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Abstract
This paper studies the repeated principal-agent
bandit game, where the principal indirectly ex-
plores an unknown environment by incentivizing
an agent to play arms. Unlike prior work that
assumes a greedy agent with full knowledge of
reward means, we consider a self-interested learn-
ing agent who iteratively updates reward estimates
and may explore arbitrarily with some probability.
As a warm-up, we first consider a self-interested
learning agent without exploration. We propose
algorithms for both i.i.d. and linear reward set-
tings with bandit feedback in a finite horizon T ,
achieving regret bounds of Õ(

√
T ) and Õ(T 2/3),

respectively. Specifically, these algorithms rely
on a novel elimination framework coupled with
new search algorithms which accommodate the
uncertainty from the agent’s learning behavior.
We then extend the framework to handle an ex-
ploratory learning agent and develop an algorithm
to achieve a Õ(T 2/3) regret bound in i.i.d. reward
setup by enhancing the robustness of our elimina-
tion framework to the potential agent exploration.
Finally, when our agent model reduces to that in
Dogan et al. (2023a), we propose an algorithm
based on our robust framework, which achieves
a Õ(

√
T ) regret bound, significantly improving

upon their Õ(T 11/12) bound.

1. Introduction
Bandits learning is a powerful framework for solving a
broad spectrum of sequential decision-making problems,
such as recommendation systems (Li et al., 2010), clinical
trials (Villar et al., 2015), and resource allocation (Latti-
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more et al., 2015). In most bandit frameworks, a player
directly interacts with an unknown environment by repeat-
edly playing arms and observing the corresponding rewards.
However, those frameworks often fail to capture the unique
challenges faced in many online marketplaces, where the
player can only indirectly interact with the environment. For
instance, in online shopping, the website (player) learns
users’ preference (unknown environment) by observing pur-
chase behaviors. To acquire a comprehensive knowledge of
users’ preferences, the website typically needs to provide
external incentives, such as discounts or coupons, for agents
to encourage exploration.

Motivated by such scenarios, recent work (e.g., Dogan
et al. (2023a;b); Scheid et al. (2024b)) frames this prob-
lem as a principal-agent bandit game, modifying the classic
principal-agent problem in economics (see, e.g., Bolton
& Dewatripont (2004); Laffont & Martimort (2009)) with
repeated engagements and stochastic rewards where the
aforementioned player refers to a principal, and the agent
refers to end-users. With arms representing a vector of
incentives, in each round of the game, the principal first
selects an arm, and after observing these incentives, the
agent greedily selects amongst their own arms to maximize
their expected reward plus the offered incentive (henceforth
we call this arm true-maximizer). The chosen arm yields
two stochastic rewards drawn from different distributions:
one for the principal and one for the agent. Notably, the
principal observes their own reward and the selected arm,
yet remains agnostic of the reward on the agent side.

Despite the merger of classic models of incentives with ban-
dits, most work relies on an oracle-agent assumption, where
the agent has complete knowledge of the true reward means
(expected rewards) and always selects the true-maximizer.
This assumption, in general, will not hold in real-world sce-
narios. For instance, in the case of online shopping, users
rarely fully understand their own preferences over many
options without a prolonged learning process. Recently, a
notable step towards a more realistic model was taken by
Dogan et al. (2023a) who consider an an agent that employs
an exploratory learning behavior: the agent is allowed to
explore an arm, different from the true-maximizer, with a
small probability decreasing over time. However, even in
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this more practical model, the assumption remains that the
agent selects the true-maximizer when not exploring1, and
their result only achieves an Õ(T 11/12) regret bound where
T is the horizon.

A more recent work by Scheid et al. (2024a) allows the agent
to adopt no-regret learning algorithms that adhere to the key
assumption that the no-regret property holds universally for
any time period and any principal’s algorithm offering con-
stant incentives during this period. However, this universal
no-regret preservation assumption limits their framework’s
applicability to certain simple, yet realistic, learning behav-
iors. This is due to the fact that their assumption implicitly
requires the agent’s no-regret algorithm to strategically ex-
plore the environment, but in many real-world applications
such as online shopping, the agent (buyer) is unlikely to
design such sophisticated strategies. Consequently, their
agent model does not encompass simple but arguably realis-
tic agent models such as the self-interested learning agent
with and without arbitrary exploration (see Appendix B for
details). Given results , it still remains unclear what regret
bounds can be achieved for these realistic agent models and
whether Õ(T 11/12) regret bound in Dogan et al. (2023a) can
be improved. This motivates two natural questions:

1. Can we generalize the agent’s behavior considered in
Dogan et al. (2023a)?

2. Given the aforementioned generalization, can we design
algorithms that outperform the Õ(T 11/12) regret bound?

In this paper, we provide affirmative answers to both ques-
tions. To address the first question, we consider a self-
interested learning agent with exploration behavior which
allows the agent to explore non-maximizer arms with a de-
creasing probability similar to to the setup in (Dogan et al.,
2023a). The key distinction is that when the agent decides
not to explore, she plays an arm that maximizes the empir-
ical mean plus the incentive (henceforth we call this arm
empirical maximizer), instead of the true-maximizer as as-
sumed by Dogan et al. (2023a). As discussed in Section 2,
this learning behavior subsumes that of (Dogan et al., 2023a)
as a special case. Under this more realistic learning behav-
ior, we examine the i.i.d. reward setting, where the rewards
of the principle and the agent are independently sampled
from distinct yet fixed distributions. Further, we study the
linear reward setting, in which the rewards of arms can be
linearly approximated.

The contributions are summarized as follows; refer to Ta-
ble 1 for a summary table of regret bounds.

1One caveat here is that with a special coordination between
the principal and the agent, an agent can select the true-maximizer
without the knowledge of the expected rewards. We refer readers
to Appendix C for a discussion.

• I.I.D. rewards: We first propose Algorithm 1 for
the i.i.d. reward and greedy agent setting, where the
agent always greedily chooses the empirical maximizer
without exploration. The proposed algorithm enjoys
O
(√

KT log(KT )
)

expected regret bound, where K
is the number of arms. The proposed algorithm is estab-
lished upon a novel elimination framework coupled with
an efficient search algorithm (Algorithm 3). Different
from existing elimination approaches that permanently
eliminate badly-behaved arms, our algorithm plays bad
arms in some rounds so as to benefit Algorithm 3 in
future searches for optimal incentives. The regret up-
per bound of our algorithm matches the lower bound up
to a logarithmic factor. Notably, when reducing to the
oracle-agent setup, our worst-case bound matches that of
(Scheid et al., 2024b, Algorithm 1) as long as T ≥ K.

We further propose Algorithm 5 for a self-interested
learning agent with exploration and the i.i.d. reward set-
ting, achieving a Õ(K1/3T 2/3) regret bound. In partic-
ular, Algorithm 5 builds upon Algorithm 1 and lever-
ages the probability amplification idea to enhance its
robustness to agent exploration. Abstractly, Algorithm 5
repeats the incentive search and elimination processes
logarithmically many times. It uses an incentive testing
procedure to identify the most reliable estimated incen-
tives and employs a median selection strategy to refine
the active arm set. Since we consider a more general
learning behavior than Dogan et al. (2023a), our algo-
rithm improves their regret bounds from Õ(T 11/12) to
Õ(T 2/3). Furthermore, by reducing our agent’s learning
behavior to the one studied by Dogan et al. (2023a), we
can achieve an even better regret bound Õ(

√
KT ).

• Linear rewards: We introduce Algorithm 7 for the lin-
ear reward setting, achieving an expected regret bound
of Õ(d4/3T 2/3), where d is the dimension. Our algorithm
is grounded in the new elimination framework analogous
to the i.i.d. case, but more importantly it is equipped with
an efficient and robust search method(Algorithm 8) for
the high-dimensional case. Specifically, Algorithm 8 is
built upon (Liu et al., 2021, Algorithm 1), but it cuts
the space conservatively to account for the uncertainty
resultant from the learning agent.

Related Works. The principal-agent model is a fundamen-
tal problem in contract theory (Bolton & Dewatripont, 2004;
Grossman & Hart, 1992; Laffont & Martimort, 2009). Moti-
vated by online marketplaces, a substantial body of research
has explored repeated principal-agent models to, for exam-
ple, estimate the agent model or minimize the regret for
the principal (Ben-Porat et al., 2024; Fiez et al., 2018a;b;
Ho et al., 2014; Ivanov et al., 2024; Ratliff & Fiez, 2020;
Zhu et al., 2022; 2023). Categorized by different types of
information asymmetry, principal-agent problems are typ-
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Table 1: Overview of related work for principal-agent bandit games with different agent’s behaviors.

Algorithms Agent behavior involves Reward Regret boundb
Empirical mean?a Exploration?

Dogan et al. (2023b) ✗ ✗

i.i.d.

O
(
max{K,

√
log T}

√
T
)

IPA Scheid et al. (2024b)c ✗ ✗ O
(√

KT log(T )
)

Algorithm 1 (This paper) ✓ ✗ O
(√

KT log(T )
)

Dogan et al. (2023a) ✗ ✓ O
(
poly(K)T

11
12

√
log T

)
Algorithm 6 (This paper) ✗ ✓ O

(
log2(T )

√
KT

)
Algorithm 5 (This paper) ✓ ✓ O

(
K

1
3T

2
3 log

2
3 (T )

)
C-IPA Scheid et al. (2024b)d ✗ ✗ linear O(d

√
T log T )

Algorithm 7 (This paper) ✓ ✗ O
(
d

4
3T

2
3 log

2
3 (T )

)
a We use ✗ to indicate that the agent behavior is defined by true means.
b For fair comparison, we use the same regret metric to compare all regret bounds. We refer readers to Appendix A for

details. All our algorithms can work in the oracle-agent setup without modification and maintain the same regret
bounds. We assume a large T to drop lower order terms.

c We here present the worst-case bound of IPA, but it also enjoys a gap-dependent bound in the oracle-agent setup.
d Contextual IPA (C-IPA) works for time-varying arm sets and thus also works in our fixed arm linear reward setting.

ically studied in moral hazard setting (Abreu et al., 1990;
Radner, 1981; Rogerson, 1985; Sannikov, 2013; Wu et al.,
2024) where the agents’ actions are invisible to the principal,
and adverse selection setting (Dogan et al., 2023a;b; Eső
& Szentes, 2017; Fiez et al., 2018a;b; Gottlieb & Moreira,
2022; Halac et al., 2016; Ratliff & Fiez, 2020; Scheid et al.,
2024b), in which the principal does not known the agent
types/preferences. While theoretical results are well estab-
lished in these models, they typically assume that the agent
has a full knowledge of the underlying parameters, and the
reward functions remain fixed for both principal and agent.

Recently, Lin & Chen (2025) considers a no-regret learning
agent problem, but assume that the principal has full knowl-
edge of its utility function. Fiez et al. (2018a;b) consider
incentive design as a bandit problem in a dynamic envi-
ronment where the users preferences may change in time
according to a Markov process thereby resulting in dynamic,
stochastic rewards that are correlated over time from the per-
spective of the principal. Different from our approach, this
work employs an epoch-based algorithm to take advantage
of the mixing of the Markov process. Dogan et al. (2023b);
Scheid et al. (2024b); Wu et al. (2024) consider reward un-
certainty on the principal’s side, though they still rely on the
assumption of an oracle-agent who always selects the true
maximizer. Dogan et al. (2023a) took a step further by in-
corporating a small degree of uncertainty on the agent’s side,
yet the agent still acts as a true maximizer with increasingly
high probability. In contrast, we study the scenario where
both the agent and principal are always faced with uncer-
tainty and the agent can only make decisions based on her
empirical estimations and incentives. This problem raises
new challenges and requires novel approaches to solve.

A recent work by Scheid et al. (2024a) studies the principal-
agent interactions under the assumption that for any time
period and any principal’s algorithm offering constant in-
centives during this period, the agent’s learning algorithm
always preserves the no-regret property. While this en-
ables a regret bound of Õ(T 3/4) if the agent adopt some
algorithms with

√
t-type regret, this framework excludes

simple yet realistic agent behaviors, such as self-interested
learning agents with or without arbitrary exploration (see
Appendix B for details). Moreover, their approach involves
binary search per arm, which is impractical in linear reward
settings due to its linear dependence on the number of arms.
In this paper, we address these questions by focusing on
these simple yet realistic learning behaviors.

Notations. Let Vol(·) be the standard volume in Rd and
let ∥x∥ be ℓ2-norm of vector x. For a positive definite matrix
A ∈ Rd×d, the weighted 2-norm of vector x ∈ Rd is given
by ∥x∥A =

√
x⊤Ax. For matrices A,B, we use A ≻ B

(A ⪰ B) to indicate that A−B is positive (semi-)definite.
For two sets A,B, we use A− B to indicate the exclusion.
We use Õ(·) to suppress (poly)-log terms.

2. Preliminaries
We consider a repeated principal-agent game over a finite
horizon T , where the agent is given an arm set A with
|A| = K, and A is also known to the principal. At each
round t ∈ [T ], the principal first proposes an incentive
π(t) = (π1(t), . . . , πK(t)) ∈ RK

≥0. Then, the agent ob-
serves incentive π(t) and plays an arm At ∈ A according to
a certain strategy. After playing arm At, the agent observes
reward RAt(t) while the principal observes only the arm At
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played by the agent and herself reward XAt
(t). The utility

of the principal at round t is given by XAt(t) − πAt(t).
Throughout the interaction, the agent updates the empirical
means {µ̂a(t)}a∈A whenever playing an arm. In this paper,
we focus on the following two learning behaviors.

Self-interested learning agent: At each round t, the agent
selects an arm At that maximizes the empirical mean plus
an incentive proposed by the principal:

At ∈ argmax
a∈A

{µ̂a(t) + πa(t)} , (1)

where ties are broken arbitrarily. Similar to Dogan et al.
(2023b); Scheid et al. (2024b), we assume the principal
knows the agent’s selection strategy in Eq. (1), but has no
knowledge of the empirical means, {µ̂a(t)}t,a.

Exploratory learning agent: This behavior generalizes the
above by allowing the agent to play arms other than the
empirical maximizer. Formally:
Definition 2.1. Let the probability that agent explores at
round t be pt = P (At /∈ argmaxa∈A {µ̂a(t) + πa(t)}) .
There exists a absolute constant c0 ≥ 0 such that pt ≤
c0
√

t−1 log(2t) at any time step t ∈ [τ, T ] where τ ≥ 2 is
minimum value satisfying c0

√
log(2τ) <

√
τ .

In fact, pt in Definition 2.1 captures the probability that the
agent deviates from playing the empirical-maximizer. This
exploration behavior is not only analytically convenient but
also motivated by behavioral and cognitive science where
this type of model has been widely used to characterize
how humans make sequential decisions under uncertainty
(Barron & Erev, 2003; Daw et al., 2006; Gershman, 2018;
Kalidindi & Bowman, 2007; Lee et al., 2011).

Similar to Dogan et al. (2023a), we do not restrict how the
agent explores arms and assume that the principal knows:
(i) the agent either chooses an empirical-maximizer or arbi-
trarily explores an arm; (ii) pt is upper bounded by a known
function c0

√
t−1 log(2t). We further assume that pt is as a

function of history. In fact, our algorithm also works when
pt only depends on t (e.g., agent adopts ϵ-greedy algorithm).

Then, we specify the reward models and how agent updates
the empirical means for the i.i.d. and linear reward settings.

I.I.D. reward setting. In this setting, we let A = [K] :=
{1, . . . ,K}. For each arm a ∈ [K], the reward of each arm
a for the principal is drawn from a [0, 1]-bounded distribu-
tion DP

a with mean θa, and the reward of each arm a for
the agent is drawn from another [0, 1]-bounded distribution
DA

a with mean µa. The agent is unaware of µa, but keeps
track of Na(t), the number of plays of arm a before round t

and computes µ̂a(t) =
µ̂0
a+

∑t−1
s=1 RAs (t)I{As=a}
max{1,Na(t)} , where µ̂0

a

is the initial empirical mean for arm a2, which is allowed to

2For simplicity, we assume that the initial empirical means are

be chosen arbitrarily in the range of [0, 1].

Linear reward setting. We assume A ⊆ B(0, 1) where
B(0, 1) = {x ∈ Rd : ∥x∥ ≤ 1}, and without loss of
generality, A spans Rd. The reward observed by the agent is
RAt(t) = ⟨s⋆, At⟩+ ηA(t), and the reward on the principal
side is XAt(t) = ⟨ν⋆, At⟩+ ηP (t) where s⋆, ν⋆ ∈ B(0, 1)
are unknown to agent and principal, and ηA(t) and ηP (t)
are assumed to be conditionally 1-subgaussian. Assume that
at each round t, the agent uses the ordinary least square to
estimate ŝt =

(∑t
s=1 AsA

⊤
s

)†∑t
s=1 RAs(s)As for t ≥ 2

where for any matrix M , M† is Moore–Penrose inverse.
Moreover, ŝ1 can be arbitrarily selected from B(0, 1). Then,
µ̂a(t) = ⟨ŝt, a⟩ is the empirical mean of arm a at round t.

