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Abstract

Multimodal Large Language Models (MLLMs)001
have shown remarkable versatility in under-002
standing diverse multimodal data and tasks.003
However, these capabilities come with an in-004
creased model scale. While post-training prun-005
ing reduces model size in unimodal models, its006
application to MLLMs often yields limited suc-007
cess. Our analysis discovers that conventional008
methods fail to account for the unique token009
attributes across layers and modalities inherent010
to MLLMs. Inspired by this observation, we011
propose TAMP, a simple yet effective pruning012
framework tailored for MLLMs, featuring two013
key components: (1) Diversity-Aware Sparsity,014
which adjusts sparsity ratio per layer based on015
diversities among multimodal output tokens,016
preserving more parameters in high-diversity017
layers; and (2) Adaptive Multimodal Input Ac-018
tivation, which identifies representative mul-019
timodal input tokens using attention scores to020
guide unstructured weight pruning. We validate021
our method on two state-of-the-art MLLMs:022
LLaVA-NeXT, designed for vision-language023
tasks, and VideoLLaMA2, capable of process-024
ing audio, visual, and language modalities. Em-025
pirical experiments across various multimodal026
evaluation benchmarks demonstrate that each027
component of our approach substantially out-028
performs existing pruning techniques.1029

1 Introduction030

Large Language Models (LLMs) have achieved re-031

markable success at billion-parameter scales (Tou-032

vron et al., 2023a,b; DeepSeek-AI et al., 2025),033

excelling in challenging tasks. Building on this,034

Multimodal Large Language Models (MLLMs) (Li035

et al., 2024a; Zhan et al., 2024; Wu et al., 2024),036

which extend LLMs to handle diverse modality037

inputs, have grown in size to address the complexi-038

ties of multimodal tasks (Liang et al., 2024; Tong039

et al., 2024; Shi et al., 2024). While beneficial040

1Our code will be publicly available upon publication.
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Figure 1: Illustration of multimodal token attributes. (Top):
t-SNE visualization of multimodal output tokens of the layer,
exhibiting unique distributions of each modality. (Bottom):
Cosine similarity between the ℓ2-norm of tokens from each
modality and all tokens, demonstrating a bias in input ac-
tivations toward the modality with the largest token count
(Na,Nv>>Nl), resulting in suboptimal weight pruning.

for performance, their colossal model size imposes 041

substantial computational and memory resources, 042

limiting their practicality in resource-constrained 043

scenarios (Reid et al., 2024; Li et al., 2024c). 044

Post-training model pruning (Sun et al., 2024b; 045

Frantar and Alistarh, 2023; Ma et al., 2023; Yu and 046

Xiang, 2023) effectively reduces model size by re- 047

moving a massive number of parameters without 048

compromising performance. Studies on applying 049

LoRA (Zhang et al., 2024a; He et al., 2024) or quan- 050

tization (Guo et al., 2024) on top of pruned models 051

have been conducted to further enhance the per- 052

formance and efficiency of pruning strategies. Al- 053

though effective, most existing techniques assume 054

unimodal models, limiting their effectiveness in 055

multimodal settings. For example, in Figure 1, our 056

empirical examination shows that conventional uni- 057

modal pruning methods, such as Wanda (Sun et al., 058

2024b) and similar pruning approaches (Zhang 059

et al., 2024c; He et al., 2024; Sung et al., 2024; 060

Yin et al., 2024), fail to generalize to multimodal 061

settings where there can be substantial variances 062

in input token activation and output token distribu- 063

tions across modalities (Liang et al., 2024) 064
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Drawing inspiration from these observations, we065

