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Abstract

Machine learning models deployed in open-world scenarios often encounter unfamiliar con-
ditions and perform poorly in unanticipated situations. As Al systems advance and find
application in safety-critical domains, effectively handling out-of-distribution (OOD) data is
crucial to building open-world learning systems. In this work, we introduce ALOE, a novel
active learning algorithm for open-world environments designed to enhance model adapta-
tion by incorporating new OOD classes via a two-stage approach. First, diversity sampling
selects a representative set of examples, followed by OOD detection with GradNorm scores to
prioritize likely unknown classes for annotation. This strategy accelerates class discovery and
learning, even under constrained annotation budgets. Evaluations on three long-tailed image
classification benchmarks demonstrate that ALOE outperforms traditional active learning
baselines, effectively expanding known categories while balancing annotation cost. Our find-
ings reveal a crucial tradeoff between enhancing known-class performance and discovering
new classes, setting the stage for future advancements in open-world machine learning. Code
of the work will be be uploaded at https://github.com/EfficientTraining/LabelBench!

1 Introduction

Modern machine learning models have achieved remarkable progress by leveraging large amounts of labeled
data (LeCun et al., 2015; [He et al., |2016; [Khosla et all |2020). Despite this success, most models are
developed for closed-world settings, assuming that both training and test data originate from the same
distribution. However, this assumption does not align with real-world environments, where models are
inevitably encounter out-of-distribution (OOD) data with previously unseen classes (Hendrycks & Gimpel,
2022; [Hendrycks et al., |2022; [Salehi et al., |2022). Constrained by their fixed class boundaries, traditional
models often struggle to generalize effectively to these novel classes, limiting their adaptability in open-world
scenarios. Furthermore, obtaining human supervision for these novel examples in open-world scenarios is
often time-consuming and costly, posing a significant challenge to model adaptation and improvement. Active
learning, which iteratively selects the most informative examples for labeling, has emerged as a promising
approach to address the expensive nature of gathering human supervision. By prioritizing examples that
provide the most significant information gain, active learning can enhance the model’s learning efficiency
while reducing the need for extensive human annotation. This approach is particularly valuable in open-
world scenarios, where the high annotation cost and time-consuming nature of labeling make traditional
supervised learning methods impractical.

Despite its potential, existing active deep learning algorithms (see [Zhan et al.| (2022)); Zhang et al.| (2024a))
for overviews) have rarely been studied under open-world scenarios, particularly those involving novel classes
and imbalanced data distributions. In this work, we addresses this gap by developing a novel active learning
algorithm that integrates OOD detection techniques with GradNorm scores to handle the complexity of open-
world environments. Our method is designed for multi-class classification tasks in the open-world, where
the model encounters both known and unknown classes after deployment. Of the few works that study
active learning under open-world settings, existing methods are often tailored to specific vision tasks, which
result in highly specialized algorithm designs. When these methods are simplified for more generic problems
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like classification, they often reduce to basic uncertainty or diversity sampling techniques. In contrast, our
approach in this paper offers a more comprehensive and versatile solution. By bridging OOD detection
and diversity in our sampling strategy, we provide a more comprehensive sampling strategy compared to
approaches that focus on only one of these aspects.

We propose ALOE (Active Learning in Open-world Environments), a two-stage algorithm tailored for
open-world active learning. ALOE addresses the unique challenges of class discovery in open-world settings
by dynamically incorporating new OOD classes through a structured sampling strategy: In the first stage,
ALOE performs diversity sampling to select a representative set of examples from the data pool. This
sampling ensures broad coverage of the data distribution, capturing a range of potential new classes and
concepts. By focusing on diversity, the algorithm increases the probability of identifying and learning from
rare or infrequent classes that may otherwise be overlooked in a random sampling approach. The second
stage leverages GradNorm scoring function to rank examples within each cluster, prioritizing instances most
likely to belong to unknown OOD classes. The OOD detection with GradNorm scores provides a unified
framework that distinguishes between in-distribution (ID) and OOD examples with greater resilience to
model overconfidence. By focusing annotation efforts on these high-priority examples, ALOE accelerates the
discovery and learning of new classes, even when the annotation budget is limited.

To empirically validate our approach, we conducted experiments on long-tail imbalanced image classification
datasets. This choice of datasets is motivated by the prevalence of long-tail distributions in real-world
scenarios, where rare classes or concepts are often underrepresented. Such imbalanced distributions make
random sampling ineffective in discovering unknown classes, particularly those with small sample sizes.
Our experimental results demonstrate the effectiveness of our approach. Compared with random sampling,
on ImageNet-LT, ALOE saves 70% of annotation cost to achieve the same accuracy. In six out of six
experimental settings (Sectionsand, we observed that our algorithm performs the best comparing
to all baseline experiments. These highlights underscore the potential of our method to significantly enhance
model adaptation in open-world environments.

Lastly, our work reveals a novel tradeoff between improving performance on known classes and discovering
new ones. This finding opens up an important avenue for future research, as balancing these competing
objectives is crucial for developing truly adaptive Al systems. In summary, our proposed active learning
algorithm offers a promising solution for adapting machine learning models to new, previously unseen con-
ditions in open-world environments. By efficiently incorporating unknown instances and minimizing human
annotation efforts, our approach paves the way for more robust and adaptable Al systems capable of adapting
to dynamic, real-world scenarios.

