAPLE, we evaluate
four LLMs for prompt construction: Claude 3.5 Sonnet, Qwen2.5 [38], Deepseek-V3 [22], and
GPT-4 [2]. For each LLM, we use it to generate both entity-level and slide-level prompts following
the same query templates. We present the results on the three datasets under 16-shot setting in Tab. 8.
As shown in Tab. 8, all four LLMs deliver strong performance across the three datasets, indicating
the robustness of our method to LLMs. GPT-4 achieves the best overall results, particularly on
TCGA-BRCA and TCGA-RCC datasets, while Deepseek-V3 performs comparably and even slightly
outperforms GPT-4 on TCGA-NSCLC in terms of F1 score and accuracy. Qwen2.5 and Claude 3.5
Sonnet also demonstrate competitive performance, with marginally lower metrics compared to GPT-4
and Deepseek-V3. The findings also indicate that LLMs with stronger language modeling capabilities
can further enhance performance of MAPLE.

Attribute

Tumor cells form cohesive nests, 

cords, or irregular clusters.

Entity: Cell Cluster  (Low-resolution)

Attribute

Tumor cells are arranged in loose, single-file 

linear strands or small, non-cohesive groups

Entity-related patches Entity-related patches

Attribute

Tumor cells generally display strong cell-to-cell 

adhesion, frequently forming cohesive groups

Entity: Cell Adhesion (High-resolution)

Attribute

Tumor cells typically exhibit reduced 

or absent cell-to-cell adhesion.

Entity-related patches Entity-related patches

5×

10×

5×

10×

TCGA-LL-A8F5 TCGA-AC-A2FK

IDC ILC

Figure 11: Visualization of entity-relevant patches selected by the entity-guided cross-attention module for
invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC) on the TCGA-BRCA dataset. Top rows
show patches and their corresponding entity attributes (e.g., cell cluster) at low resolution, while bottom rows
show patches and their corresponding entity attributes (e.g., cell adhesion) at high resolution.

E More Visualization Results

In this section, we provide more visualization results of entities and their relevant patches on the
TCGA-BRCA and TCGA-RCC in Fig. 11 and 12, respectively.

As shown in Fig. 11, at low resolution, cell cluster-related patches from invasive ductal carcinoma
(IDC) consistently form cohesive nests, while those from invasive lobular carcinoma (ILC) are
arranged in small, non-cohesive groups. Similarly, at high resolution, cell adhesion-related patches
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from IDC display strong cell-to-cell adhesion, whereas ILC patches exhibit reduced or absent
intercellular adhesion. These visualizations align with the subtype-specific attributes of these entities
described in our LLM-generated prompts.

We observe similarly patterns in the multi-class TCGA-RCC dataset. As illustrated in Fig. 12, at low
resolution, stroma-related patches exhibit clear subtype-specific characteristics: clear cell renal cell
carcinoma (CCRCC) shows delicate and inconspicuous stroma with highly vascular background;
chromophobe renal cell carcinoma (CHRCC) displays dense, hyalinized fibrous stroma with less
prominent blood vessels; and papillary renal cell carcinoma (PRCC) features prominent fibrovascular
cores supporting papillary fronds with abundant stroma. At high resolution, vacuole-related patches
from CCRCC displays prominent, large vacuoles; patches from CHRCC exhibits multiple small,
well-defined cytoplasmic vacuoles; while patches from PRCC shows small, inconspicuous vacuoles
that are typically less pronounced. These visualizations confirm that MAPLE effectively captures the
histological entities and their attributes for subtype classification.
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Figure 12: Visualization of entity-relevant patches selected by the entity-guided cross-attention module for
clear cell renal cell carcinoma (CCRCC), chromophobe renal cell carcinoma (CHRCC) and papillary renal cell
carcinoma (PRCC) on the TCGA-RCC dataset. Top rows show patches and their corresponding entity attributes
(e.g., stroma) at low resolution, while bottom rows show patches and their corresponding entity attributes (e.g.,
vacuole) at high resolution.

F Discussion

F.1 Limitations

The construction of entity and attribute prompts currently relies solely on LLMs such as GPT-4.
Although LLMs provide rich semantic priors, they may introduce hallucinations or generate clinically
irrelevant descriptions. This may limit the reliability of the derived prompts in real-world settings.
In future work, we aim to incorporate domain expertise from pathologists into the prompt design
process. This could involve human-in-the-loop strategies for verifying or refining entity-attribute
relationships, or integrating expert-annotated diagnostic criteria to guide prompt construction.

F.2 Broader Impacts

MAPLE has the potential to significantly impact clinical pathology practice and cancer diagno-
sis workflows. By providing accurate few-shot WSI classification with interpretable entity-level
predictions, our method could help address critical challenges in computational pathology: First,
MAPLE could reduce the annotation burden for pathologists by enabling accurate diagnosis with
limited labeled examples, particularly valuable for rare cancer subtypes where collecting large labeled
datasets is challenging. Additionally, the hierarchical framework may also enhance collaboration
between AI systems and pathologists by providing entity-level interpretations that align with human
diagnostic reasoning.
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