
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ICECACHE: MEMORY-EFFICIENT KV-CACHE MANAGE-
MENT FOR LONG-SEQUENCE LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Key-Value (KV) cache plays a pivotal role in accelerating inference in large lan-
guage models (LLMs) by storing intermediate attention outputs, thereby avoiding
redundant computation during auto-regressive generation. However, the cache’s
memory footprint scales linearly with sequence length, often resulting in memory
bottlenecks on constrained hardware. While prior work has explored offloading KV-
cache to the CPU and maintaining a reduced subset on the GPU, these approaches
frequently suffer from imprecise token prioritization and degraded performance in
long-generation tasks such as multi-turn dialogues and chain-of-thought reasoning.
In this paper, we propose a novel KV-cache management strategy called IceCache,
that integrates semantic token clustering with PagedAttention, a memory-efficient
paging mechanism. By clustering semantically related tokens and organizing them
into a hierarchical, dynamically updateable structure, our method improves cache
hit rates and memory bandwidth utilization during CPU-GPU transfers. Experi-
mental results show that IceCache achieves over 99% accuracy with a 256-token
budget and still maintains 97% accuracy with only a 64-token budget, compared
to the full KV-cache model. It outperforms existing baselines even while using
just 25% of the KV-cache token budget, demonstrating its superior accuracy in
long-sequence scenarios.

1 INTRODUCTION

Key-Value (KV) cache is a critical component in modern large language models (LLMs) which stores
the intermediate attention outputs for each token, allowing the model to reuse these computations
in subsequent forward passes. This is particularly important for auto-regressive generation tasks,
where tokens are generated one at a time. By caching these values, the model avoids redundant
calculations, dramatically reducing the runtime required for generating long sequences. However, the
main challenge for a KV cache lies in its memory consumption. As the generated sequence grows
longer, the required cache size increases linearly, potentially leading to out-of-memory errors on
devices with limited RAM.

Recent research (Zhang et al., 2024b; Tang et al., 2024; Xiao et al., 2023) has revealed that despite
the growing size of the KV cache, a small subset of tokens plays a disproportionately important
role in maintaining generation accuracy. This insight suggests that we can significantly reduce
inference time by selectively loading only these crucial tokens, without compromising the quality of
the output. Some research (Chen et al., 2024a; Lee et al., 2024; Chen et al., 2024b) takes this approach
further by offloading the KV-cache to the CPU and dynamically maintaining a subset of the most
significant KV-cache on the GPU. However, many previous methods do not identify and prioritize
these critical parts of the KV-cache in a precise way so that the hit rate of the truly important tokens
is low. Therefore, in scenarios involving long-generation tasks, such as long-context summarization,
multi-step reasoning, and extended chain-of-thought (CoT) generation, previous methods experience
significant performance degradation (Li et al., 2024a).

To improve the identification of critical parts of the KV-cache, we propose an innovative approach,
which we call IceCache, that integrates token clustering with a currently prevalent method – Page-
dAttention (Kwon et al., 2023) which stores the KV-cache in non-contiguous paged memory. As
illustrated in Figure 1, by grouping semantically related tokens into pages, our approach aims to
enhance the hit rate when selecting critical pages and tokens, and increase the transmission bandwidth

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

during the GPU-CPU offloading for the pages. Additionally, by employing a hierarchical data
structure that can be efficiently updated during the decoding phase, we can mitigate the performance
degradation commonly observed in long-generation tasks in previous studies. This leads to more
effective use of the KV-cache, especially in the long-generation setting. IceCache is beneficial in two
scenarios: (1) it achieves better accuracy than state-of-the-art methods using the same budget size;
(2) it achieves comparable accuracy using a much smaller budget size (as small as 25%).

...

Page

...

Selected (KV) Pages

...

Clustered Tokens

Transformed Key Emb.

Prompt

LLM
Current

Query (q)

Sparse
Atten

1

2

3

DCI-tree

...
...

Figure 1: Illustration of IceCache. (1) During the prefill stage, tokens are indexed into a tree structure
(the DCI-tree) according to their semantic similarity in the transformed key-embedding space. Each
leaf node of the DCI-tree corresponds to a physical memory page. (2) During the decoding stage,
given a query q, IceCache performs a tree search to identify the top-k tokens most relevant to q. The
zoomed-in section at the bottom illustrates that these critical tokens (highlighted in yellow) tend to be
clustered within the same leaf nodes and are stored together in corresponding memory pages. (3)
After the query-aware token search, the pages (leaf nodes) containing the critical tokens are selected,
and all tokens within these pages are utilized in the subsequent sparse attention with q.

IceCache has the following contributions:

1. Token Clustering for Efficient Storage: In the Prefill stage, instead of storing the KVs sequentially
in their original order, we first cluster the tokens based on their similarity in a transformed key-
embedding space using a maintainable tree-structured index, called DCI-tree. Tokens belonging to
the same cluster are then stored together in the same memory page(s).

2. Query-aware Critical Page Selection: In the Decoding stage, given a specific query, only a subset
of pages for each head are loaded to GPU to perform the attention computation for each layer and
attention head. These pages are selected based on the presence of critical tokens, which is decided by
an Approximated Nearest Neighbour (ANN) algorithm called Multi-level DCI (M-DCI).

3. Efficient Pipelining with CPU-GPU overlapping: IceCache performs M-DCI-based indexing
and page selection on the CPU in parallel with GPU operations such as attention computation and
feedforward layer execution. This pipelined design effectively overlaps computations, hiding much
of the latency introduced by page selection.

