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Abstract

Reasoning with preconditions such as “glass001
can be used for drinking water unless the002
glass is shattered” remains an open-problem003
for language models. The main challenge004
lies in the scarcity of preconditions data and005
model’s lack of support for such reasoning.006
We present PInKS , Preconditioned Com-007
monsense Inference with WeaK Supervision,008
an improved model for reasoning with pre-009
conditions through minimum supervision. We010
show, both empirically and theoretically, that011
PInKS improves the results across the bench-012
marks on reasoning with the preconditions of013
commonsense knowledge (up to 0.4 Macro-F1014
scores). We further investigate the robustness015
of our method through PAC-Bayesian informa-016
tiveness analysis, recall measures and ablation017
study.018

1 Introduction019

Inferring the effect of a situation or precondition on020

a subsequent action or state (illustrated in Fig. 1) is021

an open part of commonsense reasoning. It requires022

different dimensions of commonsense knowledge023

(Woodward, 2011), e.g. physical, causal, social, etc.024

This capability would improve many knowledge-025

driven tasks in question answering (Wang et al.,026

2019; Talmor et al., 2019), machine reading com-027

prehension (Sakaguchi et al., 2020), and narrative028

prediction (Mostafazadeh et al., 2016). It will029

also benefit on a wide range of real-world intel-030

ligent applications such as legal document process-031

ing (Hage, 2005), claim verification (Nie et al.,032

2019) and debate processing (Widmoser et al.,033

2021).034

Multiple recent studies have taken the effort035

on reasoning with preconditions of commonsense036

knowledge (Rudinger et al., 2020; Qasemi et al.,037

2021; Mostafazadeh et al., 2020; Hwang et al.,038

2020). These studies show that preconditioned039

reasoning represents an unresolved challenge to040

Figure 1: Examples on Preconditioned Inference and
the NLI format they can be represented in.

state-of-the-art (SOTA)language model (LM) based 041

reasoners. Generally speaking, the problem of rea- 042

soning with preconditions has been formulated 043

as variations of the natural language inference 044

(NLI) task where, given a precondition/update, the 045

model has to decide its effect on common sense 046

statement or chain of statements. For example, 047

CoreQuisite (Qasemi et al., 2021) approaches the 048

task from causal (hard reasoning) perspective in 049

term of enabling and disabling preconditions of 050

commonsense knowledge, and evaluate reason- 051

ers with crowdsourced commonsense statements 052

about the two polarities of preconditions of state- 053

ments in ConceptNet (Speer et al., 2017). Simi- 054

larly, δ−NLI (Rudinger et al., 2020) formulates the 055

problem in terms of soft assumptions, i.e., weak- 056

eners and strengtheners, and justify whether up- 057

date sentences weakens or strengthens the textual 058

entailment in sentence pairs from sources such as 059

SNLI (Bowman et al., 2015). Obviously, both tasks 060

capture the same phenomena of reasoning with pre- 061

conditions and the slight difference in format does 062

not hinder their usefulness (Gardner et al., 2019). 063

As both works conclude, SOTA models fail to beat 064

the task of reasoning with preconditions. 065
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We identify two reasons for such shortcomings066

