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Abstract

Ensuring AI models align with human values is essential for their safety and
functionality. Reinforcement learning from human feedback (RLHF) uses hu-
man preferences to achieve this alignment. However, preferences sourced from
diverse populations can result in point estimates of human values that may be
sub-optimal or unfair to specific groups. We propose Pareto Optimal Preference
Learning (POPL), which frames discrepant group preferences as objectives with
potential trade-offs, aiming for policies that are Pareto-optimal on the preference
dataset. POPL utilizes Lexicase selection, an iterative process to select diverse and
Pareto-optimal solutions. Our empirical evaluations demonstrate that POPL sur-
passes baseline methods in learning sets of reward functions, effectively catering
to distinct groups without access to group numbers or membership labels.

1 Introduction

For both safety and functionality, it is critical for AI models to be aligned with the values of human
users and stakeholders. Reinforcement learning from human feedback (RLHF) has emerged as an
effective mechanism for model alignment, using preferences as a means of capturing human values.
However, when preferences are sourced from large sets of potentially diverse people, methods that
rely on point estimates of human values are bound to either be sub-optimal with respect to all groups
or unfair to certain groups, both problematic in their own ways.

In this work, we build upon the notion of hidden context proposed by Siththaranjan et al. [49]
and focus on the problem of Reinforcement Learning from Human Feedback with Hidden Context
(RLHF-HC). Hidden context is information that is unavailable to a preference learning system that
affects the preferences given. For example, a person’s dominant hand might determine on what
side a robotic assistant should hand them an object. Under this formulation, the goal is to build a
set of policies that contains the policy that is optimal under the reward function of each group of
people with the same hidden context. In practice we believe that these polices can be used to cater
to specific groups, or to ensure fairness between groups.

Because preferences generated from individuals in different hidden context groups could be contra-
dictory, we propose to frame these preferences as objectives with potential trade-offs between each
other. With this re-framing, the optimal policy for each individual hidden context group would be
Pareto-optimal (non-dominated) on the dataset of preferences. With this in mind, we propose Pareto
Optimal Preference Learning (POPL), where we learn a set of reward functions or policies (directly)
that are optimized towards being Pareto-optimal with respect to the set of preferences given by a
potentially diverse set of human annotators. To do this, we use an iterative selection process known
as Lexicase selection [50], which has been shown under mild assumptions to select individuals that
are both Pareto-optimal and diverse. An outline of our method can be found in Figure 1.
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Figure 1: Outline of our proposed method. Given a set of pairwise preferences over trajectory
segments from groups with potentially different ground truth reward functions, we infer a set of
reward functions or policies that captures each group’s ground truth, without group membership
labels. To do this, we frame reward inference as multi-objective optimization, where each preference
forms a single objective, and find a set of Pareto-optimal reward functions or policies.

2 Problem Statement and Theoretical Foundation

Given a dataset D = {σ1, · · · , σm} of trajectory segments and a set P = {(i, j) : σi ≻ σj}
of pairwise preferences over these segments, we wish to infer an unknown reward function r :
S 7→ R that respects the preferences. In order to account for hidden context in the preferences
learned, Siththaranjan et al. [49] introduce Distributional Preference Learning, which relies on a
single model of utility u(s, z) to output a distribution of utility assignments u(·, z) for each state
s ∈ S, marginalizing over the hidden context variable z.

However, due this marginalization process, the utility function cannot attune to persistent annotator
identity—the fact that hidden context transcends a single preference annotation. In light of this, we
re-frame the problem of preference learning with hidden context as follows. The goal is to learn
a set Π = {π1, π2 · · · , πn} of policies such that, for the hidden context group represented by a
variable z ∈ Z , there is a policy πz ∈ Π that is the optimal policy for the ground truth reward
function rz for the group. Note that this can be accomplished by standard (reward-based) or direct
(reward-free) RLHF. For the standard approach, a series of reward functions R = {r1, r2 · · · , rn}
are first learned from preferences, then used to train n policies. In the direct approach, the policies
are learned directly from preferences such as done by Hejna et al. [31] and Rafailov et al. [45].