We evaluated IceCache under constrained GPU memory budgets on the Passkey Retrieval (Mo-
htashami & Jaggi, 2023), LongBench (Bai et al., 2023), and GSM8K Chain-of-Thought (CoT)
reasoning (Wei et al., 2022) using four popular open-source LLMs: Llama3.1-8B-Instruct, Mistral-
7B-Instruct-v0.2, LongChat-7B-v1.5 and Qwen3-32B. Across diverse tasks, including open-domain
QA, multi-hop reasoning, academic reading comprehension, long-context summarization and long-
context generation, IceCache consistently outperformed six state-of-the-art KV-cache baselines.
Notably, IceCache sustained near-oracle performance (over 99%) on most tasks using only a small
fraction (as small as 64 tokens) of the original KV cache size. For instance, on the challenging
GovReport task, known for its long-range dependencies and high generation demands, IceCache
achieved accuracy within 1% of the full KV baseline, whereas other methods experienced sharp
performance drops. Furthermore, by leveraging its hierarchical index and well-designed pipelining,
IceCache achieves decoding speedups comparable to leading baselines, demonstrating both efficiency
and scalability for long-context LLM inference.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Lots of recent methods have aimed to enhance the efficiency of attention mechanisms in large language
models, especially for handling long-context inputs. H2O (Zhang et al., 2024b) only keeps a subset
of tokens selected by the attention scores to save memory for the KV-cache. StreamingLLM (Xiao
et al., 2023) utilizes the initial tokens, which they call sink tokens and the most recent tokens to
accelerate the attention computation. Methods such as SparQ (Ribar et al., 2023) apply approximate
attention by only selecting important indices across the head dimension. Similarly, MagicPiG (Chen
et al., 2024b) employs a sampling technique to provide a faithful estimation of the attention output.
OmniKV (Hao et al., 2025) reduces memory overhead by reusing the important tokens identified
across consecutive layers. SnapKV (Li et al., 2024b) uses the last portion of the prompt to select
the important key embeddings for the following decoding. PQCache (Zhang et al., 2024a) employs
product quantization to manage KV-cache and approximate the attention computation.

PagedAttention (Kwon et al., 2023) is an innovative memory management technique designed to
optimize the KV-cache of LLMs. It addresses the challenges by introducing a paging mechanism
similar to virtual memory systems in operating systems. This approach divides the KV cache into
fixed-size pages, allowing for more efficient memory allocation and management. By doing so,
PagedAttention enables better utilization of GPU memory, reducing fragmentation and allowing for
longer context windows without sacrificing performance.

Quest (Tang et al., 2024) and ArkVale (Chen et al., 2024a) are two query-aware criticality estimation
algorithms built on the PagedAttention. They effectively identify critical KV-cache tokens and
perform self-attention selectively on the chosen tokens. For each page, Quest and ArkVale calculate
an upper bound using the feature values of the Key vector for each page’s criticality estimation. Given
all criticality scores of the pages, Top-K pages are chosen to perform approximate self-attention,
where K is a preset constant (e.g. 128, 256). Additionally, ArkVale integrates the GPU-CPU
offloading into the system to further save GPU memory. However, the main issue with both Quest and
ArkVale is that they make all tokens in the query head attend to the same key/value blocks activated
by sparse attention, which is too coarse-grained, as the information each token needs to attend to can
vary significantly. Instead, IceCache allows each query head to attend to different key/value blocks,
which makes the attention-approximation more accurate.

3 BACKGROUND

3.1 ATTENTION MECHANISM AND SPARSE ATTENTION

Mathematically, the attention operation takes three matrices as input, K ∈ Rm×d,Q ∈ Rn×d,V ∈
Rm×d′

, which denote keys, queries and values, respectively. Optionally, it may also take in a mask
as input, S ∈ Rn×m, whose entries are either 0 or 1. The ith rows of K, Q and V, denoted as ki,
qi and vi, represent the ith key, query, and value respectively. The entry of S in the ith row and jth
column, denoted as si,j , represents whether the ith query is allowed to attend to the jth key — if it is
1, it would be allowed; if it is 0, it would not be. A common masking scheme is the causal mask,
where si,j is 1 if i ≥ j and 0 otherwise. Keys and queries have the same dimension d, and each key
is associated with a value, and so the number of keys and values is the same and denoted as m. The
attention operation computes the attention weight matrix A ∈ Rn×m. Its entry in the ith row and jth
column, denoted as ai,j , is computed with the following formula:

ai,j =
si,j exp

(
q⊤
i kj√
d

)
∑m

j′=1 si,j′ exp
(

q⊤
i kj′√

d

) (1)

The attention matrix A is typically sparse (Nikita et al., 2020; Gupta et al., 2021), i.e., in each row of
A, only a few attention weights have significant (large) values, while the majority of the remaining
values are close to zero. If we can somehow identify the k unmasked keys that receive the highest
attention weights for each query qi without computing the attention weights for all keys, the original
attention matrix A can be approximated by only computing the inner product for the identified keys,
which can save a significant amount of computational resources.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 GENERATIVE INFERENCE OF LLM

The generative inference process of LLMs primarily comprises two key stages: the prefill (or prompt)
stage and the decoding (or generation) stage.

In the prefill stage, the model takes an input prompt sequence of length sin and processes it through
all layers of the LLM. During this process, the keys and values for each token in the sequence are
computed and stored as part of the KV cache. The decoding stage begins once the prompt has been
processed. Here, the model generates output tokens one step at a time, using and updating the KV
cache iteratively. For each decoding step, the current token’s computation depends on the stored keys
and values from previous tokens, allowing the model to maintain context over the sequence. The KV
cache thus plays a crucial role in enabling efficient autoregressive generation by reducing redundant
computations and maintaining information about past tokens.

3.3 MULTI-LEVEL DCI

Prioritized Dynamic Continuous Indexing (P-DCI) Li & Malik (2017) propose an exact, random-
ized algorithm designed to perform efficient k-nearest neighbour (k-NN) searches in high-dimensional
spaces. Unlike traditional methods that rely on space partitioning, P-DCI avoids this by constructing
multiple indices, each imposing an ordering of all data points based on their projections onto random
vectors. During querying, P-DCI maintains a priority queue to process points in an order that is
likely to find nearer neighbours sooner. It computes a dynamic lower bound on the distance to the
nearest neighbour, allowing early termination of the search when the bound exceeds the distance to
the current best candidates. This approach significantly reduces the number of distance evaluations
and memory usage compared to methods like Locality-Sensitive Hashing (LSH).

Multi-level Dynamic Continuous Indexing (M-DCI) Mao et al. (2024) extend P-DCI by introducing
a hierarchical structure to further enhance search efficiency. The index is organized into multiple
levels, where each level contains a subset of data points. Points are randomly promoted to higher
levels, forming a pyramid-like structure. Each point at a lower level is assigned a parent in the next
higher level, typically the nearest neighbour among the promoted points. This creates "nodes" or
clusters of points sharing the same parent. When querying, the algorithm starts at the top level,
using P-DCI to find the k-closest points to the query. It then recursively searches within the nodes
associated with these points at the next lower level, continuing this process down the hierarchy. This
multi-level approach allows M-DCI to focus computational resources on the most promising regions
of the index, effectively narrowing down the search space and improving query times, especially in
indexes with high intrinsic dimensionality.