2 Related Work

The earliest machine learning methods typically employed passive learning in a closed-world setting, where
the model passively received training data and all data was fully labeled. However, in modern research and
practice, it is common to encounter situations where 7) some or all of the data is unlabeled, ) the unlabeled
data contains new classes, or ii7) it is necessary to actively select training data. Our research combines these
aspects and proposes a novel approach tailored to these scenarios.

2.1 Open-World Learning

Open-world learning addresses the challenge of operating in dynamic environments where the model starts
with a set of known classes and must detect and manage instances from unknown classes. This paradigm
involves both labeled and unlabeled data, with a mixture of known and unknown classes, requiring the
model to either classify examples into known categories or recognize them as novel (Rizve et al. 2022 |Zhu
et all [2024; Xiao et all [2024)). Unlike novel class discovery that focuses solely on discovering new object
categories (Fini et al.,|2021}; [Zhong et al.||2021b; [Han et al.; |Zhong et al.|2021a; Roy et al.,|2022), open-world
learning must also correctly identify instances from previously known classes, making the task more complex.

Open-world semi-supervised learning (Cao et al.,|2022; |Sun et al., 2024]) generalizes semi-supervised learning
by considering scenarios where the data includes both labeled and unlabeled instances from known and



unknown classes. The model must learn to classify known classes and identify novel ones from unlabeled
data. In contrast to traditional supervised settings, the ability to generalize to unseen classes is crucial. Open-
set recognition shares similarities with open-world learning by allowing the model to reject novel instances
during testing (Ge et al.,[2017} [Sun et al., 2020 |Geng et al.l 2020). However, open-world recognition extends
this by requiring the model to incrementally learn and incorporate these novel classes into the set of known
categories (Boult et al., [2019; Bendale & Boult, [2015)). Open-world contrastive learning further enhances
this by learning compact representation spaces that facilitate both the classification of known classes and

the discovery of novel ones (Sun & Li|, [2022).

Open-world learning represents a significant advancement due to its capacity for active instance selection.
In this setting, the model actively selects instances from unknown classes for labeling, allowing it to contin-
uously expand the set of known classes as new data is labeled. Earlier work by Bendale & Boult| (2016) laid
the foundation for open-world recognition, introducing the Nearest Non-Outlier (NNO) algorithm and estab-
lishing evaluation protocols for managing novel classes in a continual learning environment. More recently,
a comprehensive review by [Zhu et al| (2024) highlighted three core components for open-world systems:
rejecting unknowns, discovering novel classes, and incrementally learning from them. These components
form the basis of many modern approaches to open-world learning. Our research extends this by integrating
open-world learning with long-tail distributions and active sample selection, enabling the model to not only
handle class imbalance but also dynamically evolve as new classes emerge.

2.2 Out-of-Distribution Detection

Out-of-distribution (OOD) detection is a fundamental challenge for machine learning models deployed
in open-world environments. It involves identifying whether inputs belong to unknown classes that the
model has not encountered during training. The overconfidence of neural networks when handling out-of-
distribution data was first revealed in Nguyen et al.| (2015). Research in OOD detection has taken several
main directions: post-hoc methods that devise scoring functions for detecting OOD inputs
[Lee et all 2018} [Sun et al., [2022), training-time regularization methods that leverage additional auxiliary
OOD datasets to address OOD detection (Hendrycks et al.,|2018}; [Van Amersfoort et al. 2020; [Katz-Samuels|
let all 2022} Bai et al) 2023} 2024), and approaches exploring representation learning, such as exploring
multiview contrastive losses (Khosla et al., 2020; |(Chen et al., |2020) for OOD detection (Winkens et al., [2020;
[Sehwag et all |2021} [Ming et al. [2022)).

In particular, post-hoc methods address OOD detection by deriving test-time OOD scoring functions for a
pre-trained classifier. These methods include maximum softmax probability (Hendrycks & Gimpell [2016)),
distance-based scores (Lee et al., [2018; [Sun et al. [2022), energy-based scores (Liu et al., [2020)), activation
rectification (Sun et al. [2021)), ViM score (Wang et al., 2022a)), gradient-based scores (Huang et al., 2021)),
among others. The GradNorm (Huang et al. 2021)) score considers the gradient information providing a
direct measure of how uncertain the model is with respect to its parameters. In this work, we employ the
GradNorm score for input examples to identify OOD data and cluster patterns, with the aim of effectively
discovering and learning new classes from the data distribution.

2.3 Deep Active Learning

Active learning studies the problem of minimizing annotation cost while training high performance models.
Active learning methods typically follows a sequential and adaptive procedure, where the algorithms first
trains a model based on the annotated examples so far followed by annotating more examples selected from
a large number of unlabeled examples. The algorithm strategically chooses from the unlabeled examples for
annotation, typically relying on uncertainty, diversity or expected model change types of metrics.

Uncertainty based strategies chooses examples that are determined to be the most uncertain for the model
trained on the labeled set thus far. This includes many of the traditional uncertainty metrics such as margin,
entropy and confidence scores (Lewis & Galel [1994; |Tong & Koller} |2001; Balcan et al., 2006; Settles| [2009;
[Kremer et al.l 2014; [Wang et al.l 2022b)). More advanced approaches for deep learning also includes Bayesian
uncertainty estimation and adversarial training (Gal et al. 2017; Ducoffe & Precioso|, 2018 Beluch et al.
22018). Diversity based strategies aim to choose a set of unlabeled examples that are maximally different in




an embedding space. This is usually achieved by clustering and covering techniques or greedy optimization of
some global submodular diversity objective (Sener & Savarese| [2017} |Geifman & El-Yaniv} [2017; Biyik et al.|
[2019; [Citovsky et al., [2021; Bhatt et al.| [2024). In this paper, we explore a wide range of these diversity-based
methods in conjunction with OOD detection to discover new classes. Lastly, existing approaches also take a
combination of uncertainty and diversity metrics, often predicting the expected model change if an example
is labeled (Ash et al., 2019; 2021; Wang et al., |2021; Elenter et al., 2022; Mohamadi et al. [2022).