Optimal incentive and regret. For any arbitrary ϵ > 0,
the principal ensures to incentivize the agent to play arm a
by proposing incentive πϵ

a(t) on arm a as:

πϵ
a(t) = max

b∈A
µ̂b(t)− µ̂a(t) + ϵ,

and πa′(t) = 0 for all a′ ̸= a. This incentive ensures that
πϵ
a(t) + µ̂a(t) > µ̂b(t) for all b ̸= a, which implies that

At = a. The minimum incentive to force the agent to play
a target arm a at round t is

π⋆
a(t) := inf

ϵ>0
πϵ
a(t) = max

b∈A
µ̂b(t)− µ̂a(t). (2)

The principal aims to minimize regret E[RT ] where

RT =

T∑
t=1

(
max
a∈A

{θa − π⋆
a(t)} − (θAt

− πAt
(t))

)
. (3)

Here, E[RT ] measures the cumulative per-round gap be-
tween the expected utility of an oracle with knowledge of
the optimal incentives and that of our algorithm. In other
words, we hope to find the best per-iterate incentive adapt-
ing to agent’s empirical means at each round, rather than
the best fixed incentive in hindsight. For the exploratory
learning agent, since At may be an arbitrary arm when agent
explores, independent of the offered incentives, achieving
maximal utility is infeasible in certain rounds. However, the
total regret incurred during exploration is at most O(

√
T )

regardless of the benchmark. To maintain consistency, we
still compare against the best achievable utility, as in (Do-
gan et al., 2023a). Moreover, if the principal is restricted to
incentivize only a single arm, our regret aligns with that of
Scheid et al. (2024b). We refer readers to Appendix A for
a more detailed discussion on the implications of different
regret definitions.

all equal to zero, but our algorithms work for the general unknown
{µ̂0

a}a case with only constant modification. We refer readers to
Appendix D.1 for more details.
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Remark 2.2 (Generalization). Since the principal is agnos-
tic to the agent’s empirical means, by assuming that the
agent always receives the constant reward equal to the true
mean and the initial value is µ̂0

a = µa for every a ∈ A, one
can see that Eq. (1) generalizes the agent model of (Scheid
et al., 2024b), and Definition 2.1 generalizes the agent’s
behavior of Dogan et al. (2023a).

Remark 2.3 (Lower bound). As our setting subsumes the
oracle-agent setting as a special case when Ra(t) = µ̂0

a =
µa, the lower bound for the oracle-agent problem serves
as a lower bound for our problem. This implies that it
remains to lower-bound E[T (θa⋆ + µa⋆) −

∑T
t=1(θAt

+
µAt)]. Further, even if the principal has access to optimal
incentives, the principle still needs to solve a stochastic
bandits problem with mean θa + µa. Thus, the lower bound
of stochastic MAB (e.g., Lattimore & Szepesvári (2020))
E[RT ] = Ω(

√
KT ) also serves as a lower bound for our

i.i.d. reward problem and the lower bound of stochastic
linear bandits E[RT ] = Ω(

√
dT ) serves as a lower bound

for our linear reward problem setting (Dani et al., 2008).

3. Self-Interested Learning Agent & IID
Rewards

In this section, we propose Algorithm 13 for the self-
interested learning agent and i.i.d. reward case, which
achieves O(

√
KT log(KT )) regret bound. The omitted

proof can be found in Appendix D.

3.1. Novel Elimination Framework

We build our algorithm upon a new phased-elimination
scheme, which consists of three components, each with
an underscore in Algorithm 1. The algorithm proceeds in
phases indexed by m, and the phase length increases ex-
ponentially. In each phase m, the algorithm maintains an
active good arm set Am and a bad arm set Bm = [K]−Am.

One distinction between our elimination framework and
that of Even-Dar et al. (2006) is that in each phase, the
algorithm plays all bad arms (if any) for a moderate number
of times. This stabilizes their estimators while incurring
only moderate regret. Once the estimators are stable, the
algorithm searches for optimal incentives, with the error
decreasing inversely with the phase length. As the algorithm
proceeds in phases, estimation accuracy improves, while the
number of searches is only logarithmic. The algorithm then
uses accurately estimated incentives to entice the agent to
uniformly explore the active arms. Finally, the algorithm
identifies bad-behaved arms and steps into the next phase.

3For all algorithms proposed in this paper, the principal tracks
and updates {Na(t), θ̂a(t)}a∈[K] whenever an arm is played. We
omit these updates for the ease of presentation.

Algorithm 1 Proposed algorithm for i.i.d. reward
Input: confidence δ ∈ (0, 1), horizon T .
Initialize: A1 = [K], B1 = ∅, T0 = 1.

1 for m = 1, 2, . . . do
2 Set Tm as

Tm = max
{
22m+5 log(4TKδ−1), |Am| log T

}
. (4)

3 for a ∈ Bm do ▷ Stabilize estimators for bad arms
4 Propose incentives π0(a; 1 + 1/T ) for Zm rounds

where Zm is given in Eq. (7).
5 for a ∈ Am do
6 Invoke Algorithm 3 with input (a, T ) to get bm,a.

▷ Search near-optimal incentive
7 Set bm,a based on Eq. (6).
8 Propose incentives π0(a; bm,a) for Tm rounds.

9 for a ∈ Am do ▷ Online Elimination
10 Let t be the round current, and {θ̂a(t)}a∈[K] are

empirical means of all arms at round t.
11 Propose incentives π(t) with πa(t) = 1 + θ̂a(t) +

3
2 · 2−m, πb(t) = 1 + θ̂b(t), ∀b ∈ Am − {a}, and
πi(t) = 0, ∀i ∈ Bm.

12 If At ̸= a, then update Am+1 = Am − {a} and
Bm+1 = Bm ∪ {a}.

Incentivize which arm? Now, we figure out which arm
should be incentivized. To minimize regret, we aim to incen-
tivize agent to play an arm with small regret. From Eq. (3),
the regret of a single round t is maxa∈A {θa − π⋆

a(t)} −
(θAt − πAt(t)) . Assume that we have accurate estimates
of optimal incentives (πAt

(t) ≈ π⋆
At
(t)), and the regret at

round t is maxa∈A {θa + µ̂a(t)}− (θAt
+ µ̂At

(t)) . As the
agent observes more samples, the empirical mean µ̂a(t) will
be closer to the true mean µa. Therefore, the regret at a large
round t will be roughly maxa∈A {θa + µa}−(θAt + µAt) .
Hence, our algorithm will incentivize an arm that maximizes
the joint true means of the principal and the agent.

Before explaining each component, let π0(a; c) ∈ RK
≥0 be a

single-arm incentive, ∀a ∈ [K],∀c ∈ R>0:

[π0(a; c)]i =

{
c, if i = a,

0, otherwise.
(5)

3.2. Efficient Incentive Search

We first describe our key subroutine (Algorithm 3 deferred
to Appendix D.2) for the near-optimal incentive search. The
search algorithm aims to provide an estimation for the target
arm a. The following lemma characterizes the estimation
error and efficiency. Let bm,a be the estimated incentive for
arm a in phase m, outputted by Algorithm 3.
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Lemma 3.1. For each phase m, if Algorithm 3 ends the
search for arm a at round t in phase m, then

bm,a − π⋆
a(t) ∈

(
0,

4

T
+

⌈log2 T ⌉
Na(t)

+
2

mini∈[K] Ni(t)

]
.

Moreover, Algorithm 3 lasts at most 2⌈log2 T ⌉ rounds.

The estimation error suffers (mini∈[K] Ni(t))
−1 because

the search algorithm compares the empirical means be-
tween the target arm a and the agent’s best empirical arm
argmaxb∈[K] µ̂b(t), which could be arbitrarily suboptimal
on the principal’s side. To control this error, we lower-
bound it by mini∈[K] Ni(t). Algorithm 3 inherits a basic
binary search structure (line 4-line 11), while incorporating
an asymmetric check for better accuracy.

Asymmetric check. The goal of this design is to ensure
the output estimation bm,a is strictly larger than and close
to the optimal incentive for arm a. The algorithm refines
the search range [y

a
(t), ya(t)] by testing whether the of-

fered incentive entice the agent to play the target arm. In
oracle-agent setup, running standard binary search O(log T )
times ensures π⋆

a(t) ∈ [y
a
(t), ya(t)] with an error at most

ya(t) − y
a
(t) = O(T−1). However, in our setup where

the agent keeps update empirical means, simply running
binary search does not ensure π⋆

a(t) /∈ [y
a
(t), ya(t)]. Con-

sider a round t where binary search is used for target
arm a, and arm z achieves µ̂z(t) = maxb∈[K] µ̂b(t) and
ya(t)− µ̂z(t) = O(T−1). If arm z is played at round t gen-
erating reward 1, the agent updates µ̂z(t + 1), potentially
causing π⋆

a(t+1) = µ̂z(t+1)− µ̂a(t+1) > ya(t), which
pushes π⋆

a(t+ 1) outside the search range. Since the search
lasts O(log T ) rounds, µ̂z(t) increases at most O(log T )
times. To ensure the estimated incentive is strictly larger
than the optimal when search ends, we enlarge ya(t) to ac-
count for possible increases, which makes 2

mini∈[K] Ni(t)
in

Lemma 3.1 becomes log T
mini∈[K] Ni(t)

. As a result, an extra
logarithmic multiplication appears in the regret bound.

To address the above issue, we introduce an asymmetric
check procedure in binary search. The algorithm tracks
yupper, recording the latest incentive that successfully en-
ticed agent to play the target arm. When agent does not play
the target arm, the algorithm immediately re-offers yupper.
If yupper also fails, the search terminates, indicating that
the optimal incentive exceeds the search range. This design
quickly detects the out-of-range issue, reducing the error
to 2

mini∈[K] Ni(t)
, which saves a logarithmic factor. Since

the check step is triggered only when the incentive fails, we
thus call it asymmetric check.

Enlarged incentive. Lemma 3.1 ensures bm,a is close to
π⋆
a(t) when search ends at round t. However, there is no

guarantee that bm,a can incentivize the agent to play arm

a in subsequent rounds when empirical means are updated.
To this end, we enlarge bm,a to bm,a given as

bm,a = min

{
1 +

1

T
, bm,a + 4Cm + Z−1

m

}
. (6)

where Cm =
√

log(4KT/δ)
2Tm−1

. The idea behind this enlarge-
ment is to leverage the fact that the rewards are i.i.d. with
Hoeffding’s inequality which provides an interval for the
possible fluctuation of empirical means. Such an interval
shrinks as more observations are collected. We use 4Cm as
an upper bound, accounting for all future fluctuations. Let
T E
m,a be a set of all rounds when Algorithm 1 explores active

arm a at line 8 in phase m. Then, we have the following.

Lemma 3.2. With probability at least 1− δ, for each phase
m and arm a ∈ Am, agent plays arm a for all t ∈ T E

m,a.

3.3. Necessity of Playing Bad Arms

Since the algorithm only searches for incentives for active
arms and Lemma 3.2 ensures each active arm is played for
Tm times in phase m, Na(t)

−1 will be sufficiently small.
Thus, it remains to control (mini∈[K] Ni(t))

−1 for the esti-
mation error in Lemma 3.1. In fact, this can be achieved by
playing bad arms for Zm times for each phase m where

Zm =

√
|Am| (max{1, |Bm|})−1

Tm−1, (7)

where Tm is defined in Eq. (4).

If one follows the classical phased-elimination framework
(Even-Dar et al., 2006), then mini∈[K] Ni(t) could be ex-
ponentially smaller than Tm because the arm that realizes
the minimum might have been permanently eliminated in
an early phase. As a result, this term may cause linear regret
in their framework. In our algorithm, playing all bad arms
Zm times ensures the regret on cumulative estimation errors
between bm,a and π⋆

a(t) is bounded by Õ(
√
T ).

3.4. Online Elimination

Recall that a bad arm is with small value of θa+µa, and thus
the algorithm aims to find arms with small value of the corre-
sponding estimate θ̂a(t)+ µ̂a(t). Since the empirical means
maintained by the agent are unknown, the algorithm cannot
eliminate arms in an offline fashion by simply comparing
estimators. To this end, the algorithm adopts an online ap-
proach to compare, by proposing proper incentives. Specifi-
cally, the algorithm tests each active arm a ∈ Am by adding
its own estimators {θ̂a(t)}a∈[K] (line 11) into the incentive.
By doing this, the algorithm can compare their joint estima-
tion θ̂a(t)+µ̂a(t) by observing the played arm. Note that the
incentive is increased by one for all active arms so that the
comparisons are limited within active arms. If At ̸= a, then
∃b ∈ Am such that µ̂a(t) + πa(t) ≤ µ̂b(t) + πb(t) which
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leads to (µ̂b(t) + θ̂b(t)) − (µ̂a(t) + θ̂a(t)) ≥ 3 × 2−m.
Therefore, the algorithm is able to realize the elimination
procedure in an online manner.
Remark 3.3 (Offline elimination). Our algorithm can also
do the elimination in an offline manner, and the modified
algorithm maintains the same regret bound. We refer readers
to Appendix D.8 for more details.

3.5. Main Result

The main result is given as follows.

Theorem 3.4. By choosing δ = T−1 for Algorithm 1, we
have E[RT ] = O

(
K log2 T +

√
KT log(KT )

)
.

According to the Ω(
√
KT ) lower bound in Remark 2.3, our

upper bound matches the lower bound up to a logarithmic
factor. Moreover, if one reduces the learning agent to the
oracle-agent, our worst-case bound matches that of Scheid
et al. (2024b) as long as T ≥ K. However, our algorithm
cannot achieve a gap-dependent bound since it keeps playing
bad arms. While Scheid et al. (2024b) show that a gap-
dependent bound is attainable in the oracle-agent problem,
it remains open whether it is achievable in our setting.

4. Exploratory Learning Agent & IID Reward
In this section, we study the problem of an exploratory learn-
ing agent in the i.i.d. reward setting, where the agent may
arbitrarily select arms other than the empirical maximizer.
This problem is initiated by Dogan et al. (2023a), but our
setup generalizes theirs.

4.1. Algorithm Description

At a high-level, Algorithm 5 (see Appendix E.1) is a robust
version of Algorithm 1, ensuring the agent exploration does
not disrupt the learning process. We maintain main building
blocks in Algorithm 1 and introduce new adjustments to
enhance the robustness to the agent’s exploration behavior.

Incentive testing. Recall from Algorithm 1 that to incen-
tivize the agent to play the target active arms, the algorithm
needs to accurately estimate optimal incentives by calling
Algorithm 3. However, obtaining accurate estimations in
this setup becomes challenging because the agent occasion-
ally ignores the incentive to explore an arbitrary arm. To
circumvent this issue, we repeat the search for logarithmic
times, which leads to the following result.

Lemma 4.1. With probability at least 1 − δ/4, ∀m ≥ 2,
among total 2 log(4 log2 T/δ) calls, there is at least one call
of Algorithm 3 such that the agent makes no exploration.

This design leverages the probability amplification (see
Lemma E.3): if a random trial succeeds at round t with

Algorithm 2 Informal Version of Algorithm 5 for phase m

Play bad arms Õ
(
T

2/3
m−1

)
times where Tm is given in Eq. (8).

Repeat Algorithm 3 O(log T ) times for each a ∈ Am to get
{b(i)m,a}i,a which is sorted in ascending order.

Enlarge b
(i)

m,a = b
(i)
m,a +O(T

−1/3
m ) for each i, a.

for a ∈ Am do
for i = 1, . . . ,O(log T ) do ▷ Incentive testing

Set a counter c(i)m,a = 0 and Y
(i)
m,a = 0.

repeat
Offer π0(a; b

(i)

m,a) and update Y
(i)
m,a = Y

(i)
m,a + 1

If agent does not play arm a, c(i)m,a = c
(i)
m,a + 1.

until c(i)m,a exceeds a threshold or Y (i)
m,a = 2Tm;

If
∑

j≤i(Y
(j)
m,a − c

(j)
m,a) ≥ Tm, then break loop i.

for a ∈ Am do ▷ Trustworthy online elimination
Set Lm,a = ∅ and repeat incentive strategy in Algo-
rithm 1 for O(log T ) times.
If agent plays target arm a, then Lm,a = Lm,a ∪ {1}
and Lm,a = Lm,a ∪ {0} otherwise. Then, sort Lm,a in
ascending order.
if Median(Lm,a) = 0 then

Update Am+1 = Am−{a} and Bm+1 = Bm∪{a}.

probability pt (potentially depending on history), repeating
it logarithmic times ensures at least one success with high
probability. We refer to the call of Algorithm 3 where the
agent does not explore, as a “successful call”. Indeed, the
incentive generated by the successful call is close to the
optimal one only at that specific round. We further enlarge
those incentives by O(T

−1/3
m ) to force the agent to play the

target arm unless exploration occurs.