of LMs on reasoning with preconditions: 1) high067

cost to obtain sufficient training data, and 2) need068

of improved LMs to reason with such knowledge.069

First, current resources for preconditions of com-070

mon sense are gathered through direct human super-071

vision and crowdsourcing. First, current resources072

for preconditions of common sense are manually073

annotated. Although this yields highest quality of074

data, it is costly and not scalable. Second, off-the-075

shelf LMs are trained on unannotated corpora with076

no direct guidance on specific tasks. Although such077

models can be further fine-tuned to achieve impres-078

sive performance on a wide range of tasks, they are079

far from perfect in reasoning on preconditions due080

to their complexity of need for deep commonsense081

understanding and lack of large scale training data.082

In this work, we present PInKS (see Fig. 2), a083

minimally supervised approach for reasoning with084

the precondition of commonsense knowledge in085

LMs. The main contributions are 3 points. First,086

to enhance training of the reasoning model (§3), we087

propose two strategies of retrieving rich amount of088

cheap weak supervision signals (Fig. 1). In the first089

strategy (§3.1), we use common linguistic patterns090

(e.g. “[action] unless [precondition]”) to gather091

sentences describing preconditions and actions as-092

sociated with them from massive free-text corpora093

(e.g. OMCS (Havasi et al., 2010)). The second strat-094

egy (§3.2) then uses generative data augmentation095

methods on top of the extracted sentences to induce096

even more training instances. As the second con-097

tribution (§3.3), we improve the LMs with more098

robust and generalized preconditioned common-099

sense inference. We modify the masked language100

model (MLM) learning objective to biased mask-101

ing, which puts more emphasis on preconditions,102

hence improving the LMs capability to reason with103

preconditions. Finally, for third contribution, we104

go beyond empirical analysis of PInKS and investi-105

gate the performance and robustness through the-106

oretical guarantees of PAC-Bayesian analysis (He107

et al., 2021).108

Through extensive evaluation on five repre-109

sentative datasets (ATOMIC2020 (Hwang et al.,110

2020), WINOVENTI (Do and Pavlick, 2021), AN-111

ION (Jiang et al., 2021), CoreQuisite (Qasemi et al.,112

2021) and DNLI (Rudinger et al., 2020), we show113

that PInKS improves the performance of NLI mod-114

els, up to 0.05 Macro-F1 without seeing any task-115

specific training data and up to 0.4 Macro-F1 in116

low-resource setup (§4.1). Here we use In addition 117

to the empirical results, using theoretical guaran- 118

tees of informativeness measure in PABI (He et al., 119

2021), we show (§4.2) that the minimally super- 120

vised data of PInKS is as informative as fully super- 121

vised datasets. Finally, to investigate the robustness 122

of PInKS, we do ablation study of PInKS (§4.5)) 123

and the effect of recall value of the noisy linguistic 124

patterns used for PInKS (§4.4). Here, we study re- 125

call value’s effect on the quality of the final model 126

in terms of informativeness of the gathered data. 127

The goal is study recall as proxy for precision to an- 128

swer the question of “at what point does the noise 129

in weakly supervised data become destructive?”. 130

2 Problem Definition 131

Common sense statements describe well-known 132

information about concepts, and, as such, they are 133

acceptable by people without need for debate (Sap 134

et al., 2019; Ilievski et al., 2020). The precondi- 135

tions of common sense knowledge are eventuali- 136

ties that affect happening of a common sense state- 137

ment (Hobbs, 2005). Here, we distinguish between 138

possibility that a statement is true given precondi- 139

tions and the general possibility that it is happen- 140

ing without extra information, however based on 141

common sense they must both be agreed upon by 142

humans. In this work 143

These preconditions can either allow or prevent 144

the common sense statement (see Fig. 1) in differ- 145

ent degrees (Rudinger et al., 2020; Qasemi et al., 146

2021). For example in some tasks the allowing or 147

prevention conditions are modeled as strong con- 148

straints such as enabling and disabling (Qasemi 149

et al., 2021), and others model soft constraints 150

like strengthening and weakening (Rudinger et al., 151

2020). In addition, some tasks have strict constraint 152

on the statement (Rudinger et al., 2020; Hwang 153

et al., 2020) whereas others do not (Do and Pavlick, 154

2021; Qasemi et al., 2021). Using this definition 155

of preconditions, then one way to formulate the 156

problem of reasoning with them is as follows: 157

Definition 1 Preconditioned Inference: given a 158

common sense statement and an update sentence 159

that serves as precondition, is the statement still 160

allowed or prevented? 161

This definition is consistent with definitions in pre- 162

vious works in the field, and serves as an unified 163

definition to consolidate the literature. Here, simi- 164

lar to Rudinger et al. (2020), the update can have 165

different levels of effect on the statement, from 166
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Figure 2: Overview of the three minimally supervised methods in PInKS.

causal connection (hard) to material implication167

(soft). In addition, similar to Qasemi et al. (2021),168

the statement can have any form and is not bound169

to the two-sentence structure in Rudinger et al.170

(2020).171

3 Preconditioned Inference with172

Minimal Supervision173

In PInKS, to overcome the challenges associated174

with inference with preconditions, we propose two175

sources of weak supervision to enhance the train-176

ing of a reasoner: linguistic patterns to gather177

rich (but allowably noisy) preconditions (§3.1),178

and generative augmentation of the preconditions179

data (§3.2). The main hypothesis in using weak-180

supervision methods is that pre-training models181

on large amount of weakly labeled data could im-182

prove model’s performance on similar downstream183

tasks (Ratner et al., 2017). In weak supervision ter-184

minology for heuristics, the experts design a set of185

heuristic labeling functions (LFs) that serves as the186

generators of the noisy label (Ratner et al., 2017).187

These labeling functions can produce overlapping188

or conflicting labels for a single instance of data189

that will need to be resolved either with simple190

methods such as ensemble inference or more so-191

phisticated probabilistic methods such as data pro-192

gramming (Ratner et al., 2016), or generative (Bach193

et al., 2017). Here, the expert still needs to design194

the heuristics to query the knowledge and convert195

the results to appropriate labels for the task. In ad-196

dition, we propose the modified language modeling197

objective that uses biased masking to improve the198

precondition-reasoning capabilities of LMs (§3.3). 199

3.1 Weak Supervision with Linguistic 200

Patterns 201

We curate a large-scale automatically labeled 202

dataset for, both type of, preconditions of com- 203

monsense statements by defining a set of linguistic 204

patterns and searching through raw corpora. Fi- 205

nally, we have a post-processing filtering step to 206

ensure the quality of the extracted preconditions. 207

Raw Text Corpora: In our experiments, we ac- 208

quire weak supervision from two corpora: Open 209

Mind Common Sense (OMCS) (Singh et al., 2002) 210

and ASCENT (Nguyen et al., 2021a). OMCS is a 211

large commonsense statement corpus that contains 212

over 1M sentences from over 15,000 contributors. 213

ASCENT has consolidated over 8.9M common- 214

sense statements from the Web. 215

First, we use sentence tokenization in 216

NLTK (Bird et al., 2009) to separate individual 217

sentences in the raw text. Each sentence is then 218

considered as a individual statement to be fed into 219

the labeling functions. We further filter out the 220

data instances based on the conjunctions used in 221

the common sense statements after processing the 222

labeling functions (discussed in Post-Processing 223

paragraph). 224

Labeling Functions (LF): We design the LFs re- 225

quired for weak-supervision (discussed in §2), with 226

a focus on the presence of a linguistic pattern in 227

the sentences based on a conjunction (see Tab. 1 228

for examples). In this setup, each LF labels the 229

training data as Allowing, Preventing or Abstain 230
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Text Label Action Precondition
A drum makes noise only if you beat it. Allow A drum makes noise you beat it.
Your feet might come into contact with some-
thing if it is on the floor.

Allow Your feet might come into contact with some-
thing

it is on the floor.

Pears will rot if not refrigerated Prevent Pears will rot refrigerated
Swimming pools have cold water in the win-
ter unless they are heated.

Prevent Swimming pools have cold water in the win-
ter

they are heated.

Table 1: Examples from the collected dataset through linguistic patterns in §3.1.