Active learning has recently focused much attention on the closely related field of open set learning
cheti et al. 2021} [Ning et al [2022; [Zhang et al. 2022 Bai et al, [2024} [Safaei et all, 2024} [Yang et al., [2024}
Mao et al.l [2024). In open set learning, the primary objective is to classify all examples of unknown con-
cepts into a single out-of-distribution class. Our study, however, addresses the more challenging open-world
scenario. In this setting, we aim for the learner to not only identify unknown concepts but also to further
learn and classify these examples into their appropriate concept categories.

The challenge of missing categories during initial training commonly arises when class sizes follows long
tail distributions. In this paper, we study this exact realistic setting of open world learning with long tail
data distribution. A large body of deep active learning literature has focused on the imbalance dataset
settings (Aggarwal et al., 2020; Kothawade et al.,2021; Emam et al., 2021; Coleman et al.l [2022; Jin et al.
[2022} |Cail, {2022} Nuggehalli et al., [2023; |Zhang et all [2024b; [Soltani et al.| 2024} |Zhang & Nowakl 2024)).
However, none of these work have studied the open world setting, where a subset of the classes are initially
unknown to the algorithm. Below, we survey the few task-specific active learning algorithms that are
proposed for open-world scenarios.

2.4 Open-World Active Learning

Overall, there has been few attempts in studying active learning under an open world setting.
also studies the active learning setting where some classes do not have labeled examples. However,
their paper assumes the knowledge of the total number of classes beforehand, making their study closer to
the traditional active learning than truly addressing the open world challenge, where the total number of
classes is agnostic to the learner. As we will discuss in Section [6} not knowing the number of classes poses a
challenging tradeoff between exploring new classes and learning existing classes well.

Other existing literature shares our setting but targets specific tasks. |Chen et al| (2023) propose OpenCRB
for open-world 3D object detection, proposing an uncertainty-based scoring method that leverages the spatial
distribution and density of data points for 3D point clouds. In the more general settings, this work essentially
reduces to simple uncertainty methods, which we will show to be less effective than our methods in open
world settings. [Zamzmi et al| (2022)) utilizes a simple diversity-based method, k-medoids clustering, in
annotating a diverse set of images for echocardiography view classification. As we will show, our method
that combines OOD detection and diversity-based methods is superior than only considering diversity alone.
In Section [5.2.1] and Table [2] we provide details of the OOD scores we conduct experiments on.

3 Problem Setup

We consider a pool-based batched active learning setting in an open-world scenario. The learner has access to
a large pool of unlabeled data X = {z1, 22, ..., zx }, and the true label distribution is defined by an unknown
ground truth function f*: X — {1,2,..., K}, where K is the total number of classes in X. At the beginning
the labeling process the labeled set L is set to be empty. At each iteration ¢, the learner selects a small
batch of B unlabeled examples, {,’Egt)}f;l C X, from the pool. The learner observes the labels {f*(xgt)) B,
and adds these examples to L, the set of labeled examples available for training so far. In an open world
setting, examples in L may only cover a fraction of the classes, which we denote by K! C [K], the known
classes. After each batch query, the learner trains a |Kt|-class classification model f* on L, which is used to
inform the selection of the next batch of examples for labeling. Furthermore, we let pf(z) denote the softmax
distribution score based on the classification model f*.

This iterative process continues, with the goal of selecting the most informative examples to annotate in each
round, minimizing the number of labeled examples needed to achieve good generalization performance. The



generalization performance is measured by the balanced accuracy on all K classes. If some of the classes do
not have any annotated example, the accuracy for such classes are considered 0. Therefore, it is crucial to
annotate a wide array of classes, while also learning the known classes well based on the annotated examples.

3.1 OQut-of-Distribution (OOD) Scores

During each step ¢ of the active learning process, recall K represents the set of classes that have at least one
labeled example. When training a model using the labeled dataset, examples from classes not in K* (i.e.,
[K]\K?) are considered out-of-distribution (OOD) by definition. Traditional OOD detection research focuses
on identifying OOD examples within a test set. In this study, we use an OOD scoring function, denoted
as Q(z, f), where x is an example and f is any neural network classification model. This function Q(z, f)
provides a measure of how likely an example is to be in-distribution (ID) versus OOD. A higher OOD score
suggests a greater likelihood that the example is OOD, which in turn is more likely to belong to an unknown
class. We apply these OOD scoring techniques to determine which unlabeled examples are most likely to
belong to unknown OOD classes.

4 Methodology

To address the open world active anno-
tation problem, we focus on two key ob-
jectives: 7) maximizing the selected ex-
amples’ coverage of OOD classes; i) op-
timizing the labeling budget to efficiently
collect examples from these OOD classes.
A straightforward approach would be to
simply annotate examples with the high-
est OOD scores during each round of an-
notation. However, our analysis in Fig-
ure [I] reveals that examples with high
Figure 1: Visualization of highest OOD score unlabeled exam- OOD scores often cluster within a small
ples after training on three known classes in CIFAR-100. As we subset of OOD classes, making this ap-
can see, relying only on OOD scores for selection will encourage proach suboptimal for achieving broad
annotation of unlabeled examples in a few (unknown) classes. coverage. This observation suggests the

need for a diversity-based strategy to en-

sure our annotated examples span a wide range of concepts.