As the algorithm is unaware of the occurrence of explo-
ration, a successful call cannot be directly identified by
the algorithm, even if we know the existence. To address
this, the algorithm sorts all estimated incentives {b(i)m,a}i
in ascending order and tests each of them iteratively. We
refer to the incentive from a successful call as “successful
incentive”. Such a sorting ensures (i) the error of incentives
before the successful incentive is bounded by the error of
successful incentive (ii) the iteration for the incentive test-
ing does not exceed that of the successful incentive. It is
obvious that (i) holds due to ascending order sorting, and
then we will explain the underlying reason that (ii) holds.
During the test, the algorithm tracks c

(i)
m,a, the number of

times that agent does not play target arm a, and Y
(i)
m,a, the

total number of rounds in the i-th iteration. If c(i)m,a exceeds
a threshold, indicating excessive non-target plays, the al-
gorithm believes b

(i)

m,a is inaccurate and tests the next one

b
(i+1)

m,a . Since a successful incentive guarantees the agent

7
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plays the target arm unless exploring (similar to that of Al-
gorithm 1), and the exploration probability is bounded, we
can set a threshold (smaller than Tm) ensuring c

(i)
m,a never

exceeds it when testing successful incentive. Consequently,
the repeat-loop breaks only when Y

(i)
m,a = 2Tm. If j is the

iteration that corresponds to the successful incentive, then∑
j≤i(Y

(j)
m,a − c

(j)
m,a) ≥ Tm, which implies (ii) holds and

the algorithm can acquire at least Tm samples per target arm
a (refer to Lemma E.11), where

Tm = 32c30 · 22mK log(16TK/δ) log2(ι), (8)

and ι = 16KT 2 log2 T log(4 log2 T/δ)δ
−1.

Trustworthy online elimination. The online and offline
elimination approaches previously shown in Section 3.4
cannot be directly applied. For the online elimination, the
agent’s exploration could cause the algorithm to incorrectly
eliminate good arms and retain bad ones. The offline elim-
ination (recall Algorithm 4) requires exact knowledge of
successful incentive, which is hard to be identified. To tackle
this issue, we propose trustworthy online elimination. For
each active arm a, the algorithm offers the same incentive
logarithmically many times, observes the agent’s action At,
and updates the set Lm,a = Lm,a ∪ {1} if At = a and
Lm,a = Lm,a ∪ {0}, otherwise. After gathering enough
data, the algorithm sorts Lm,a and uses the median of Lm,a

to determine whether to eliminate arm a. This median-
based approach ensures that the elimination process is robust
against the agent’s exploration, with high probability.

4.2. Main Result

We present the regret bound of Algorithm 5 as follows.

Theorem 4.2. Suppose T = Ω(K). Choosing δ = 1/T for
Algorithm 5 ensures E[RT ] = O

((
K log2 T

)1/3
T 2/3

)
.

Recall that Algorithm 1 enlarges the bm,a to bm,a by roughly
O(1/

√
T ) to ensure the algorithm always successfully in-

centivizes the agent to play the target active arm. However,
due to the exploration behavior, we need to enlarge bm,a

further by O(T−1/3) to achieve the goal. This modifica-
tion requires the algorithm plays each bad arm for O(T 2/3)
times, compared to O(

√
T ) plays in Algorithm 1, which

incurs Õ(T 2/3) regret bound. Closing the gap between the
upper and lower bounds is left for the future work.

4.3. Refinement for Exploratory Oracle-Agent

When we reduce the learning behavior in Definition 2.1 to
the exploratory oracle-agent considered by (Dogan et al.,
2023a), Algorithm 6 (see Appendix F) achieves a

√
T -type

regret bound. As the agent selects the true maximizer when
not exploring in the reduced setting, we simplify certain
algorithmic designs used to handle the agent’s learning un-

certainty. For a fair comparison, we adopt E[RT ] (see Ap-
pendix A) consistent with (Dogan et al., 2023a).

Theorem 4.3. By choosing δ = 1/T , Algorithm 6 ensures
that E[RT ] = O

(
log2(KT )

√
KT +K2 log3(KT )

)
.

Theorem 4.3 gives a Õ(
√
KT ) regret bound, which matches

the lower bound up to some logarithmic factors. More im-
portantly, it significantly improves upon Õ(T 11/12) regret
bound in (Dogan et al., 2023a).

5. Self-Interested Learning Agent & Linear
Reward

In this section, we propose an algorithm (Algorithm 7) for
the linear reward setting with the self-interested learning
agent. The omitted details in this section can be found in
Appendix G. Algorithm 7 is built upon the framework of
Algorithm 1. However, to bypass the linear dependence
on K, the framework needs to be carefully tailored for the
linear reward structure. We will show how to modify each
component of Algorithm 1 for the linear reward model.

Recall from Algorithm 1 that all arms will played for a fixed
number of times in each phase. However, this results in a
linear dependence on K. To address this, we use G-optimal
design (Kiefer & Wolfowitz, 1960) a standard technique
in the linear bandit literature (Lattimore et al., 2020). It
is noteworthy that our algorithm computes a design not
only for active arms, but also for bad arms. The reason is
similar to that of i.i.d. reward setting, i.e., to acquire accurate
estimations of optimal incentives, one needs to stabilize the
estimators of bad arms.

Moreover, the algorithm cannot directly apply the elimina-
tion approach used in Algorithm 1 to check each arm. This
is because the online elimination procedure requires the
principal to test each active arm once, but the total number
of test scales with K. Fortunately, our search algorithm
(will be clear in the following subsection) can accurately
predict the underlying parameter s⋆, which allows to have
good estimations of {µ̂a(t)}a∈A. Consequently, the algo-
rithm conducts the elimination in an offline manner, similar
to classical elimination methods.

5.1. Robust High Dimensional Search

In the linear reward setting, adopting a similar approach
in Algorithm 1 to search for the incentive for each active
arm is undesirable, as it incurs a linear dependence on K.
Therefore, we instead search a space in each phase m in
which s⋆ resides and all points in this space are close to
s⋆. Specifically, let cm be an arbitrary point in this space.
It follows that ⟨cm, a⟩ ≈ ⟨s⋆, a⟩. Furthermore, when the
agent collects more samples, her own estimates ŝt also
gets closer to the true parameter s⋆, which implies that

8
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⟨ŝt, a⟩ ≈ ⟨s⋆, a⟩ ≈ ⟨cm, a⟩ for all arms a ∈ A. Hence, the
optimal incentive π⋆

a(t) = maxb∈A ⟨ŝt, b− a⟩ can be well-
approximated by maxb∈A ⟨cm, b− a⟩. This idea previously
appears in (Scheid et al., 2024b) where the feasible space
is refined based on s⋆ in the oracle-agent setup, but in our
learning agent setting, their approach would fail to learn s⋆.
This is because the space is refined based on the estimate ŝt
in the learning agent setting, and thus the fluctuation of ŝt
could mislead the algorithm to wrongly exclude s⋆. To this
end, we adjust Multiscale Steiner Potential (MSP) (Liu et al.,
2021) to cut the space conservatively, accounting for the
uncertainty caused by the learning agent. Before showing
our algorithm, we first define the width for set S ⊆ Rd and
vector u ∈ Rd as follows:

width(S, u) = max
x,y∈S

⟨u, x− y⟩ . (9)

Algorithm 8 keeps track of a sequence of confidence sets
{St}t iteratively. The algorithm initializes S1 = B(0, 1),
ensuring that the unknown parameter s⋆ ∈ S1. At each
iteration t, Algorithm 8 first picks a1t − a2t that maximizes
width(St, a

1
t − a2t ) where a1t , a

2
t ∈ A, and sets direction

xt = (a1t − a2t )
∥∥a1t − a2t

∥∥−1
. The idea behind the choices

of a1t , a
2
t is to enable the algorithm to explore a direction

with the maximum uncertainty.

Then, it finds an integer i such that width(St, xt) ∈
(2−i−1, 2−i], and the length of the interval reflects the
uncertainty of St along the direction xt. When the if-
condition (line 4) is satisfied, the algorithm will return an
arbitrary point in St because the estimation error for the
optimal incentive is up to O(ϵ). If the condition is not sat-
isfied, then the algorithm finds a yt ∈ R which reduces
Vol(St + ziB(0, 1)) (known as Steiner potential) by half,
where the sum is the Minkowski sum

St + ziB(0, 1) = {s+ zi · b : s ∈ St, b ∈ B(0, 1)} .

Such a cut decreases the volume of St + ziB(0, 1) by a
constant multiplicative factor, and thus the total number of
iterations is at most O(d log2(dϵ)) by Lemma G.5.

Since ⟨ŝt, a⟩ ≤ ∥ŝt∥ ∥a∥ ≤ d for all t ∈ [T ], adding d+ ξ
for πa1

t
(t), πa2

t
(t) ensures that the agent plays only either

a1t or a2t . Here, we use At = a2t as an example (the other
one is analogous) to show why we update St+1 with ϵ shift.
From Eq. (1), the condition At = a2t implies

〈
ŝt, a

1
t

〉
+

πa1
t
(t) ≤

〈
ŝt, a

2
t

〉
+ πa2

t
(t). Rearranging it and dividing∥∥a1t − a2t

∥∥ on both sides gives ⟨ŝt, xt⟩ ≤
∥∥a1t − a2t

∥∥−1
yt.

An natural idea is to update St+1 = {v ∈ St : ⟨v, xt⟩ ≤∥∥a1t − a2t
∥∥−1

yt} since it ensures s⋆ ∈ St+1 in the oracle-
agent setting. However, the estimate ŝt varies across time in
our learning agent setting, and thus if the algorithm cuts the
space based on ŝt, it is entirely possible that St+1 = ∅ which
invalidates the algorithm. To avoid this issue, we enlarge

the threshold to make the cutting more conservative than
before. As a result, the algorithm can guarantee s⋆ ∈ St for
all t. The analysis is deferred to Appendix G.4.

5.2. Main Result

We present the regret bound in the following theorem.
Theorem 5.1. Suppose T = Ω(d). By choosing δ = T−1 in
Algorithm 7, we have that E[RT ] = O

(
d

4
3T

2
3 log

2
3 (KT )

)
.

Theorem 5.1 gives the first sublinear regret bound for linear
rewards in the learning agent setting. One may notice that
for some T , we have E[RT ] = Õ(d4/3T 2/3). Unfortunately,
the regret bound does not match the lower bound given
in Remark 2.3, so there is room for further improvement.
Moreover, compared this bound with other T 2/3-type bound
in linear bandits problem (typically Õ(d1/3T 2/3)), our bound
suffers an extra multiplicative dependence on d. This extra
d serves as a cost for the conservative cut. It remains unclear
whether this extra d can be removed by more careful analysis
or additional adjustment for the search algorithm. We left
this problem for future work.

6. Conclusion & Future Work
In this paper, we study principal-agent bandit games with
self-interested learning and exploratory agents. We first con-
sider the learning agent who greedily chooses the empirical-
maximizer and propose Algorithm 1, which achieves a re-
gret bound matching the lower bound up to logarithmic
factors. Then, we extend Algorithm 1 to a more general set-
ting in which the agent is allowed to explore an arm different
from the empirical maximizer with a small probability, and
introduce Algorithm 5 to achieve Õ(T 2/3) regret bounds.
Building on this, we reduce our setting to that of Dogan
et al. (2023a) and propose Algorithm 6 with Õ(

√
T ) regret,

which significantly improves upon Õ(T 11/12) (Dogan et al.,
2023a). Finally, we present Algorithm 7 for the linear re-
ward setting and propose an algorithm with Õ(d4/3T 2/3)
regret bound.

Our results leave several intriguing questions open for fur-
ther investigation. First, closing the gap between the upper
and lower regret bounds in the linear setting, even without
agent exploration, remains open. Additionally, it remains
unclear whether the Õ(T 2/3) regret bound in Theorem 4.2
could be further improved to O(

√
T ). Finally, extending our

results to handle more general exploration behaviors (e.g.,
pt = Õ(t−α) for any α ∈ (0, 1)) is a promising direction.
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A. Comparisons of Regret Notions and Additional Notations
As the optimal incentive is time-varying in our setting, RT compares the cumulative utility difference between the per-round
optimal arm and the arm selected by the algorithm.

RT =

T∑
t=1

(
max
a∈A

{θa − π⋆
a(t)} − (θAt − πAt(t))

)
. (10)

Notice that if one reduces our setting to the oracle-agent setting by letting µ̂0
a = µa and Ra(t) = µa for all t, then

E[RT ] = E[Roracle
T ] where

Roracle
T =

T∑
t=1

(
max
a∈A

{
θa − (max

b∈A
µb − µa)

}
− (θAt − πAt(t))

)
. (11)

In (Scheid et al., 2024b), the principal only proposes one-hot incentives i.e., only one coordinate of π(t) is positive at each
round, and they define regret as

E

[
T∑

t=1

(
max
a∈A

{
θa − (max

b∈A
µb − µa)

}
− (θAt

− I{At = zt} · πAt
(t))

)]
,

where zt ∈ A is an arm that the principal gives positive incentive at round t. If we also restrict the principal to always
provide one-hot incentives, E[Roracle

T ] is exactly the same as that of Scheid et al. (2024b). However, if the principal needs
to provide incentives for multiple arms, then their notion will be ill-defined.

Dogan et al. (2023a) uses the regret E[RT ] to evaluate the algorithm performance where

RT =

T∑
t=1

(
max
b∈[K]

{θb + µb} − max
z∈[K]

µz −

(
θAt

−
∑
a∈A

πa(t)

))
. (12)

One can observe that RT ≥ Roracle
T . Therefore, the regret bound under E[RT ] in (Dogan et al., 2023a) can be directly

translated to the regret bound measured by E[Roracle
T ]. In fact, changing the regret measure from Roracle

T to RT only
slightly impacts the low-order terms in the regret bounds of some of our algorithms because our algorithms use one-hot
incentives in most of the rounds. For fair comparison, all results in Table 1 are compared via E[Roracle

T ].

Notice that all our algorithms can get the same regret bound under E[Roracle
T ] and E[RT ] without any modification. This

is because our algorithm can handle the unknown empirical means, and thus one can assume the agent receives constant
reward Ra(t) = µa for all t, a.

Additional Notations. Based on the definition of π⋆
a(t) in Eq. (2), RT can be rewritten as

RT =

T∑
t=1

(
max
a∈A

{
θa −

(
max
b∈A

µ̂b(t)− µ̂a(t)

)}
− (θAt

− πAt
(t))

)

=

T∑
t=1

(
θa⋆

t
+ µ̂a⋆

t
(t)−max

b∈A
µ̂b(t)− (θAt − πAt(t))

)
, (13)

where a⋆t is defined as:

(i.i.d. reward) a⋆t ∈ argmax
a∈A

{θa + µ̂a(t)} and (linear reward) a⋆t ∈ argmax
a∈A

{⟨ν⋆, a⟩+ µ̂a(t)} .

We further define the gap ∆a := θa⋆ + µa⋆ − (θa + µa) where

(i.i.d. reward) a⋆ ∈ argmax
a∈A

{θa + µa} and (linear reward) a⋆ ∈ argmax
a∈A

⟨ν⋆ + s⋆, a⟩ .

12
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B. Discussion on Universal No-Regret Preservation Assumption
We translate the assumption (Scheid et al., 2024a, H2) with our notations in the following.

Assumption B.1. There exist C, ζ > 0, κ ∈ [0, 1) such that for any s, t ∈ [T ] with s+ t ≤ T , any {τa}a∈[K] ∈ RK
+ and

any policy of principal that offers almost surely an incentive πl = π0(ãl, τãl
) (see Eq. (5)) for any l ∈ {s+ 1, . . . , s+ t},

the batched regret of the agent following policy Π satisfies, with probability at least 1− t−ζ ,

s+t∑
l=s+1

max
a∈A

{µa + I{ãl = a} · πãl
} −

(
µAl

+ I{Al = ãl} · πãl

)
≤ Ctκ.

Since Assumption B.1 requires the no-regret property preservers for any time period from s+ 1 to s+ t, and also for any
principal’s policy, their model does not cover the self-interested learning agent in our paper. Specifically, let us consider
two-armed setup with µ1 = 0.1 and µ2 = 0.9, and Bernoulli distributions with mean µ1, µ2, respectively. As our model
allows the initial values of empirical means are chosen arbitrarily, we assume them to be zero. Suppose that in the first
round, the principal incentivizes the agent to play arm 1 and the agent receives reward 1, which occurs with a probability
0.1. Then, we have µ̂1(t) = 1 and µ̂1(t) = 0. Then, the principal always proposes incentive π0(2, T−10) for all rounds l
such that 2 ≤ l ≤ T . According to the self-interested learning agent behavior At ∈ argmaxa∈A {µ̂a(t) + πa(t)}, we have
with probability 0.1 (i.e., the probability that agent gets reward 1 at the first round),

s+t∑
l=s+1

max
a∈A

{µa + I{ãl = a} · πãl
} −

(
µAl

+ I{Al = ãl} · πãl

)
= Ω(t).

Then, we show that Assumption B.1 also does not cover the self-interested learning agent with exploration (refer to
Definition 2.1). The reason is that in our model (also in (Dogan et al., 2023a)), we consider a general exploration behavior of
the agent, in the sense that we do not add any assumption on how the agent explores a non-empirical-maximizer. However,
Assumption B.1 implicitly requires the algorithm to strategically explore the environment.

C. Discussion on Agent’s Behavior in (Dogan et al., 2023a)
It is noteworthy that even if an agent’s behavior is characterized by the true means (i.e., expected rewards), this does not
necessarily require the agent to have the knowledge of those underlying parameters. For example, in Assumption 2 of
Dogan et al. (2023a), the authors assume that if the agent does not explore, then the agent must choose a true-maximizer
(i.e., the maximizer of the expected reward plus incentive). Dogan et al. (2023a) show that the agent can adopt a learning
algorithm without the knowledge of expected rewards to simulate that behavior. However, this simulation requires a special
coordination between the principal and the agent, in the sense that the agent and principal must adopt specific algorithms
with specific parameters. In real-world applications, however, it is often infeasible for the principal or the agent to enforce
the other party’s use of particular algorithms or parameters.