4 ICECACHE

We propose an innovative approach, named IceCache, that integrates token clustering with KV-
cache storage. Our method consists of three steps: (1) Indexing; (2) Page Selection; and (3) Bulk
Back-loading. The Indexing step occurs either during the prompt processing phase—when IceCache
constructs a hierarchical tree structure, referred to as the DCI-tree, for the prompt key embeddings; or
when new window pages are offloaded to the CPU. In this step, similar tokens are grouped into units
called nodes, rather than being stored sequentially in virtual memory pages as in PagedAttention.
Here, a node denotes a group of data points that share the same parent in the tree hierarchy. The
next two steps take place during the token generation (decoding) phase. In the Page Selection
step, IceCache employs a fast Approximate Nearest Neighbor (ANN) search algorithm, P-DCI, to
independently select the top-k most relevant key pages for each attention head. Finally, in the Bulk
Back-loading step, the selected pages are efficiently transferred from the CPU back to the GPU.
IceCache overlaps the DCI Indexing (a CPU-intensive operation) with ongoing GPU computations,
thereby minimizing additional latency.

We provide further details on each of these three steps in the following subsections and illustrate the
method in Fig 2.

4.1 INDEXING: CLUSTERING KEY EMBEDDINGS INTO A HIERARCHICAL TREE

PagedAttention (Kwon et al., 2023) is a memory management strategy designed to optimize attention
computation in LLMs by organizing key-value pairs into sequential memory pages. It stores these
key-value pairs based on their original token indices, ensuring that tokens appearing consecutively

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: Illustration of DCI-tree and IceCache: The hierarchical structure on the left visualizes the
result of indexing key embeddings, DCI-tree, where each tree node stores metadata for the tokens
such as the key ID and node index. The tables on the right depict the mapping between nodes in the
DCI-tree and the corresponding pages in physical memory. For each selected node, a mapping table
is used to locate the memory region containing the associated key-value embeddings.

in the input sequence are placed contiguously in memory. This organization minimizes memory
fragmentation, allowing for more efficient memory access during decoding and ultimately improving
computational throughput. To inherit the benefits of PagedAttention, several subsequent KV-cache
optimization techniques, such as Quest (Tang et al., 2024) and ArkVale (Chen et al., 2024a), have
been developed based on its principles. These methods focus on estimating the importance of each
page during KV-cache selection to approximate attention computation more efficiently.

IceCache also organizes key-value embeddings into pages, but takes a fundamentally different
approach during its Indexing stage. Instead of relying on the token’s original order, IceCache
constructs a separate hierarchical tree structure for each attention head, called a DCI-tree, which
clusters tokens based on the semantic similarity of their key embeddings. Each node in the DCI-tree
represents a small group of semantically related tokens that share a common parent, effectively
forming a localized cluster. From a memory system perspective, IceCache maps each node directly to
a memory page, thereby preserving semantic locality in storage and enabling efficient access during
decoding.

By clustering semantically similar tokens into the same nodes/pages, IceCache enables more targeted
and efficient retrieval during decoding. In contrast, methods like Quest, Arkvale, or PQCache (Zhang
et al., 2024a) construct pages based on the original token order, which often causes tokens relevant to
a given query to be scattered across multiple pages. Retrieving them requires loading entire pages
filled with many irrelevant tokens, resulting in unnecessary memory overhead. IceCache mitigates
this inefficiency by grouping similar tokens, so relevant tokens tend to be concentrated within fewer
pages. As a result, it achieves comparable or improved performance while reducing the number of
pages retrieved.

Moreover, the DCI-tree structure used by IceCache is designed for efficient incremental updates. As
new windows of tokens (e.g., from a sliding window in long-context scenarios) are offloaded to the
CPU, each token is inserted into the appropriate node in the DCI-tree based on its key embedding.
When a node exceeds the maximum page size, new pages are dynamically allocated to maintain
balance. This adaptive tree maintenance ensures that the index remains both semantically meaningful
and efficient, making IceCache particularly effective for long-sequence generation.

In summary, while prior methods treat KV-cache page layout as a static memory allocation problem,
IceCache introduces a dynamic, semantically-aware structure that preserves key similarity across
time. This enables more focused page retrieval, reduces memory fragmentation, and supports more
efficient decoding. Furthermore, by performing indexing during the prompt or CPU offloading phase,
IceCache amortizes the tree construction cost and avoids incurring additional latency during inference.

4.2 PAGE SELECTION: HEAD-SPECIFIC ANN SEARCH WITH FINE-GRAINED RETRIEVAL

During the decoding phase, given a query, IceCache performs a head-specific page selection to
identify the most relevant key pages for each attention head. Leveraging the hierarchical DCI-tree

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

… …

…

Copy to CPU memory buffer

Bulk backload
Copy to GPU cache blocks

CPU backload buffer GPU backload buffer

DCI-tree of KV-head 𝑖 KV-Cache Table

… …

Figure 3: After IceCache selects important KV-
pages, it aggregates all selected pages into a con-
tiguous CPU preloading buffer. This buffer is
then transferred via high-throughput PCIe trans-
action to a pre-allocated GPU buffer. Finally,
the transferred blocks are scattered into their ex-
act locations in the KV-Cache table. This bulk
transfer avoids many small PCIe copies and sig-
nificantly improves utilization.

Prefill, 𝐿𝑖
OL,
𝐿𝑖

Index, 𝐿𝑖 Index, 𝐿𝑖+1Prefill, 𝐿𝑖+1 OL,
𝐿𝑖+1

Prefill, 𝐿𝑖

OL,
𝐿𝑖

Index, 𝐿𝑖 Index, 𝐿𝑖+1

OL,
𝐿𝑖+1

Prefill, 𝐿𝑖+1GPU

PCIe

CPU

(a) Serial workflow.

(b) IceCache pipelining.

Figure 4: (a) Baseline serial workflow, where
prefilling, offloading (OL), and indexing are exe-
cuted strictly in sequence. (b) IceCache pipelin-
ing, where GPU prefilling overlaps with KV-
offloading via PCIe and CPU-side DCI indexing.
Once KVs of layer i (Li) arrive in CPU memory,
Li-DCI-tree indexing progresses in parallel with
GPU prefilling and offloading of the subsequent
layer (Li+1). This results in significantly reduced
end-to-end prefilling latency.

built during indexing, we apply a fast ANN search method mentioned in Section 3.3, M-DCI, to find
the top-k pages that are closest to the current query embedding for each head independently.

This design contrasts sharply with prior methods like Quest and PQCache, which either retrieve all
pages indiscriminately or use a coarse global selection strategy shared across heads. In contrast,
IceCache’s head-specific search recognizes that different heads often attend to different semantic
aspects of the input, and thus benefit from customized retrieval strategies. This per-head granularity
leads to improved attention relevance and overall model accuracy.