Related work and other preliminary information can be found in Appendix A and Appendix B
respectively. Formal definitions of terms and proofs for our claims can be found in Appendix E.

3 Pareto Optimal Preference Learning

The intuition we rely on for POPL is that, in a setting with low noise and sufficient regularization,
the set of policies or reward functions that coincide with the various ground truth reward functions
(one for each hidden context group) exist on the Pareto front, where each axis corresponds to a single
preference. To obtain a set of Pareto optimal policies, we adopt the idea of lexicase selection [50, 32].
A key property of lexicase selection is that it selects candidates that are Pareto-optimal relative to
a starting set of candidates that tend to spread the corners of the Pareto front and thus be diverse
[39]. This idea has been utilized in many machine learning optimization problems for improving
generalization, as shown in recent work [21, 22, 43, 8, 20]. In the context of preference-based reward
learning, preferences are used as binary metrics that filter down candidates.

With a method to select Pareto-optimal candidates such as lexicase selection in hand, one can infer
a set of reward functions or policies directly from preferences. Initially, a random set of candidate
models is created. The chosen method is then applied to select (with replacement) candidates re-
sulting in a pool of Pareto-optimal candidates. This pool is perturbed by adding random Gaussian
noise, generating a new set of candidates. This is repeated for a number of iterations. The final set
of candidates should align with the preferences of hidden context groups. A full algorithm can be
found in Appendix C.
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(a) B-REx Distribution (b) POPL Final Set (c) B-REx Catering (d) POPL Catering

Figure 2: (a) and (b) shows all the reward functions that are the output of the reward inference
methods. (c) and (d) show the catered reward functions for each of the two hidden context groups
z = 0, z = 1. To ensure the reward functions are comparable, for all these figures, the y-axis shows
how the underlying reward functions rank the 100 differing state interpolations (x-axis). From a set
of reward functions that is inferred from a diversity of human preferences, we select a single reward
function for each unique group with a small number of preferences (2% the size of the training set).
POPL is able to cater for both groups, while B-REx is only able to cater for one of the two groups.

(a) Domain (b) POPL for Group 1 (c) POPL for Group 2

(d) Hidden Context Groups (e) MultiCPL for Group 1 (f) MultiCPL for Group 2

Figure 3: (a) An example domain where hidden context is present. The agent (red triangle) must
make it to the solid green goal tile as fast as possible. The agent must choose one of the two doors
to use to reach the goal. (d) Depending on their identity, a human might prefer a policy that uses the
top door over the bottom door, or vice versa. (b) and (c) show the aggregate state occupancy of the
policies personalized for each group using POPL. (e) and (f) show it for MultiCPL. The set that is
generated by MultiCPL does not contain the optimal policy for Group 1. The set generated by POPL
contains the optimal policy for both groups, without having access to annotator identity labels.

4 Experiments

In this section, we detail our experimental results to validate the proposed POPL method. Further
implementation details are provided in Appendix F.

Synthetic Stateless Experiment Following the synthetic experiments outlined by Siththaranjan
et al. [49], the first set of experiments we perform will test whether POPL is able to recover the
optimal reward functions from a series of preferences from two groups of humans defined by a
hidden context variable z ∼ B(0.5) where B(0.5) is a Bernoulli distribution. We compare the
distributions based on their representation of the hidden context groups that might have different
preferences. The utility in this scenario can be modeled as u(a, z) = a if a < 0.8 and 2az otherwise.
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Table 1: Results on LLM jailbreaks. POPL has the lowest jailbreak rate across all methods without
any fairness optimization. For fairness optimization, POPL has a lower jailbreak rate than B-REx,
standard RLHF, as well as Mean & var. DPL, and is competitive with categorical DPL, without
needing to parameterize a hidden context distribution in advance.