D. Omitted Proof for I.I.D. Reward in Section 3
D.1. Discussion on Modifications for General Initial Empirical Means

To avoid clutter in our analysis, we assume for i.i.d. case that the initial empirical means {µ̂0
a}a∈[K] are all zeros. For

initial empirical means which are selected arbitrarily in [0, 1] and unknown to principal, our algorithms still work with two
simple modifications. Note that these modifications work for Algorithm 1, Algorithm 4, Algorithm 5, and Algorithm 6.
These two modifications rely on the fact that the mismatch of empirical mean of arm a at round t between assuming it
to be zero and an arbitrary one, is at most 1

Na(t)
. Such a mismatch only causes issue for active arms since every bad arm

is played deterministically. Moreover, the number of plays of each active arm a is proportional to phase length, and thus
1

Na(t)
= Θ(2−2m) (if t is in phase m). For the first modification, when the algorithm aims to incentive the agent to play

active arm a at round t, one can enlarge the offered incentive by 1
Na(t)

. Such an enlargement accounts for all possible initial

values since the deviation of each arm a is bounded as µ̂0
a

Na(t)
≤ 1

Na(t)
. As this change is small enough, it does not impact

the order of our regret bounds.
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Algorithm 3 Noisy binary search with asymmetric check
Input: target arm a, horizon T .
Initialize: Check = False, yuppera = 1, C1 = C2 = 0.

1 Let t0 be the current round, and we set ya(t0) = 1 and y
a
(t0) = 0.

2 for t = t0, t0 + 1 . . . do
3 if Check = False then
4 Set ymida (t) =

ya(t)+y
a
(t)

2 and C1 = C1 + 1.
5 Propose incentives π0(a; ymida (t)) and observe At.
6 if At = a then
7 if C1 ≥ ⌈log2 T ⌉ then
8 Return ymida (t) + 1

T .

9 Set yuppera = ymida (t), ya(t+ 1) = ymida (t) and y
a
(t+ 1) = y

a
(t).

10 else
11 Set Check = True, ya(t+ 1) = ya(t) and y

a
(t+ 1) = ymida (t).

12 else
13 Propose incentives π0(a; yuppera ) and observe At.
14 if At = a then
15 C2 = C2 + 1.
16 if C2 = ⌈log2 T ⌉ then
17 Return yuppera + 2

T

18 Set Check = False.
19 Set ya(t+ 1) = ya(t), and y

a
(t+ 1) = y

a
(t).

20 else
21 Return yuppera + 1

T + 1
Na(t)

+ 2
mini∈[K] Ni(t)

.

The second change is in elimination period. We take online elimination period as an example. Let β > 0 be a absolute
constant. The algorithm now proposes incentives π(t) with πa(t) = 2+ θ̂a(t)+β ·2−m+ 1

Na(t)
, πb(t) = 2+ θ̂b(t)− 1

Nb(t)
,

∀b ∈ Am − {a}, and πi(t) = 0, ∀i ∈ Bm. Notice that the newly added (subtracted) 1
Na(t)

( 1
Nb(t)

) is used to account for
possible mismatch. Since the elimination process only focuses on active arms, this change may cause Θ(2−2m) inaccuracy
in elimination. Then one can adjust the constant β to accommodate this change such that our analysis again holds (can be
equivalently seen as enlarging the threshold from 3

2 · 2−m to β2−m) and consequently the order of regret bound retains the
same. For offline elimination Algorithm 4, one can directly enlarge the threshold to accommodate possible mismatch.

D.2. Omitted Pseudocode of Algorithm 3

The omitted pseudo-code of our search algorithm can be found in Algorithm 3.

D.3. Notations

The following are common notations that we adopt in this section. Refer to Appendix A for some general notations.

• Let Tm be the set of rounds, excluding the elimination period that in phase m.

• Let Tm,a = {t ∈ Tm : At = a} denote the set of rounds in Tm such that At = a.

• Let T E
m,a be the set of rounds that Algorithm 1 runs in line 8 for arm a in phase m. Notice that T E

m,a excludes those
rounds from Tm,a such that Algorithm 3 plays arm a.

• Define event E as follows:

14
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E :=

{
∀(t, a) ∈ [T ]× [K] : |µ̂a(t)− µa| ≤

√
log(4TK/δ)

2Na(t)
,
∣∣∣θ̂a(t)− θa

∣∣∣ ≤√ log(4TK/δ)

2Na(t)

}
. (14)

D.4. Proof of Theorem 3.4

The following analyzes conditions on E . In Lemma D.3 below we show that P(E) ≥ 1− δ. As the algorithm runs in phases,
we bound the regret in each phase m. Since the elimination period will last at most K rounds in each phase, the number of
phases is at most O(log T ), and the per-round regret is bounded by an absolute constant, we have

RT ≤ O (K log T ) +
∑
m

Rm,

where Rm is defined as follows:

Rm =
∑
t∈Tm

(
max
a∈[K]

{θa − π⋆
a(t)} − (θAt

− πAt
(t))

)
.

In which follows, we focus on phase m with m ≥ 2 and Tm ̸= |Am| log T since Rm = O (K log T ) for either phase m = 1
or the phase m that satisfies Tm = |Am| log T . One can show that

Rm =
∑
t∈Tm

(
max
a∈[K]

{θa − π⋆
a(t)} − (θAt − πAt(t))

)
=
∑

a∈Am

∑
t∈Tm,a

(
max
a∈[K]

{θa − π⋆
a(t)} − (θAt − πAt(t))

)

+
∑

a∈Bm

∑
t∈Tm,a

(
max
a∈[K]

{θa − π⋆
a(t)} − (θAt

− πAt
(t))

)

≤
∑

a∈Am

∑
t∈Tm,a

(
max
a∈[K]

{θa − π⋆
a(t)} − (θAt − πAt(t))

)
+O

(√
|Am||Bm|Tm

)
.

As Algorithm 3 will last O(K log T ) rounds and the elimination period will last at most K rounds, and the per-round regret
is bounded by a absolute constant, we have that∑

a∈Am

∑
t∈Tm,a

(
max
a∈[K]

{θa − π⋆
a(t)} − (θAt − πAt(t))

)

≤
∑

a∈Am

∑
t∈T E

m,a

(
max
a∈[K]

{θa − π⋆
a(t)} − (θAt

− πAt
(t))

)
+O (K log T )

=
∑

a∈Am

∑
t∈T E

m,a

(
θa⋆

t
+ µ̂a⋆

t
(t)− max

b∈[K]
µ̂b(t)− (θa − πa(t))

)
+O (K log T ) ,

where the last step uses the definition of a⋆t and π⋆
a(t).

Then, for each a ∈ Am and each t ∈ T E
m,a, we turn to bound

θa⋆
t
+ µ̂a⋆

t
(t)− max

b∈[K]
µ̂b(t)− (θa − πa(t))

≤ θa⋆
t
+ µa⋆

t
+

√
log(4TK/δ)

2Na⋆
t
(t)

− max
b∈[K]

µ̂b(t)− (θa − πa(t))

≤ θa⋆
t
+ µa⋆

t
+

√
log(4TK/δ)

2Tm−1
− max

b∈[K]
µ̂b(t)− (θa − πa(t))
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= θa⋆
t
+ µa⋆

t
+

√
log(4TK/δ)

2Tm−1
− max

b∈[K]
µ̂b(t)−

(
θa − bm,a

)
≤ θa⋆ + µa⋆ +

√
log(4TK/δ)

2Tm−1
− max

b∈[K]
µ̂b(t)−

(
θa − bm,a

)
≤ O

(
∆a +

√
log(KT/δ)

Tm−1
+

1

T
+

⌈log T ⌉
Tm−1

+

√
max{1, |Bm|}
Tm−1|Am|

)

≤ O

(
∆a +

√
log(KT/δ)

1 +NAt
(t)

+
1

T
+

⌈log T ⌉
Tm−1

+

√
max{1, |Bm|}
Tm−1|Am|

)
, (15)

where the first inequality holds due to E , the second inequality uses Na⋆
t
(t) ≥ Tm−1 by Lemma D.13, the equality follows

from the fact that for each m and a ∈ Am, πa(t) = bm,a for all t ∈ T E
m,a, and the second-to-last inequality uses Lemma D.9

to upper-bound bm,a −maxb∈[K] µ̂b(t), and the last inequality holds because Tm = Θ(Tm−1) by Lemma D.2 and all active
arms in a phase are played for Tm times by Lemma D.8.

By again Lemma D.8, each active arm a in period T E
m,a will be played for Tm times. Hence, using |T E

m,a| = Tm and
Tm+1 = Θ(Tm) for all m from Lemma D.2, we have∑

a∈Am

∑
t∈T E

m,a

(
max
a∈[K]

{
θa + µ̂a(t)− max

b∈[K]
µ̂b(t)

}
− (θa − πa(t))

)

≤ O

 ∑
a∈Am

∑
t∈T E

m,a

∆a +
∑
t∈Tm

√
log(KT/δ)

1 +NAt(t)
+ |Am|

(
Tm

T
+ log T +

√
Tm max{1, |Bm|}

|Am|

) (16)

From Lemma D.12, if a suboptimal arm a is active in phase m, then m ≤ ma where ma is the smallest phase such that
∆a

2 > 2−ma . This implies that

∀a ∈ Am with ∆a > 0 :
∆a

2
≤ 2−(ma−1) ≤ 2−m+1 ≤ O

√ log(KT/δ)

Tm

 , (17)

where the reader may recall that our focus is on phase m ≥ 2 with Tm ̸= |Am| log T . Hence, we can bound

∑
t∈T E

m,a

∑
a∈Am

∆a ≤ O

 ∑
a∈Am

∑
t∈T E

m,a

√
log(KT/δ)

Tm


≤ O

 ∑
a∈Am

∑
t∈T E

m,a

√
log(KT/δ)

1 +NAt(t)


≤ O

(∑
t∈Tm

√
log(KT/δ)

1 +NAt
(t)

)
,

where the second inequality follows the same reason of Eq. (15). Then, we have

∑
m

∑
t∈Tm

√
log(KT/δ)

1 +NAt
(t)

≤
T∑

t=1

√
log(KT/δ)

1 +NAt
(t)

=
√
log(KT/δ)

T∑
t=1

∑
a∈[K]

I{At = a}√
1 +Na(t)

=
√
log(KT/δ)

∑
a∈[K]

T∑
t=1

I{At = a}√
1 +

∑t−1
s=1 I{As = a}
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≤ O

√log(KT/δ)
∑

a∈[K]

√√√√1 +

T∑
t=1

I{At = a}


≤ O

(√
KT log(KT/δ)

)
,

where the first inequality uses Lemma D.1, and the last inequality uses the Cauchy–Schwarz inequality together with the
fact

∑
a∈[K]

∑T
t=1 I{At = a} = T .

By the fact |Am|Tm = O(|Tm|) and the above results, we have

RT ≤ O

(
K log2 T +

√
KT log(KT/δ) +

∑
m

√
|Bm||Am|Tm

)

≤ O

(
K log2 T +

√
KT log(KT/δ) +

∑
m

√
|Bm||Tm|

)
≤ O

(√
KT log(KT/δ)

)
,

where the last inequality first bounds |Bm| ≤ K and then uses Hölder’s inequality with the fact that the number of phases is
at most O(log T ). This completes the proof.

D.5. Auxiliary Lemmas

In this subsection, we present several technical lemmas that are used in the proof of Theorem 3.4.

Lemma D.1. (Pogodin & Lattimore, 2020, Lemma 4.8) Let {xt}Tt=1 be a sequence with xt ∈ [0, B] for all t ∈ [T ]. Then,
the following estimate holds:

T∑
t=1

xt√
1 +

∑t−1
s=1 xs

≤ 4

√√√√1 +
1

2

T∑
t=1

xt +B.

Lemma D.2. For all m ∈ N, it is the case that Tm+1 = Θ(Tm).

Proof. We consider the following cases for any phase m.

1. If Tm = Tm+1 = |Am| log T , then the claim holds.

2. If Tm = |Am| log T and Tm+1 ̸= |Am| log T , then Tm ≤ Tm+1 ≤ 4Tm.

3. If Tm ̸= |Am| log T and Tm+1 ̸= |Am| log T , the claim again holds as Tm+1 = 4Tm.

Notice that it is impossible for Tm+1 = |Am| log T and Tm ̸= |Am| log T . Thus, the proof is complete.

Lemma D.3. The estimate P(E) ≥ 1− δ holds.

Proof. By Hoeffding’s inequality and invoking union bound, one can obtain the desired claim.

Lemma D.4. For all t ∈ [T ] and a ∈ [K], we have that

µ̂a(t+ 1)− µ̂a(t) ≥ − 1

Na(t+ 1)
, (18)

µ̂a(t+ 1)− µ̂a(t) ≤
1

Na(t)
. (19)

Proof. To show (18), we observe, for all a ∈ [K], that we have

µ̂a(t+ 1)− µ̂a(t) =
Na(t) · µ̂a(t) +Ra(t)I{At = a}

Na(t+ 1)
− µ̂a(t)

17
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≥ Na(t) · µ̂a(t) +Ra(t)I{At = a}
Na(t) + 1

− µ̂a(t)

=
Ra(t)I{At = a} − µ̂a(t)

Na(t) + 1
≥ − 1

Na(t) + 1
≥ − 1

Na(t+ 1)
.

On the other hand, to show (19), observe that

µ̂a(t+ 1)− µ̂a(t) =
Na(t) · µ̂a(t) +Ra(t)I{At = a}

Na(t+ 1)
− µ̂a(t)

≤ Na(t) · µ̂a(t) +Ra(t)I{At = a}
Na(t)

− µ̂a(t)

=
Ra(t)I{At = a} − µ̂a(t)

Na(t)
≤ 1

Na(t)
.

Hence, the claims hold.

D.6. Lemmas for Algorithm 3

In this subsection, we include technical lemmas for Algorithm 3.

Lemma D.5. If Algorithm 3 runs for target arm a and breaks at line 21 at round t, then At−2 = a.

Proof. We prove the claim by contradiction. Suppose that At−2 ̸= a. The only possible situation for At−2 ̸= a is that
Algorithm 3 enters line 10-11, in which the algorithm sets Check = True. Once Check = True is set, we must have
At−1 = a and Check = False at round t− 1, and otherwise the algorithm will terminate. Notice that Algorithm 3 cannot
break at line 21 at round t whether or not the algorithm plays At = a. This presents a contradiction, and the proof is thus
complete.

Lemma D.6 (Restatement of Lemma 3.1). For each phase m, if Algorithm 3 ends the search for arm a at round t in phase
m, then

bm,a − π⋆
a(t) ∈

(
0,

4

T
+

⌈log2 T ⌉
Na(t)

+
2

mini∈[K] Ni(t)

]
, (20)

where π⋆
a(t) = maxb∈[K] µ̂b(t)− µ̂a(t). Moreover,Algorithm 3 lasts at most 2⌈log2 T ⌉ rounds.

Proof. Let us first prove the duration bound. It suffices to consider the worst case that the agent always plays non-target arm
(i.e., At ̸= a). Since a single play for non-target arm during line 4-line 11 will cause a check which takes one round and C2

is at most ⌈log2 T ⌉. Therefore the total number of rounds in Algorithm 3 is 2⌈log2 T ⌉. Then, we prove the estimation error
by considering the following cases.

Case 1. Algorithm 3 breaks at line 8 and there exists s ∈ [t0, t− 1] ∩ N such that As ̸= a. In this case, we have At = a
and

ymida (t) ≥ max
b∈[K]

µ̂b(t)− µ̂a(t).

Let τ ∈ [t0, t− 1] ∩ N be the last round such that Aτ ̸= a. Then, NAτ (t) = NAτ (τ) + 1 holds and

µ̂Aτ
(t)− µ̂Aτ

(τ) =
NAτ

(τ) · µ̂Aτ
(τ) +RAτ

(τ)

NAτ
(τ) + 1

− µ̂Aτ
(τ) =

RAτ
(τ)− µ̂Aτ

(τ)

NAτ
(τ) + 1

≥ − 1

NAτ
(t)

. (21)

By definition of τ and Aτ , we also have

y
a
(t) = ymida (τ) ≤ max

b∈[K]
µ̂b(τ)− µ̂a(τ) = µ̂Aτ (τ)− µ̂a(τ) (22)

Then, one can show that

0 ≤ ymida (t)−
(
max
b∈[K]

µ̂b(t)− µ̂a(t)

)
18
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≤ ymida (t)− µ̂Aτ
(t) + µ̂a(t)

≤
ya(t) + y

a
(t)

2
− µ̂Aτ

(τ) +
1

NAτ
(t)

+ µ̂a(τ) +
⌈log2(T )⌉
Na(τ)

≤
ya(t)− y

a
(t)

2
+

1

NAτ (t)
+

⌈log2(T )⌉
Na(τ)

≤ 1

T
+

1

NAτ
(t)

+
⌈log2(T )⌉
Na(τ)

≤ 1

T
+

1

mini∈[K] Ni(t)
+

⌈log2(T )⌉
Na(τ)

,

where the third inequality holds due to Eq. (21) and repeatedly arguing µ̂a(t) ≤ µ̂a(t − 1) + 1
Na(t−1) ≤ µ̂a(t − 2) +

1
Na(t−1) +

1
Na(t−2) ≤ · · · from t to τ (refer to Eq. (19)), the fourth inequality follows from Eq. (22), and the fifth inequality

holds by the standard binary search property, i.e., ya(t)− y
a
(t) exponentially shrinking and the number of shrinks is at least

⌈log2 T ⌉.