4.3 BULK LOADING AND PIPELINING

In this section, we present how we optimize the efficiency of the IceCache workflow, using bulk
loading and pipelining. Our key observation is that the selected KV cache pages are not continuous
in either main memory or GPU memory. As a result, individual transfer of these pages between main
memory and GPU memory is highly inefficient. To overcome this issue, we designed bulk loading
algorithms to efficiently offload and backload the selected pages, using two CPU and GPU backload
buffers. In addition, we carefully designed an efficient pipeline of prefilling calculations, KV cache
offloading, and DCI indexing, for efficient prefilling.

We illustrate our bulk back-loading workflow in Figure 3. Offloading follows the same but reversed
procedure. After identifying the most relevant pages (indicated by color), we filter out those already
resident in GPU memory from previous token generations. The remaining pages are then aggregated
into a pre-allocated CPU-memory buffer, enabling a single high-throughput PCIe transfer into a
pre-allocated GPU-memory buffer. Once the pages arrive in GPU memory, we scatter them directly
into their corresponding entries in the KV-Cache table.

Figure 4(b) illustrates the IceCache prefilling pipelining (other minor stages are omitted for simplicity).
After the KV states are generated on the GPU, we simultaneously trigger the prefilling calculation
and the offloading transfer. The DCI index construction starts building the index along with the
prefilling calculation, right after the KV states fully arrive in the main memory. This approach
allows the offloading and indexing latencies to be largely hidden by the main prefilling computation.
Furthermore, IceCache can be easily extended with critical page reuse techniques (Liu et al., 2023;
Hao et al., 2025) to further accelerate prefilling.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

5.1 SETTINGS

We apply our method to Llama-3.1-8B-Instruct and Mistral-7B-Instruct-v0.2, two of the most popular
open-source LLMs employing group-query attention (GQA) (Ainslie et al., 2023). We also test
our method on a larger model, Qwen3-32B, and a multi-head attention model (Vaswani et al.,
2017), LongChat-7B-v1.5. We first evaluate the recall in retrieving important tokens, followed by
performance testing on 16 tasks from Longbench benchmark (Bai et al., 2023). As prior research
indicates, the initial layers of the model exhibit relatively low sparsity. Therefore, neither IceCache
nor baseline methods are applied to the first two layers of the models.

Our experimental platform comprises an Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz and an
NVIDIA A100 40GB PCIe GPU (for small models) or an NVIDIA H100 80GB PCIe GPU (for large
models). The software stack includes CUDA version 12.1, PyTorch version 2.5.1, and HuggingFace
Transformers version 4.51.0. We implement IceCache on top of HuggingFace Transformers, utilizing
FlashInfer for the attention kernel operation.

5.2 PASSKEY RETRIEVAL ACCURACY

We first evaluate IceCache’s effectiveness in handling long-range dependencies using the passkey
retrieval task (Mohtashami & Jaggi, 2023). We consider context lengths from 10k words to 100k
words, and test with the size of cache budget = {256, 128, 64}. For each length, 100 test cases are
generated with passkeys inserted at various positions from 0% to 95% of the total context length in
increments of 5%. The results are illustrated in Fig. 5. As shown in the figure, IceCache dynamically
assess the importance of evicted pages and recall crucial ones on demand, consistently maintaining
100% retrieval accuracy across all tested budget sizes.

(a) Cache Budget = 256 (b) Cache Budget = 128 (c) Cache Budget = 64

Figure 5: Passkey retrieval accuracy of IceCache on Llama3.1-8B-Instruct. The horizontal axis
indicates the relative insertion position (%) of the passkey, while the vertical axis represents the
context length in words. Results are presented for cache budgets of 256, 128, and 64. Notably,
IceCache achieves 100% retrieval accuracy across all tested budget sizes.

5.3 LONGBENCH EVALUATION

To assess the performance of our method in long-context scenarios, we conduct a comprehensive
evaluation on the LongBench benchmark. We compare IceCache (ICE) against six state-of-the-art KV
cache optimization methods, including MagicPig (MPG) (Chen et al., 2024b), ArkVale (AKV) Chen
et al. (2024a), SnapKV (SKV) Li et al. (2024b), StreamingLLM (SLM) Tang et al. (2024), OmniKV
(OKV) Hao et al. (2025) and PQCache (PQC) Zhang et al. (2024a) as baselines. We also include
the results of full KV cache (FULL) and ground-truth top-k KV cache (TOP-k) as baselines. The
detailed results are presented in Table 1.

Performance on Llama-3.1-8B-Instruct. On Llama-3.1-8B, the effectiveness of IceCache is
particularly pronounced. Most impressively, with a highly constrained KV Cache budget of just
64, our method achieves an average accuracy of 47.8. This result alone surpasses the strongest
baseline, PQCache, which scores 47.3 while operating with a 4 times larger budget of 256. This
highlights the exceptional efficiency of our approach in low-resource environments. As we increase

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Accuracy comparison of our method (ICE) with SnapKV (SKV), SteamingLLM (SLM),
OmniKV (OKV), MagicPig (MPG), PQCache (PQC), ArkVale (AKV), Full KV (FULL) and ground-
truth top-k (TOP-k) on LongBench for Llama-3.1-8B-Instruct and Mistral-7B-Instruct. IceCache
generally outperforms other methods across various KV cache budgets and LLMs.

Budget Method
Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.NrtvQA Qasper MF-en HotpotQA 2WikiMQA Musique GovReport QMSum MultiNews TREC TriviaQA SAMSum PCount PRe Lcc RB-P
18409 3619 4559 9151 4887 11214 8734 10614 2113 5177 8209 6258 11141 9289 1235 4206

Llama-3.1-8B-Instruct

N/A FULL 30.2 45.5 54.9 55.5 46.7 31.3 35.2 25.2 27.2 72.5 91.7 43.8 8.4 99.5 65.1 58.8 49.5
256 TOP-k 30.7 44.7 55.4 55.0 46.5 31.7 34.8 25.1 26.8 71.5 92.2 44.8 7.8 100.0 67.1 63.6 49.8