Method Training data Jailbreak rate (%) Helpfulness acc. (%)
Standard Helpful 52.4 72.6
Standard Harmless 3.7 49.5
Standard Combined 25.1 68.2
Mean & var. DPL Combined 30.5 68.4↰

Fair 20.3 66.4
Categorical DPL Combined 32.1 66.2↰

Fair 13.4 66.2
Bayesian REx Combined 28.3 67.5↰

Fair 27.8 50.4
POPL (Ours) Combined 17.6 66.1↰

Fair 15.0 65.7

Minigrid Policy Inference We perform a second set of experiments to verify whether 1) POPL is
able to generate policies directly from preferences, and 2) POPL is able to perform in a sequential
RL domain, where annotators’ hidden context is persistent (i.e. potentially affects more than one
segment preference annotation).The domain used in these experiments is outlined in Figure 3a. The
hidden context groups in this scenario delineate whether the annotator inherently prefers the bottom
or top door to be used to get to the goal. The preferences were labeled according to the regret
preference model from members of both groups (extracted from the optimal policy for each group’s
ground truth reward model). We find that POPL is able to successfully cater policies for both groups
of people, despite not having labels regarding their group membership.

Language Model Experiments A final set of experiments that we perform tests the ability of
POPL to scale to domains involving human annotations. We investigate whether POPL can be
sensitive to hidden context in whether annotators prefer harmless or helpful responses [1] by a
language model. Wei et al. [52] find examples of user prompts that directly pit harmlessness and
helpfulness against each other, leading a language model to output harmful outputs, a phenomenon
known as jailbreaking. An RLHF system built with hidden context in mind would help detect
jailbreaking before a harmful output would be given to a user. Table 1 presents the jailbreak rates
and helpfulness accuracy for standard RLHF, B-REx, DPL, and our proposed POPL.

5 Conclusion

When learning from human preferences for the sake of aligning to human values, one must first
decide which humans to pay attention to. As these systems rely on point estimates of return or regret,
they can at most align with a single human’s preferences. We have formalized this as the problem of
reinforcement learning from human preferences with hidden context. Under this conception, a set
of policies must be generated that contains the optimal policy for each group of people.

To solve this problem, we relied on the concept of Pareto-optimality to generate a series of reward
functions and/or policies that are optimal with respect to unique sub-sets of preferences. To optimize
towards Pareto-optimality, we used a technique known as lexicase selection, that selects individuals
from a large set based on a randomized (lexicographic) prioritization of the training data.

We verified that lexicase selection can be used to generate diverse distributions of either reward func-
tions or policies that align with the diverse preferences that human annotators have. We evaluated
and verified the performance of POPL in a variety of domains, including a synthetic stateless do-
main, a sequential RL domain, and even language model jailbreak detection. Across these domains,
we have demonstrated POPL’s efficacy when compared to contemporary algorithms in dealing with
hidden context in the preferences.
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A Related Work

Data used for RLHF systems often comes from multiple people, who are diverse in their preferences
and values [7, 44, 5, 48]. This data, when considered in its aggregated form, can not be captured
perfectly by a decision-making model that relies on a point estimate of utility [14]. These models
try to find a single reward function that is most likely, which is often not the optimal reward function
for any one single person. When the groups are not perfectly balanced, the minority groups might
be underrepresented in the inferred reward function [49, 24, 37, 42] or simply treated as noise [4].
There have been attempts at explicitly modeling different people with different levels of expertise
[29, 19, 30, 3], but these methods generally rely on concrete ways to distinguish between groups.