Recall that if Algorithm 3 breaks at line 8, then bm,a = ymida (t) + 1
T , and Eq. (20) holds.

Case 2. Algorithm 3 breaks at line 8 and for all s ∈ [t0, t − 1] ∩ N such that As = a. In this case, y
a
(t) = 0 and

ya(t) = 21−⌈log2(T )⌉ ∈ [ 1T ,
2
T ].

0 ≤ ymida (t)−
(
max
b∈[K]

µ̂b(t)− µ̂a(t)

)
≤ ymida (t) ≤ 1

T
.

Recall that if Algorithm 3 breaks at line 8, then bm,a = ymida (t) + 1
T , and Eq. (20) holds.

Case 3. Algorithm 3 breaks at line 17 and ∃z ∈ [t0, t−1]∩N such that yuppera gets updated at round z. Let s ∈ [t0, t−1]∩N
be the last round such that yuppera gets updated at this round. In this case, we have As = a and

yuppera = ymida (s) = ya(s+ 1) = ya(t− 1) ≤ y
a
(t− 1) +

2

T
, (23)

where the last inequality holds since there will be at least ⌈log2 T ⌉ updates among {y
a
(τ)}τ until the break.

Let bt−1 be the arm that such that µ̂bt−1
(t− 1) = maxb∈[K] µ̂b(t− 1) and At−1 = bt−1. Then,

0 ≤ yuppera −
(
max
b∈[K]

µ̂b(t)− µ̂a(t)

)
≤ ymida (t− 1) +

2

T
− max

b∈[K]
µ̂b(t) + µ̂a(t)

≤ ymida (t− 1) +
2

T
− µ̂bt−1

(t) + µ̂a(t)

≤ ymida (t− 1) +
2

T
− µ̂bt−1

(t− 1) +
1

Nbt−1
(t)

+ µ̂a(t− 1) +
1

Na(t− 1)

≤ 2

T
+

1

Nbt−1
(t)

+
1

Na(t− 1)
,

where the first inequality follows from Eq. (23) together with y
a
(t− 1) ≤ ymida (t− 1), the fourth inequality uses Eq. (18)

and Eq. (19), and the last inequality holds since At−1 = bt−1.

If Algorithm 3 breaks at line 17, then bm,a = yuppera + 2
T , and thus we have Eq. (20).

Case 4. Algorithm 3 breaks at line 17 and ∀z ∈ [t0, t− 1] ∩ N, yuppera never gets updated. In this case, yuppera = 1 and
y
a
(t) = 1− 21−⌈log2(T )⌉ ∈ [1− 2

T , 1−
1
T ]. One can show

0 ≥ yuppera −
(
max
b∈[K]

µ̂b(t)− µ̂a(t)

)
19
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≥ ymida (t)−
(
max
b∈[K]

µ̂b(t)− µ̂a(t)

)
≥ 1− 1

T
−
(
max
b∈[K]

µ̂b(t)− µ̂a(t)

)
≥ − 1

T
.

If Algorithm 3 breaks at line 17, then bm,a = yuppera + 2
T , and thus we have Eq. (20).

Case 5. Algorithm 3 breaks at line 21. In this case, we have At−1 ̸= a, At ̸= a. By Lemma D.5, we further have
At−2 = a. Therefore, one can show

0 ≥ yuppera −
(
max
b∈[K]

µ̂b(t)− µ̂a(t)

)
= yuppera − µ̂At(t) + µ̂a(t− 1)

≥ yuppera − µ̂At
(t− 2)− 2

NAt
(t− 2)

+ µ̂a(t− 2)− 1

Na(t− 1)

≥ yuppera − max
b∈[K]

µ̂b(t− 2)− 2

NAt
(t− 2)

+ µ̂a(t− 2)− 1

Na(t− 1)

≥ − 2

NAt(t− 2)
− 1

Na(t− 1)
,

where the second inequality uses Eq. (18) and Eq. (19), and the last inequality holds as At−2 = a.

If Algorithm 3 breaks at line 21, then bm,a = yuppera + 1
T + 1

Na(t)
+ 2

mini∈[K] Ni(t)
. By noticing Na(t− 1) ≥ Na(t) and

NAt(t− 2) ≥ NAt(t) ≥ mini∈[K] Ni(t), we have Eq. (20).

Once Eq. (20) has been proved for phase m, Lemma D.8 immediately gives that arm a will be played for the following Tm

consecutive rounds. Therefore, the proof is complete.

Lemma D.7. Suppose that E occurs. For all m ≥ 2 and all a ∈ Am, if every active arm is played for Tm−1 times, then we
have At = a for all t ∈ T E

m,a.

Proof. Let us consider fixed phase m ≥ 2 and arm a ∈ Am ⊆ Am−1 and let tm,a be the round that Algorithm 3 ends the
search for target arm a in phase m. Recall that T E

m,a is the set of rounds that Algorithm 1 runs in line 8 for arm a in phase m
We use strong induction on t in T E

m,a to prove the claim. For the base case (the first round in T E
m,a)

bm,a − π⋆
a(tm,a + 1)

= bm,a −min {1, π⋆
a(tm,a + 1)}

≥ bm,a −min

{
1, π⋆

a(tm,a) +
1

mini∈[K] Ni(t)

}

≥ bm,a −min

{
1, π⋆

a(tm,a) +

√
max{1, |Bm|}
Tm−1|Am|

}

= min

{
1 +

1

T
, bm,a + 4

√
log(4KT/δ)

2Tm−1
+

√
max{1, |Bm|}
Tm−1|Am|

}
−min

{
1, π⋆

a(tm,a) +

√
max{1, |Bm|}
Tm−1|Am|

}
> 0,

where the first inequality holds since the one-update shifting is at most 1
mini∈[K] Ni(t)

, the second inequality holds because

the active arm is played for at least Tm−1 by the assumption and each bad arm is played for at least
√

Tm−1|Am|
max{1,|Bm|} times (by

Tm−1 ≥ |Am−1| ≥ |Am|, we have
√

Tm−1|Am|
max{1,|Bm|} ≤ Tm−1), and the last inequality holds due to Lemma 3.1.
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Suppose that arm a gets played for all rounds ≤ t in T E
m,a, and then we consider the round t+ 1. To this end, we first show

max
b∈[K]

µ̂b(t+ 1)− max
b∈[K]

µ̂b(tm,a + 1) ≤ 2

√
log(4KT/δ)

2Tm−1
. (24)

The induction hypothesis gives that if arm a gets played for all rounds ≤ t in T E
m,a, i.e., no bad arms will be played,

then for all bad arms z ∈ Bm, µ̂z(t + 1) = µ̂z(tm,a + 1). By Hoeffding’ inequality, for all active arm a ∈ Am and
∀τ ∈ T E

m,a : Na(τ) ≥ Tm−1 and

∀τ ∈ T E
m,a : µ̂a(τ) ∈

[
µa −

√
log(4KT/δ)

2Tm−1
, µa +

√
log(4KT/δ)

2Tm−1

]
. (25)

Therefore, to verify Eq. (24), we only need to consider the two maximums are achieved by two active arms, and their

difference is at most 2
√

log(4KT/δ)
2Tm−1

.

Hence, one can show

bm,a −
(
max
b∈[K]

µ̂b(t+ 1)− µ̂a(t+ 1)

)
= bm,a −min

{
1, max

b∈[K]
µ̂b(t+ 1)− µ̂a(t+ 1)

}
≥ bm,a −min

{
1, max

b∈[K]
µ̂b(tm,a + 1)− µ̂a(tm,a + 1) + 4

√
log(4KT/δ)

2Tm−1

}

≥ bm,a −min

{
1, max

b∈[K]
µ̂b(tm,a)− µ̂a(tm,a) +

√
max{1, |Bm|}
Tm−1|Am|

+ 4

√
log(4KT/δ)

2Tm−1

}

= bm,a −min

{
1, π⋆

a(tm,a) +

√
max{1, |Bm|}
Tm−1|Am|

+ 4

√
log(4KT/δ)

2Tm−1

}
> 0,

where the first inequality uses Eq. (24) and Eq. (25), the second inequality follows from the fact that there will be only

one arm played at tm,a, and the the per-update error is bounded by
√

max{1,|Bm|}
Tm−1|Am| , and the last inequality uses Lemma 3.1

together with the assumption.

This inequality implies that arm a gets played at round t+ 1. Once the induction is done, we get the desired claim for fixed
m, a. Conditioning on E , the claim holds for all m, a, which thus completes the proof.

We are now ready to prove Lemma 3.2. Since P(E) ≥ 1− δ, we make an equivalent statement as follows.
Lemma D.8 (Restatement of Lemma 3.2). Suppose that E occurs. For each phase m and each active arm a ∈ Am, the
agent plays arm a for all t ∈ T E

m,a.

Proof. Let tm,a be the round that Algorithm 3 ends the search for target arm a in phase m. We prove the claim by induction
on m. For m = 1, the incentive on each arm a ∈ A is 1 + ξ, then all arms will be played for T1 times. Suppose that
the claim holds for m and then we consider for m+ 1. By induction hypothesis, every active arm a ∈ Am is played for
Tm times, then we directly invoking Lemma D.7 to get that a ∈ Am+1 are played for Tm+1 times, which completes the
induction. Once the induction is done, we get the claim for the fixed m, a. Conditioning on E , this argument holds for all
m, a, thereby completing the proof.

Lemma D.9. Suppose that E occurs. For each phase m ≥ 2 and each arm a ∈ Am, we have

∀t ∈ T E
m,a : bm,a ≤ max

b∈[K]
µ̂b(t)− µa + 7

√
log(4KT/δ)

2Tm−1
+

4

T
+

⌈log2 T ⌉
Tm−1

+ 5

√
max{1, |Bm|}
Tm−1|Am|

.
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Proof. Consider fixed m, a. Let tm,a be the round that Algorithm 3 ends the search for arm a at round m. For all t ∈ T E
m,a,

one can show

bm,a ≤ bm,a + 4

√
log(4KT/δ)

2Tm−1
+

√
max{1, |Bm|}
Tm−1|Am|

≤
(
π⋆
a(tm,a) +

4

T
+

⌈log2 T ⌉
Na(tm,a)

+
2

mini∈[K] Ni(tm,a)

)
+ 4

√
log(4KT/δ)

2Tm−1
+

√
max{1, |Bm|}
Tm−1|Am|

≤ π⋆
a(tm,a) +

4

T
+

⌈log2 T ⌉
Tm−1

+ 4

√
log(4KT/δ)

2Tm−1
+ 3

√
max{1, |Bm|}
Tm−1|Am|

= max
b∈[K]

µ̂b(tm,a)− µ̂a(tm,a) +
4

T
+

⌈log2 T ⌉
Tm−1

+ 4

√
log(4KT/δ)

2Tm−1
+ 3

√
max{1, |Bm|}
Tm−1|Am|

≤ max
b∈[K]

µ̂b(tm,a + 1)− µ̂a(tm,a + 1) + 4

√
log(4KT/δ)

2Tm−1
+

4

T
+

⌈log2 T ⌉
Tm−1

+ 5

√
max{1, |Bm|}
Tm−1|Am|

≤ max
b∈[K]

µ̂b(t)− µa + 7

√
log(4KT/δ)

2Tm−1
+

4

T
+

⌈log2 T ⌉
Tm−1

+ 5

√
max{1, |Bm|}
Tm−1|Am|

,

where the first inequality holds as the definition of bm,a takes the minimum, the second inequality follows from Lemma 3.1,
the third inequality bounds Na(tm,a) ≥ Tm−1 and mini∈[K] Ni(tm, a) ≥ ( Tm−1|Am|

max{1,|Bm|} )
1/2, the fourth inequality uses

Lemma D.4 to bound the per-update error, and the last inequality uses the same reasoning to prove Eq. (24). Conditioning
on E , the argument holds for each m ≥ 2 and a ∈ Am, and thus the proof is complete.

D.7. Lemmas for Online Elimination

Lemma D.10. Suppose event E occurs. For all m ∈ N, a⋆ ∈ Am holds.

Proof. We prove the claim by the induction. For m = 1, the claim trivially holds. Suppose the claim holds for m
and consider for m + 1. Let tm be the round that the algorithm tries to entice arm a⋆ in phase m (in line 11). As
∀a ∈ Am : Na(tm) ≥ Tm, we have for each a ∈ Am:

0 ≤ θa⋆ + µa⋆ − (θa + µa) ≤ θ̂a⋆(tm) + µ̂a⋆(tm)− (θ̂a(tm) + µ̂a(tm)) + 2−m,

where the last inequality holds by event E , the induction hypothesis a⋆ ∈ Am, and Lemma 3.2.

From Algorithm 1, when the algorithm tries to entice arm a⋆, πa⋆(tm) = 1 + θ̂a⋆(tm) + 3
2 · 2−m and 1 + θ̂a(tm) for all

a ∈ Am − {a⋆}. Plugging these into the above gives

0 ≤ πa⋆(tm) + µ̂a⋆(tm)− (πa(tm) + µ̂a(tm))− 2−m−1,

which gives πa⋆(tm) + µ̂a⋆(tm) > πa(tm) + µ̂a(tm) for all a ∈ Am − {a⋆}, thereby a⋆ ∈ Am+1. Once the induction
done, the proof is complete.

Lemma D.11. Suppose event E occurs. For each arm a ∈ [K], if arm a ∈ Am and a /∈ Am+1, then ∆a ≥ 2−m.

Proof. Notice that a ∈ Am and a /∈ Am+1 imply that the proposed incentive does not successfully entice arm a at the end
of phase m, thereby being eliminated. Suppose that such an elimination occurs at round t. When testing arm a at round t,
we have πa(t) = 1 + θ̂a(t) +

3
2 · 2−m and 1 + θ̂b(t) for all b ∈ Am − {a}. Since arm a gets eliminated at round t, we have

0 ≤ max
j∈Am−{a}

{µ̂j(t) + πj(t)} − (µ̂a(t) + πa(t))

= max
j∈Am−{a}

{
µ̂j(t) + θ̂j(t)

}
−
(
µ̂a(t) + θ̂a(t)

)
− 3

2
· 2−m
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≤ max
j∈Am

{
µ̂j(t) + θ̂j(t)

}
−
(
µ̂a(t) + θ̂a(t)

)
− 3

2
· 2−m.

Then, we can further show

3

2
· 2−m ≤ max

j∈Am

{
µ̂j(t) + θ̂j(t)

}
−
(
µ̂a(t) + θ̂a(t)

)
≤ max

j∈Am

{
µj + θj + 2−m−2

}
−
(
µa + θa − 2−m−2

)
≤ ∆a + 2−m−1,

where the second inequality holds due to E together with Lemma 3.2 and the last inequality holds follows from Lemma D.10
that a⋆ ∈ Am for all m. Rearranging the above, we obtain the desired claim.

Lemma D.12. Let ma be the smallest phase such that ∆a

2 > 2−ma . Suppose that E occurs. For each arm a with ∆a > 0, it
will not be in Am for all phases m ≥ ma + 1.

Proof. Consider any arm a with ∆a > 0. We only need to consider a ∈ Ama
and otherwise, the claim naturally holds. Let

t be the round in phase m when the algorithm aims to test if arm a should be active in the next phase. When testing arm a at
round t, we have πa(t) = 1 + θ̂a(t) +

3
2 · 2−m and 1 + θ̂b(t) for all b ∈ Am − {a}. Then,

max
b∈Ama−{a}

{µ̂b(t) + πb(t)} − (µ̂a(t) + πa(t))

= max
b∈Ama−{a}

{
µ̂b(t) + θ̂b(t)

}
−
(
µ̂a(t) + θ̂a(t)

)
− 3

2
· 2−ma

≥ µ̂a⋆(t) + θ̂a⋆(t)−
(
µ̂a(t) + θ̂a(t)

)
− 3

2
· 2−ma

≥ ∆a − 2−ma−1 − 3

2
· 2−ma

> ∆a − 2× ∆a

2
= 0,

where the first inequality follows from Lemma D.10 that a⋆ ∈ Ama
and ∆a > 0, and the second inequality holds due to E

and Lemma 3.2.

According to the elimination rule (see elimination period in Algorithm 1), arm a will not be in phases m for all m ≥
ma + 1.

Lemma D.13. Let A(t) be the set of active arms at round t. Suppose event E occurs. For all t ∈ [T ], a⋆t ∈ A(t) holds.

Proof. We prove this by induction. The claim holds trivially at round t = 1. Suppose that the claim holds at round t and
then consider t + 1 round. We then use contradiction to show that a⋆t+1 cannot be a bad arm. To this end, we assume
a⋆t+1 /∈ A(t+ 1) and then show a contradiction. Assume that round t is in phase m and phase τ is the last phase such that
a⋆t+1 ∈ Aτ .