256

SKV 23.7 27.3 46.3 52.3 40.8 24.2 19.2 22.6 19.2 29.0 84.1 39.0 8.6 97.5 57.3 56.2 40.8
SLM 17.0 23.2 25.7 21.0 29.3 6.8 20.8 17.5 20.7 45.5 84.3 41.2 5.0 71.5 59.5 47.5 33.5
OKV 27.2 40.7 52.8 55.1 45.6 29.7 27.6 23.0 25.4 72.5 88.9 40.4 5.6 94.5 60.8 51.5 46.3
MPG 25.5 39.9 51.8 51.4 39.5 25.7 33.9 23.5 25.9 65.5 84.0 37.0 7.8 99.5 47.4 44.8 44.6
PQC 28.7 43.3 52.2 55.2 45.1 28.4 27.2 24.0 22.8 69.5 91.1 41.2 6.2 99.0 59.0 54.4 47.3
AKV 26.1 35.2 47.5 51.6 45.6 28.1 22.9 22.5 22.8 53.5 90.1 40.0 6.7 85.0 57.7 48.9 42.8

64 ICE 27.4 43.2 55.7 55.3 44.4 31.2 33.4 23.7 26.2 72.5 90.3 41.9 6.6 99.5 61.7 51.6 47.8
128 ICE 30.0 44.7 56.5 55.0 45.4 30.0 33.5 24.3 26.5 73.0 91.3 42.4 6.5 100.0 61.5 56.7 48.6
256 ICE 30.6 44.7 56.3 55.2 45.9 30.6 34.6 24.4 26.7 73.0 92.0 43.5 6.7 100.0 62.5 56.4 49.0

Mistral-7B-Instruct-v0.2

N/A FULL 26.8 33.1 49.3 42.8 27.3 18.8 33.0 24.2 27.1 71.0 86.2 42.8 2.9 87.0 56.9 54.3 42.2
256 TOP-k 26.2 31.3 48.9 40.0 26.2 19.6 33.3 24.2 27.1 73.0 86.6 43.3 2.3 82.9 59.0 57.3 42.6

256

SKV 18.3 15.1 38.3 30.4 19.2 13.8 16.5 21.4 19.9 32.0 81.7 38.1 4.0 59.1 49.0 51.8 31.8
SLM 14.2 12.3 26.4 23.2 14.8 10.1 17.5 19.8 19.8 51.0 80.5 39.9 4.0 15.6 52.0 45.4 27.8
OKV 16.5 22.8 43.8 34.7 19.2 16.6 24.4 22.0 24.8 70.5 81.7 38.6 3.1 35.2 36.5 38.4 33.0
MPG 21.0 28.0 46.5 38.4 19.5 17.5 30.8 23.3 25.8 70.0 83.7 39.5 2.5 85.0 49.4 48.3 39.1
PQC 21.0 25.8 42.5 18.1 20.3 16.0 29.5 21.7 27.1 70.0 85.8 39.7 2.5 75.5 54.2 49.2 37.4
AKV 18.0 15.2 41.5 30.7 17.0 13.2 21.6 21.6 23.1 58.0 85.8 40.6 2.1 41.5 51.4 47.2 33.0

64 ICE 23.9 29.0 47.4 40.5 23.5 18.3 30.6 21.8 26.0 70.5 85.9 41.5 3.5 56.5 53.2 50.4 39.0
128 ICE 25.1 30.5 48.7 40.4 26.7 18.7 30.3 22.0 26.1 70.5 85.7 42.4 3.4 70.2 53.6 51.5 40.4
256 ICE 25.2 31.0 48.4 40.4 26.0 18.3 31.5 23.1 26.9 71.0 86.3 42.8 3.9 85.1 54.7 53.2 41.7

Table 2: Accuracy comparison of our method (ICE) with Full KV (FULL) on LongBench for Qwen3-
32B and LongChat-7B-v1.5.

Budget Method
Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.NrtvQA Qasper MF-en HotpotQA 2WikiMQA Musique GovReport QMSum MultiNews TREC TriviaQA SAMSum PCount PRe Lcc RB-P
18409 3619 4559 9151 4887 11214 8734 10614 2113 5177 8209 6258 11141 9289 1235 4206

Qwen3-32B

N/A FULL 32.6 45.5 50.4 59.6 56.0 40.1 33.2 23.9 25.2 72.0 70.8 37.1 18.0 100.0 12.4 18.4 43.4

64 ICE 29.5 43.9 50.9 61.4 55.8 38.8 30.8 23.8 24.3 71.0 70.0 35.7 15.0 97.0 10.5 17.3 42.2
128 ICE 32.1 44.8 53.3 61.6 54.6 38.5 31.0 23.6 24.8 72.0 70.3 36.2 15.5 100.0 10.7 17.3 42.6
256 ICE 32.2 44.1 51.9 60.2 55.1 38.9 32.4 24.3 24.7 71.5 70.7 37.4 16.5 100.0 11.8 18.0 43.1

LongChat-7B-v1.5

N/A FULL 20.8 29.4 43.1 33.0 24.4 14.7 30.8 22.8 26.7 66.5 84.0 22.5 0.0 30.5 54.7 59.2 35.2

64 ICE 18.5 26.9 40.6 34.2 22.7 14.0 29.3 20.9 25.6 66.5 84.3 21.9 1.5 26.1 52.5 56.8 33.9
128 ICE 19.9 27.7 40.9 33.9 24.2 14.4 28.6 21.8 25.9 66.5 84.2 22.3 1.5 27.3 52.6 57.7 34.3
256 ICE 20.4 29.5 43.0 34.6 23.7 14.2 29.8 22.7 26.1 66.5 84.7 22.9 0.0 28.5 53.6 59.0 35.0

the budget for IceCache to 256, its performance climbs to an average score of 49.0. This not only
represents a substantial 1.7 point improvement over PQCache but also closes the performance gap to
the unconstrained Full KV-Cache (49.5) to a mere 0.5 points. Notably, our performance is remarkably
close to the ground-truth Top-k, demonstrating a near-optimal cache management strategy across a
diverse set of tasks.

Performance on Mistral-7B-Instruct. This strong performance trend is consistent on the Mistral-
7B model, confirming the robustness of our method. With a budget of 256, IceCache achieves an
average accuracy of 41.7, establishing a significant 2.6 point lead over the best-performing baseline,
MagicPig (39.1). Again, the low-budget capability of IceCache stands out; with a budget of 64,
IceCache scores 39.0, remaining highly competitive with the top baseline (MagicPig, scores 39.1)
that uses four times the cache size (256).

Performance on two additional LLMs. We evaluate IceCache on LongBench using two additional
models: Qwen3-32B, a large-scale model, and LongChat-7B-v1.5, which employs standard multi-
head attention rather than group-query attention. As shown in Tables 2, for Qwen3-32B, IceCache
with a small budget of 64 achieves an average accuracy of 42.2 on LongBench, retaining 97.2% of the
full KV cache performance (43.4). This score rises to 99.3% with a budget of 256, nearly matching
the vanilla model. Similarly, on LongChat-7B-v1.5, our method preserves 96.3% of the full KV cache

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

performance with a budget of 64, and achieves up to 99.4% at a budget of 256. These results provide
strong evidence that IceCache is effective across different model scales and attention mechanisms.