introduce Token-Adaptive Multimodal Pruning066

(TAMP), a novel MLLM pruning framework that067

leverages inherent multimodal token attributes.068

TAMP comprises two key components: first, we069

employ a layer-wise sparsity ratio strategy that070

dynamically adjusts the sparsity ratio per layer,071

guided by the varying output token distributions.072

Specifically, we assign lower sparsity ratios to lay-073

ers exhibiting greater output token variations, en-074

suring that these layers retain sufficient parameters075

to encode rich multimodal representations. Second,076

instead of using all input tokens to compute input077

activations, we utilize attention scores to identify078

key multimodal input tokens that account for each079

layer’s unique multimodal processing demands.080

We validate our approach in various pruning081

scenarios using two distinct MLLMs, LLaVA-082

NeXT (Li et al., 2024a) and VideoLLaMA2 (Cheng083

et al., 2024), evaluated on diverse multimodal084

benchmarks. Our layer-wise sparsity ratio strat-085

egy, based on varying output distributions, alone086

outperforms recent layer-wise sparsity approaches087

like ECoFLAP (Sung et al., 2024) and OWL (Yin088

et al., 2024), with 4.0% higher performance at089

50% sparsity. Moreover, our approach of selecting090

multimodal tokens for input activations achieves091

up to 4.1% performance gains over the state-of-092

the-art LLM pruning method Wanda (Sun et al.,093

2024b) at 50% sparsity. Combining both strate-094

gies further enhances performance, consistently095

surpassing strong pruning baselines. Our approach096

shows robustness at high sparsity, where our ap-097

proach outperforms the second-best baseline with098

8.2% higher performance at 70% sparsity. Notably,099

our approach exclusively uses multimodal token100

attributes, avoiding the need for resource-intensive101

gradient or Hessian computations (Frantar and Al-102

istarh, 2023; Sung et al., 2024), supporting its ef-103

ficiency by leveraging multimodal attributes for104

effective MLLM pruning.105

In summary, our contributions are as follows:106

• We conduct comprehensive analyses and ab-107

lation studies to identify the importance of108

multimodal tokens in MLLM pruning. These109

include extensive analyses of multimodal to-110

ken distributions across layers and in-depth111

investigations into their impact on pruning.112

• We introduce TAMP, an effective MLLM113

pruning pipeline that leverages multimodal114

token attributes to measure layer importance115

for layer-wise sparsity and computes adaptive 116

input activations for capturing multimodal pro- 117

cessing demands at each layer. 118

• We validate our method on MLLMs that re- 119

flect their latest trends, demonstrating its ef- 120

fectiveness in preserving diverse multimodal 121

abilities. Ours consistently outperforms prun- 122

ing baselines, even at extreme pruning ratios. 123

2 Related Work 124

Multimodal Large Language Models Re- 125

cent advancements in Large Language Mod- 126

els (LLMs), such as LLaMA (Touvron et al., 127

2023a,b), Qwen (Yang et al., 2024), and 128

DeepSeek (DeepSeek-AI et al., 2025) have 129

achieved remarkable progress in various natural 130

language processing tasks by scaling to billions of 131

parameters. Building on this success, Multimodal 132

Large Language Models (MLLMs) have emerged 133

as a new standard of multimodal models, integrat- 134

ing multiple modalities, including text, image, au- 135

dio and video, into a unified framework to address 136

complex multimodal challenges in the real world 137

(Li et al., 2024c; Zhan et al., 2024; Wu et al., 2024). 138

LLaVA-NeXT (Li et al., 2024a) integrates a 139

visual encoder into LLMs and facilitates the un- 140

derstanding of high-resolution images, improving 141

tasks such as visual question answering (Masry 142

et al., 2022; Kembhavi et al., 2016) and visual rea- 143

soning (Yue et al., 2024; Liu et al., 2024). Ex- 144

panding beyond images, MLLMs such as Vide- 145

oLLaMA2 (Cheng et al., 2024) and LLaVA- 146

OneVision (Zhan et al., 2024) have broadened their 147

potential applications by incorporating other modal- 148

ities such as audio, video, and interleaved images. 149

However, as MLLMs continue to grow in size, their 150

deployment in resource-constrained environments 151

becomes increasingly challenging. 152

Model compression To tackle the challenges 153

posed by increasing model scale, model compres- 154

sion techniques have emerged as a critical re- 155

search area, aiming to optimize model size while 156

maintaining performance (Yao et al., 2022; Wang 157

et al., 2024a; Frantar et al., 2023; Lin et al., 2024). 158

Among these techniques, model pruning has gained 159

prominence by removing redundant parameters or 160

structures that minimally contribute to overall per- 161

formance (Sun et al., 2024b; Zhou et al., 2021; Ma 162

et al., 2023). Approaches like Wanda (Sun et al., 163

2024b) utilize weight magnitudes and input activa- 164

tions to compress LLMs, while SparseGPT (Fran- 165
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Figure 2: Overview of TAMP. Our method utilizes multimodal token attributes to guide MLLM pruning. (Left): To effectively
preserve each MLLM layer’s differing capability to encode rich multimodal output tokens after pruning, we apply layer-wise
sparsity, assigning sparsity inversely to the layer’s importance, which is computed as the average of intra-modality (sv, sl) and
inter-modality (svl) diversities (Section 3.2). (Right): To capture unique multimodal processing demands across different layers,
we leverage attention scores to adaptively select multimodal input tokens for input activation calculations (Section 3.4).