(no label assigned) depending on the linguistic pat-231

tern it is based on. For example, as shown in Tab. 1232

the presence of conjunctions only if and if, with233

a specific pattern, suggests that the precondition234

Allows the action. Similarly, the presence of the235

conjunction unless indicates a Preventing precondi-236

tion. We designed 20 such LFs based on individual237

conjunctions through manual inspection of the col-238

lected data in several iterations, for which details239

are described in appx. §A.1.240

Extracting Action-Precondition Pairs Once241

the sentences have an assigned label, we extract242

the action-precondition pairs using the same lin-243

guistic patterns. This extraction can be achieved244

by leveraging the fact that a conjunction divides a245

sentence into action and precondition in the follow-246

ing pattern “precondition conjunction action”, as247

shown in Tab. 1.248

However, there are sentences in the dataset that249

contain multiple conjunctions. For instance, the250

sentence “Trees continue to grow for all their lives251

except in winter if they are not evergreen.” in-252

cludes two conjunctions “except” and “if”. This253

occurrence of multiple conjunctions in a sentence254

leads to ambiguity in the extraction process. To255

overcome this challenge, we further make selec-256

tion on the patterns by measuring their recalls. To257

do so, we sample 20 random sentences from each258

conjunction (400 total) and label them manually259

on whether they are relevant to our task or not by260

two expert annotators. If a sentence is relevant to261

the task, it is labeled as 1; otherwise, 0. We then262

average the score of two annotators for each pat-263

tern/conjunction to get its recall score. This recall264

score serves as an indicator of the quality of precon-265

ditions extracted by the pattern/conjunction in the266

context of our problem statement. Hence, priority267

is given to a conjunction with a higher recall in268

case of ambiguity. Further, we also set a minimum269

recall threshold (=0.7) to filter out the conjunctions270

having a low recall score (8 LFs), indicating low271

relevance to the task of reasoning with precondi-272

tions (see Appx. §A.1 for list of recall values).273

Post-Processing On manual inspection of sen- 274

tences matched by the patterns, we observed a few 275

instances from random samples that were not rel- 276

evant to the context of commonsense reasoning 277

tasks, for example: How do I know if he is sick? or, 278

Pianos are large but entertaining. We accordingly 279

filter out sentences that are likely to be irrelevant 280

instances. Specifically, those include 1) questions 281

which are identified based on presence of question 282

mark and interrogative words (List of interrogative 283

words in Appx. §A.4), or 2) do not have a verb in 284

their precondition. Through this process we end up 285

with a total of 113,395 labeled action-precondition 286

pairs with 102,474 Allow and 10,921 Prevent asser- 287

tions. 288

3.2 Generative Data Augmentation 289

To further augment and diversify training data, we 290

leverage another technique of retrieving weak su- 291

pervision signals by probing LMs for generative 292

data augmentation. To do so, we mask the nouns 293

and adjectives from the text and let the generative 294

language model fill in the masks with appropriate 295

alternatives. The pivot-words here refers to the 296

words in the text that are most responsible for giv- 297

ing meaning and context to the statement. 298

After masking the pivot-word and filling in the 299

mask using LM, we filter out the augmentations 300

that change the POS tag of the pivot-word and 301

then keep the top 3 predictions for each mask. In 302

addition, to keep the diversity of the augmented 303

data, we do not use more than 20 augmented sen- 304

tences for each original statement (picked ran- 305

domly). For example, in the statement “Dogs 306

are pets unless they are wild”, the pivot-words 307

are “dogs”, “pets” and “wild”. Upon masking 308

“dogs”, using RoBERTa (large) language model, 309

we get valid augmentations such as “Cats are pets 310

unless they are wild”. Using this generative data 311

augmentation, we end up with 7M labeled action- 312

precondition pair with 11% prevent preconditions. 313
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3.3 Precondition-Aware Biased Masking314