Then, we have

θa⋆
t
+ µ̂a⋆

t
(t+ 1)− θa⋆

t+1
− µ̂a⋆

t+1
(t+ 1)

≥ θa⋆
t
+ µ̂a⋆

t
(t)− 1

Na⋆
t
(t+ 1)

− θa⋆
t+1

− µ̂a⋆
t+1

(t+ 1)

≥ θa⋆ + µ̂a⋆(t)− 1

Na⋆
t
(t+ 1)

− θa⋆
t+1

− µ̂a⋆
t+1

(t+ 1)

≥ θa⋆ + µa⋆ −

√
log(4TK/δ)

2Na⋆(t)
− 1

Na⋆
t
(t+ 1)

− θa⋆
t+1

− µa⋆
t+1

−
√

log(4TK/δ)

2Na⋆
t+1

(t+ 1)
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Algorithm 4 Proposed algorithm for i.i.d. reward with offline elimination
Input: confidence δ ∈ (0, 1), horizon T .
Initialize: active arm set A1 = [K], bad arm set B1 = ∅, T0 = 1.

1 for m = 1, 2, . . . do
2 Set Tm according to Eq. (4).
3 for a ∈ Bm do ▷ Stabilize estimators for bad arms
4 Propose incentives π0(a; 1 + 1/T ) for Zm rounds where Zm is given in Eq. (7).

5 for a ∈ Am do
6 Invoke Algorithm 3 with input (a, T ) to get output bm,a. ▷ Search near-optimal incentive
7 Set bm,a based on Eq. (6).
8 Propose incentives π0(a; bm,a) for Tm rounds.

9 for a ∈ Am do ▷ Offline elimination
10 Invoke Algorithm 3 again with input (a, T ) to get output b′m,a and denote the last round of search by tm,a.
11 Let {θ̂a(tm,a)}a∈[K] be empirical means of all arms at round tm,a.
12 Let us define

ϵm =
4

T
+

2 + ⌈log2 T ⌉
Tm

+ 2

√
Bm

|Am|Tm−1
. (26)

13 if maxz∈Am
{θ̂z(tm,a)− b′m,z} − (θ̂a(tm,a)− b′m,a) >

3
2 · 2−m + ϵm then

14 Update Am+1 = Am − {a} and Bm+1 = Bm ∪ {a}.

≥ θa⋆ + µa⋆ − (θa⋆
t+1

+ µa⋆
t+1

)− 1

Na⋆
t
(t+ 1)

− 2−m−2 − 2−τ−3

≥ 2−τ − 1

Na⋆
t
(t+ 1)

− 2−m−2 − 2−τ−3

> 2−τ − 2−2m

32
− 2−m−2 − 2−τ−3

> 0,

where the first inequality uses Eq. (18), the second inequality holds as a⋆t achieves the maximum and Lemma D.10 gives
that a⋆ is always active, the third inequality follows from the definition of E , the fourth inequality uses Na⋆

t+1
(t+ 1) ≥ Tτ

and Na⋆(t) ≥ Tm−1 by Lemma D.10, the fifth inequality uses Lemma D.15, the sixth inequality holds since the induction
hypothesis gives a⋆t ∈ At = Am, and the last inequality holds since τ ≤ m.

The above result forms a contradiction as it does not satisfy the definition of a⋆t+1. Thus, the proof is complete.

D.8. Alternative Elimination Approach: Offline Elimination

In this subsection, we show an alternative way to conducting the elimination, and the regret bound of our algorithm maintains
the same order. In other words, our algorithm can also be implemented by proposing a one-hot incentive (i.e., only one
coordinate of π(t) has positive value) similar to that of (Scheid et al., 2024b).

As the other two components remain the same, we then show the counterparts of online elimination lemmas in Appendix D.7
for offline elimination. Before that, we first notice that for ϵm given in Definition 26

4

T
+

⌈log2 T ⌉
Na(tm,a)

+
2

mini∈[K] Ni(tm,a)
≤ ϵm, (27)

which can be easily verified by considering two cases Bm = ∅ and Bm ̸= ∅ and using the lower bound on the number of
plays.

Lemma D.14. Suppose event E occurs. For all m ∈ N, a⋆ ∈ Am holds.
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Proof. We prove the claim by the induction. For m = 1, the claim trivially holds. Suppose the claim holds for m and
consider for m+ 1. As ∀a ∈ Am : Na(tm) ≥ Tm, we have for each a ∈ Am:

0 ≤ θa⋆ + µa⋆ − (θa + µa)

≤ θ̂a⋆(tm,a) + µ̂a⋆(tm,a)− (θ̂a(tm,a) + µ̂a(tm,a)) + 2−m

= θ̂a⋆(tm,a)− π⋆
a⋆(tm,a)− (θ̂a(tm,a)− π⋆

a(tm,a)) + 2−m

≤ θ̂a⋆(tm,a)− b′m,a⋆ − (θ̂a(tm,a)− b′m,a) + 2−m +
4

T
+

⌈log2 T ⌉
Na⋆(tm,a)

+
2

mini∈[K] Ni(tm,a)︸ ︷︷ ︸
≤ϵm

,

where the second inequality holds by event E , the induction hypothesis a⋆ ∈ Am, and Lemma 3.2, the last equality adds and
subtracts maxb∈[K] µ̂b(tm,a) on both sides, and the last inequality uses Lemma 3.1 with Eq. (27). This inequality implies
a⋆ ∈ Am+1. Once the induction done, the proof is complete.

Lemma D.15. Suppose event E occurs. For each arm a ∈ [K], if arm a ∈ Am and a /∈ Am+1, then ∆a ≥ 2−m.

Proof. Notice that a ∈ Am and a /∈ Am+1 imply that

3

2
· 2−m + ϵm < max

j∈Am

{
µ̂j(tm,a)− b′m,j

}
−
(
µ̂a(tm,a)− b′m,a)

)
≤ max

j∈Am

{
µ̂j(tm,a)− π⋆

j (tm,a)
}
− (µ̂a(tm,a)− π⋆

a(tm,a)) + ϵm

= max
j∈Am

{
µ̂j(tm,a) + θ̂j(tm,a)

}
−
(
µ̂a(tm,a) + θ̂a(tm,a)

)
+ ϵm

≤ max
j∈Am

{
µj + θj + 2−m−2

}
−
(
µa + θa − 2−m−2

)
≤ ∆a + 2−m−1 + ϵm,

where the second inequality uses Lemma 3.1 with Eq. (27), and the third inequality holds due to E together with Lemma 3.2
and the last inequality holds follows from Lemma D.10 that a⋆ ∈ Am for all m. Rearranging the above, we obtain the
desired claim.

Lemma D.16. Let ma be the smallest phase such that ∆a > 2−ma+1 + ϵma
. Suppose that E occurs. For each arm a with

∆a > 0, it will not be in Am for all phases m ≥ ma + 1.

Proof. Consider any arm a with ∆a > 0. We only need to consider a ∈ Ama
and otherwise, the claim naturally holds. One

can show

max
z∈Ama

{
θ̂z(tma,a)− b′ma,z

}
−
(
θ̂a(tma,a)− b′ma,a

)
− 3

2
· 2−ma

≥ max
z∈Ama

{
θ̂z(tma,a)− π⋆

z(tma,a)
}
−
(
θ̂a(tma,a)− π⋆

a(tma,a)
)
− 3

2
· 2−ma − ϵma

= max
b∈Ama

{
µ̂b(tma,a) + θ̂b(tma,a)

}
−
(
µ̂a(tma,a) + θ̂a(tma,a)

)
− 3

2
· 2−ma − ϵma

≥ µ̂a⋆(tma,a) + θ̂a⋆(tma,a)−
(
µ̂a(tma,a) + θ̂a(tma,a)

)
− 3

2
· 2−ma − ϵma

≥ ∆a − 2−ma−1 − 3

2
· 2−ma − ϵma

> 0,

where the first inequality uses Lemma 3.1 with Eq. (27), the second inequality follows from Lemma D.10 that a⋆ ∈ Ama

and the third inequality holds due to E and Lemma 3.2.

According to the elimination rule, arm a will not be in phases m for all m ≥ ma + 1.
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Now, we will show how these lemmas impact the analysis of Theorem 3.4. These changes mainly affect∑
a∈Am

∑
t∈T E

m,a
∆a in Eq. (16).

From Lemma D.12, if a suboptimal arm a is active in phase m, then m ≤ ma where ma is the smallest phase such that
∆a > 2−ma+1 + ϵma

. This implies that ∀a ∈ Am with ∆a > 0 (recall that we focus on phase m ≥ 2):

∆a

2
≤ 2−(ma−1) + ϵma−1 ≤ 2−m+1 + ϵm−1 ≤ O

√ log(KT/δ)

Tm
+

√
max{1, |Bm|}

Tm|Am|

 . (28)

One can observe that the only difference is an extra
√

max{1,|Bm|}
Tm|Am| term, which can be handled by the same way as we

shown in Appendix D.4. Therefore, the regret bound maintains the same order.

E. Omitted Proof of Self-interested Learning Agent with Exploration
E.1. Omitted Pseudocode of Algorithm 5

The omitted pseudocode of our search algorithm can be found in Algorithm 5.

E.2. Notations

We first introduce some notations used throughout the proof. Refer to Appendix A for some general notations.

• Let T (i)(a;Am) be the set of rounds that the algorithm runs in line 12 for active arm a ∈ Am in the i-th iteration of
phase m.

• Let T (a;Bm) be the set of rounds that the algorithm runs in line 4 for bad arm a in phase m.

• Let It be an indicator that the agent chooses to explore at round t.

• Let jm,a be the first index of {b(i)m,a}i such that the agent makes no exploration during Algorithm 3 runs to get b(jm,a)
m,a .

• Let Tm be the set of all rounds in phase m.

• Let im,a be the last iteration when the algorithm proposes incentive for arm a in phase m.

Notice that there exist rounds in T (i)(a;Am) and T (a;Bm) such that the agent does not play target arm a due to the agent
exploration.

E.3. Construction of nice event E

Let us define event E0 as

E0 :=

{
∀(t, a) ∈ [T ]× [K] : |µ̂a(t)− µa| ≤

√
log(16TK/δ)

2Na(t)
,
∣∣∣θ̂a(t)− θa

∣∣∣ ≤√ log(16TK/δ)

2Na(t)

}
. (30)

Lemma E.1. P(E0) ≥ 1− δ/4 holds.

Proof. By Hoeffding’s inequality and invoking union bound, one can obtain the desired claim.

Lemma E.2. With probability at least 1− δ/4, for all phases m and all bad arms a ∈ Bm∑
t∈T (a;Bm)

It ≤ 2c0
√

Zm log(2T ) +

√
8 log(8KT log2(T )δ

−1)

Zm
.

and for all phases m, all active arms a ∈ Am, and all iterations i,∑
t∈T (i)(a;Am)

It ≤ 2c0

√
Y

(i)
m,a log(2T ) +

√
8 log(ι)

Y
(i)
m,a

.
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Algorithm 5 Proposed algorithm for self-interested learning agent with exploration
Input: confidences δ ∈ (0, 1), horizon T .
Initialize: active arm set A1 = [K], bad arm set B1 = ∅, T0 = 1.

1 for m = 1, 2, . . . do
2 Set Tm based on Eq. (8).
3 for a ∈ Bm do ▷ Stabilize estimators for bad arms

4 Propose incentives π0(a; 1 + T−1) for Zm = 2 log
1
3 (16KT/δ)

(
|Am|

max{1,|Bm|}Tm−1

)2/3
rounds.

5 for a ∈ Am do ▷ Search Incentives repeatedly
6 Invoke Algorithm 3 with input (a, T ) for 2 log(4 log2 T/δ) times and sort outputs such that

b(1)m,a ≤ b(2)m,a ≤ · · · ≤ b(2 log(4 log2 T/δ))
m,a .

7 Set b
(i)

m,a = min

{
1 + T−1, b

(i)
m,a +

(
max{1,|Bm|}
Tm−1|Am|

)2/3

+ 1
Tm−1

+ 4ϵm

}
for all i where ϵm is defined as

ϵm =

(
log(16KT/δ)

max{1, |Bm|}
Tm−1|Am|

)1/3

+

√
log(16KT/δ)

Tm−1
. (29)

8 for a ∈ Am do
9 for i = 1, . . . , 2 log(4 log2 T/δ) do ▷ Incentive testing

10 Set a counter c(i)m,a = 0 and Y
(i)
m,a = 0.

11 repeat
12 Propose incentives π0(a; b

(i)

m,a) and denote the current round by t.

13 Update Y
(i)
m,a = Y

(i)
m,a + 1, and if At ̸= a, update c

(i)
m,a = c

(i)
m,a + 1.

until c(i)m,a > 2c0

√
Y

(i)
m,a log(2T ) +

√
8 log(ι)

Y
(i)
m,a

or Y (i)
m,a = 2Tm;

14 If
∑

j≤i(Y
(j)
m,a − c

(j)
m,a) ≥ Tm, then break the loop for i.

15 for a ∈ Am do ▷ Trustworthy online elimination
16 Set Lm,a = ∅.
17 Let t0m,a be the current round, and {θ̂a(t0m,a)}a∈[K] are empirical means at this round.
18 for t = t0m,a, . . . , t

0
m,a + 8 log(8K log2 T/δ) do

19 Propose incentives π(t) with πa(t) = 1 + θ̂a(t
0
m,a) + 5

√
log(16KT/δ)

2Tm
, πb(t) = 1 + θ̂b(t

0
m,a), ∀b ∈ Am − {a},

and πi(t) = 0, ∀i ∈ Bm.
20 If At ̸= a, then update Lm,a = Lm,a ∪ {0}; else Lm,a = Lm,a ∪ {1}.

21 Sort Lm,a in ascending order.
22 if Median(Lm,a) = 0 then
23 Update Am+1 = Am − {a} and Bm+1 = Bm ∪ {a}.
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Proof. We first fix a phase m and a bad arm a ∈ Bm. Then |T (a;Bm)| = Zm is also fixed. Notice that T (a;Bm) is a
set that contains Zm consecutive rounds, and thus there are total T − Zm + 1 possible cases. Now, we consider a fixed
T (a;Bm). By Azuma–Hoeffding’s inequality for martingale difference sequence, with probability at least 1− δ′,

∑
t∈T (a;Bm)

It ≤
∑

t∈T (a;Bm)

pt +

√
8 log(1/δ′)

|T (a;Bm)|
≤ 2c0

√
Zm log(2T ) +

√
8 log(1/δ′)

Zm
,

where the second inequality first bounds log(2t) ≤ log(2T ) and then bounds
∑

t∈T (a;Bm) t
−1/2 for pt. By choosing

δ = δ′/(8KT log2 T ) and applying a union bound over m, a, and all possible sets T (a;Bm), the above result holds with
probability at least 1− δ/8 for all m and a ∈ Bm.

Then, one can first fix m, a, i, and fixed T (i)(a;Am). Once T (i)(a;Am) fixed, Y (i)
m,a = |T (i)(a;Am)| is also fixed. Since

T (i)(a;Am) is a set contains consecutive rounds, the number of different T (i)(a;Am) must be smaller than T 2. Following
a similar reasoning gives with probability at least 1− δ/8, for all m, a, i, T (i)(a;Am):

c(i)m,a ≤ 2c0

√
Y

(i)
m,a log(2T ) +

√
8 log(16KT 2 log2 T log(4 log2 T/δ)δ

−1)

Y
(i)
m,a

.

Finally, taking a union bound for the results of bad arms and active arms completes the proof.

Lemma E.3. Let p ∈ (0, 1), δ′ ∈ (0, 1). Consider a sequence of r = log(1/δ′)/p trials. Each trial t has a success
probability possibly depending on previous trial outcomes and is lower bounded p. Then, with probability at least 1− δ′,
there will be at least one success among all these trials.

Proof. As the success probabilities of all trials are uniformly bounded below by a constant p, we have

P (no success in r repetitions) ≤ (1− p)r ≤ exp(−p · r) ≤ exp(− log(1/δ′)) = δ′,

where the second inequality uses 1 + x ≤ ex for all x ∈ R.

Lemma E.4 (Restatement of Lemma 4.1). With probability at least 1− δ/4, for all m ≥ 2, among total 2 log(4 log2 T/δ)
calls, there will be at least one call of Algorithm 3 such that the agent makes no exploration.

Proof. We first consider a fixed phase m ≥ 2. The probability that no exploration occurs in a single call in phase m is (to
save notation, the following product takes over all rounds in this single call)

∏
t

(1− pt) ≥

(
1− c0

√
log(2Tm−1)

Tm−1

)2⌈log2 T⌉

≥ 1− 2⌈log2 T ⌉ · c0

√
log(2T )

Tm−1
≥ 1

2
,

where the first inequality lower bounds pt and uses Lemma E.9 that Algorithm 3 lasts at most 2⌈log2 T ⌉ rounds, the second
inequality follows from the Bernoulli inequality, and the last inequality holds due to Tm−1 ≥ T1 ≥ 16c20 log(2T )⌈log2 T ⌉2.

By invoking Lemma E.3 with p = 1
2 , we obtain the claim for a fixed phase m. Invoking union bound for all m and using the

fact that there will be at most log2 T phases completes the proof.

