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Abstract

Text-to-image diffusion models may produce harmful or copyrighted content, moti-
vating research on concept erasure. However, existing approaches mainly target
text prompts, overlooking other input modalities crucial to real-world applications
such as image editing and personalization. These modalities can act as attack
surfaces where erased concepts reappear. To address this, we introduce a multi-
modal evaluation framework that benchmarks concept erasure methods across text
prompts, learned embeddings, and inverted latents. Our analysis shows that current
methods perform well on text prompts but largely fail under learned embeddings
and latent inversion, with Concept Reproduction Rate (CRR) exceeding 90% in
white-box settings. We further propose Inference-time Robustness Enhancement
for Concept Erasure (IRECE), a plug-and-play module that localizes target con-
cepts via cross-attention and perturbs their latents during denoising. Experiments
show that IRECE restores robustness, reducing CRR by up to 40% under the most
challenging white-box latent inversion while preserving visual quality.

1 Introduction

The contemporary diffusion models [1, 2, 3, 4, 5] have demonstrated remarkable progress in high-
quality and versatile content generation, supporting tasks such as image synthesis, image editing [6,
7, 8], personalized generation [9, 10], and style transfer [11, 12]. However, training on large-
scale uncurated datasets makes them prone to reproducing copyrighted [13, 14] or inappropriate
content [15]. Retraining on filtered datasets offers a direct solution, but it is costly and often degrades
generative quality [16]. Recent studies therefore explores concept erasure [17, 18, 19, 20, 21, 22, 23,
24], which aims to prevent text-to-image diffusion models from generating harmful or copyrighted
content by suppressing specific concepts through fine-tuning cross-attention layers of diffusion
models without retraining from scratch.

Despite their effectiveness under text prompts, existing methods reveal critical weaknesses. In
practice, users often rely on learned embeddings from personalization techniques [9, 10] or noisy
latent from inversion methods [25, 26], which fall outside the assumptions of text-based concept
erasure. Our analysis shows that while suppression is reliable for basic prompts, concepts frequently
re-emerge with learned embeddings or inverted latents, reaching Concept Reproduction Rate (CRR)
over 90% in white-box setting with unconditional prompt. Geroge et al. [27] also found that the erased
concepts can be revived through fine-tuning the model with a few samples. This indicates that current
methods primarily disrupt text–image alignment rather than fully removing concepts. Moreover,
although adversarial prompt attacks [28, 29] expose vulnerabilities, defenses based on adversarial
training [22] remain limited to textual inputs, underscoring the need to explore robustness beyond the
text space. This raises our central research question: How robust are concept erasure methods across
different input modalities, and can their vulnerabilities be mitigated without retraining?
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Figure 1: Illustration of concept erasure under latent inversion. Existing methods cannot effec-
tively remove the target concept (airplane), whereas our IRECE method successfully suppresses it
while preserving visual quality.

Motivated by these limitations, we introduce a novel multimodal evaluation benchmark that system-
atically evaluates the robustness of the concept erasure methods across three representative input
settings for text-to-image diffusion models: text prompts, learned embeddings, and latent inversion,
under both white-box and gray-box settings, respectively. With the extensive evaluations from
this framework, the results demonstrate that the state-of-the-art concept erasure methods are still
vulnerable to various inference-time attack methods. Building upon these insights, we further propose
Inference-time Robustness Enhancement for Concept Erasure (IRECE), a plug-and-play module
that localizes target concepts via cross-attention and selectively perturbs associated latents during
denoising without retraining.

2 Multimodal Evaluation Framework

Most concept-erasure methods are evaluated only on text prompts. However, there exists multiple
ways that the users can interact with the model beyond text prompts, such as learned embeddings,
inverted latents, etc. Therefore, we design a comprehensive multimodal evaluation framework with
three distinct settings:

Text Prompt Evaluation. First, we evaluate the erased models using both basic prompts containing
the target concept and adversarial prompts generated following Ring-A-Bell [30].