tar and Alistarh, 2023) addresses the challenge of166

LLM pruning from the perspective of layer-wise167

output reconstruction problem.168

However, all the aforementioned works are pri-169

marily designed for unimodal models, limiting their170

applicability to MLLMs. While ECoFLaP (Sung171

et al., 2024) and VLMPrune (He et al., 2024) ex-172

tend pruning strategies to Vision-Language Models173

(VLMs) by applying layer-wise sparsity ratios tai-174

lored to vision-language characteristics, they treat175

multimodal tokens as if they originate from a single176

modality, overlooking their unique properties. In177

contrast, our work examines the impact of multi-178

modal tokens on MLLM weight pruning and ex-179

plicitly leverages multimodal properties for optimal180

pruning. Unlike prior approaches, we conduct com-181

prehensive experiments on recent MLLMs, includ-182

ing those with more than two modalities, aligning183

with the latest advancements in MLLM design.184

3 Method185

In this section, we first present empirical studies186

that reveal key properties of multimodal tokens and187

their implications for pruning. Based on these in-188

sights, we introduce the core components of Token189

Adaptive Multimodal Pruning (TAMP). The overall190

framework is illustrated in Figure 2.191

3.1 Preliminaries192

A predominant MLLM typically consists of193

modality-specific encoders connected to an LLM194

through intermediate networks, with multimodal195

information from these encoders provided to the196

LLM as input tokens. While the following descrip-197

tions focus on an MLLM that uses an image en-198

coder for visual information for simplicity, our ap-199

proach is extensible to MLLMs that process other200

modalities, such as audio, video, or both.201

Each block of the LLM processes two types of 202

input tokens: visual Xv ∈RNv×Cin and language 203

Xl ∈RNl×Cin input tokens, where Nv and Nl de- 204

note their respective token counts, and Cin is the 205

input dimension size. The block contains a multi- 206

head attention (MHA) module, which computes 207

an attention score A ∈ R(Nv+NL)×(Nv+NL) that 208

measures interplay between tokens, and a feed- 209

forward network (FFN) module, which refines 210

the output from the MHA module. Within these 211

modules, varying types of linear projection layers 212

W∈RCout×Cin transform input tokens into output 213

tokens, where Cout is the output dimension size: 214

Z =

[
Zv

Zl

]
=

[
Xv

Xl

]
W⊤ = XW⊤, (1) 215

where Zv and Zl represent the visual and lan- 216

guage output tokens, respectively. To determine 217

which parameters to prune, many predominant 218

methods (Sun et al., 2024b; Sung et al., 2024; Yin 219

et al., 2024) define layer’s parameter importance 220

based on input activation and weight magnitude, 221

computed as: I = ||X||2·|W|, where |·| is element- 222

wise absolute value operator and ||X||2∈RCin is 223

the input activation computed for each channel as 224

ℓ2-norm of that channel’s activation across all input 225

tokens. Parameters with the lowest importance are 226

considered redundant and thus pruned. 227

3.2 Diversity-Aware Sparsity 228

We first conduct a systemic study of the distri- 229

butional properties of multimodal output tokens 230

by computing intra- and inter-modality diversities. 231

Intra-modality diversities measure the distances 232

among output tokens within the same modality, 233

while inter-modality diversity quantifies those be- 234
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Figure 3: Intra-modality diversities (sv, sl) measure the average cosine distances among output tokens within the same modality,
and inter-modality diversity (svl) measures distances between output tokens from different modalities. We compute these
diversities for each projection type in multi-head attention (Top) and feed-forward network (Bottom) across LLaVA-NeXT
blocks. Notably, diversity trends differ by (1) modalities, (2) projection types, and (3) blocks, demonstrating varying capacities
that should be preserved to effectively encode multimodal information across layers.

tween output tokens from different modalities:235

sv = Ei,j∼Cv [dij ] , sl = Ei,j∼Cl [dij ] ,

svl = Ei∼Cv , j∼Cl [dij ] , dij = 1− ⟨Zi,Zj⟩,
(2)236

where Cv and Cl denote visual and language token237

indices, respectively, and dij is the cosine distance238

between output tokens. sv and sl are intra-modality239

diversities of visual and language modalities, re-240

spectively, while svl is inter-modality diversity.241

Figure 3 illustrates these diversities across pro-242

jection layer types and MLLM blocks. We observe243

three key properties of output token distributions:244

(1) Comparing sv, sl and svl reveals notable differ-245

ence across modalities. This confirms the need to246

compute intra- and inter-modality diversities sepa-247

rately to capture unique patterns of each modality;248

(2) both intra- and inter-modality diversities vary249

significantly across layer types. As shown in Fig-250

ure 3 Top, value projection layers (v-proj) exhibit251

higher diversities than query (q-proj) and key (k-252

proj) projection layers, despite receiving identical253

input tokens within the same block, suggesting that254

value layers encode richer multimodal information;255

(3) these diversities fluctuate significantly across256

blocks, indicating that the capability to encode mul-257

timodal information varies with model depth.258

To address these observations in MLLM pruning,259

we propose a layer-wise sparsity strategy based on260

multimodal output token diversity. Our core in-261

tuition is that layers with higher multimodal out-262

put token diversity should retain more parameters263

during pruning to maintain their capability to en- 264

code richer multimodal output tokens. We quan- 265

tify the importance of each MLLM layer as the 266

average of intra- and inter-modality diversities: 267

s = (sv + sl+ svl)/3. Following ECoFLAP (Sung 268

et al., 2024), sparsity is set inversely proportional to 269

the precomputed layer’s importance, ensuring that 270

layers with higher diversities retain more parame- 271

ters to preserve their representational capabilities. 272

3.3 Influence of Multimodal Input Tokens 273

We now shift our focus to the impact of input tokens 274

in MLLM pruning. Our primary assumption is that 275

input tokens from different modalities contribute 276

distinctively to multimodal information process- 277

ing. To investigate this, we first analyze attention 278

distributions across blocks for each modality by 279

computing the average attention scores per modal- 280

ity from the attention score matrix A, as depicted 281

in Figure 4. The result reveals a clear trend: differ- 282

ent blocks put varying degrees of reliance on visual 283

and language inputs. This variation in modality 284

reliance across blocks implies that a static, uniform 285

input activation calculation may be suboptimal. 286

This phenomenon motivates us to examine 287

whether modality-specific input tokens contribute 288

distinctively to pruning outcomes. To explore this, 289

we conduct preliminary experiments comparing 290

two approaches for computing input activations: (1) 291

the conventional approach of using both visual and 292

language input tokens (||X||2, denoted as "V+L"), 293
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and (2) a variant that focuses solely on language294