In Section we present ALOE, a two-stage approach that combines OOD scoring with diversity-based
active learning strategies. ALOE first employs clustering-based diversity methods to identify distinct groups
of examples, then filters these clusters to retain only high-scoring OOD candidates for annotation. Our
experiments show that applying diversity clustering before OOD filtering yields better results than the
alternative strategy (see Section that executes these steps in the reverse order.

4.1 ALOE: Our Actively Learning Algorithm Under Open-world Environments

In this section, we describe our proposed algorithm for querying unlabeled data in a pool-based batched
active learning framework under open-world conditions. As detailed in Algorithm [T} our algorithm ALOE
leverages OOD scores and k-means clustering method to ensure a balance between identifying novel OOD
examples and maintaining diversity within the queried batch.

The algorithm proceeds iteratively for T iterations, with each iteration ¢ comprising several key steps, as
illustrated in Figure[2] Initially, a deep neural network undergoes is trained on the current labeled set L;_1,
resulting in an updated model f!~! that incorporates information from the newly labeled data. Subsequently,
to ensure diversity in the selection process, the algorithm embeds the pool of unlabeled set X’ using the neural
network features learned from f*~!'. The clustering method, k-means, is then applied to these embedded
features. The number of clusters 2 - max (B, |K¢|) is set so that we obtain a surplus of clusters to effectively
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Figure 2: Ilustration of our algorithm ALOE in Algorithm Starting with a few labeled examples, the
algorithm clusters all examples, ideally by their underlying classes. Each example’s OOD score is calculated.
In the bottom right plot, larger dots mean larger OOD score. Clusters with higher OOD ratios are prioritized
for sampling to identify new classes. Labeled examples are then added to the training set, and the process
iterates, expanding the labeled pool with each batch.

filter out the in-distribution examples, where B is the batch size and |K;| is the number of annotated classes
in step t. Empirically throughout our experiments, we find the multiplier value 2 to be a good and robust
value. It can be imagined that other clustering methods can be used. While it will be discussed more in our
experiments in Section [5.2.5] we stick to k-means when describing ALOE.

Following the clustering phase, we define the OOD cluster ratio as the proportion of predicted out-of-
distribution (OOD) examples within each cluster, where predictions are made using an OOD scoring function
Qz, f171) : X — R defined in Section To identify OOD examples, we establish a threshold at the
95%-TPR cutoff based on the in-distribution labeled examples. This threshold is commonly used in the
OOD detection literature, and ensures at least 95% of the labeled examples are classified as ID. The clusters
are then ranked based on their OOD cluster ratio. The top B clusters are selected for further processing,
and from each of these selected clusters, the example with the highest OOD score is chosen to form the final
batch X® of examples for annotation.

The iteration concludes with an update phase where the labeled set L; is augmented with the newly labeled
data, and these examples are correspondingly removed from the unlabeled pool U;. Through this iterative
process, the labeled set gradually expands to include a diverse range of both in-distribution (ID) and out-
of-distribution (OOD) examples, thereby enhancing the classifier’s ability to generalize to both known and
novel classes that were unknown at the beginning of the annotation process.

4.2 Reverse ALOE: Alternative Query Strategy

In addition to the approach described above, we also considered an alternative method reverse ALOE. As
the name suggests, the order of using OOD scores and clustering methods are flipped. OOD scores were used
first to select an initial set of candidates in this algorithm. Similarly with ALOE, we calculated a threshold
7, which ensures a 95% true positive rate (TPR) in labeled set L;. The initial set are examples with OOD
score larger than the threshold 7.



Algorithm 1 ALOE: ActiveLy Learning in Open-world Environments

Input: Pool of examples X, initial labeled set L; covering a subset of total classes K; C [K], initial
unlabeled set U; = X\ L1, number of iterations T, batch size B.
Define: OOD scoring function 2 : X — R, which maps examples to their likelihood of being OOD based
on the current labeled set L.
fort=2,...,T do

Fine-tune the large pretrained neural network on L; to obtain the model f*~!.

Step 1: Embedding and Clustering for Diversity

Embed examples in unlabeled set U, using neural network features from f*~! and apply k-means
clustering with k£ = 2 - max(B, |K¢|), resulting in clusters X, for each ¢ =1,... k.

Step 2: Identify Clusters with High OOD Probability

Rank clusters based on the ratio of likely OOD examples to cluster size. For each cluster X, the ratio
of OOD examples is calculated as:

() ZweXU 1(9('7:’ ft_l) > T)
Toop — ‘Xc|

where 1(Q(z, ft=1) > 7) indicates whether the OOD score Q(z, fi=1) of an example z exceeds the threshold
7, which ensures a 95% true positive rate (TPR) in the labeled set L;, and |X.| is the total number of
examples in cluster X.. Pick B clusters with the highest OOD ratio.

Step 3: Query Examples from Chosen Clusters

From each of the B selected clusters, pick the example with the highest OOD score. This forms the
query set X (1),

Annotate examples in X **1) and update the labeled and unlabeled sets:

Lig1 — L, UXOY U« U\XED,

end for
Return: Fine-tune the pretrained model on the final labeled set Ly to obtain the final classifier f(T).

These candidates were then clustered with methods described in Section to ensure diversity among the
queried examples with the cluster number equal to batch size. In each cluster, the sample with highest OOD
score is queried to be labeled. However, this method performed poorly in our experiments (Section7 as
it did not select a super diverse set of examples, reducing the overall efficiency of the active learning process.