To increase LMs’ emphasis on preconditions, we315

used biased masking on conjunctions as the clos-316

est proxies to preconditions’ reasoning. Based on317

this observation, we devised a biased masked lan-318

guage modeling loss that solely focuses on mask-319

ing conjunctions in the sentences instead of ran-320

dom tokens. Similar to Dai et al. (2019), we mask321

the whole conjunction word in the sentence and322

ask the LM to fulfill the mask. The goal here323

is to start from a pretrained language model and,324

through this additional fine-tuning step, improve325

its ability to reason with preconditions. To use326

such fine-tuned LM in a NLI module, we further327

fine-tune the “LM+classification head” on subset of328

MNLI (Williams et al., 2018) dataset. Later in §4.5329

we provide ablation study to showcase effective-330

ness of this additional fine-tuning step. For full list331

of conjunctions and implementation details check332

Appx. §A.3.333

4 Experiments334

This section, first showcases improvements of335

PInKS on five representative tasks for precondi-336

tioned inference (§4.1), theoretically backs the im-337

provements using PABI (He et al., 2021) score338

(§4.2), and investigate a different fine-tuning strat-339

egy (§4.3). We then experiment on the effect of340

recall (discussed in §3.1) on PInKS using PABI341

score (§4.4). Finally, we do ablation study to eval-342

uate effect of each step in PInKS (§4.5).343

4.1 Evaluation on Target Tasks344

Comparing the capability for models to reason with345

preconditions across different tasks (datasets) re-346

quires that inputs and outputs in such tasks be in the347

same canonical format. We used natural language348

inference (NLI) as such a canonical format. CoreQ-349

uisite (Qasemi et al., 2021) and δ-NLI (Rudinger350

et al., 2020) are already in NLI format and others351

can be converted easily using the groundwork laid352

in Qasemi et al. (2021). In NLI, given a sentence353

pair with a hypothesis and a premise, one predicts354

whether the hypothesis is true (entailment), false355

(contradiction), or undetermined (neutral) given356

the premise (Williams et al., 2018). Each task is357

preserved with equivalence before and after any358

format conversion at here, hence conversion does359

not seek to affect the task performance, inasmuch360

as it is discussed by Gardner et al. (2019). More361

details on this conversion process are in Appx. §B,362

and examples from the original target datasets are 363

given in Tab. 10. 364

Setup To implement and execute labeling func- 365

tions and resolve labeling conflict, we use 366

Snorkel (Ratner et al., 2017), one of the SOTA 367

frameworks for algorithmic labeling on raw data 368

that provides ease-of-use APIs.1 For more details 369

on Snorkel and its setup details, please see Ap- 370

pendix A.2. 371

For each target task, we start from a pretrained 372

model (RoBERTa-Large-MNLI (Liu et al., 2019)), 373

fine-tune it on PInKS and evaluate its performance 374

on the test portion of the target dataset in two 375

setups: zero-shot transfer learning(w.r.t. target 376

dataset; labeled as PInKS column) and fine-tuned 377

on the training portion of the target task (labeled as 378

Orig.+PInKS). To facilitate comparison, we also 379

provide the results for fully fine-tuning on the train- 380

ing portion of the target task and evaluating on its 381

testing portion (labeled as Orig. column; no PInKS 382

is used here). To create the test set, if the original 383

data does not provide a split (e.g. ATOMIC and 384

Winoventi), we use unified random sampling with 385

the [0.45, 0.15, 0.40] ratio for train/dev/test. The 386

experiments are conducted on a commodity work- 387

station with an Intel Xeon Gold 5217 CPU and 388

an NVIDIA RTX 8000 GPU. For all the tasks, we 389

used the implementation, and pretrained weights 390

from huggingface (Wolf et al., 2020) and utilized 391

PyTorch Lightning (Falcon and The PyTorch Light- 392

ning team, 2019) library to manage the fine-tuning 393

process. We evaluate each performance by aggre- 394

gating the Macro-F1 score (implemented in Pe- 395

dregosa et al. (2011)) on the ground-truth labels 396

and report the results on the unseen test split of the 397

data. 398

Target Data Orig. PInKS Orig+PInKS
δ-NLI 83.4 60.3 84.1
CoreQuisite 77.1 69.5 68.0
ANION 81.1 52.9 81.2
ATOMIC 43.2 48.0 88.6
Winoventi 51.1 52.4 51.0

Table 2: Macro-F1 (%) results of PInKS on the target
datasets: no PInKS (Orig.), with PInKS in zero-shot
transfer learning setup (PInKS) and PInKS in addition
to original task’s data (Orig.+PInKS)

Discussion Table 2 summarizes the evaluation 399

results of this section. As illustrated, PInKS 400

1Other alternatives such as skweak (Lison et al., 2021) can
also be used for this process.

5



can achieve on-par results with the direct super-401

vision from the task-specific training data. On402

ATOMIC (Hwang et al., 2020) and Winoventi (Do403

and Pavlick, 2021), PInKS exceeds the supervised404

results even without seeing any examples from the405

target data (zero-shot transfer learning setup). On406

δ-NLI (Rudinger et al., 2020), ANION (Jiang et al.,407

2021) and ATOMIC (Hwang et al., 2020), com-408

bination of PInKS and train subset of target task409

(PInKS in low-resource setup) outperforms the tar-410

get task results. This shows PInKS can also utilize411

additional data from target task to achieve better412

performance consistently across different aspects413

of preconditioned inference. However, on CoreQ-414

uisite (Qasemi et al., 2021), PInKS is not able to415

outperform original target task results in none of416

the setups. This can be attributed to nature of data417

in CoreQuisite in which contrary to other tasks fo-418

cuses on hard preconditions instead of soft ones.419

This result is also consistent with their results on420

transfer learning from soft to hard preconditioned421

reasoning.422

4.2 Informativeness Measure423

PABI (He et al., 2021) proposes a unified PAC-424

Bayesian motivated informativeness measure that425

correlates with the improvements provided by the426

incidental signals to showcase its effectiveness on427

target task. The incidental signal can include an428

inductive signal, e.g. partial/noisy labeled data, or429

a transductive signal, e.g. cross-domain signal in430

transfer learning. In this experiment, we go beyond431

the empirical results and use the PABI measure432

to showcase how improvements from PInKS are433

theoretically backed.434

Setup We carry over the setup on models and435

tasks from §4.1. For details on the PABI itself and436

the measurement details associated with it, please437

see Appx. §D.438

Discussion Tab. 3 summarizes the PABI informa-439

tiveness measure. Here the PInKS is compared440

with the rest of the dataset when considered as inci-441

dental signal, while considering δ-NLI (Rudinger442

et al., 2020) and CoreQuisit (Qasemi et al., 2021)443

as target tasks. Here although, PInKS is not the top444

informative incidental signal on the target dataset,445

its PABI numbers are still significant considering446

that its weak-supervision data are automatically ac-447

quired, while others are acquired based on human448

effort.449

Indirect Data PABI on CoreQuisite PABI on δ-NLI
PInKS 36.6 19.1
δ-NLI 52.2 85.5
CoreQuisite 52.3 31.3
ANION 34.1 13.9
ATOMIC 20.9 17.4
Winoventi 36.4 53.4

Table 3: PABI informativeness measures (x100) of
PInKS and other target tasks w.r.t CoreQuisite and δ-
NLI. Bold values represent the maximum achievable
PABI Score by considering train subset as indirect sig-
nal for test subset of respective data.