tokens (||Xl||2, denoted as "L"). We apply both295

methods across the 32 blocks of LLaVA-NeXT (Li296

et al., 2024a) to assess the influence of multimodal297

tokens at different network depths.298

Table 1 presents the pruning results for the con-299

ventional approach (V+L) alongside the variant (L).300

Notably, including both visual and language to-301

kens across all blocks achieves better performance302

in a visually rich information understanding task303

(e.g., ChartQA). In contrast, omitting visual tokens304

reduces performance on ChartQA but improves305

results on a multimodal understanding task (e.g.,306

MME). These results confirm our intuition that dif-307

ferent blocks engage with specific modalities to308

varying degrees for multimodal information pro-309

cessing, which influences pruning outcomes.310

3.4 Adaptive Multimodal Input Activation311

The above findings support the need for a prun-312

ing strategy that dynamically adapts to modality-313

specific contributions of individual blocks. To ad-314

dress this, we propose an adaptive method that315

selects multimodal input tokens for input activation316

calculations tailored to address each block’s unique317

multimodal processing needs.318

A key step in our approach is identifying core319

input tokens by measuring their contributions. In320

this work, we use the last row of the attention score321

matrix A as token contributions: a=A[: ,−1]∈322

RNv+Nl , which captures importance of multimodal323

tokens. This can guide the dynamic selection of in-324

put tokens based on the unique processing demand325

of each block. For example, in a layer emphasizing326

visual information, visual tokens have high contri-327

butions a. Thus, more visual tokens are prioritized328

during the selection for that layer, ensuring that its329

input activation retains crucial visual features.330

For input token selection, we adopt the data se-331

lection algorithm in Maharana et al. (2023) to select332

core input tokens while considering token diversity.333

This selection process prioritizes input tokens with334

high a values while ensuring that the output tokens335

they produce remain diverse in output token space.336

Specifically, we first update a by incorporating both337

the intrinsic and neighboring token contributions:338

ai←ai+
∑
j∈Ni

eij ·aj , eij=exp (−γ ∗ dij) , (3)339

where Ni denotes ith token’s nearest neighbors.340

We consider three nearest neighbors and γ = 1,341

following the default setting of the algorithm.342

At
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e

Block Index
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Figure 4: Average attention score across LLaVA-NexT blocks.
Varying attention scores indicate that unique multimodal pro-
cessing demands exist for each block.

Method MME- MME- ChartQA
cognition perception

Full Model 376.8 1588.3 69.2

V+L (Block 1 - 32) 276.4 1360.6 63.2
V+L (Block 1 - 2), L (Block 3 - 32) 320.4 1476.6 62.3
L (Block 1 - 32) 311.1 1468.4 62.2

Table 1: Impact of token selection on 50% pruning of LLaVA-
NeXT across evaluation benchmarks. MME measures general
multimodal understanding, while ChartQA focuses on visually
rich information understanding (e.g., OCR, chart).

Once updated, we iteratively select the token 343

with the highest contribution. To encourage se- 344

lection diversity, the contributions of neighboring 345

tokens of the selected token are penalized: 346

aj ← aj − eij · ai, ∀j ∈ Ni, (4) 347

where γ = 0.2, following the original setting. 348

These iterative processes prioritize core multimodal 349

tokens while minimizing redundant selections. 350

We select tokens from the full token index set C 351

until the selected index set C′ sufficiently represents 352

the original distribution using maximum mean dis- 353

crepancy (MMD) metric (Kim et al., 2016): 354

MMD=A(C,C)+A(C′,C′)−2A(C,C′) < 0.1∗
√
s, 355

A(C,C′) = 1

|C||C′|
∑

i∈C, j∈C
eij , (5) 356

where A(C,C′) measures the distributional similar- 357

ity between two sets. The selection process contin- 358

ues until MMD falls below a threshold scaled by 359

the function of s, which accounts for variations in 360

output token spaces, as shown in Figure 3. Input 361

activation is then computed using the selected to- 362

kens: ||XC′ ||2. This approach adaptively captures 363

multimodal processing demands across different 364

layers, which can facilitate pruning decisions by 365

preserving parameters critical to those demands. 366

4 Experiments 367

4.1 Experimental Setups 368

Multimodal Large Language Models We con- 369

duct pruning on two popular MLLM architec- 370
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tures. LLaVA-NeXT (Li et al., 2024a) with 8B371