In the context of RL, Myers et al. [42] outlines an approach to learning a multi-modal reward func-
tion from online interaction between a human expert and a preference learning system. Ramé et al.
[47] learn a set of reward models by optimizing for diversity amongst the outputs. Whilst similar
to our approach, we also aim to align our reward models with hidden context groups through op-
timizing for Pareto-optimality. For generative AI models and LLMs, there have been a variety of
studies attempting to align large models with diverse human preferences. Chakraborty et al. [15]
and Siththaranjan et al. [49] learn a mixture of preference distributions or a parameterized reward
distribution, respectively. However, both these techniques operate under a contextual bandit setting
which results in sub-optimal performance when used in the more general RL setting (discussed fur-
ther in Section 2). Bradley et al. [9] and Ding et al. [23] leverage fine-tuning to improve the diversity
of model responses for better alignment and creativity, which do not directly address the ambigu-
ity and hidden context in human preferences. Jang et al. [34] and Dai et al. [18] elicit preferences
specifically along different dimensions in order to cater custom reward functions for users in test
time, and to be safe with respect to conflicting objectives, respectively. Whilst we also aim to cater
reward functions in test time as well as optimize fairness between groups, we do not have access to
labels regarding the context of the preferences generated. Finally, Rame et al. [46] also generates a
set of Pareto-optimal reward functions. However, in their setting, the system has access to ground
truth reward functions for each group, and the Pareto-front is generated through weight interpolation
between these functions.

Bayesian Reward Extrapolation (B-REx) [12] instead learns a distribution of reward models from
pairwise human preferences. B-REx is then able to perform Bayesian inference using MCMC [41]
to sample from the posterior of reward functions. With this distribution, a practitioner can establish
high confidence performance bounds that can be used to assess risk in evaluated policies as well as
detect reward hacking behaviors. However, B-REx and other reward inference methods often rely
on a faulty assumption that humans provide preferences in a Boltzmann-rational way.

On a separate front, there have been recent efforts on direct, reward-free methods for RLHF [45, 31],
where a policy is learned directly from the preferences. However, these methods still implicitly
rely on single-point estimates of reward, making them not directly applicable for reward function
curation or risk minimization in safety-critical applications with hidden context. Furthermore, the
hidden context in these preferences can lead to optimization issues when using these systems [15].

B Preliminaries

Learning from Human Preferences Reinforcement learning from human feedback considers hu-
man preferences over trajectories (or more generally, outputs of a model) in order to learn a reward
model or policy that respects the preferences [13, 45, 31, 14, 25].

In order to learn meaningfully from human preferences, one must characterize how preferences are
generated from some parameterized preferences model P (σi ≺ σj). Usually, this preference model
is based on the notion of Boltzmann-rationality, where humans generate preferences in accordance
to the Bradley-Terry (BT) model [10]. The probability of pairwise preference (σi ≻ σj) between
two trajectories given some utility function f(σ) can be written as

P (σi ≻ σj) =
eβf(σi)

eβf(σj) + eβf(σi)
(1)

where β models the confidence in the preference labels. β →∞ signals that the preference provider
is perfectly rational, and β = 0 signals that preferences are random. The Bradley-Terry model is
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Data: A dataset of demonstrations D and a series of pairwise preferences P
Result: A set of reward function or policy hypotheses

candidates← randomly initialize p hypotheses
for iter 1→ N do

for ind 1→ p do
shuffled prefs← Shuffle(P)
for pref in shuffled prefs do

old subset← candidates
candidates← subset of candidates that pass pref.
// if all individuals have failed, we skip this preference
// as it is likely to be contradictory with a previous preference
if candidates contains no candidates then

candidates← old subset
end
if candidates contains only one candidate then

break
end

end
candidate← a random individual from candidates
Append candidate to new population

end
candidates← add random noise to candidates

end
return candidates

Algorithm 1: One Step of Pareto Optimal Preference Learning

used in many fields, such as psychology [2, 28, 27], However, this model does not perfectly capture
the mechanisms driving these preferences [26, 35, 38, 6, 40].

Contrastive Preference Learning Contrastive Preference Learning (CPL) [31] learns a policy
directly from preferences without needing to learn an intermediate reward function. This method
uses a regret-based model of preference rather than the standard partial return interpretation. The
probability of a preference under a candidate policy can be written as the ratio of the exponentiated
sum of log-likelihoods of the chosen segment to the disregarded segment.