5.4 GSM8K COT REASONING
Table 3: GSM8K CoT.

Method Budget Accuracy

FULL N/A 48.2

SKV 10% 44.7
SLM 10% 44.4
OKV 10% 42.7
MPG 10% 43.1
PQC 10% 46.2
AKV 10% 30.9

ICE 10% 47.4

We also evaluate IceCache on the GSM8K benchmark using Chain-
of-Thought prompting, applying a 10% budget for all compared
methods using Mistral-7B-Instruct-v0.2. As shown in Table 3, Ice-
Cache demonstrates superior performance, achieving an accuracy of
47.4%, significantly higher than all other methods under the same
budget constraint. In particular, it improves the accuracy of 46% of
the strongest baseline, PQCache, by 2.6% of the original value to
47.4%. Moreover, our approach nearly matches the full KV-cache
(48.2%), highlighting the effectiveness of IceCache.

5.5 LATENCY ANALYSIS

Since most baselines, including IceCache, use the entire KV cache to generate the first token, we
follow PQCache (Zhang et al., 2024a) and report the Time to the second token (TT2T) in Fig. 6a, for a
36k sequence length and all the methods compared in Table 1 except MagicPig, which is restricted to
costly AVX-512 CPUs. All reported numbers in this section are obtained using Llama-3.1-8B-Instruct.
Our method, IceCache, achieves competitive latency among retrieval-based algorithms, recording 7.7
seconds. Its variant, IceCache (reuse), which reuses the KV-cache across layers, further reduces this
to 5.9 seconds, matching OmniKV (5.8 s) and outperforming other retrieval-based baselines such as
Arkvale (7.4 s) and PQCache (13.3 s). Although eviction-based methods like SnapKV (0.55 s) and
StreamingLLM (0.13 s) are much faster, their speed often comes at the cost of accuracy. Overall,
IceCache and IceCache(reuse) offer a strong balance between efficiency and accuracy, with the reuse
variant showing how our approach can further optimize latency without significantly sacrificing
performance. We include more details of IceCache(reuse) in the appendix C.

Similarly, for decoding latency, Fig. 6b shows the average time per generated token, along with the
corresponding accuracy percentage relative to the full KV-cache model, for an input sequence length
of 36k. Eviction-based methods, StreamingLLM and SnapKV (both are 0.03 seconds per token),
continue to show the fastest speeds due to their minimal overhead. Among the more accurate retrieval-
based methods, IceCache(reuse) achieves a highly competitive decoding time of 0.06 seconds per
token – substantially faster than PQCache (0.13 s) and nearly matching the speed of OmniKV (0.05
s). Vanilla IceCache maintains a strong balance, combining superior accuracy with efficient decoding.
It achieves the highest accuracy percentage (99.0%) while still outperforming PQCache in speed.
These results further demonstrate that IceCache effectively balances accuracy and decoding latency.

Figure 6c presents a detailed breakdown of TPOT latency for IceCache at a sequence length of 36k,
with a total latency of 0.11 seconds. In this figure, “Loading”, “Query”, and “Decoding” correspond to
the overhead from CPU–GPU communication, DCI-query operations, and the overall LLM decoding
process, respectively. The largest contributors to latency are the DCI-query module (0.05 s) and
decoding (0.04 s), while GPU–CPU offloading and other miscellaneous operations add only 0.015
seconds and 0.005 seconds, respectively.

(a) Time to the second token. (b) Time per output token. (c) TPOT Latency breakdown.

Figure 6: Latency comparison of IceCache and baseline methods on a 36k-token sequence.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 CONCLUSION

This paper addresses the critical challenge of managing long contexts in LLMs, where the expanding
KV-cache severely impacts memory efficiency and computational performance. To address this, we
introduce a novel hierarchical database, the DCI-tree, enabling lightweight updates and dynamic token
management for efficient KV-cache handling. Building on this, we propose IceCache, an end-to-end
page-based KV-cache manager with efficient GPU–CPU offloading and recall. Extensive experiments
across diverse long-context tasks demonstrate IceCache’s efficacy: it achieves over 99% accuracy with
a 256-token budget and about 97% accuracy even with only a 64-token budget, surpassing existing
baselines while using just 25% of the KV-cache token budget. These results establish IceCache as a
scalable and practical solution for optimizing KV-cache in LLMs with long context requirements,
delivering state-of-the-art accuracy and efficiency without sacrificing performance.

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
arXiv preprint arXiv:2305.13245, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Renze Chen, Zhuofeng Wang, Beiquan Cao, Tong Wu, Size Zheng, Xiuhong Li, Xuechao Wei,
Shengen Yan, Meng Li, and Yun Liang. Arkvale: Efficient generative llm inference with recallable
key-value eviction. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024a.

Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang Zhou, Jianyu Zhang, Niklas Nolte, Yuandong
Tian, Matthijs Douze, Leon Bottou, Zhihao Jia, et al. Magicpig: Lsh sampling for efficient llm
generation. arXiv preprint arXiv:2410.16179, 2024b.

Ankit Gupta, Guy Dar, Shaya Goodman, David Ciprut, and Jonathan Berant. Memory-efficient
transformers via top-k attention. arXiv preprint arXiv:2106.06899, 2021.

Jitai Hao, Yuke Zhu, Tian Wang, Jun Yu, Xin Xin, Bo Zheng, Zhaochun Ren, and Sheng Guo.
Omnikv: Dynamic context selection for efficient long-context llms. In The Thirteenth International
Conference on Learning Representations, 2025.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611–626, 2023.

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. {InfiniGen}: Efficient generative
inference of large language models with dynamic {KV} cache management. In 18th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 24), pp. 155–172, 2024.

Ke Li and Jitendra Malik. Fast k-nearest neighbour search via prioritized dci. In International
conference on machine learning, pp. 2081–2090. PMLR, 2017.

Yucheng Li, Huiqiang Jiang, Qianhui Wu, Xufang Luo, Surin Ahn, Chengruidong Zhang, Amir H
Abdi, Dongsheng Li, Jianfeng Gao, Yuqing Yang, et al. Scbench: A kv cache-centric analysis of
long-context methods. arXiv preprint arXiv:2412.10319, 2024a.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation.
arXiv preprint arXiv:2404.14469, 2024b.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms
at inference time. In International Conference on Machine Learning, pp. 22137–22176. PMLR,
2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yuzhen Mao, Martin Ester, and Ke Li. Iceformer: Accelerated inference with long-sequence
transformers on CPUs. In The Twelfth International Conference on Learning Representations,
2024.