parameters enhances visual perception by splitting372

high-resolution images into sub-images. VideoL-373

LaMA2 (Cheng et al., 2024) with 7B parameters374

improves spatiotemporal modeling and audio pro-375

cessing, making it well-suited for video and audio376

tasks. These models enable comprehensive evalua-377

tion of pruning strategies across diverse multimodal378

settings. A recent study (He et al., 2024) shows379

that pruning only the LLM component in MLLMs380

achieves a better balance between performance and381

efficiency since LLMs are typically much larger382

than these encoders. Therefore, our experiments383

focus on pruning the LLM component of MLLMs.384

Evaluation Benchmark To assess performance385

after pruning, we evaluate their zero-shot capabil-386

ity on various multimodal benchmarks. We follow387

the evaluation protocols outlined in LLaVA-NeXT388

and VideoLLaMA2 to ensure consistent bench-389

mark selection. For LLaVA-NeXT, we evaluate its390

zero-shot performance on multiple vision-language391

tasks: 1) multimodal understanding: MME (Fu392

et al., 2023) and MMMU (Yue et al., 2024); 2) vi-393

sual mathematic reasoning: MathVista (Lu et al.,394

2024); 3) structural reasoning: ChartQA (Masry395

et al., 2022) and AI2D (Kembhavi et al., 2016);396

4) multimodal perception: MMBench (Liu et al.,397

2024). For VideoLLaMA2, we assess its perfor-398

mance across diverse multimodal settings: 1) au-399

dio: Clotho-AQA (Lipping et al., 2022) for open-400

ended QA, TUT2017 (Mesaros et al., 2016) and401

VocalSound (Gong et al., 2022) for multiple-choice402

QA, and Muchomusic (Weck et al., 2024) for403

music understanding; 2) video: VideoMME and404

NeXTQA-MC for diverse video domains and du-405

rations, EgoSchema for long video understanding,406

and MVBench for spatio-temporal understanding;407

3) audiovisual comprehension: MUSIC-QA (Li408

et al., 2022) for open-ended musical scene under-409

standing. Further details on the evaluation pipeline410

are provided in Appendix A.411

We report performances at sparsity ratios where412

pruned models maintain reasonably high perfor-413

mance that enables meaningful comparisons with414

baselines. To ensure fair comparisons across bench-415

marks with different scales, we compute the aver-416

age relative performance, denoted as Rel., which417

measures model generalization. We compute rela-418

tive performance as: (pruned model performance /419

full-model performance) × 100%.420

Baselines We compare our method with sev- 421

eral widely used pruning approaches. Magni- 422

tude (Zhu and Gupta, 2017), a standard baseline, 423

removes weights with the smallest absolute val- 424

ues. SparseGPT (Frantar and Alistarh, 2023) is a 425

layer-wise pruning method that leverages Hessian- 426

based approximations to preserve critical weights. 427

Wanda (Sun et al., 2024b) computes a layer-wise 428

importance score as the product of weight mag- 429

nitudes and input activations. OWL (Yin et al., 430

2024) proposes an outlier-weighted sparsity strat- 431

egy, adjusting pruning ratios per layer based on 432

outlier prevalence. ECoFLaP (Sung et al., 2024) 433

uses zeroth-order gradient calculations to estimate 434

the global importance score of VLM layers and 435

determines layer sparsity ratios based on this score. 436

4.2 Results and Discussion 437

TAMP outperforms baselines on LLaVA-NeXT. 438

Table 2 reports performance of LLaVA-NeXT at 439

a 50% sparsity ratio. Across 6 of 7 benchmarks, 440

including MME, AI2D, MMMU, Mathvista, and 441

MMBench, TAMP ranks either first or second. On 442

average, TAMP surpasses the strongest baseline 443

by 1.9 percent points (pp) in relative performance, 444

demonstrating its strength in preserving key param- 445

eters essential for versatile visual comprehension. 446

Furthermore, Figure 5 presents the performance 447

of LLaVA-NeXT across a range of sparsity levels. 448

TAMP exhibits the best performance-sparsity trade- 449

off. In contrast, pruning baselines experience steep 450

accuracy declines beyond 50% sparsity, whereas 451

our adaptive approach shows superior retention of 452

model ability in high sparsity regimes (e.g., 60% 453

and 70%), highlighting its robustness. 454

TAMP effectively preserves diverse multimodal 455

understanding. To further examine our ap- 456

proach, we evaluate VideoLLaMA2 at a 60% spar- 457

sity ratio, with results presented in Table 3. TAMP 458

ranks the top position in nearly all audio and video 459

tasks and a close second in the audiovisual bench- 460

mark, outperforming the second-best baseline by 461

1.2 pp in average relative performance. These re- 462

sults demonstrate that our approach effectively cap- 463

tures modality-specific contributions, validating its 464

universality across multiple modalities and tasks. 465

Additional experiments on LLaVA-OneVision (Li 466

et al., 2024c), which handles interleaved image and 467

video modalities, are provided in Appendix B. 468

As shown in Figure 6, TAMP consistently main- 469

tains strong performance across different spar- 470

sity levels in VideoLLaMA2. This further shows 471
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Method MME- MME- ChartQA AI2D MMMU Mathvista MMBench Rel. (%)
cognition perception

Full Model 376.8 1588.3 69.2 71.7 40.1 36.2 72.2 100

Magnitude 0 0 0 0 24.0 26.6 0 19.0
SparseGPT 328.6 1448.9 65.5 64.5 33.6 31.3 64.7 89.0
Wanda 276.4 1360.6 63.2 64.3 36.2 30.2 63.9 86.0
ECoFLaP 254.6 1429.5 65.5 66.1 35.1 30.7 66.2 86.9
OWL 274.3 1366.0 63.2 64.0 35.3 30.8 64.1 85.9
TAMP (Ours) 341.0 1470.2 64.7 65.0 35.7 31.9 66.3 90.9

Table 2: Comparison of pruning techniques on the LLaVA-NeXT model with 50% sparsity ratio and estimate performance on
various multimodal evaluation benchmarks. The best and the second best results are in bold and underlined, respectively.

Audio Video Audiovisual
Method Clotho TUT Vocal Mucho Video Ego NextQA MV MUSIC Rel. (%)

-AQA 2017 Sound music MME Schema -MC -Bench -QA

Full Model 85.6 71.2 92.4 58.9 48.7 49.3 73.3 58.4 79.4 100

Magnitude 0 0 0 25.8 0 20.8 20.3 0 0 12.6
SparseGPT 83.9 64.1 91.9 48.8 35.7 42.6 61.8 54.2 70.6 88.5
Wanda 83.1 65.6 92.1 51.4 39.4 44.4 65.0 53.2 73.3 91.0
ECoFLaP 83.7 67.2 92.1 54.4 41.3 46.8 69.8 54.2 73.0 93.8
OWL 83.2 70.5 91.3 47.6 37.7 43.6 63.1 52.4 68.9 89.4
TAMP (Ours) 84.2 69.9 92.1 55.9 42.5 46.7 70.9 54.8 72.6 95.0

Table 3: Comparison of pruning techniques on the VideoLLaMA2 model with 60% sparsity ratio and estimate performance on
various multimodal evaluation benchmarks. The best and the second best results are in bold and underlined, respectively.
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Figure 5: Average relative performances of all pruning tech-
niques at different sparsity ratios for the LLaVA-NeXT.