Hidden Context Siththaranjan et al. [49] introduce the problem of preference learning with hidden
context. This is the idea that preferences are generated not only based on the exponential utility
(partial return or regret), but also on some latent hidden context variable z. This variable is not
accessible to preference learning systems and poses a challenge as it is often the case that this
variable results in breaking the assumption that preferences are generated Boltzmann-rationally.

C Full Algorithm

Algorithm 1 gives an outline of a single step of Pareto Optimal Preference Learning (POPL).

D Issues with Marginalized Disributional Preference Learning Systems
(MDPLs)

Concretely, assume that users that give the preference σA ≻ σB , are likely to also give the preference
σB ≻ σC . Being aware of persistent annotator identity would allow for statements to be made like:
“the same people that prefer σA to σB are also likely to prefer σB to σC .” Mathematically, MDPLs
represent the marginalized probability P (R|s) of a specific reward value R in a state s. However, to
be sensitive to persistent annotator identity, a preference learning framework would need to maintain
the full conditional P (R|s, z). In a contextual bandit setting such as those often found for finetuning
LLMs [45], this is not an issue, as determining that an output has high risk simply depends on the
distribution of rewards attributed to that specific state. However, when learning a policy using this
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Figure 4: An example of a situation where using POPL is preferable to using a Marginalized Dis-
tributional Preference Learning (MDPL) system. Due to the fact that these systems marginalize
over the hidden context z for each state, MDPLs are unable to be sensitive to persistent annotator
identity. MDPLs represent the distribution of utility values in a column-wise fashion, or maintain a
distribution of utilities for each state, that is decoupled from that for other states. POPL, on the other
hand, represents the distribution row-wise, finding a set of utility functions that should include the
ground truth for each group.

reward function, none of the inter-segment preference dependence is captured. Below, we outline
an example to help clarify why this is an issue.

Example 1: MDPLs fail to distinguish between trajectories with different fairness profiles.
Let us consider two groups of people that have differing utilities for states A,B,C, as outlined in
Figure 4. MDPL systems represent these utilities column-wise, as they maintain a distribution u(s)
that has been marginalized over z for every state s. Now, consider the three trajectories AB, BC
and AC. These trajectories have different levels of utility when considering individual groups. For
example, choosing AB over either of the other two trajectories would have low utility and potentially
be unfair (under certain notions of fairness) to an individual from group 2. MDPL systems would
not be able to make this distinction, however, ignoring the group-specific utility. Despite the fact that
group labels are not available to the preference learning framework, it would be better to maintain
the full (un-marginalized) distribution u(s, z) in order to be sensitive to persistent annotator identity.
However, as we do not have group labels, we do not have information regarding the number of
groups nor the z values that correspond to them. Instead, we can find utility models that satisfy a
diverse set of mutually compatible preferences. With enough of these models in a set, we assume
that each hidden context group will have its utilities mapped by at least one of the models in the set.

E Definitions and Proofs

Definition 1 (Policy passing preference). A policy π(a|s) : S×A 7→ [0, 1] passes a preference (σi ≺
σj) if the probability of the preferred segment

∏
(s,a)∈σj

π(a|s) is higher than the probability of the
other segment

∏
(s,a)∈σi

π(a|s). Or, equivalently, if
∑

(s,a)∈σj
log π(s, a) >

∑
(s,a)∈σi

log π(s, a).

Definition 2 (Policy-set-relative Pareto-optimality). A policy π(a|s) : S × A 7→ [0, 1] is Pareto
optimal with respect to a set of preferencesP relative to a set of other policies Π = {π1, π2, · · · , πn}
if and only if there exists a preference (σi ≻ σj) ∈ P that π passes but all other policies in Π do not
pass.

Definition 3 (Hidden context group). A hidden context group is a group of m annotators, each with
their own reward function r1, r2, . . . , rm that all monotonically rank the segments σ ∈ D the same.