Learned Embedding Evaluation. We adopt Textual Inversion (TI) [9] to encode visual concepts
from the reference images into learned embeddings, which are then used to guide the erased model.
Then, we evaluate three settings: (i) White-box, where TI is trained directly on the erased model;
(ii) Gray-box, where TI is trained on a standard diffusion model without modifications; and (iii)
Gray-box with perturbations, where small perturbations are added to reference images in the
gray-box case to induce semantic shifts in the learned embeddings.

Inverted Latent Evaluation. We leverage DDIM inversion [31] to map a reference image into
the initial noisy latent, later combined with the text prompt during sampling. This setup evaluates
whether erased concepts re-emerge when the generative process is directly initialized from a concept-
containing latent. We consider both (i) White-Box inversion, where inversion is performed directly
on the erased model and (ii) Gray-Box inversion where inversion is performed on the standard
diffusion model without modifications. Moreover, we adopt four prompt-pair strategies (Table 1 in
the Appendix), covering the unconditional, generic, coarse, and explicit target cases.

3 Inference-time Robustness Enhancement for Concept Erasure (IRECE)

We propose Inference-time Robustness Enhancement for Concept Erasure (IRECE), a plug-and-play
module that improves the reliability of erased models without retraining. The core idea is to disrupt
latent regions encoding the erased concept during inference while preserving the rest of the image.
Starting from the initial noisy latent xT , the erased model θera progressively denoises it under the
guidance of the sample prompt embedding csam. At an intervention step t∗, we identify spatial regions
linked to the target concept ctgt using cross-attention maps Aℓ

cross from each layer ℓ of the standard
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model θstd. These maps are upsampled to a common resolution and aggregated:

A =

L∑
ℓ=1

Upsample
(
Aℓ

cross(xt, ctgt; θstd)
)
,

A binary mask M is obtained by thresholding A with parameter τ , marking pixels most associated
with the erased concept:

M(i, j) =

{
1, A(i, j) ≥ τ,

0, otherwise.

The masked latent regions are then replaced with Gaussian noise ξt:

x∗
t = (1−M)⊙ xt +M ⊙ ξt,

Denoising resumes from x∗
t according to

xt−1 =

{
DDIMStep(x∗

t , csam, t, θera), if t = t∗,

DDIMStep(xt, csam, t, θera), otherwise.

and continues until t = 0, producing the final image x∗
0. By localizing the erased concept via

attention, masking its footprint, and overwriting it with noise, IRECE prevents concept reappearance
while maintaining visual coherence. The approach operates entirely at inference time and readily
extends to tasks such as object removal or replacement.

4 Experiments

4.1 Experimental Setup

Dataset. We adopt Stable Diffusion (SD) v1.4 [2] as the base model and evaluate three representative
erasure methods: ESD [19], UCE [20], and Receler [22]. Following prior work, we use CIFAR-10
class labels as target concepts. For evaluation, we construct four datasets.

1. SD-Normal: Constructed by generating images from SD using five prompt templates: “An
image of TARGET”, “A painting of TARGET”, “A picture of TARGET”, “A photo of TARGET”,
and simply “TARGET”, each instantiated with 30 random seeds, yielding 150 prompts per
class.

2. SD-AdvPrompt: Constructed by attacking the SD-Normal templates with Ring-A-Bell
using the method’s official configuration.

3. SD-TI: Constructed by learning a special embedding for each reference image in the
SD-Normal set via Textual Inversion, optimized with a learning rate of 5e-4 for 1500
optimization steps, and then inserting the learned token into the same prompt templates.

4. SD-LatentInv: Constructed by applying DDIM inversion [25] to images in the SD-Normal
dataset to obtain their initial latents.

Evaluation Metrics. We assess concept erasure using GroundingDINO [32] and report the Concept
Reproduction Rate (CRR), defined as the percentage of generated samples containing the erased
concept. Lower CRR indicates stronger suppression.