5 Experiment

5.1 Experiment Setup

Dataset. Open world challenges often arise from dataset imbalance with a large number of classes, where
smaller classes are often unknown at the beginning of the annotation process. In this paper, we focus our ex-
periment evaluations on common long tail imbalanced datasets with a large number of classes. Specifically, we
utilize three image classification benchmark datasets, CIFAR100-LT (Alex, 2009)), ImageNet-LT (Deng
et al., [2009) and Places365-LT (Zhou et al., [2017). The distribution of the three long-tailed datasets are
given in Appendix [7]

Model. For evaluation, we follow the latest LabelBench framework (Zhang et al.| 2024al), while introducing
the new open world setting with dynamic number of classes at each iteration. Specifically, we fine-tune the
pretrained CLIP ViT-B32 image encoder (Radford et al., [2021) with a linear classification head attached.
For every iteration of the active learning algorithm, the model is reinitialized to the pretraining checkpoint
and finetuned end-to-end on all labeled examples thus far.

In our experiment, we utilize the cold starting approach by reinitializing the model from the CLIP model
checkpoint after every iteration of annotation. Specifically, for labeled set L; with |K!| known classes, we



attach a linear head on the CLIP image encoder model with |[K!| outputs. We then finetune this model on
the labeled set L; for each iteration t.

Metric. To evaluate the performance of our method in the open-world active learning setting, we use two
primary metrics: the number of annotated classes and the balanced accuracy. The number of annotated
classes (denoted as |K;| in Section [3)) is crucial as missing certain categories could hinder the model’s per-
formance when deployed in practice. On the other hand, balanced accuracy gives a more wholistic view of
the model’s generalization performance. Specifically, given a test set of examples (x}, y1), ..., (€, ¥},) and
a model f mapping images to classes, the balanced accuracy is also known as the average recall

K
ACCW:;{; Nik S 1{f @) =k},
=1

iyl=k

where K is the total number of classes, Ny is the number of examples in class k. The balanced accuracy
simply averages the classifier’s recall of predicting each class. Note that if the classifier f does not predict a
certain class, the accuracy for that class is 0.

Software and hardware. Our method is implemented with PyTorch 2.2.0. All experiments are conducted
on NVIDIA TITAN RTX for CIFAR100-LT and Places365-LT, and NVIDIA A100 for ImageNet-LT.

Setup Summary. The experimental setup for each dataset is summarized in Table [I} We conduct experi-
ments over T iterations, with a batch size of B and an initial labeled set L; covering a subset of classes K;.
For each of the following settings, we start with a small set of initially labeled classes (|[K1]|) to simulate a
real-world open-world learning environment, where the model has limited knowledge of the complete label
space at the beginning. The classes are chosen to be the largest |KC;| classes in size and the initial batch of
labeled examples are distributed evenly across these classes.

Table 1: Experimental settings for each dataset

Dataset Initial #Classes (|[K;|) Total #Classes #lIteration (7)) Batch Size (B)
CIFAR100 3 100 15 50
ImageNet-1K 10 1000 10 1000
Places365 3 365 10 200
CIFAR100 10 100 15 50
CIFAR100 30 100 15 50
CIFAR100 50 100 15 50

Additionally, in the last three rows of Table [I] we show the settings of ablation studies on CIFAR100-LT
by varying the initial number of labeled classes (|XC1] = 10, 30, 50) to assess the robustness of our algorithm
across different scenarios. These studies highlight our method’s ability to adapt to varying levels of initial
knowledge while maintaining strong performance across different settings.

5.2 Main Results and Analysis
5.2.1 OOD Scoring Functions and Baseline Active Learning Algorithms

Before we present our experimental results, we introduce the OOD scoring functions and baseline active
learning algorithms we use.

OOD Scoring Functions: In Table [2| we summarize the OOD scoring methods from previous literature,
which are used throughout our research. Energy (Liu et al.l 2020) score provides a global view of the
uncertainty by aggregating information over all classes. These scores are particularly useful when the model
outputs soft probabilities that span multiple classes. Margin (Scheffer et al., [2001) scores offer a more
focused view by comparing only the top two predicted probabilities, making them sensitive to near-boundary
decisions. GradNorm (Huang et al. 2021) considers the gradient information, which can provide a more
direct measure of how uncertain the model is with respect to its parameters, especially in deep learning



models. Mahalanobis distance (Lee et all |2018) is more geometric, considering how far a given example
is from the expected distribution of a particular class. This distance metric is often used in embedding
spaces. Gradient-based (Bai et al., [2024) score measures the model’s sensitivity to input perturbations by
calculating gradients, capturing how the model would change with slight variations.

Table 2: OOD scores used in the OOD score ablation study.

OOD Scores Definition Description

Energy Score QEnergy () = —log 2521 exp (pL(z)) Aggregates log probabilities over all
classes, providing a measure of over-
all uncertainty.

Margin Score Margin (T) = Dlpax () — Plocona (@) The difference between the highest
and second-highest predicted prob-
abilities, pt, .. (x) and Pl .q(z), fo-
cusing on boundary cases.

GradNorm QaradNorm (2) = [[VoL(z; f)|l5 Norm of the gradient of the loss func-
tion £ with respect to model pa-
rameters @, providing a measure of
parameter-space uncertainty.