Amirkeivan Mohtashami and Martin Jaggi. Landmark attention: Random-access infinite context
length for transformers. arXiv preprint arXiv:2305.16300, 2023.

Kitaev Nikita, Kaiser Lukasz, Levskaya Anselm, et al. Reformer: The efficient transformer. In
Proceedings of International Conference on Learning Representations (ICLR), 2020.

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley, Charlie Blake, Carlo Luschi, and Douglas Orr.
Sparq attention: Bandwidth-efficient llm inference. arXiv preprint arXiv:2312.04985, 2023.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu, Xupeng Miao, Xiaonan Nie, Weipeng Chen,
and Bin Cui. Pqcache: Product quantization-based kvcache for long context llm inference. arXiv
preprint arXiv:2407.12820, 2024a.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36, 2024b.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A METHOD OVERVIEW

We separate all tokens into three groups: sink tokens, which are the tokens at the very beginning of
the input sequence; window tokens, which are the most recent tokens; and all the remaining tokens in
between. The pages that store sink tokens are referred to as sink pages, and those that store window
tokens are referred to as window pages. We always keep all the sink and window pages in GPU.

We provide the pseudocode below for IceCache. It operates in two main phases: (1) Prefill Phase:
During the initial processing of prompt tokens, IceCache allocates paged KV memory per layer and
performs self-attention computations. From the third layer onward, it copies KV embeddings to CPU
and builds a dynamic index – DCI-tree. This tree enables efficient future lookup of important tokens
based on query embeddings. (2) Decode Phase: During autoregressive decoding, each new token’s
query embedding is used to retrieve the most relevant KV pages via DCI-based query. Selected pages
are back-loaded to GPU on demand, while unimportant pages are offloaded to CPU storage. When a
new window page is offloaded, the DCI-tree is incrementally updated to store tokens in this page.
The detailed steps are outlined in Algorithm 1. We will explain the mechanisms behind indexing and
page selection in the following sections.

B METHOD DETAILS

B.1 INDEXING

For each attention head, given a set of pre-computed key embeddings, IceCache first indexes them
using a hierarchical tree structure which is obtained by a novel approach called Multi-level DCI
(M-DCI). It works by constructing a dynamic index called DCI-tree and applies Prioritized DCI
(P-DCI) (Li & Malik, 2017) to each level of the tree recursively (more details are in Section 3.3). The
data points processed in M-DCI are transformed key embeddings and query embeddings using the
following transformation formulas, which we denote as TK : Rd → Rd+1 and TQ : Rd → Rd+1:

TK(kj) =
[
kj/c

√
1− ∥kj∥22/c2

]⊤
(2)

TQ(qi) = [qi/∥qi∥2 0]
⊤ (3)

where c ≥ maxj′ ∥kj′∥2 is at least the maximum norm across all keys. We use the Euclidean distance
as the distance function.

At the very beginning of the indexing, all data points are initially placed at the bottom level of the
DCI-tree. Subsequently, some points are randomly selected to be promoted to the next higher level
based on a promotion ratio r < 1. The ratio r is predefined during DCI-tree initialization and remains
fixed throughout the process. After the indexing, we can get the total number of levels in the DCI-tree,
denoted as L. The details are presented in Algorithm 2.

Specifically, let nℓ denote the number of data points at level ℓ, with level indices starting from the
bottom (i.e., the lowest level is ℓ = 1). Ideally, the number of points satisfies the recurrence relation
nℓ = r · nℓ−1. In other words, the distribution over level indices follows a geometric distribution.
The probability that a point is assigned to the highest level (ℓ = L) is rL−1, while the probability of
being assigned to level ℓ (for 1 ≤ ℓ ≤ L− 1) is rℓ−1 − rℓ.

After level assignment, each data point at level ℓ is linked to a parent at level ℓ+ 1, defined as the
closest point in terms of key embedding distance. This parent assignment is formulated as a 1-nearest
neighbor search and is efficiently solved using M-DCI query.

In the decoding stage, when a new token is generated, its key embedding is inserted into the
appropriate position in the DCI-tree. A level ℓ is first assigned to the new key according to the same
random promotion process. Then, its parent at level ℓ+ 1 is determined, and the key is added to the
physical memory page corresponding to the node into which it is inserted.

B.2 PAGE SELECTION

As aforementioned, IceCache aims to accelerate self-attention by loading only a limited number of
pages into GPU memory for computation. Therefore, the objective of page selection is to maximize
the recall (or hit rate) of significant keys for a given query. By clustering semantically similar tokens

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

into the same nodes/pages, IceCache enables more targeted and efficient retrieval during decoding. In
contrast, methods like Quest (Tang et al., 2024), Arkvale (Chen et al., 2024a), or PQCache (Zhang
et al., 2024a) construct pages based on the original token order, which often causes tokens relevant to
a given query to be scattered across multiple pages. Retrieving them requires loading entire pages
filled with many irrelevant tokens, resulting in unnecessary memory overhead. IceCache mitigates
this inefficiency by grouping similar tokens, so relevant tokens tend to be concentrated within fewer
pages. As a result, the hit rate of significant keys during decoding increases. The detailed procedure
is shown in Algorithms 3 and 4.

Specifically, when computing the attention matrix, given a query vector qi, we follow the query
process described in Section 3.3 to identify the top-k keys that are most likely to yield the highest
dot-product values with qi. Once these top-k keys are identified, we load only the pages that contain
them. Suppose p pages are loaded, and each page contains d entries, since not all the pages are fully
filled, the number of loaded keys N is bounded as: N ≤ pd.

The approximate attention scores between the query q and these N selected keys are then computed
using Equation 1. The masks si,j are set to 1 for the selected keys and 0 for all others. Note that,
IceCache constructs a separate DCI-tree for each attention head, allowing it to retrieve different sets
of significant pages per head. This head-specific, fine-grained selection mechanism distinguishes
IceCache from baselines such as Quest and ArkVale, which retrieve the same set of pages for all
heads, potentially limiting their retrieval accuracy.

C DETAILS OF ICECACHE (REUSE) ON LONGBENCH

We present the LongBench task scores for IceCache (reuse) in Table 4. Starting from the third layer,
we build the DCI-tree and perform DCI-queries every five layers; we refer to these as “anchor layers”.
For the layers in between, we reuse the KV-cache indices selected at the most recent anchor layer.