4.3 Curriculum vs. Multitask Learning 450

For results of §4.1, we considered the target task 451

and PInKS as separate datasets, and fine-tuned 452

model sequentially on them (curriculum learn- 453

ing;Pentina et al., 2015). We chose curriculum 454

learning setup due to its simplicity in implemen- 455

tation, ease of fine-tuning process monitoring and 456

hyperparameter setup. It would also allow us to 457

look and the each task separately that increases 458

interpretability of results. 459

However, in an alternative fine-tuning setup, one 460

can merge the two datasets into one and fine-tune 461

the model on the aggregate dataset (multi-task 462

learning;Caruana, 1997). Here, we investigate such 463

alternative and its effect on the results of §4.1. 464

Setup We use the same setup as §4.1 for fine- 465

tuning the model on Orig.+PInKS. Here instead of 466

first creating PInKS and then fine-tuning it on the 467

target task, we merge the weakly supervised data 468

of PInKS with the training subset of the target task 469

and then do fine-tuning on the aggregate dataset. 470

To manage length of this section, we only consider 471

CoreQuisite, δ-NLI and Winoventi as the target 472

dataset. 473

Target Data Orig+PInKS (Multi-Task) Diff.
δ-NLI 72.1 -11.00
CoreQuisite 77.3 +9.3
Winoventi 51.7 +0.7

Table 4: Macro-F1 (x100) results of PInKS on the tar-
get datasets using multi-task fine-tuning strategy and its
difference with curriculum strategy.

Discussion Tab. 4 summarizes the results for 474

multi-task learning setup and its difference w.r.t 475

to the results of the curriculum learning setup in 476

Tab. 2. Using multi-task learning does not show the 477

consistent result across tasks. We see significant 478

performance loss on δ-NLI on one hand and ma- 479
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jor performance improvements on CoreQuisite on480

the other. The Winoventi, however appears to not481

change as much in the new setup. We leave further482

analysis of curriculum learning to future work.483

4.4 Informativeness vs. Recall484

As mentioned in §3.1, each linguistic pattern is485

assigned a recall value calculated from expert an-486

notations on its matches. Using this recall value487

coupled with the PABI informativeness measure,488

we can investigate the effect of the linguistic pat-489

tern’s recal on quality of the extracted data.490

Setup The model setup in this section is the same491

as the §4.1 and §4.4. Here, create different versions492

of PInKS with different levels of recall threshold493

(0.0, 0.5) and compare their informativeness on494

CoreQuisite (Qasemi et al., 2021) with PInKS’s495

(recall 0.75) informativeness. Here, to limit the496

computation time, we only use 100K samples from497

PInKS in each threshold value, which is especially498

important in lower thresholds due to huge size of499

extracted patterns with low recall threshold.500

Discussion Tab. 5 summarizes the PABI informa-501

tiveness estimation on weak supervision data under502

three threshold levels of recall on, and compare503

them with “zero rate” classifier (always predicting504

major class). As illustrated, the informativeness505

show a significant drop in lower recall showcasing506

the importance of using high recall templates in507

our weak-supervision task. For higher thresholds508

(0.95) the data will mostly consist of allow patterns,509

the model drops to near zero rate informativeness510

baseline. This susceptibility on pattern recall can511

be mitigated with having more fine-grained pat-512

terns on larger corpora. We leave further analysis513

on recall of patterns to future work.

Source Data PABI on CoreQuisite
Zero Rate 25.5
PInKS-recall-0.00 23.8
PInKS-recall-0.50 25.6
PInKS-recall-0.70 36.6
PInKS-recall-0.95 26.2

Table 5: PABI informativeness measures of PInKS with
different recall thresholds on CoreQuisite.

514

4.5 Ablation Study515

As a final study, we focus on different aspects of516

PInKS and evaluate how each step is contributing517

to the results. There are three questions that needs518

to be addressed. First, how each labeling function519

(LF) is contributing to the extracted preconditions? 520

Second, to what extend the weak supervision data 521

contribute? (addressed in §4.1) And third, how 522

much does the precondition-aware masking (§3.3) 523

effect the overall performance of PInKS. Here, we 524

try to address these question. 525

LF Analysis To address first question, we use 526

statistics generated by Snorkel on top performing 527

LFs (see Tab. 6). We study Coverage (fraction of 528

raw corpus instances covered by the labeling func- 529

tion), Overlaps (fraction of raw corpus instances 530

with at least two non-abstain labels), and Conflicts 531

(fraction of the raw corpus instances with conflict- 532

ing (non-abstain) labels) on top performing LFs. 533

Here the polarity column refers to the non-abstain 534

label that each LF can generate (all can output ab- 535

stain as label). 536

Conjunction Pol. Coverage Overlaps Conflicts
in case [1] 0.000227 0.000001 6.19x10−7

to understand event [1] 0.009189 0.000005 4.64x10−6

statement is true [1] 0.001647 0.000004 4.12x10−6

except [0] 0.000753 0.000003 2.06x10−6

unless [0] 0.000745 0.000007 5.88x10−6

if not [0] 0.000156 0.000002 1.44x10−6

Table 6: Statistical analysis of labeling functions on
raw data instances.