Lemma E.5. With probability at least 1 − δ/4, for all phases m and all a ∈ Am, if arm a satisfies that for all rounds
t ∈ [t0m,a, t

0
m,a + 8 log(8Kδ−1 log2 T )]:

max
b∈Am−{a}

(πb(t) + µ̂b(t)) < (πa(t) + µ̂a(t)) , (31)

then a ∈ Am+1; if arm a satisfies that for all rounds t ∈ [t0m,a, t
0
m,a + 8 log(8Kδ−1 log2 T )]:

max
b∈Am−{a}

(πb(t) + µ̂b(t)) > (πa(t) + µ̂a(t)) , (32)

then a ∈ Bm+1.
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Proof. Recall that It is an indicator that the agent explores at round t. Let us consider a fixed phase m and a fixed
active arm a ∈ Am. If the arm a satisfies Eq. (31) for all rounds t ∈ [t0m,a, t

0
m,a + 8 log(8Kδ−1 log2 T )], then only

when Median(Lm,a) = 0 holds would mislead the algorithm to deem arm a as bad arm. Let T C
m,a be the set of rounds

when the algorithm enters the elimination period in phase m for arm a. Let Et[·] = E[·|Ft−1] and let Lt,a = {At =
a, a satisfies Eq. (31) , t ∈ T C

m,a} be an indicator function.

As the elimination period starts at the end of each phase m, we can upper bound pt ≤ c0
√
log(2T )/Tm ≤ 1

4 by using
Tm ≥ T1 ≥ 16c20 log(2T ). Then, we have

Et[Lt,a] = 1− pt ≥
3

4
, which implies

∑
t∈T C

m,a

Et[Lt,a] ≥ 6 log(8K log2 T/δ). (33)

Note that Median(Lm,a) = 0 implies that
∑

t∈T C
m,a

Lt,a ≤ 4 log(8K log2 T/δ). Then

P

 ∑
t∈T C

m,a

Lt,a ≤ 4 log(8K log2 T/δ)


≤ P

∣∣∣∣∣∣
∑

t∈T C
m,a

(Lt,a − Et[Lt,a])

∣∣∣∣∣∣ ≥ 2 log(8K log2 T/δ)


≤ δ

8K log2 T
,

where the last inequality uses the Azuma–Hoeffding inequality for martingale difference sequence. By a union bound for all
a ∈ Am and m (with the fact that the total number of phases is log2 T ), with probability 1− δ/8, the claim holds for all
active arm in all phases.

Now, if the arm a does not satisfy Eq. (31), then only when Median(Lm,a) = 1 holds would mislead the algorithm to
deem arm a as an active arm. We reload the definition Lt,a = {At ̸= a, a not satisfies Eq. (31) , t ∈ T C

m,a}, and with
this definition, Lt,a satisfies Eq. (33). Median(Lm,a) = 1 gives

∑
t∈T C

m,a
Lt,a ≤ 4 log(8K log2 T/δ). Again, we have

Et[Lt,a] = 1− pt ≥ 3
4 . Then, one can repeat a similar argument to get the claimed result.

Finally, using a union bound over two results completes the proof.

Remark E.6. It is noteworthy that Lemma E.5 does not provide any guarantee for the arm that may hold the equality in
Eq. (31) for some rounds. In fact, since these arms sits on the boundary, it does not affect the analysis whether eliminate
them or not.

Definition E.7 (Define E). Let E be the event that event E0 and inequalities in Lemma E.2, Lemma 4.1, and Lemma E.5
hold simultaneously.

Based on Definition E.7, one can easily see P(E) ≥ 1− δ, by using a union bound.

E.4. Proof of Theorem 4.2

The following analysis conditions on E . Since the elimination lasts at most O(K log(Kδ−1 log(T ))) rounds in each phase,
the number of phases is at most O(log T ), and the per-round regret is bounded by a absolute constant, the total regret during
all elimination periods is bounded by

O
(
K log(T ) log(Kδ−1 log(T ))

)
.

The search algorithm last at most O(K log(T ) log(δ−1 log T )) rounds in a single phase and the per-round regret is bounded
by an absolute constant. Hence, the total regret during the search is at most

O(K log2(T ) log(δ−1 log T )).
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The regret in the first phase can be bounded by O
(
K log3(KT/δ)

)
. Thus, we write

RT ≤ O
(
K log3(KT/δ)

)
+
∑
m≥2

Rm,

where Rm is defined as: (see Appendix E.2 for notations)

Rm =
∑

a∈Am

∑
i≤im,a

∑
t∈T (i)(a;Am)

(
max
b∈[K]

{θb − π⋆
b (t)} − (θAt

− πAt
(t))

)

+
∑

a∈Bm

∑
t∈T (a;Bm)

(
max
b∈[K]

{θb − π⋆
b (t)} − (θAt

− πAt
(t))

)
.

One can show for all m ≥ 2

Rm ≤
∑

a∈Am

∑
i≤im,a

∑
t∈T (i)(a;Am)

(
max
b∈[K]

{θb − π⋆
b (t)} − (θAt − πAt(t))

)
+O

(
log

1
3 (KT/δ)|Bm| 13 (|Am|Tm−1)

2/3
)

≤
∑

a∈Am

∑
i≤im,a

∑
t∈T (i)(a;Am)

(
max
b∈[K]

{θb − π⋆
b (t)} − (θa − πa(t))

)
I{At = a}

+O

 ∑
a∈Am

∑
i≤im,a

(√
Y

(i)
m,a log(T ) +

√
log ι

Y
(i)
m,a

)+O
(
log

1
3 (KT/δ)|Bm| 13 (|Am|Tm−1)

2/3
)
,

where the second inequality uses the repeat-condition. Further, one can bound

∑
a∈Am

∑
i≤im,a

(√
Y

(i)
m,a log(T ) +

√
log ι

Y
(i)
m,a

)

≤ O

 ∑
a∈Am

∑
i≤im,a

(√
Tm log(T ) +

√
log ι

)
≤ O

(
|Am| log(δ−1 log T )

(√
Tm log(T ) +

√
log ι

))
≤ O

(
log(δ−1 log T )

(√
|Am||Tm| log(T ) + |Am|

√
log ι

))
, (34)

where the first inequality uses the fact that Y (i)
m,a ≤ 2Tm, and the second inequality holds due to the number of iterations is

at most O(log(δ−1 log T )), and the last inequality uses |Am|Tm ≤ |Tm|.

We continue to bound the total regret of Eq. (34) as

O

∑
m≥2

log(δ−1 log T )
(√

|Am||Tm| log(ι)
) ≤ O

(
log(δ−1 log T )

(√
KT log T log(ι)

))
.

Then, for any a ∈ Am, i ≤ im,a and t ∈ T (i)(a;Am) with At = a, we can bound

max
b∈[K]

{θb − π⋆
b (t)} − (θa − πa(t))

= θa⋆
t
+ µ̂a⋆

t
(t)− max

b∈[K]
µ̂b(t)− (θa − πa(t))

≤ θa⋆
t
+ µa⋆

t
+

√
log(16TK/δ)

2Na⋆
t
(t)

− max
b∈[K]

µ̂b(t)− (θa − πa(t))
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≤ θa⋆
t
+ µa⋆

t
+ ϵm − max

b∈[K]
µ̂b(t)− (θa − πa(t))

= θa⋆
t
+ µa⋆

t
+ ϵm − max

b∈[K]
µ̂b(t)−

(
θa − b

(i)

m,a

)
≤ θa⋆ + µa⋆ + ϵm − max

b∈[K]
µ̂b(t)−

(
θa − b

(jm,a)

m,a

)
≤ O

(
∆a +

(
max{1, |Bm|}
Tm−1|Am|

)2/3

+ ϵm

)
, (35)

where the first inequality holds due to E , the second inequality uses Eq. (39), the third inequality uses the fact that
b
(i)

m,a ≤ b
(jm,a)

m,a for all i ≤ jm,a by Lemma E.11, and the last inequality uses Lemma E.12.

Note that line 14 of Algorithm 5 implies that
∑

i≤im,a

∑
t∈T (i)(a;Am) I{At = a} ≤ O(Tm). Hence, using Tm+1 = Θ(Tm)

for all m, we have

∑
a∈Am

∑
i≤im,a

∑
t∈T (i)(a;Am)

(
max
b∈[K]

{θb − π⋆
b (t)} − (θa − πa(t))

)
I{At = a}

≤ O

(
Tm

∑
a∈Am

∆a +

(
K log

(
KT

δ

))1/3

(Tm|Am|)2/3 + |Am|

√
Tm log

(
KT

δ

))

From Lemma E.15, if a suboptimal arm a is active in phase m, then m ≤ ma where ma is the smallest phase such that

∆a > 9
√

log(16KT/δ)
2Tma

. This implies that

∀a ∈ Am with ∆a > 0 : ∆a ≤ 9

√
log(16KT/δ)

2Tma−1
≤ 9

√
log(16KT/δ)

2Tm−1
. (36)

Hence, we can bound

Tm

∑
a∈Am

∆a ≤ O
(
|Am|

√
Tm log(KT/δ)

)
. (37)

By bounding Tm|Am| ≤ |Tm|, we can further bound

∑
m≥2

∑
a∈Am

∑
i≤jm,a

∑
t∈T (i)(a;Am)

(
max
b∈[K]

{θb − π⋆
b (t)} − (θa − πa(t))

)
I{At = a}

≤ O

∑
m≥2

((
K log

(
KT

δ

))1/3

(|Tm|)2/3 +

√
|Am||Tm| log

(
KT

δ

))
≤ O

((
K log T log

(
KT

δ

))1/3

T
2/3 +

√
KT log(T ) log

(
KT

δ

))
,

where the last inequality uses Hölder’s inequality with the fact that the number of phases is at most O(log T ). Combining
the above results, we have

RT =O

((
K log T log

(
KT

δ

))1/3

T
2/3 + log2(KT/δ)

√
KT +K log3(KT/δ)

)
.

By choosing δ = 1/T , we get the claimed bound for E[RT ].
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E.5. Proof of Theorem 4.3

This proof idea is similar to that of Theorem 4.2. Let us first bound the regret caused by elimination. Notice that since the
proposed incentive during trustworthy elimination is not one-hot, the regret in a single phase evaluated is bounded by the
product of per-round regret upper bound O(K) and the upper bound of total number of rounds O(K log(Kδ−1 log(T ))).
As the number of phases is at most O(log T ), the total regret incurred by the elimination is bounded by

O
(
K2 log T log(Kδ−1 log(T ))

)
.

Then, we bound the regret incurred by searching. Since the algorithm proposes one-hot incentive, and the search process
lasts O(log T ) rounds for each active arm in each phase, the total regret incurred by searching is bounded by

O(K log2(T ) log(δ−1 log T )).

Moreover, the total regret in phase m = 1 is bounded by

O
(
K2 log3(KT/δ)

)
.

Note that since the algorithm always proposes the one-hot incentive, except elimination period, we thus can write

RT = O
(
K2 log3(KT/δ)

)
+
∑
m≥2

Rm,

where

Rm =
∑

a∈Am

∑
i≤im,a

∑
t∈T (i)(a;Am)

max
b∈[K]

{θb + µb} − max
z∈[K]

µz −

θAt
−
∑
v∈[K]

πv(t)


+
∑

a∈Bm

∑
t∈T (a;Bm)

max
b∈[K]

{θb + µb} − max
z∈[K]

µz −

θAt
−
∑
v∈[K]

πv(t)


=
∑

a∈Am

∑
i≤im,a

∑
t∈T (i)(a;Am)

(
max
b∈[K]

{θb + µb} − max
z∈[K]

µz − (θAt
− πAt

(t))

)

+
∑

a∈Bm

∑
t∈T (a;Bm)

(
max
b∈[K]

{θb + µb} − max
z∈[K]

µz − (θAt
− πAt

(t))

)
,

where the last equality follows from the fact that the proposed incentives are one-hot during T (a;Bm) and T (i)(a;Am).

The analysis on regret in phases m ≥ 2 is a simplified version of the proof of Theorem 4.2. The only difference is to use
Lemma E.13 to obtain Eq. (35). Thus, the regret bound for

∑
m≥2 Rm remains the same.

E.6. Supporting Lemmas

Lemma E.8. Suppose E holds. For each phase m with Bm ̸= ∅, every bad arm a ∈ Bm will be played for at least

log
1
3 (16KT/δ)

(
|Am|

max{1,|Bm|}Tm−1

)2/3
times.

Proof. Let It be an indicator that the agent explores at round t. Consider a fixed phase m with Bm ̸= ∅ (i.e., m ≥ 2), and
we fix a bad arm a ∈ Bm. Lemma E.2 gives

∑
t∈T (a;Bm)

It ≤ 2c0
√
Zm log(2T ) +

√
8 log(8KT log2(T )δ

−1)

Zm
.
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Notice that if the agent does not explore at a round, then she must play the target arm a based on the proposed incentive.
Thus, it suffices to show

Zm −

2c0
√

Zm log(2T ) +

√
8 log(8KT log2(T )δ

−1)

Zm

 ≥ Zm

2
.

To this end, we let
a = max{2c0

√
log(2T ),

√
8 log(8KT log2(T )/δ)}.

Then, it suffices to show Zm − 2a(
√
Zm + 1/

√
Zm) ≥ 0. One can easily show that for a ≥ 1, the function f(x) =

x− 2a(
√
x+ 1/

√
x) is monotonically increasing for x ≥ a2 and f(16a2) ≥ 0. Then, we verify Zm ≥ 16a2 as:

Zm

2
= log

1
3 (16KT/δ)

(
|Am|

max{1, |Bm|}
Tm−1

)2/3

≥
(
T1

K

)2/3

≥ 8a2.

We thus complete the proof.

Lemma E.9. Let t(jm,a)
m,a be the round that Algorithm 3 ends the search for arm a in phase m and outputs b(jm,a)

m,a . For each
phase m, we have

b(jm,a)
m,a − π⋆

a(t
(jm,a)
m,a ) ∈

(
0,

4

T
+

⌈log2 T ⌉
Na(t

(jm,a)
m,a )

+
2

mini∈[K] Ni(t
(jm,a)
m,a )

]
. (38)

Proof. Since in jm,a-th iteration, the agents does not explore, the proof directly follows Lemma 3.1.

Lemma E.10. Suppose that E occurs. For all m ≥ 2 and a ∈ Am, if every active arm in Am−1 is played for Tm−1 times,
then we have

∀t ∈
⋃

i≤jm,a

T (i)
m,a : b

(jm,a)

m,a > π⋆
a(t).

Proof. Let us consider fixed phase m ≥ 2 and arm a ∈ Am ⊆ Am−1 and let t(jm,a)
m,a be the round that Algorithm 3 ends the

search for arm a at round m and outputs b(jm,a)
m,a .

√
log(16KT/δ)

2mini∈[K] Ni(t)
≤

√√√√√ log(16KT/δ)

2min

{
Tm−1, log

1
3 (16KT/δ)

(
|Am|

max{1,|Bm|}Tm−1

)2/3}

≤

√
log(16KT/δ)

2Tm−1
+

√√√√ log(16KT/δ)

2Tm−1, log
1
3 (16KT/δ)

(
|Am|

max{1,|Bm|}Tm−1

)2/3
≤ ϵm (39)

where the first inequality uses the assumption (i.e., the number of plays of active arms) and Lemma E.8, and the last
inequality holds due to the definition of ϵm given in Eq. (29).

By Hoeffding’ inequality and the fact that the confidence interval is monotonically decreasing as samples increase, we have
for all b ∈ A and ∀t ∈

⋃
i≤jm,a

T (i)
m,a (here a is the fixed arm mentioned above)

µ̂b(t) ∈

[
µb −

√
log(16KT/δ)

2Nb(t)
, µb +

√
log(16KT/δ)

2Nb(t)

]

⊆

[
µb −

√
log(16KT/δ)

2mini∈[K] Ni(t)
, µb +

√
log(16KT/δ)

2mini∈[K] Ni(t)

]
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⊆ [µb − ϵm, µb + ϵm] , (40)

where the last inequality uses Eq. (39). Let bt ∈ argmaxa∈A µ̂a(t). Note that Eq. (40) gives that

∀t ∈
⋃

i≤jm,a

T (i)
m,a : max

b∈[K]
µ̂bt(t) = µ̂bt(t) ≤ µ̂bt(t

(jm,a)
m,a + 1) + 2ϵm ≤ max

b∈[K]
µ̂b(t

(jm,a)
m,a + 1) + 2ϵm. (41)

Hence, following a similar reasoning in Lemma D.7, one can show ∀t ∈
⋃

i≤jm,a
T (i)
m,a:

b
(jm,a)

m,a −
(
max
b∈[K]

µ̂b(t)− µ̂a(t)

)
= b

(jm,a)

m,a −min

{
1, max

b∈[K]
µ̂b(t)− µ̂a(t)

}
≥ b

(jm,a)

m,a −min

{
1, max

b∈[K]
µ̂b(t

(jm,a)
m,a + 1)− µ̂a(t

(jm,a)
m,a + 1) + 4ϵm

}
≥ b

(jm,a)

m,a −min

{
1, max

b∈[K]
µ̂b(t

(jm,a)
m,a )− µ̂a(t

(jm,a)
m,a ) +

(
max{1, |Bm|}
Tm−1|Am|

)2/3

+
1

Tm−1
+ 4ϵm

}
> 0,

which implies that arm a gets played at round t+ 1. Once the induction is done, we get the desired claim for fixed m, a.
Conditioning on E , the claim holds for all m, a, which thus completes the proof.