4.2 Evaluation Results

Text Prompt Evaluation. We evaluate concept erasure methods on the SD-Normal and SD-
AdvPrompt datasets (Fig. 2a). Under standard text prompts, Stable Diffusion (SD) yields a high CRR
of 96.1%, while ESD, UCE, and Receler reduce it to 26.5%, 18.5%, and 15.0%. However, robustness
drops sharply under adversarial prompts: SD remains high at 95.0%, whereas ESD and UCE rise to
66.7% and 36.9%. Only Receler maintains a low CRR of 14.8%, confirming that adversarial training
effectively mitigates such attacks.
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Figure 2: Concept Reproduction Rate (CRR) for concept-erasure methods under two evaluation
settings: (a) text prompts and (b) learned embeddings. In (a), bar colors distinguish between
original text prompts and adversarial prompts. In (b), bar colors denote white-box, black-box, and
black-box with perturbation settings, with results from original text prompts included as a reference.
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(a) ESD White-box Setting
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(b) UCE with White-box Setting
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(c) Receler with White-box Setting
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(d) ESD with Gray-box Setting
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(e) UCE with Gray-box Setting
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(f) Receler with Gray-box Setting

Figure 3: Comparison of Concept Reproduction Rate (CRR) with and without IRECE under
latent-inversion evaluation. Subfigures present results for three representative concept-erasure
methods under white-box and gray-box settings. The horizontal axis groups correspond to different
prompt types (“”, “image”, “object” and TARGET), and bar colors indicate whether IRECE is applied.

Learned Embedding Evaluation. We evaluate concept erasure methods on the SD-TI dataset
(Fig. 2b). In the white-box setting, where embeddings are learned on the erased model, all methods
show a sharp increase in CRR compared with the text-prompt case: ESD rises from 26.5% to 91.1%,
UCE from 18.5% to 90.4%, and Receler from 15.0% to 56.0%, indicating that learned embeddings
substantially weaken suppression. In the more realistic gray-box setting, where embeddings are
trained on the standard model but tested on the erased one, CRR drops to 41.2% for ESD, 35.7%
for UCE, and 12.4% for Receler. Notably, Receler falls below its text-prompt baseline, while ESD
and UCE remain higher, suggesting persistent vulnerability. Adding small image perturbations (with
a budget of 8) during embedding training further intensifies the attack, raising CRR to 74.0% for
ESD, 54.2% for UCE, and 15.1% for Receler. Overall, learned embeddings and perturbations both
compromise erasure robustness, with Receler remaining the most resilient.
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Figure 4: Comparison of erased models with the plug-and-play IRECE module across 10 target
concepts. Results are generated in the white-box setting with the unconditional prompt. The first
column shows the reference images for latent inversion, and the remaining columns display outputs
from different concept erasure methods.

Inverted Latent Evaluation. We evaluate concept erasure methods on the SD-LatentInv dataset
(Fig. 3). In the white-box setting, latent inversion effectively bypasses erasure, with the unconditional
prompt driving CRR above 92% for all methods. The “image” strategy also achieves over 70%, and
even the TARGET strategy exceeds 50%, indicating that inversion substantially weakens suppression
regardless of prompt type. In the gray-box setting, CRR remains higher than text-prompt baselines.
The unconditional prompt continues to be the strongest, raising CRR to 57.3% for ESD, 95.2%
for UCE, and 79.0% for Receler. These results show that latent inversion exposes the most severe
vulnerability: by initializing the generative process from concept-containing latents, erased concepts
frequently re-emerge, and even adversarially trained methods like Receler struggle to remain robust.
This highlights the inherent limitation of current text-based defenses.