TAMP’s robustness in maintaining diverse multi-472

modal comprehension even under aggressive spar-473

sity constraints. Moreover, in both Figure 5474

and Figure 6, OWL suffers from severe per-475

formance drops at high sparsity ratios, unlike476

ECoFLaP and TAMP. OWL assigns layer-wise477

sparsity ratios proportional to the prevalence of out-478

lier values within input activations computed across479

all input tokens. We hypothesize that multimodal480

encoder’s tokens in MLLMs follow different out-481

lier distributions than unimodal language tokens in482

LLMs, where large activation values in tokens are483

typically featured in LLMs (Sun et al., 2024a; Yin484

et al., 2024). This discrepancy likely contributes to485

OWL’s underperformance, highlighting the impor-486

tance of pruning strategies tailored for MLLMs to487
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Figure 6: Average relative performances of all pruning tech-
niques at different sparsity ratios for the VideoLLaMA2.

account for their unique multimodal attributes. 488

4.3 Further Analysis and Ablation 489

Core components in TAMP contribute to im- 490

proving performance. To validate our strate- 491

gies, we compare the two core components of 492

TAMP, Diversity-Aware Sparsity (DAS) and Adap- 493

tive Multimodal Input Activation (AMIA), against 494

ECoFLaP, OWL, and Wanda. Like DAS, ECoFLaP 495

and OWL assign varying sparsity ratios to layers. 496

AMIA selects core multimodal input tokens for in- 497

put activations, while Wanda uses all input tokens. 498

All the above methods build upon Wanda. 499

As shown in Table 4 (a), both DAS and AMIA 500

bring substantial performance gain. DAS alone 501

surpasses ECoFLaP and OWL, improving Wanda 502
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(a) Key Components

Method DAS AMIA LLaVA Video
-NeXT LLaMA2

Wanda − − 86.0 91.0
ECoFLaP − − 86.9 93.8
OWL − − 85.9 89.4

TAMP (Ours)
✓ − 90.4 94.0
− ✓ 89.5 92.3
✓ ✓ 90.9 95.0

(b) Layer-wise Sparsity

Method LLaVA Video
-NeXT LLaMA2

Wanda 86.0 91.0
+ All-token DAS 89.3 94.1
+ Block-wise DAS 88.0 94.2
+ DAS (Ours) 90.4 94.0
SparseGPT 89.0 88.5
+ DAS (Ours) 89.1 94.0

(c) Input Activation

Method LLaVA Video

-NeXT LLaMA2

Wanda 86.0 91.0

Random 85.3 91.1

Attention 89.2 93.5

AMIA (Ours) 89.5 92.3

Table 4: Ablation studies of TAMP. DAS: Diversity-Aware Sparsity in Section 3.2, AMIA: Adaptive Multimodal Input Activation
in Section 3.4. (a) Contributions of proposed components. (b) Ablation on layer-wise sparsity strategies. (c) The performance of
different multimodal input token selections for input activations calculation. For all experiments, we prune LLaVA-NeXT at 50%
and VideoLLaMA2 at 60% sparsity ratios, and report the relative average performance.

by 4.4 pp in LLaAV-NeXT and 3.0 pp in VideoL-503

LaMA2. This supports the importance of multi-504

modal token diversity in identifying critical layers505

for encoding rich multimodal representation. No-506

tably, DAS outperforms ECoFLaP, which relies on507

gradient computations, despite calculating simple508

cosine distances among tokens. This demonstrates509

that DAS efficiently captures the complexities of510

multimodal data, further validating its efficacy.511

AMIA improves Wanda by 3.5 pp in LLaVA-512

NeXT and 1.3 pp in VideoLLaMA2. This improve-513

ment stems from AMIA’s adaptive selection of core514

multimodal tokens for input activations, aligning515

pruning with each layer’s processing needs. Inte-516

grating DAS and AMIA, TAMP achieves superior517

performance, underscoring the advantage of jointly518

optimizing layer-wise sparsity and pruning deci-519

sions in MLLMs through multimodal attributes.520

Ablation on layer-wise sparsity. We further test521

variants of DAS. All-token DAS averages the co-522

sine distances of all output tokens to determine523

layer importance: s = Ei,j∼C [dij ]. Block-wise524

DAS averages the layer importance in DAS within525

each block and applies uniform sparsity to all layers526

in that block. The results are summarized in Ta-527

ble 4 (b). DAS shows robust performance across528

MLLMs compared to All-token DAS, validating529

the use of intra- and inter-modality diversities to530

reflect unique token distributions across modalities.531

DAS also improves SparseGPT’s performance, fur-532

ther demonstrating its adaptability across pruning533

methods. Block-wise DAS outperforms ECoFLaP534

and OWL, demonstrating that our approach can535

also represent block-level importance. To provide536

deeper insights, we further analyze the sparsity ra-537

tios of baselines and our approach in Appendix C.538

Adaptive Input Activation. To further validate539

our intuition that MLLM pruning needs to adapt to540

modality-specific contributions within each block, 541

we conduct ablation studies on different token se- 542

lection strategies for input activations. Our ap- 543

proach, AMIA, selects core tokens based on token 544

contribution score a and output token distances. 545

We examine other selection strategies: (1) Random, 546

which randomly selects 100 tokens, and (2) Atten- 547

tion, which selects tokens with above-average con- 548

tribution scores. As shown in Table 4 (c), attention- 549

based selection methods, Attention and AMIA, out- 550

perform random selection, supporting our core in- 551

tuition. However, the best strategy depends on the 552

target MLLM. This may be due to the complex- 553

ity of multimodal feature spaces, suggesting that 554

further refinements in selection methods could en- 555

hance pruning robustness. We analyze AMIA’s 556

token selection with visualizations in Appendix D. 557

5 Conclusion 558

In this paper, we investigate the critical challenges 559

in Multimodal Large Language Model (MLLM) 560

pruning. In our comprehensive investigations, we 561

find that different MLLM layers have varying ca- 562

pabilities to encode multimodal output tokens. We 563

also empirically observe that existing pruning meth- 564

ods fail to address varying modality reliance across 565

blocks in MLLMs, resulting in suboptimal prun- 566

ing outcomes. Based on these observations, we 567

introduce TAMP, a novel pruning framework that 568

adapts both layer-wise sparsity and input activa- 569

tions to each layer’s multimodal token attributes. 570

We validate our method on powerful MLLMs and 571

extensive experiments demonstrate that TAMP is 572

effective in preserving diverse multimodal abilities, 573

even at extreme model sparsity. We believe our 574

work offers a strong foundation for future advance- 575

ments in MLLM pruning, enabling the deployment 576

of recent MLLMs in source-constrained scenarios. 577
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Limitations578