Mahalanobis OMahalanobis(2) = (2 — fte) T2~ 1(z — ) Distance from the class mean of em-
Distance beddings pu. for corresponding class
c. Y is the class covariance matrix.
Gradient-Based Qaradient () = (VL(x; f) — V, v) Projection of the difference between
Score sample gradients and their average

onto the top singular vector v of gra-
dient matrix, made by stacking gra-
dients of all data. V denotes the av-
erage gradient across dataset.

Baseline Active Learning Algorithms: We evaluated our algorithm against several standard active
learning baselines: Random, Margin, Coreset, Galaxy, Badge, ProbCover, TypiClust, and EOAL.
Random is a straightforward baseline where examples are selected uniformly at random from the pool of
unlabeled data, offering a comparison with non-strategic sampling. Margin (Scheffer et al 2001)) is an
uncertainty-based sampling method that selects examples based on the difference between the top two pre-
dicted class probabilities. This approach aims to identify samples near decision boundaries, where the model
is most uncertain. Coreset (Sener & Savarese, |2017) is a diversity-based approach that seeks a representa-
tive subset of the unlabeled pool by minimizing the maximum Euclidean distance between any point in the
dataset and the nearest selected point in the subset. Badge (Ash et all|2019) combines uncertainty and di-
versity by selecting examples based on gradient embeddings to cover informative examples. Galaxy (Zhang
et al. 2022) is specifically designed for imbalanced scenarios, using a balanced sampling strategy to improve
performance on classes with fewer labeled examples, making it well-suited for imbalanced datasets. Prob-
Cover (Yehuda et al.l [2022)) adopts a covering-based approach to maximize probabilistic coverage over the
data distribution, effectively identifying critical examples under a constrained labeling budget. It is impor-
tant to note that ProbCover is highly sensitive to its hyperparameter. As active learning can only run onnce
when deployed in practice, we selected a single value that is reasonably suitable across various scenarios.
TypiClust (Hacohen et al.| [2022) is a low-budget active learning method that prioritizes selecting samples
from dense regions of the feature space, ensuring representative coverage even with limited labeling resources.
Entropic Open-set Active Learning (EOAL) (Safaei et al.| [2024) addresses open-set scenarios by employing
entropy-based selection to handle both known and unknown classes effectively, ensuring robust performance
in open-world settings. The time cost analysis of all baselines and ALOE is included in Appendix [C]



5.2.2 Main Results on Multiple Datasets

We now present the results of our algorithm applied to CIFAR100-LT, ImageNet-LT, and Places365-LT. As
mentioned before, the long-tailed distribution of classes is a well-known challenge in practical applications.
Due to this issue, we often encounter open world learning scenarios where rare classes are likely to be missed
during the initial annotation phase. In the following experiments, we receive annotations from only a small
number of classes in the initial batch of annotation (three for CIFAR100-LT and Places365-LT, and ten for
ImageNet-LT). In addition, our algorithm ALOE uses GradNorm for OOD scoreing function 2 and k-means
for clustering method. We also include ablation studies around different initial number of classes, OOD
scores, and clustering methods in the later sections. In Table [3] and Table [d] balanced test accuracy on the
three datasets are shown. Number of annotated classe and the plot of the results are summarized in Table 5]
Table [6] and Figure [§in Appendix B.

Table 3: Balanced test accuracy on CIFAR100-LT and Places365-LT with different budget. (The standard
error was calculated based on four trails.)

Dataset CIFAR100-LT Places365-LT

Budget 250 750 600 2000
Random 0.392+0.006 0.553+0.004 0.208+0.007 0.275+0.004
Margin 0.445+0.006  0.643+0.011 0.217+0.005  0.287=+0.004
Badge 0.447+0.006 0.652+0.008 | 0.231+0.004  0.295+0.004
Galaxy 0.436+0.007 0.645+0.008 0.231+0.004 0.302+0.005
Coreset 0.449+0.012 0.617+0.010 0.238+0.005  0.304+0.003
ProbCover 0.346+0.010  0.44240.004 0.152+0.007  0.247=+0.005
TypiClust 0.376+0.015  0.509+0.004 | 0.199+0.005  0.27540.004
EOAL 0.368+0.005 0.578+0.005 0.211+0.007 0.277+0.005
ALOE(Ours) | 0.479+0.007 0.650+0.04 | 0.254+0.004 0.310-+0.008

Table 4: Balanced test accuracy on ImageNet-LT with different budget. (The standard error was calculated

based on four trails.)

Dataset ImageNet-LT
Budget 3000 10000
Random 0.391+0.002 0.541+0.003
Margin 0.424+0.006 0.562+0.002
Badge 0.43440.004  0.581+0.002
Galaxy 0.438+0.006 0.631+0.001
Coreset 0.351+0.005 0.525+0.002
ALOE(Ours) | 0.517+0.004 0.617+0.003

As shown in Table [B] and Table [d] our method ALOE significantly outperforms all baseline methods in
both balanced accuracy and the number of newly discovered classes. Starting with only three initially
labeled classes, our method quickly expands the set of annotated classes, maintaining a higher discovery rate
throughout the iterations. By leveraging the combination of OOD detection and diversity-based sampling,
ALOE is able to efficiently explore unknown classes while ensuring strong performance on the known classes.
On ImageNet-LT, ALOE saves 70% of annotation cost to achieve the same accuracy comparing to random
sampling. We also note that while some baselines occasionally match ALOE’s performance, they struggle
with consistency across different datasets. In contrast, ALOE consistently performs best among all methods
on all datasets.