Table 4: Accuracy of IceCache (reuse) on LongBench.

Budget Method
Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.NrtvQA Qasper MF-en HotpotQA 2WikiMQA Musique GovReport QMSum MultiNews TREC TriviaQA SAMSum PCount PRe Lcc RB-P
18409 3619 4559 9151 4887 11214 8734 10614 2113 5177 8209 6258 11141 9289 1235 4206

Llama-3.1-8B-Instruct

256 ICE(r) 28.6 42.6 54.0 55.4 45.8 29.6 32.8 24.0 25.9 72.0 90.1 40.9 5.7 96.5 61.4 51.6 47.3

D LATENCY SCALING ACROSS CONTEXT LENGTHS

Figure 7 compares the prefill latency (left) and per-token decode latency (right) of Full Attention,
IceCache, and IceCache(r) as the input context grows from 32K to 128K tokens. The results show
that IceCache introduces only a modest overhead during prefill, while achieving better scaling than
Full Attention in the decoding stage.

32 64 96 12
8

Context Length (K Tokens)

0

5

10

15

20

Pr
ef

ill 
La

te
nc

y 
(s

)

Full
IceCache
IceCache(r)

32 64 96 12
8

Context Length (K Tokens)

0

20

40

60

80

100

120

De
co

de
 L

at
en

cy
/To

ke
n 

(m
s)

Full
IceCache
IceCache(r)

Figure 7: Latency scaling across context lengths (32k, 64k, 96k and 128k). Left: IceCache and
IceCache(r) maintain close prefill latency to Full-KV across all context lengths. Although IceCache
performs additional CPU-side indexing, the overhead remains small relative to the overall prefill
cost. Right: both IceCache variants exhibit a slower growth rate in per-token decoding latency
compared to Full-KV. Full-KV’s decoding cost rises sharply with sequence length, and IceCache(r)
even outperforms Full-KV at very long contexts (128k).

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 1 IceCache

1: Input: Sequence of tokens x1:I , Transformer with L attention layers, Page size s
2: Phase 1: Prefill
3: for ℓ = 0 to L− 1 do
4: Allocate pages and arrange KVs to the pages for layer ℓ
5: if ℓ ≥ 2 then
6: Copy KVs of tokens between sink tokens and window tokens from GPU to CPU (denoted

as Sk and Sv)
7: end if
8: Compute the output from the current self-attention layer ℓ
9: if ℓ ≥ 2 then

10: Tl ← DCI-INDEXING(Sk, Sv)
11: end if
12: end for
13: Phase 2: Decode (repeated over time steps i > I)
14: while receive new token xi with qi as its query embedding do
15: for ℓ = 0 to L− 1 do
16: if Number of tokens in the last page ≥ s− 1 then
17: Offload the oldest window page Pw from GPU to CPU
18: Set Flag to True
19: end if
20: Append KVs of xi to the end of the newest window page
21: if ℓ ≥ 2 then
22: Sl ← PAGE-SELECT(qi, Tl, k)
23: Recall selected pages Sl from CPU to GPU
24: end if
25: Compute the output from the current self-attention layer ℓ
26: if ℓ ≥ 2 & Flag is True then
27: // Insert the tokens in offloaded Pw to Tl

28: for i in Pw do
29: // Random Promotion
30: li ← 1 ▷ Start at bottom level
31: while Random(0, 1) < r do
32: li ← li + 1 ▷ Promote to the next higher level
33: end while
34: {pi} ← QUERY(ki, Tl, li, 1) ▷ Get the parent index using QUERY (Alg.4)
35: Insert ki to Tl with pi as its parent node index
36: end for
37: end if
38: end for
39: if xi = EOS then
40: Break
41: end if
42: i = i+ 1
43: end while

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 2 Indexing

Require: A list Sk of n keys k1, . . . ,kn ∈ Rd, Promotion ratio r
function DCI-INDEXING(Sk, r)

for i = 1 to n do
// Random Promotion
li ← 1 ▷ Start at bottom level
while Random(0, 1) < r do

li ← li + 1 ▷ Promote to the next higher level
end while

end for
Remove the empty levels
Initialize T with an empty root node
for i = 1 to n do
{pi} ← QUERY(ki, T, li, 1) ▷ Get the parent index using QUERY (Alg.4)
Insert ki to T with pi as its parent node index

end for
return T

end function

Algorithm 3 Page Selection

Require: Query vector qi ∈ Rd, DCI-tree T , Number of critical keys k
function PAGE-SELECT(qi, T, k)

Initialize Sl ← ∅
Sk ← QUERY(qi, T,−1, k)
Sl ← FIND-PAGE-INDEX(Sk)
return Sl

end function

Algorithm 4 k-Nearest Neighbour Querying

Require: Query vector qi ∈ Rd, DCI-tree T with L levels, Target level l, Number of critical keys k
function QUERY(qi, T, l, k)

if l = −1 then
l← 1
Set Flag to True

else
Set Flag to False

end if
S ← ∅
P ← empty priority queue with size k
for i = L to l do

S′ ← ∅
if i = L then

S ← {root node}
end if
for s in S do

S′′ ← Prioritized-DCI-Query(qi, s, k)
S′ ← S′ ∪ S′′

end for
if Flag is True or i = l then

for s in S′ do
P ← Add-to-Priority-Queue (P, s)

end for
end if
S ← S′

end for
return k nodes in P that have the keys with maximum inner-product with qi

end function

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

E LLM USAGE

This work focuses on optimizing KV-cache management for large language models (LLMs). All the
base models used in this paper can be viewed as LLMs, including Llama-3.1-8B-Instruct, Mistral-7B-
Instruct-v0.2, Qwen3-32B, and LongChat-7B-v1.5. We also leveraged an LLM to help refine the
manuscript’s language and improve its overall readability.

16


	Introduction
	Related work
	Background
	Attention Mechanism and Sparse Attention
	Generative Inference of LLM
	Multi-level DCI

	IceCache
	Indexing: Clustering Key Embeddings into a Hierarchical Tree
	Page Selection: Head-specific ANN Search with Fine-grained Retrieval
	Bulk Loading and Pipelining

	Experiments
	Settings
	Passkey Retrieval Accuracy
	LongBench Evaluation 
	GSM8k CoT Reasoning
	Latency Analysis

	Conclusion
	Method Overview
	Method Details
	Indexing
	Page Selection

	Details of IceCache (reuse) on LongBench
	Latency Scaling Across Context Lengths
	LLM Usage