While TAMP shows promising performance on579

recent MLLMs, including LLaVA-NeXT, VideoL-580

LaMA2, and LLaVA-OneVision, this work focuses581

on unstructured pruning for MLLMs. However,582

both the main body and the appendix reveal results583

consistent with recent structured pruning methods,584

indicating the potential of our core intuitions. Fu-585

ture research will investigate how our approach can586

be extended in this direction to enhance the applica-587

bility and efficiency of MLLM pruning techniques.588

Despite evaluating TAMP on several MLLMs,589

MLLMs handling other modalities, such as point590

clouds, molecules, and proteins, or MLLMs incor-591

porating Q-Former structures remain unexplored.592

Evaluating our approach across a border range of593

settings would further validate its generalizabil-594

ity. Additionally, our study primarily examines the595

performance-sparsity trade-offs without evaluating596

the impact on hardware efficiency. While unstruc-597

tured pruning can theoretically reduce computa-598

tion, future research in structured pruning should599

explore how TAMP can deliver practical benefits600

in terms of latency and deployment efficiency.601
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A Details of Experimental Setups988

Calibration Datasets. Following established989

practices in model pruning (Sun et al., 2024b; Fran-990

tar and Alistarh, 2023; Sung et al., 2024), we use991

a random subset of 128 samples from the training992

datasets of the target models as calibration data.993

For LLaVA-NeXT, we use ShareGPT4V (Chen994

et al., 2024b) as the calibration dataset. For Vide-995

oLLaMA2, we choose MUSIC-QA (Li et al., 2022)996

as the calibration source as its samples consist997

of both video and audio modalities. For LLaVA-998

OneVision, we use NLVR2 (Suhr et al., 2019) as it999

constitutes the largest portion of its training dataset.1000

Evaluation pipeline To ensure consistency and1001

reproducibility, the benchmarks are assessed1002

through LMMs-Eval framework (Li et al., 2024b)1003

and evaluation pipelines of the models. We follow1004

the LMMs-Eval prompt templates provided in the1005

official GitHub repository of the LMMs-Eval to1006

evaluate the LLaVA-NeXT and LLaVA-OneVision1007

models. We implement the VideoLLaMA2 archi-1008

tecture on the LLMs-Eval framework and evaluate1009

the model on audio and video benchmarks.1010

B Experiments on LLaVA-OneVision1011

Experimental Setups We conduct addi-1012

tional model pruning experiments on LLaVA-1013

OneVision (Li et al., 2024c) with 7B parameters,1014

which processes both interleaved images and video1015

modalities. After pruning, we evaluate its zero-shot1016

performance in the two modalities, following the1017

evaluation protocols in LLaVA-OneVision: 1) in-1018

terleaved images: Muirbench (Wang et al., 2024b)1019

for diverse multi-image tasks, Mantis (Jiang1020

et al., 2024) for reasoning over multiple images,1021

BLINK (Fu et al., 2024) for multi-image visual1022

perception tasks, and Text-rich VQA (Liu et al.,1023

2023) for multi-image text recognition; 2) video:1024

VideoMME and NeXTQA-MC for diverse video1025

domains and durations, EgoSchema for long video1026

understanding, and MVBench for spatio-temporal1027

understanding.1028

Experimental Results Table 5 summarizes per-1029

formance of LLaVA-OneVision at a 50% sparsity1030

ratio. Across 6 out of 8 interleaved images un-1031

derstanding and video benchmarks, TAMP ranks1032

either first or second. On average, TAMP surpasses1033

the Wanda and the strongest baseline by 5.3 pp and1034

0.3 pp, respectively, in relative performance. These1035

results demonstrate that the effectiveness of our1036

method can be transferred to the pruning of other 1037

recent MLLMs with different multimodal settings, 1038

further supporting the universality of our approach. 1039

C In-Depth Analysis on Layer-wise 1040

Sparsity Ratios 1041

C.1 Sparsity of Projection Layer Type 1042

In Figure 3, we observe significant variations in 1043

intra- and inter-modality diversities across different 1044

projection layer types and leverage these variations 1045

to estimate layer importance. In this ablation study, 1046

we examine the sparsity results of different projec- 1047

tion layer types in MLLMs. Figure 7 presents the 1048

average sparsity ratios across blocks for each pro- 1049

jection layer type in VideoLLaMA2 pruned at 70% 1050

sparsity using TAMP. Our analysis reveals that in 1051

the MHA module, comprising query, key, value, 1052

and output projection layers, the value projection 1053

layer consistently exhibits the lowest sparsity ratio. 1054

In contrast, in the FFN module, which consists of 1055

gate, up, and down projection layers, all projection 1056

layers exhibit relatively high sparsity levels com- 1057

pared to the layers in the MHA module, with the 1058

gate projection layer showing the highest value. 1059

These findings suggest that FFN modules are 1060

more robust in pruning than MHA modules, which 1061

aligns with the recent work (Zhang et al., 2024b) 1062

on pruning either MHA or FFN modules in LLMs. 1063

Moreover, our results imply that value projection 1064

layers may play a more crucial role in encoding 1065

token features compared to other projection layers, 1066

containing more critical parameters necessary for 1067

preserving the performance of MLLMs. 1068

Interestingly, the aforementioned trend in aver- 1069

age sparsity per layer type shown in Figure 7 is 1070

consistent with the result in EvoPress (Sieberling 1071

et al., 2024), which uses an evolutionary algorithm 1072

to find the optimal sparsity levels across LLM lay- 1073

ers or blocks. This alignment supports our core 1074

intuition that layers producing higher multimodal 1075

output token diversity should retrain more parame- 1076

ters during pruning to preserve their capability to 1077

encode richer multimodal information. Moreover, 1078

TAMP uncovers this trend through a simpler ap- 1079

proach based on average cosine distances among 1080

multimodal tokens, while EvoPress requires itera- 1081

tive exploration in the vast sparsity ratio solution 1082

space. This indicates that output token distributions 1083

can offer an efficient and insightful basis for esti- 1084

mating layer importance, leading to more effective 1085

pruning outcomes. 1086
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Interleaved Image Video
Method Muir Mantis BLINK Text-rich Video Ego NextQA MV Rel. (%)