We also experimented with Reverse ALOE, which doesn’t show sufficient label efficiency comparing to other
baselines. The Reverse ALOE result shown in Figure [§] uses the combination of GradNorm OOD score
and Coreset clustering method, which behaves best in all combinations. While still competitive with some
baselines, Reverse ALOE does not match the performance of ALOE. This performance gap likely stems from
conducting OOD filtering first, which eliminates many classes of out-of-distribution examples early in the
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process. As a result, Reverse ALOE works with a less diverse set of examples compared to ALOE, which
preserves diversity by clustering examples before performing OOD filtering.

Interestingly, the advantage of ALOE becomes more pronounced with datasets that have a larger number
of classes, espiecially on earlier iterations of experiment. ImageNet-LT, which has the highest number of
classes (1,000), demonstrates a noticeable gap between ALOE and other baselines. For CIFAR100-LT and
Places365-LT, with 100 and 365 classes respectively, ALOE still performs well, although the difference is less
striking. This trend reflects the inherent nature of ALOE, which excels at identifying new classes.

Another interesting observation is, on ImageNet-LT, ALOE outperforms all baselines until the annotation
budget around 7000. However, when most classes have been discovered, GALAXY slightly outperforms
ALOE. Similarly, on Places365-LT, ALOE achieves strong performance in terms of balanced test accuracy,
but did not find new classes as fast as Badge in later iterations. This reveals an interesting paradigm
shift in active learning between discovering new categories/clusters of examples and learning the existing
categories/clusters of examples. We discuss this phenomenon further in Section@as a novel challenge through
the lens of open world scenarios.

5.2.3 Ablation Study of Initial Number of Annotated Classes

In Figure [3] we analyze the robustness of our algorithm by varying the initial number of annotated classes
on CIFAR100-LT. We experiment with three settings, including the initial number of annotated class being
10, 30 and 50 respectively. As observed in this experiment, ALOE consistently performs the best among
all algorithms and is robust to different initial number of classes. It is also worth noting that despite
maintaining strong performance, the improvement over the second best algorithm narrows slightly compare
to the experiment in the previous section, where only three classes are initially labeled. This observation
also corroborates our discussion on the paradigm shift between discovering more classes and learning existing
classes. As mentioned before, we further discuss this challenge in Section [6]
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Figure 3: With different initial number of annotated classes, balanced test accuracy and number of annotated
classes of CIFAR100-LT. (All subfigures share the same legend of the left bottom one. Shaded region represent
the standard error conducted across four trials.)
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5.2.4 Ablation Study of OOD Scores

Figure[4 shows that different OOD scores affect the performance of our algorithm. On CIFAR100-LT, Energy
and GradNorm scores perform similarly. However, we used GradNorm to carry out our main experiments in
Section [5.2.2] since it is a direct reflection on the uncertainty of the model, espiecially deep learning models.
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Figure 4: Ablation experiment for using different OOD scores Q(z, f) in ALOE on CIFAR100-LT. (Shaded
region represents the standard error conducted across four trials.)

5.2.5 Ablation Study of Clustering Methods

We also investigated various clustering methods. We experimented with a popular clustering method used
in prior active learning algorithms. For instance, TypiClust (Hacohen et all 2022) employs k-means,
Coreset (Sener & Savarese, |2017) utilizes k-center, and BADGE (Ash et al., 2019) uses k-means+4+. We
also implemented gaussian mixture models and mini-batch K-means as the clustering subprocedure.
Both of these are more computationally efficient than simple k-means, and obtain similar performance as
the procedure using k-means. As shown in Figure o} this indicates that our algorithm is not highly sensitive
to the choice of clustering algorithm. In our implementation, we used k-means despite its relatively higher
computational cost compared to other clustering methods. However, in most active learning scenarios, the
selection cost is significantly lower than the cost of training the neural network. In the rare cases where
k-means becomes impractical, we recommend practitioners consider alternatives such as Gaussian Mixture
Models (GMM) or mini-batch k-means.
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Figure 5: Ablation experiment for clustering methods on CIFAR100-LT with GradNorm OOD score. (Shaded
region represent the standard error conducted across four trials.)

6 Balancing Novel Class Discovery and Known Class Learning

When running ALOE further on a larger amount of annotation budget, our experiments (Figure E[) demon-
strate an intriguing phenomenon — baseline methods can even achieve slightly better performance than ALOE
once most classes have been identified. Similarly, as mentioned in Section [5.2.3] on CIFAR100-LT, when
the number of initial classes increases, the improvement gap of using ALOE narrows. These findings are
expected, as ALOE uniquely prioritizes annotating diverse OOD classes, while baseline approaches focus
on learning known ID classes. While this suggests the potential for an algorithm that excels at both tasks,
achieving this dual objective presents significant challenges.
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Figure 6: Balanced test accuracy and number of annotated classes on CIFAR100-LT when batch size B = 200
and number of iteration T' = 10. (Shaded region represent the standard error conducted across four trials.)

This challenge arises because the total number of classes is unknown to the learner. Even after most classes
have been discovered in our ImageNet-LT and Places365-LT experiments, the learner cannot determine
whether significant numbers of classes remain undiscovered. Furthermore, our experiments demonstrate
that ALOE, while perform the best during the class discovery phase, may not be the ideal strategy for
learning in-distribution (ID) classes. This reveals a fundamental tradeoff in open-world active learning: the
need to balance annotation between exploring novel classes and consolidating knowledge of existing ones.