Definition 4 (Optimal policy for hidden context group). An optimal policy π∗
g for a hidden context

group g is the optimal policy in a given environment (MDP/R) using the group’s implicit ground
truth reward function rg as the reward function.

Definition 5 (Contradictory preferences). A pair of preferences (σi ≻ σj), (σx ≻ σy) are contradic-
tory under a specific policy regularization scheme if the likelihood of any policy that satisfies both
is lower than the likelihood of a policy that satisfies either.
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With no regularization, a policy that satisfies two preferences should have a higher likelihood than
one that satisfies one but not the other. This is because the likelihood of a certain policy is related to
the total number of preferences passed by it. Passing two preferences would therefore elicit a higher
likelihood than passing just one of them. However, if by satisfying both preferences, the models
would need to incur a much greater regularization loss, it is likely that these two preferences came
from individuals with differing hidden context.

Theorem 1. In a completely noiseless setting, all policies that are optimal for specific HC groups
are Pareto optimal with respect to the set of all preferences P generated from all the groups, and the
space of all possible policies Π = {π|π ∈ S ×A 7→ [0, 1]}
A proof of Theorem 1 can be found in the appendix. In essence, a set of Pareto-optimal policies must
each satisfy a unique set of mutually satisfiable preferences (ones that do not contain a contradictory
preference). As such, the optimal policies for a group with hidden context would also be Pareto-
optimal.

Proof of Theorem 1 (Contradiction). Let us assume that there is a policy π∗
z that is the optimal

policy according to a hidden context group z. This means π∗
z passes all the preferences compatible

with the values of group z and fails only the preferences that are not compatible with preferences
given by group z. For sake of contradiction, we assert that this reward function is not Pareto optimal
with respect to all other reward function candidates. This means there exists another reward function
π′ that performs better than or equal to π∗

z across every preference in P , including those generated
by group z. This is a clear contradiction as that would imply π′ is the optimal policy for group z
instead of π∗

z .

F Experimental Details

In this section, we include more implementation details of our experiments.

Baselines Throughout our experiments, we will use 3 main baselines. In the experiments on re-
ward function inference, we use Bayesian Reward Extrapolation (B-REx) [12] as a baseline, as
it generates a large set of reward function hypotheses based on a Boltzmann-rational likelihood
function, and has demonstrated efficacy in RL domains. For our policy inference experiments, we
compare to Contrastive Preference Learning [31] as it is a leading RLHF algorithm for arbitrary
sequential tasks. We also use a naive method of learning a set of policies based on CPL that we call
Multi-CPL. In this approach, after pretraining, we fine-tune the last layer using the CPL objective
multiple times to generate a large set of reward functions.

For our language model (contextual bandit) experiments, we compare to both B-REx and Distri-
butional Preference Learning (DPL) [49], as well as standard the standard RLHF paradigm [17],
as these present a variety of approaches for generating reward models that can be used to ensure
fairness across groups.

F.1 Synthetic Experiments

We follow the experimental procedure of Siththaranjan et al. [49] in generating preferences, except
modify their code such that we ensure that annotator identity is held constant for each preference.
We use last layer finetuning on a neural network that is randomly initialized. We did not include any
pre-training here to ensure that we are not pushing our reward models towards any modes before
starting to train. We use a batch size of 2048 preferences, a step size of 0.1 and 10000 steps of
MCMC for B-Rex. For POPL, we use a population size of 100 and a generation count of 100. We
use a β (confidence) value of 10, although have found that changing this value does not significantly
affect B-REx’s performance.