Effectiveness of Biased Masking For the third 537

question, we focus on CoreQuisite as the target 538

task and compare the results of PInKS with an 539

alternative setup with no biased masking. In the al- 540

ternative setup, we only use the weakly-supervised 541

data that we extract to fine-tune RoBERTa-Large- 542

MNLI model and compare the results. Our results 543

show that the Macro-F1 score for zero-shot transfer 544

learning setup drops to 68.4% from 69.5% without 545

biased masking process. 546

5 Related Work 547

Reasoning with Preconditions The problem of 548

collecting preconditions of common sense and rea- 549

soning with them has been studied in multiple 550

works. Rudinger et al. (2020) uses the notion of 551

“defeasible inference” (Pollock, 1987; Levesque, 552

1990) in term of how a new piece of information 553

(update) weakens or strengthens a common sense 554

hypothesis statement in relation to a premise sen- 555

tence. For example, given the premise “Two men 556

and a dog are standing among rolling green hills.”, 557

the knowledge that “The men are studying a tour 558
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map” weakens the hypothesis that “they are farm-559

ers”, whereas “The dog is a sheep dog” strengthens560

it. Similarly, CoreQuisite (Qasemi et al., 2021) uses561

the notion of “causal complex” from Hobbs (2005),562

and defines preconditions as eventualities that ei-563

ther allow or prevent (allow negation (Fikes and564

Nilsson, 1971) of) a common sense statement to565

happen. For example, for the knowledge “the glass566

is shattered” prevents the statement “A glass is used567

for drinking water”, whereas "there is gravity" al-568

lows it. In CoreQuisite, based on Shoham (1990)569

and Hobbs (2005), authors distinguish between two570

type of preconditions, causal connections (hard),571

and material implication (tends to cause; soft). As572

mentioned in §2, our definition covers these defini-573

tions and is consistent with both.574

Hwang et al. (2020), Sap et al. (2019), Hein-575

dorf et al. (2020), and Speer et al. (2017), pro-576

vided representations for preconditions of state-577

ments in term of relation types, e.g. xNeed in578

ATOMIC2020 (Hwang et al., 2020). However, the579

focus in none of these works is on evaluating SOTA580

models on such data. The closest study of pre-581

conditions to our work are Rudinger et al. (2020),582

Qasemi et al. (2021), Do and Pavlick (2021) and583

Jiang et al. (2021). In these works, direct human584

supervision (crowdsourcing) is used to gather pre-585

conditions of commonsense knowledge and they all586

show the shortcomings of SOTA models on com-587

prehending with such knowledge. Our work differs588

as we rely on combination of distant-supervision589

and targeted fine-tuning instead of direct super-590

vision to achieve on-par performance. Similarly,591

Mostafazadeh et al. (2020), and Kwon et al. (2020)592

also study the problem of reasoning with precon-593

ditions. However they do not explore preventing594

preconditions.595

Weak Supervision In weak-supervision, the ob-596

jective is similar to supervised learning. However597

instead of using human/expert resource to directly598

annotate unlabeled data, one can use the experts to599

design user-defined patterns to infer “noisy” or “im-600

perfect” labels (Rekatsinas et al., 2017; Zhang et al.,601

2017; Dehghani et al., 2017), e.g. using heuris-602

tic rules. In addition, other methods such as re-603

purposing of external knowledge (Alfonseca et al.,604

2012; Bunescu and Mooney, 2007; Mintz et al.,605

2009) or other types of domain knowledge (Stew-606

art and Ermon, 2017) also lie in the same category.607

Weak supervision has been used extensively in608

NLU. For instance, Zhou et al. (2020) utilize weak-609

supervision to extract temporal commonsense data 610

from raw text, Brahman et al. (2020) use it to gen- 611

erate reasoning rationale, Dehghani et al. (2017) 612

use it for improved neural ranking models, and 613

Hedderich et al. (2020) use it to improve transla- 614

tion in African languages. Similar to our work, 615

ASER (Zhang et al., 2020) and ASCENT (Nguyen 616

et al., 2021b) use weak supervision to extract rela- 617

tions from unstructured text. However, do not ex- 618

plore preconditions and cannot express preventing 619

preconditions. As they do focus on reasoning eval- 620

uation, the extent in which their contextual edges 621

express allowing preconditions is unclear. 622

Generative Data Augmentation Language 623

models can be viewed as knowledge bases that im- 624

plicitly store vast knowledge on the world. Hence 625

querying them as a source of weak-supervision is a 626

viable approach. Similar to our work, Wang et al. 627

(2021) use LM-based augmentation for saliency of 628

data in tables, Meng et al. (2021) use it as a source 629

of weak-supervision in named entity recognition, 630

and Dai et al. (2021) use masked LMs for weak 631

supervision in entity typing. 632

6 Conclusion 633

In this work we presented PInKS , as an im- 634

proved method for preconditioned commonsense 635

reasoning which involves two techniques of weak 636

supervision. To maximize the effect of the weak 637

supervision data, we modified the masked lan- 638

guage modeling loss function using biased masking 639

method to put more emphasis on conjunctions as 640

closest proxy to preconditions. Through empiri- 641

cal and theoretical analysis of PInKS, we show it 642

significantly improves the results across the bench- 643

marks on reasoning with the preconditions of com- 644

monsense knowledge. In addition, we show the 645

results are robust in different recall values using 646

the PABI informativeness measure and extensive 647

ablation study. 648

Future work can consider improving the robust- 649

ness of preconditioned inference models using 650

methods such as virtual adversarial training (Miy- 651

ato et al., 2018; Li and Qiu, 2020). With advent of 652

visual-language models such as Li et al. (2019), pre- 653

conditioned inference should also expand beyond 654

language and include different modalities (such as 655

image or audio). To integrate in down-steam tasks, 656

one direction is to include such models in aiding 657

inference in the neuro-symbolic reasoners, e.g. Lin 658

et al. (2019); Verga et al. (2020). 659

8



Ethical Consideration660

We started from openly available data that is both661

crowdsource-contributed and neutralized, however662

they still may reflect human biases. For example663

in case of CoreQuisite (Qasemi et al., 2021) they664

use ConceptNet as source of commonsense state-665

ments which multiple studies have shown in bias666

and ethical issues, e.g. (Mehrabi et al., 2021).667

During design of labeling functions we did not668

collect any sensitive information and the corpora669

we used were both publicly available however they670

can also contain various types of bias. The label-671

ing functions in PInKS are only limited to English672

language patterns, which may additional cultural673

bias to the data. However, our expert annotators674

did not notice any offensive language in data or the675

extracted preconditions.676

Given the urgency of addressing climate change677

we have reported the detailed model sizes and run-678

time associated with all the experiments in Ap-679

pendix C.680
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A Details on PInKS Method976