Future research could approach this challenge from a theoretical perspective by developing strategies that dy-
namically alternate between exploration and consolidation. One promising direction is an iterative approach
that first ensures discovery of classes above a certain size threshold, followed by focused learning of these
identified classes. This process could then repeat with progressively lower the size thresholds, ultimately
yielding a model that performs well across classes of varying frequencies.

7 Conclusion

In this paper, we propose ALOE, a novel active learning algorithm specifically designed for open-world
scenarios. Our approach leverages a two-stage process that combines diversity-based sampling with out-
of-distribution detection, enabling the discovery and learning of new classes in a dynamic environment.
Through experiments on three long-tailed datasets, ALOE demonstrates a consistent and clear advantage
over existing baselines in both balanced accuracy and class discovery. The results also highlight a crucial
tradeoff: while identifying new classes is important, effectively learning from previously discovered classes
presents a competing challenge. This remains an unresolved issue that warrants significant research attention.
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A Long Tail Datasets

CIFAR100. CIFAR100 contains 60,000 images across 100 classes, with 500 training images and 100 testing
images per class. To create a long-tailed version of CIFAR100, we use an exponential distribution where the
number of examples per class N; is given by:

i
Ni = N()Oé",

where n is the total number of classes, Ny is the number of examples in the most frequent class, and « is the
imbalance factor. In our experiments, we set a = 0.01, creating a highly imbalanced version of the dataset.

ImageNet. We use the ImageNet-1k subset, containing 1.28 million training images across 1,000 classes.
Similar to CIFAR100, we create a long-tailed version of ImageNet using an exponential distribution with
the same formula. Again, we set @ = 0.01 to generate the imbalance, resulting in a diverse distribution of
images per class.

Places365. Places365 is a large-scale scene recognition dataset consisting of over 10 million images across
365 classes, designed for training and evaluating models on a wide variety of scene categories, including
indoor and outdoor environments. Each class has up to 5,000 images for training, providing a balanced
dataset for scene classification tasks.

The Places365-LT we used in our experiments are based on the distribution described in |Liu et al.| (2019).
This version follows an exponential distribution, where the number of examples per class ranges from a
maximum of 4,980 images to as few as 5 images. The total is 62500 images. The distribution was implemented
by referring to the publicly available code associated with the paper.

The distribution of the three long-tailed datasets is visualized in Appendix Figure
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Figure 7: Number of images in each class of train datasets

B Experiments Results
C Per-batch Running Time Analysis of ALOE and Baselines

We analyze the per-batch running time of ALOE in comparison to the mentioned baselines. Recall that
B is the batch size, N is the pool size, K is the number of classes, @ is the forward inference time of a
neural network on a single example, and d is the feature dimension. Random Sampling is computationally the
simplest, with a time complexity of O(B), as examples are chosen uniformly at random without any additional
computation. Confidence Sampling methods, such as Margin Sampling and EOAL, require O(QN + KN +
Blog N), where O(QN) comes from forward passes on the pool, O(K N) from computing uncertainty scores
(e.g., margins or entropy), and O(Blog N) from selecting the top B uncertain examples.

Diversity-focused methods like Badge and Coreset involve more computational overhead. Badge combines
uncertainty and diversity through gradient embeddings, requiring O(QN + Nd? + Bd?), where O(Nd?) arises
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Places365-LT with all baselines and our algorithms. Reverse ALOE result shown on CIFAR100-LT. (Shaded
region represent the standard error conducted across four trials.)

Table 5: Number of annotated classes on CIFAR100-LT and Places365-LT with different budget.

standard error was calculated based on four trails.)

(The

Dataset CIFAR100-LT Places365-LT

Budget 250 750 600 2000
Random 57.75+0.63  81.75+1.11 188.00+6.36 275.50+3.30
Margin 66.75+1.31  94.75+1.31 203.75+4.61 287.75+2.02
Badge 66.75+0.75  96.00+0.82 | 209.75+2.87 295.2543.38
Galaxy 68.50+2.50  94.50+0.29 207.25+7.08  306.50+2.33
Coreset 66.25+1.70 91.0+0.71 221.25+2.53 312.75+1.93
ProbCover 51.50+0.96 61.75+0.63 132.25+8.15 228.0045.05
TypiClust 56.00+1.08  73.25+1.03 | 181.00+4.64  265.00+2.48
EOAL 53.75+0.95 85.5+1.32 182.25+1.80 256.00+3.92
ALOE(Ours) | 73.5+0.94 96.1+t0.51 | 230.50+1.80 304.25+2.17

Table 6: Number of annotated classes on ImageNet-LT with different budget.

calculated based on four trails.)

(The standard error was

Dataset ImageNet-LT
Budget 3000 10000
Random 584.7542.90 847.75+5.02
Margin 639.50+10.73  871.00+1.96
Badge 650.75+4.50  915.25+3.12
Galaxy 660.50+12.84  989.0+1.29
Coreset 536.7545.02 824.25+5.19
ALOE(Ours) | 789.25+4.66 977.00+2.04

from gradient embedding computation and O(Bd?) from k-means++ clustering. Coreset solves a k-center
problem, leading to a complexity of O(QN + N2d) in its exact form, although approximation methods reduce
this to O(QN + BNd). TypiClust is simpler, with O(QN + BN), and ProbCover incurs O(QN + N?d) due
to pairwise coverage probability computations.
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For active learning algorithms in practice, time complexity is often not a critical bottleneck because O(QN),
representing the cost of forward passes on the pool, dominates all other terms. This ensures that methods
like ALOE remain computationally efficient while incorporating both diversity and OOD detection to achieve
superior performance in open-world active learning scenarios.
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