4.2.1 Inference-time Robustness Enhancement for Concept Erasure (IRECE)

Quantitative results in Fig. 3 show that IRECE consistently improves robustness across all settings.
The largest gain occurs under the white-box latent inversion with unconditional prompt, where CRR
drops by over 40% for all methods. These results demonstrate that IRECE restores robustness even
under the most challenging attacks. Qualitative examples in Fig. 4 further confirm its effectiveness.
For classes such as airplane, bird, deer, ship, and truck, the target concept is almost entirely removed,
while for automobile, cat, dog, frog, and horse, it is replaced with alternative content. In both cases,
non-target regions remain intact and transitions appear coherent, indicating that IRECE not only
strengthens robustness but also enables controlled object removal and replacement.

5 Conclusion

We present a multimodal framework to evaluate the robustness of concept-erasure methods in
diffusion models. While prior approaches perform well on text-prompt evaluations, they degrade
sharply with learned embeddings and nearly fail under image latent inversion, revealing critical
vulnerabilities. To address this, we propose IRECE, a plug-and-play inference-time module that
restores robustness without retraining. Experiments show that IRECE reduces CRR by up to 40%
under white-box latent inversion while preserving visual quality, establishing it as an effective defense
against multimodal attacks. Beyond robustness, IRECE also supports targeted object removal and
replacement, emphasizing the need for reliable concept erasure in generative models.
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concept editing in diffusion models. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), 2024.

[21] Nupur Kumari, Bingliang Zhang, Sheng-Yu Wang, Eli Shechtman, Richard Zhang, and Jun-Yan
Zhu. Ablating concepts in text-to-image diffusion models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2023.

[22] Chi-Pin Huang, Kai-Po Chang, Chung-Ting Tsai, Yung-Hsuan Lai, Fu-En Yang, and Yu-
Chiang Frank Wang. Receler: Reliable concept erasing of text-to-image diffusion models via
lightweight erasers. In Proceedings of the European Conference on Computer Vision (ECCV),
2024.

[23] Shilin Lu, Zilan Wang, Leyang Li, Yanzhu Liu, and Adams Wai-Kin Kong. Mace: Mass concept
erasure in diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 6430–6440, 2024.

[24] Samyadeep Basu, Nanxuan Zhao, Vlad I Morariu, Soheil Feizi, and Varun Manjunatha. Local-
izing and editing knowledge in text-to-image generative models. In International Conference
on Learning Representations (ICLR), 2023.

[25] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in Neural Information Processing Systems (NeurIPS), 2021.

[26] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion
for editing real images using guided diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

[27] Naveen George, Karthik Nandan Dasaraju, Rutheesh Reddy Chittepu, and Konda Reddy
Mopuri. The illusion of unlearning: The unstable nature of machine unlearning in text-to-image
diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 13393–13402, 2025.

[28] Zhi-Yi Chin, Chieh-Ming Jiang, Ching-Chun Huang, Pin-Yu Chen, and Wei-Cheng Chiu.
Prompting4debugging: red-teaming text-to-image diffusion models by finding problematic
prompts. In International Conference on Machine Learning (ICML), 2024.

[29] Minh Pham, Kelly O Marshall, Niv Cohen, Govind Mittal, and Chinmay Hegde. Circumventing
concept erasure methods for text-to-image generative models. arXiv preprint, 2023.

[30] Yu-Lin Tsai, Chia-Yi Hsu, Chulin Xie, Chih-Hsun Lin, Jia-You Chen, Bo Li, Pin-Yu Chen,
Chia-Mu Yu, and Chun-Ying Huang. Ring-a-bell! how reliable are concept removal methods
for diffusion models? In International Conference on Learning Representations (ICLR), 2024.

[31] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
International Conference on Learning Representations (ICLR), 2021.

[32] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training
for open-set object detection. In Proceedings of the European Conference on Computer Vision
(ECCV), 2024.

7


	Introduction
	Multimodal Evaluation Framework
	Inference-time Robustness Enhancement for Concept Erasure (IRECE)
	Experiments
	Experimental Setup
	Evaluation Results
	Inference-time Robustness Enhancement for Concept Erasure (IRECE)


	Conclusion