In this section, we discuss some of the extra details977

related to PInKS and its implementation.978

A.1 Linguistic Patterns for PInKS979

We use a set of conjunctions to extract sen-980

tences that follow the action-precondition sentence981

structure. Initially, we started with two simple982

conjunctions-if and unless, for extracting asser-983

tions containing Allowing and Preventing precondi-984

tions, respectively. To further include similar sen-985

tences, we expanded our vocabulary by considering986

the synonyms of our initial conjunctions. Adding987

the synonyms of unless we got the following set988

of new conjunctions for Preventing preconditions-989

{but, except, except for, if not, lest, unless}, simi-990

larly we expanded the conjunctions for Enabling991

preconditions using the synonyms of if -{contingent992

upon, in case, in the case that, in the event, on con-993

dition, on the assumption, supposing}. Moreover,994

on manual inspection of the OMCS and ASCENT995

datasets, we found the following conjunctions that996

follow the Enabling precondition sentence pattern-997

{makes possible, statement is true, to understand998

event}. Tab. 7, summarizes the final patterns used999

in PInKS, coupled with their recall value and their1000

associated conjunction.1001

A.2 Details of Snorkel Setup1002

Beyond a simple API to handle implementing pat-1003

terns and applying them to the data, Snorkel’s main1004

purpose is to model and integrate noisy signals1005

contributed by the labeling functions modeled as1006

noisy, independent voters, which commit mistakes1007

uncorrelated with other LFs.1008

To improve the predictive performance of the1009

model, Snorkel additionally models statistical re-1010

lationships between LFs. For instance, the model1011

takes into account similar heuristics expressed by1012

two LFs to avoid "double counting" of voters.1013

Snorkel, further, models the generative learner as1014

a factor graph. A labeling matrix Λ is constructed1015

by applying the LFs to unlabeled data points. Here,1016

Λi,j indicates the label assigned by the jth LF for1017

the ith data point. Using this information, the gen-1018

erative model is fed signals via three factor types,1019

representing the labeling propensity, accuracy, and1020

pairwise correlations of LFs.1021

φLabi,j (Λ) = 1{Λi,j 6= ∅}1022

φAcci,j (Λ) = 1{Λi,j = yi}1023

φCorri,j,k (Λ) = 1{Λi,j = Λi,k}1024

The above three factors are concatenated along 1025

with the potential correlations existing between 1026

the LFs and are further fed to a generative model 1027

which minimizes the negative log marginal likeli- 1028

hood given the observed label matrix Λ. 1029

A.3 Modified Masked Language Modeling 1030

Tab. 8 summarizes the list of Allowing and Pre- 1031

venting conjunctions which the modified language 1032

modeling loss function is acting upon. 1033

A.4 Interrogative Words 1034

On manual inspection of the dataset, we observed 1035

some sentences that were not relevant to the com- 1036

mon sense reasoning task. Many of such instances 1037

were interrogative statements. We filter out such 1038

cases based on the presence of interrogative words 1039

in the beginning of a sentence. These interrogative 1040

words are listed below. 1041

Interrogative words: ["Who", "What", "When", 1042

"Where", "Why", "How", "Is", "Can", "Does", 1043

"Do"] 1044

B Details on Target Data Experiments 1045

For converting Rudinger et al. (2020), similar to 1046

Qasemi et al. (2021), we concatenate the “Hypoth- 1047

esis” and “Premise” and consider then as NLI’s 1048

hypothesis. We then use the “Update” sentence 1049

as NLI’s premise. The labels are directly traslated 1050

based on Update sentences’s label, weakener to 1051

prevent and the strengthener to allow. 1052

To convert the ATOMIC2020 (Hwang et al., 1053

2020), similar to Qasemi et al. (2021), we focused 1054

on three relations HinderedBy, Causes, and xNeed. 1055

From these relations, edges with HinderedBy are 1056

converted as prevent and the rest are converted as 1057

allow. 1058

Winoventi (Do and Pavlick, 2021), proposes 1059

Winograd-style entailment schemas focusing on 1060

negation in common sense. To convert it to NLI 1061

style, we first separate the two sentences in the 1062

masked_prompt of each instance to form hypothe- 1063

sis and premise. We get two versions of premise by 1064

replacing the MASK token in premise with their 1065

target or incorrect tokens. For the labels the ver- 1066

sion with target token is considered as allow and 1067

the version with incorrect token as prevent. 1068

ANION (Jiang et al., 2021), focuses on contra- 1069

diction in general. We focus on their commonsense 1070

contradiction subset as it is clean of lexical hints. 1071

Then we convert their crowdsourced original head 1072

1



Conjunctions Recall Pattern
but 0.17 {action} but {negative_precondition}
contingent upon 0.6 {action} contingent upon {precondition}
except 0.7 {action} except {precondition}
except for 0.57 {action} except for {precondition}
if 0.52 {action} if {precondition}
if not 0.97 {action} if not {precondition}
in case 0.75 {action} in case {precondition}
in the case that 0.30 {action} in the case that {precondition}
in the event 0.3 {action} in the event {precondition}
lest 0.06 {action} lest {precondition}
makes possible 0.81 {precondition} makes {action} possible.
on condition 0.6 {action} on condition {precondition}
on the assumption 0.44 {action} on the assumption {precondition}
statement is true 1.0 The statement "{event}" is true because {precondition}.
supposing 0.07 {action} supposing {precondition}
to understand event 0.87 To understand the event "{event}", it is important to know that {precondition}.
unless 1.0 {action} unless {precondition}
with the proviso - {action} with the proviso {precondition}
on these terms - {action} on these terms {precondition}
only if - {action} only if {precondition}
make possible - {precondition} makes {action} possible.
without - {action} without {precondition}
excepting that - {action} excepting that {precondition}

Table 7: Linguistic patterns in PInKS and their recall value. For patterns with not enough match in the corpora
have empty recall values.