Bench VQA MME Schema -MC -Bench

Full Model 41.8 64.2 48.4 80.1 60.1 56.7 58.4 79.4 100

Magnitude 0 0 0 0 20.7 0 0 19.8 7.4
SparseGPT 41.1 51.9 46.2 63.6 55.2 55.1 52.3 75.2 90.9
Wanda 38.6 47.9 44.0 65.1 51.5 53.5 49.3 73.3 87.0
ECoFLaP 40.7 58.1 45.2 64.7 54.4 54.5 53.2 76.1 92.0
OWL 35.1 43.8 43.5 60.1 50.8 52.4 47.6 69.1 82.8
TAMP (Ours) 40.9 57.1 45.9 69.8 54.0 53.9 52.5 75.2 92.3

Table 5: Comparison of pruning techniques on the LLaVA-OneVision model with 60% sparsity ratio and estimate performance
on various multimodal evaluation benchmarks. The best and the second best results are in bold and underlined, respectively.
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Figure 7: Average sparsity per projection layer type for
VideoLLaMA2 at 70% sparsity using TAMP (Ours).
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Figure 8: Comparison of sparsity ratio results per block for
VideoLLaMA2 model at 70% sparsity.

C.2 Block-wise Average Sparsity1087

To further investigate layer-wise sparsity strategies,1088

we analyze sparsity ratios across block depths for1089

VideoLLaMA2 at 70% sparsity ratio, as determined1090

by ECoFLaP, OWL, and TAMP. The results illus-1091

trated in Figure 8 indicate that all three methods1092

follow a similar sparsity trend, where the initial1093

blocks have high sparsity and intermediate blocks1094

exhibit moderate sparsity. Notably, TAMP exhibits1095

higher sparsity in the last blocks.1096

These trends diverge from typical observations1097

in LLM pruning. Recent studies suggest that inter-1098

mediate blocks generally contain large redundancy,1099

where pruning these blocks results in a mere im-1100

pact on LLM performance. In contrast, the studies1101

show that pruning early or final blocks leads to sub-1102

stantial performance degradation (Men et al., 2024;1103

Zhong et al., 2024). However, in MLLM prun-1104

ing in Figure 8, we observe an opposite pattern,1105

particularly with TAMP.1106

This difference can be explained by the atten-1107

tion distribution trends shown in Figure 4. Our1108

analysis reveals that both visual and language at-1109

tention scores are notably high in the intermediate1110

blocks, indicating active multimodal interactions.1111

Thus, these blocks would require lower sparsity1112

to align with the increased multimodal integration1113

occurring at this stage. In contrast, in the later1114

blocks, only their language attention scores are 1115

high while visual attention scores are low. We hy- 1116

pothesize that at this stage, the MLLM primarily 1117

focuses on language generation, reducing the need 1118

for multimodal processing, which aligns with token 1119

reduction studies in MLLMs (Chen et al., 2024a). 1120

This suggests that non-language modality informa- 1121

tion becomes redundant in these layers, requiring 1122

comparably fewer parameters. 1123

These findings support the necessity of prun- 1124

ing strategies specifically designed for MLLMs, 1125

as their architectural and functional characteristics 1126

differ significantly from those of LLMs. Conven- 1127

tional LLM pruning techniques may therefore be 1128

suboptimal for multimodal models. 1129

D Visualizing Multimodal Selection 1130

In Figure 9, we illustrate token selection results 1131

using the AMIA selection strategy across the ini- 1132

tial, intermediate, and last blocks of LLaVA-NeXT 1133

and VideoLLaMA2. Specifically, we visualize the 1134

multimodal output token spaces from the value pro- 1135

jection layers in each block. Each block exhibits 1136

different modality distributions and selection re- 1137

sults, showcasing the varying multimodal process- 1138

ing demands across different blocks. For example, 1139

in LLaVA-NeXT, the initial block selects both vi- 1140

sual and language tokens, indicating its need for 1141
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(a) Initial block

(b) Intermediate block

(c) Last block

LLaVA-NeXT VideoLLaMA2

Figure 9: Token selection results of Adaptive Multimodal Input Activation. We use t-SNE visualization for multimodal output
token space across value projection layers of initial, intermediate, and last blocks of LLaVA-NeXT and VideoLLaMA2.

visual information during multimodal processing.1142

However, in the intermediate and final blocks of1143

the LLaVA-NeXT, comparably fewer visual tokens1144

are selected, suggesting that these blocks assign1145

less importance to visual information compared to1146

language information. In VideoLLaMA2, the last1147

block continues to rely on both language and vi-1148

sual tokens. We attribute this to VideoLLaMA2’s1149

architecture, which processes video inputs through1150

spatial-temporal aggregation. This design yields1151

more compact and informative video tokens com-1152

pared to approaches that simply segment video into1153

small image pacthes (Cheng et al., 2024; Li et al.,1154

2024d).1155
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