F.2 Gridworld Model Experiments

For the Gridworld model experiments, we base our environment on the Minigrid package [16].
Demonstrations were generated by rolling out many checkpointed policies at different levels of
performance, trained using Proximal Policy Optimization (PPO). Then, these demonstrations were
annotated based on a high performing policy’s action selection probabilities.
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For MultiCPL and POPL, we use behavior cloning directly on the demonstrations for 1000 iterations
with a batch size of 64 and a learning rate of 0.001 with the Adam optimizer [36] as pretraining.
The model architecture was a simple convolutional neural network that takes input from the agent’s
view window, and has a single fully connected layer with 128 nodes to output the 7 actions from
the environment. For both MultiCPL and POPL, we use last layer fine-tuning. For MultiCPL, we
use the CPL objective, a learning rate of 0.001, where each model in a population of 500 models is
trained for 20 iterations. For POPL, we use a learning rate of 0.2, and 1000 total steps. We sample
640 preferences every 10 iterations (as we can cache the last layer features for this examples for
improved performance), and sub-sample a batch of size 64 for each step of lexicase selection. For
a fair comparison between these two approaches, we approximately hold constant total wall clock
time on the same hardware. Given a final population of policies generated by POPL or MultiCPL,
we select the top 10 models for each hidden context class as the catered policy for that group.

F.3 Language Model Experiments

In the LLM experiments, we assess the performance of reward learning by examining preference
accuracy on the test set. To investigate vulnerabilities to jailbreak, we analyze pairs of responses to
jailbreak prompts designed by Wei et al. [52] to deceive the model into giving a harmful response.
We calculate the percentage of prompts where it assigns a higher reward to the jailbroken response
(“jailbreak rate”). Additionally, we evaluate the reward function’s ability to assess helpfulness on
non-harmful prompts, i.e., the reward function predicts higher rewards on the more helpful response.
We compare our method to normal RLHF with an LLM-based preference model, Bayesian Reward
Extrapolation (B-REx), and distributional preference learning (DPL). DPL methods predict parame-
ters of the distribution of reward values for each response, rather than a single reward value, in order
to better account for hidden context in human preferences.

For standard RLHF, we use the pre-trained LLAMA-2-7b [51] preference model by Siththaranjan
et al. [49], which is fine-tuned on the HH-RLHF dataset using LoRA [33]. We implement B-REx by
performing linear reward extrapolation on the last layer of the pre-trained LLAMA-2-7b preference
model. Following the B-REx implementation in [11], we run 200,000 steps of MCMC with a step
size of 0.05. We use a burn-in of 5000 and a skip every 20 samples to reduce auto-correlation. For
POPL, we run lexicase selection for 100 generations with a population size of 1000, and randomly
sample 100 reward functions in the last generation. Default settings use the mean reward across the
entire set. For fairness optimization, we use the 10th percentile of reward values across all the reward
functions in the set.

Because the ranking likelihood is invariant to affine transformations of the rewards, we normalize
the rewards by subtracting the median reward calculated on the training set over all the responses.
This ensures that the reward values are comparable when calculating the lower quantile of rewards
in risk-averse optimization.

G Broader Societal Impacts

The proposed work on Pareto Optimal Preference Learning (POPL) aims to enhance the alignment
of AI systems with diverse human values, thereby addressing critical issues of fairness and repre-
sentation. By focusing on learning from human preferences with hidden context, our method seeks
to ensure that AI models do not disproportionately favor or disadvantage specific groups, making
them more equitable and just. This has the potential to significantly improve the societal acceptance
and trust in AI systems, particularly in sensitive applications such as healthcare, education, and law
enforcement, where fairness and inclusivity are critical.

However, there are potential negative societal impacts to consider. The deployment of AI systems
that can cater to specific groups might inadvertently reinforce existing biases if the hidden context re-
flects social prejudices or discriminatory practices. Therefore, it is crucial to incorporate safeguards
and robust validation mechanisms to detect and mitigate any biased outcomes. As researchers and
developers, we must be vigilant about the sources of our training data and continually audit AI
systems for unintended consequences.

Moreover, the computational work required for training these models can have environmental im-
pacts, given the high-energy consumption associated with large-scale AI computations. Researchers
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should consider optimizing algorithms to be more efficient and exploring the use of renewable en-
ergy sources to mitigate this impact.

By considering these factors, we aim to advance AI technologies in a direction that promotes fair-
ness, inclusiveness, and sustainability, ensuring that they serve the broader interests of society.
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