Type Conjunctions
Allowing only if, subject to, in case, contingent upon, given, if, in the case that, in case, in the case

that, in the event, on condition, on the assumption, only if, so, hence, consequently, on
these terms, subject to, supposing, with the proviso, so, thus, accordingly, therefore, as a
result, because of that, as a consequence, as a result

Preventing but, except, except for, excepting that, if not, lest, saving, without, unless

Table 8: List of conjunctions used in modified masked loss function in section 3.3

or contradiction head as hypothesis, and the lexical-1073

ized predicate and tail as the premise (e.g. xIntent1074

to PersonX intends to). Finally the label depends1075

on head is allow for original head and prevent for1076

contradiction head. We also replace “PersonX”1077

and “PersonY” with random human names (e.g.1078

“ALice”, “Bob”).1079

Finally, for the CoreQuisite (Qasemi et al.,1080

2021), we used their proposed P-NLI task as a NLI-1081

style task derived from their preconditions dataset.1082

We converted their Disabling and Enabling labels1083

to prevent and allow respectively.1084

Tab. 10 summarizes the conversion process1085

through examples from the original data and the1086

NLI task derived from each.1087

C Model Sizes and Run-times 1088

For all the fine-tuning results in Tab. 2, Tab. 3 we 1089

used “RoBERTa-Large-MNLI” with 356M tune- 1090

able parameters. The mean run-time on target 1091

datasets is 1hr 55mins. 1092

For the augmentation in PInKS dataset, we used 1093

“BERT” language model with 234M tuneable pa- 1094

rameters. The mean run-time on the extracted sen- 1095

tences is 49hr. 1096

D Details on PABI Measurement 1097

PABI provides an Informativeness measure that 1098

quantifies the reduction in uncertainty provided 1099

by incidental supervision signals. We use the 1100

PABI measure to study the impact of transductive 1101

cross-domain signals obtained from our weakly- 1102
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Conjunction Pol. Pattern
to understand event [1] To understand the event

“{event}", it is important
to know that {precondi-
tion}.

in case [1] {action} in case {precon-
dition}

statement is true [1] The statement “{event}"
is true because {precon-
dition}.

except [0] {action} except {precon-
dition}

unless [0] {action} unless {precon-
dition}

if not [0] {action} if not {precon-
dition}

Table 9: Filtered Labeling Functions Patterns and their
associated polarity.

supervised approach.1103

Following (He et al., 2021), in order to calculate1104

PABI Ŝ(π0, π̃0), we first find out η, the difference1105

between a perfect system and a gold system in the1106

target domain D that uses a label set L for a task,1107

using Eq.1.1108

η = Ex∼PD(x)
1(c(x) 6= c̃(x))

=
(|L| − 1)(ή1 − η2)

1− |L|(1− ή1)

=
(|L| − 1)(η1 − η2)

1− |L|(1− η1)

(1)1109

Here, PD(x) indicates the marginal distribution1110

of x under D, c(x) refers to gold system on gold1111

signals, c̃(x) is a perfect system on incidental sig-1112

nals, η1 refers to the difference between the silver1113

system and the perfect system in the source domain,1114

ή1 indicates difference between the silver system1115

and the perfect system in the target domain, and η21116

is the difference between the silver system and the1117

gold system in the target domain.1118

Using Eq.1, the informative mea-1119

sure supplied by the transductive sig-1120

nals can be calculated as Ŝ(π0, π̃0) =1121 √
1− η ln(|L|−1)−η ln η−(1−η) ln(1−η))

ln|L| .1122
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Name Original Data Derived NLI

Winoventi
(Do and Pavlick, 2021)

masked_prompt:
a

Margaret smelled her bottle of maple syrup
and it was sweet. The syrup is {MASK}.

Hypothesis:
a

Margaret smelled her bottle of maple syrup
and it was sweet.

target: edible Premise: The syrup is edible/malodorous
incorrect: malodorous Label: ENTAILMENT/CONTRADICTION

ANION
(Jiang et al., 2021)

Orig_Head: PersonX expresses PersonX’s delight. Hypothesis: Alice expresses Alice’s delight/anger.
Relation: xEffect Premise: feel happy.
Tail: Alice feel happy Label: ENTAILMENT/CONTRADICTION
Neg_Head: PersonX expresses PersonX’s anger.

ATOMIC2020
(Hwang et al., 2020)

Head: PersonX takes a long walk. Hypothesis: PersonX takes a long walk.
Relation: HinderedBy Premise: It is 10 degrees outside..
Tail: It is 10 degrees outside. Label: CONTRADICTION

δ-NLI
(Rudinger et al., 2020)

Hypothesis: PersonX takes a long walk. Hypothesis: PersonX takes a long walk.
Premise: HinderedBy Premise: It is 10 degrees outside..
Update: It is 10 degrees outside. Label: CONTRADICTION
Label: Weakener

CoreQuisite
(Qasemi et al., 2021)

Statement: A net is used for catching fish. Hypothesis: A net is used for catching fish.
Precondition: You are in a desert. Premise: You are in a desert.
Label: Disabling Label: CONTRADICTION

Table 10: Examples from target tasks in NLI format
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