Lemma E.11. Suppose that E occurs. For each phase m, each active arm a ∈ Am will be played for at least Tm times
before trustworthy online elimination starts. Moreover, for each phase m, active arm a ∈ Am, we have im,a ≤ jm,a and

b
(i)

m,a ≤ b
(jm,a)

m,a for all i ≤ jm,a.

Proof. Before that, we first show for all m ≥ 1

2Tm −

2c0
√
2Tm log(2T ) +

√
8 log(ι)

Tm

 ≥ Tm. (42)

For shorthand, we define
a = max

{
2c0
√

2 log(2T ),
√
8 log ι

}
.

To show Eq. (42), it suffices to show Tm − a(
√
Tm + 1/

√
Tm) ≥ 0. One can easily show that for a ≥ 2, the function

f(x) = x − a(
√
x + 1/

√
x) is monotonically increasing for x ≥ a2/4 and f(4a2) ≥ 0. As we have Tm ≥ T1 ≥ 4a2,

Eq. (42) holds for all m ≥ 1.

Now, we start to prove the first claim by using induction on m. For the base case, one can see that the incentive on every
arm is always 1 + T−1, which implies that if the agent does not explore, then she must play arm a. Thus, by Lemma E.2, in
the first iteration, the repeat-loop only breaks when Y

(1)
1,a = 2T1. By Eq. (42), for every arm a, the number of plays of each

a is at least T1 times. Therefore, the base case holds.

Suppose that the claim holds for phase m− 1. Then, we aim to prove for phase m and consider a fixed a ∈ Am. Assume
that the number of plays for arm a is less than Tm before the jm,a-th iteration (otherwise the claim holds true). We will
show that the number of plays of arm a in the jm,a-th iteration is at least Tm times. Based on Lemma E.10, we know that in
the jm,a-th iteration (the exploration does not occur when generate corresponding incentive), the agent will always play the
target arm a. Thus, by Lemma E.2, in jm,a-th iteration, the repeat-loop only breaks when Y

(jm,a)
m,a = 2Tm. By Eq. (42), for

every arm a, the number of plays of each a is at least Tm times. Once the induction is done, we complete the proof for the
first claim.

For the second claim, we consider fixed m, a. Since the above shows that the number of plays on a is at least Tm in the
jm,a-th iteration. According to line 14 of Algorithm 5, the iteration number cannot go beyond jm,a. Moreover, {b(i)m,a}i is
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assorted in ascending order, and thus b(i)m,a ≤ b
(jm,a)
m,a for all i ≤ jm,a. Conditioning on E , we repeat this argument for all

m, a to complete the proof.

Lemma E.12. Suppose that E occurs. For each phase m ≥ 2 and each arm a ∈ Am, we have

∀t ∈
⋃

i≤jm,a

T (i)(a;Am) : b
(jm,a)

m,a ≤ max
b∈[K]

µ̂b(t)− µa +
4

T
+

⌈log2 T ⌉
Tm−1

+ 4

(
max{1, |Bm|}
Tm−1|Am|

)2/3

+
4

Tm−1
+ 5ϵm.

Proof. Consider fixed m, a. Let t(jm,a)
m,a be the round that Algorithm 3 ends the search for arm a at round m, which

outputs b(jm,a)
m,a . For all t ∈ ∪i≤jm,aT (i)(a;Am), we use a similar reasoning of Lemma D.9 with counterparts Lemma E.11,

Lemma E.8 and Eq. (40) to show

b
(jm,a)

m,a ≤ b(jm,a)
m,a +

(
max{1, |Bm|}
Tm−1|Am|

)2/3

+
1

Tm−1
+ 4ϵm

≤ π⋆
a(t

(jm,a)
m,a ) +

4

T
+

⌈log2 T ⌉
Tm−1

+ 3

(
max{1, |Bm|}
Tm−1|Am|

)2/3

+
3

Tm−1
+ 4ϵm

= max
b∈[K]

µ̂b(t
(jm,a)
m,a )− µ̂a(t

(jm,a)
m,a ) +

4

T
+

⌈log2 T ⌉
Tm−1

+ 3

(
max{1, |Bm|}
Tm−1|Am|

)2/3

+
3

Tm−1
+ 4ϵm

≤ max
b∈[K]

µ̂b(t
(jm,a)
m,a + 1)− µ̂a(t

(jm,a)
m,a + 1) +

4

T
+

⌈log2 T ⌉
Tm−1

+ 4

(
max{1, |Bm|}
Tm−1|Am|

)2/3

+
4

Tm−1
+ 4ϵm

≤ max
b∈[K]

µ̂b(t)− µa +
4

T
+

⌈log2 T ⌉
Tm−1

+ 4

(
max{1, |Bm|}
Tm−1|Am|

)2/3

+
4

Tm−1
+ 5ϵm.

Conditioning on E , the argument holds for each m ≥ 2 and a ∈ Am, and thus the proof is complete.

Lemma E.13. Suppose that E occurs. For each phase m ≥ 2 and each arm a ∈ Am, we have

∀t ∈
⋃

i≤jm,a

T (i)(a;Am) : b
(jm,a)

m,a ≤ max
b∈[K]

µb − µa +
4

T
+

⌈log2 T ⌉
Tm−1

+ 4

(
max{1, |Bm|}
Tm−1|Am|

)2/3

+
4

Tm−1
+ 6ϵm.

Proof. Consider fixed m, a. Let bt ∈ argmaxa∈[K] µ̂a(t). For any t ∈
⋃

i≤jm,a
T (i)(a;Am), we can use Eq. (40) to bound

µ̂bt(t) ≤ µbt + ϵm ≤ max
a∈[K]

µa + ϵm.

Pluggin the above into Lemma E.12, we show the claim for the fixed m, a. Conditioning on E , the argument holds for each
m ≥ 2 and a ∈ Am, and thus the proof is complete.

Lemma E.14. Suppose event E occurs. For all m ∈ N, a⋆ ∈ Am holds.

Proof. We prove the claim by the induction. For m = 1, the claim trivially holds. Suppose the claim holds for m, and then
we consider phase m+ 1. For each round t ∈ [t0m,a⋆ , t0m,a⋆ + 8 log(8Kδ−1 log2 T )] and each a ∈ Am − {a⋆}, we have

0 ≤ θa⋆ + µa⋆ − (θa + µa)

≤ θ̂a⋆(t0m,a⋆) + µ̂a⋆(t)− (θ̂a(t
0
m,a⋆) + µ̂a(t)) + 4

√
log(16KT/δ)

2Tm

= πa⋆(t) + µ̂a⋆(t)− (µ̂a(t) + πa(t))−

√
log(16KT/δ)

2Tm
,

where the second inequality holds since Lemma E.11 gives that in each phase m, every active arm is played for Tm times
before the elimination starts, and a⋆ is active in phase m by the hypothesis induction, and the equality holds since when
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testing arm a⋆, πa⋆(t) = 1 + θ̂a⋆(t0m,a⋆) + 5
√

log(16KT/δ)
2Tm

, and the incentives of all other active arms a ∈ Am − {a⋆} are

all equal to 1 + θ̂a(t
0
m,a⋆). Since the above holds for all a ∈ Am, we rearrange it to get

πa⋆(t) + µ̂a⋆(t) ≥ max
a∈Am−{a⋆}

{µ̂a(t) + πa(t)}+

√
log(16KT/δ)

2Tm
> max

a∈Am−{a⋆}
{µ̂a(t) + πa(t)}.

Conditioning on E , we use Lemma E.5 to get a⋆ ∈ Am+1. Once the induction done, the proof is complete.

Lemma E.15. Let ma be the smallest phase such that ∆a > 9
√

log(8KT/δ)
2Tma

. Suppose that E occurs. For each arm a with
∆a > 0, it will not be in Am for all phases m ≥ ma + 1.

Proof. Consider any arm a with ∆a > 0. We only need to consider a ∈ Ama and otherwise, the claim naturally holds. For
any round t ∈ [t0m,a, t

0
m,a + 8 log(8Kδ−1 log2 T )], we have

max
b∈Ama−{a}

{µ̂b(t) + πb(t)} − (µ̂a(t) + πa(t))

≥ (µ̂a⋆(t) + πa⋆(t))− (µ̂a(t) + πa(t))

= µ̂a⋆(t) + θ̂a⋆(t0m,a)−
(
µ̂a(t) + θ̂a(t

0
m,a)

)
− 5

√
log(16KT/δ)

2Tma

≥ ∆a − 9

√
log(16KT/δ)

2Tma

> 0,

where the first inequality uses a ̸= a⋆ and Lemma E.14 that a⋆ ∈ Ama
, the equality holds since when testing arm a,

πa(t) = 1 + θ̂a(t
0
m,a) + 5

√
log(16KT/δ)

2Tm
, and the incentives of all other (non-target) active arms b ∈ Am are all equal to

1 + θ̂b(t
0
m,a), and the second inequality holds since Lemma E.11 gives that in each phase m, every active arm is played for

Tm times before the elimination starts.

According to Lemma E.5, arm a will not be in phases m for all m ≥ ma + 1.
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F. Omitted Proof of Self-interested Oracle-Agent with Exploration

Algorithm 6 Proposed algorithm for self-interested oracle-agent with exploration
Input: confidences δ ∈ (0, 1), horizon T .
Initialize: active arm set A1 = [K], bad arm set B1 = ∅, T0 = 1.

1 for m = 1, 2, . . . do
2 Set Tm based on Eq. (8).
3 for a ∈ Am do ▷ Search Incentives repeatedly
4 Use binary search for 2 log(4 log2 T/δ) times and sort outputs such that

b(1)m,a ≤ b(2)m,a ≤ · · · ≤ b(2 log(4 log2 T/δ))
m,a .

5 Set b
(i)

m,a = b
(i)
m,a + T−1 for all i.

6 for a ∈ Am do
7 for i = 1, . . . , 2 log(4 log2 T/δ) do ▷ Incentive testing

8 Set a counter c(i)m,a = 0 and Y
(i)
m,a = 0.

9 repeat
10 Propose incentives π0(a; b

(i)

m,a) and denote the current round by t.

11 Update Y
(i)
m,a = Y

(i)
m,a + 1, and if At ̸= a, update c

(i)
m,a = c

(i)
m,a + 1.

until c(i)m,a > 2c0

√
Y

(i)
m,a log(2T ) +

√
8 log(ι)

Y
(i)
m,a

or Y (i)
m,a = 2Tm

12 If
∑

j≤i(Y
(j)
m,a − c

(j)
m,a) ≥ Tm, then break the loop for i.

13 for a ∈ Am do ▷ Trustworthy online elimination
14 Set Lm,a = ∅.
15 Let t0m,a be the current round, and {θ̂a(t0m,a)}a∈[K] are empirical means at this round.
16 for t = t0m,a, . . . , t

0
m,a + 8 log(8K log2 T/δ) do

17 Propose incentives π(t) with πa(t) = 1 + θ̂a(t
0
m,a) + 3

√
log(8KT/δ)

2Tm
, πb(t) = 1 + θ̂b(t

0
m,a), ∀b ∈ Am − {a},

and πi(t) = 0, ∀i ∈ Bm.
18 If At ̸= a, then update Lm,a = Lm,a ∪ {0}; else Lm,a = Lm,a ∪ {1}.

19 Sort Lm,a in ascending order.
20 if Median(Lm,a) = 0 then
21 Update Am+1 = Am − {a} and Bm+1 = Bm ∪ {a}.

F.1. Notations

Throughout the proof in this section, we follow the exactly same notations used in Appendix E.2.

F.2. Construction of Nice Event E

All lemmas in this section follows exactly the same argument used in Appendix E.3.

Let us define event E0 as

E0 :=

{
∀(t, a) ∈ [T ]× [K] :

∣∣∣θ̂a(t)− θa

∣∣∣ ≤√ log(8TK/δ)

2Na(t)

}
. (43)

Lemma F.1. P(E0) ≥ 1− δ/4 holds.

Proof. By Hoeffding’s inequality and invoking union bound, one can obtain the desired claim.
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Lemma F.2. With probability at least 1− δ/4, for all phases m, all active arms a ∈ Am, and all iterations i,

∑
t∈T (i)(a;Am)

It ≤ 2c0

√
Y

(i)
m,a log(2T ) +

√
8 log(ι)

Y
(i)
m,a

.

Lemma F.3. With probability at least 1− δ/4, for all m ≥ 2, among total 2 log(4 log2 T/δ) calls, there will be at least one
call of Algorithm 3 such that the agent makes no exploration.

Lemma F.4. With probability at least 1 − δ/4, for all phases m and all a ∈ Am, if arm a satisfies that for all rounds
t ∈ [t0m,a, t

0
m,a + 8 log(8Kδ−1 log2 T )]:

max
b∈Am−{a}

(πb(t) + µb) < (πa(t) + µa) ,

then a ∈ Am+1; if arm a satisfies that for all rounds t ∈ [t0m,a, t
0
m,a + 8 log(8Kδ−1 log2 T )]:

max
b∈Am−{a}

(πb(t) + µb) > (πa(t) + µa) ,

then a ∈ Bm+1.

Definition F.5 (Define E). Let E be the event that E0 and inequalities in Lemma F.2, Lemma 4.1, and Lemma F.4 hold
simultaneously.

Based on Definition F.5, one can easily see P(E) ≥ 1− δ, by using a union bound.

F.3. Supporting Lemmas

Lemma F.6. Suppose that E occurs. For all phases m and all active arms a, we have

b
(jm,a)

m,a ∈
(
π⋆
a, π

⋆
a +

2

T

]
.

Proof. As E holds, Lemma F.3 ensures the existence of jm,a. Then, (Scheid et al., 2024b, Lemma 8) gives the desired
result.

Lemma F.7. Suppose that E occurs. For each phase m, each active arm a ∈ Am will be played for at least Tm times
before the elimination starts. Moreover, for each phase m and active arm a ∈ Am, im,a ≤ jm,a and b

(i)

m,a ≤ b
(jm,a)

m,a for all
i ≤ jm,a.

Proof. Since we assume E holds, Lemma F.6 implies that if the algorithm tests b
(jm,a)

m,a for target active arm a, then the agent
will always play arm a, except exploration occurs. Thus, the desired claim is immediate via the exact same argument in
Lemma E.11.

Lemma F.8. Suppose that E holds. For all m ∈ N, a⋆ ∈ Am.

Proof. This proof is similar to Lemma E.14. We prove the claim by the induction. For m = 1, the claim trivially holds.
Suppose the claim holds for m and consider for m+ 1. For each round t ∈ [t0m,a⋆ , t0m,a⋆ + 8 log(8Kδ−1 log2 T )] and each
a ∈ Am − {a⋆}, we have

0 ≤ θa⋆ + µa⋆ − (θa + µa)

≤ θ̂a⋆(t0m,a) + µa⋆ − (θ̂a(t
0
m,a) + µa) + 2

√
log(8KT/δ)

2Tm

= πa⋆(t) + µa⋆ − (µa + πa(t))−

√
log(16KT/δ)

2Tm
,
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where the second inequality holds since Lemma F.7 gives that in each phase m, every active arm is played for Tm times
before the elimination starts, and a⋆ is active in phase m by the hypothesis induction, and the equality holds since when

testing arm a⋆, πa⋆(t) = 1 + θ̂a⋆(t0m,a⋆) + 3
√

log(16KT/δ)
2Tm

, and the incentives of all other active arms a ∈ Am − {a⋆} are

all equal to 1 + θ̂a(t
0
m,a⋆). Since the above holds for all a ∈ Am, we rearrange it to get

πa⋆(t) + µa⋆ ≥ max
a∈Am−{a⋆}

{µa + πa(t)}+

√
log(16KT/δ)

2Tm
> max

a∈Am−{a⋆}
{µa(t) + πa(t)}.

Conditioning on E , we use Lemma F.4 to get a⋆ ∈ Am+1. Once the induction done, the proof is complete.

Lemma F.9. Let ma be the smallest phase such that ∆a > 5
√

log(8KT/δ)
2Tma

. Suppose that E occurs. For each arm a with
∆a > 0, it will not be in Am for all phases m ≥ ma + 1.

Proof. This proof follows a similar to Lemma E.15. Consider any arm a with ∆a > 0. We only need to consider a ∈ Ama

and otherwise, the claim naturally holds. For any round t ∈ [t0m,a, t
0
m,a + 8 log(8Kδ−1 log2 T )], we have

max
b∈Ama−{a}

{µb + πb(t)} − (µa + πa(t))

≥ (µa⋆ + πa⋆(t))− (µa + πa(t))

= µa⋆ + θ̂a⋆(t0m,a)−
(
µa + θ̂a(t

0
m,a)

)
− 3

√
log(16KT/δ)

2Tma

≥ ∆a − 5

√
log(16KT/δ)

2Tma

> 0,

where the first inequality uses a ̸= a⋆ and Lemma F.8 that a⋆ ∈ Ama , the equality holds since when testing arm a,

πa(t) = 1 + θ̂a(t
0
m,a) + 3

√
log(16KT/δ)

2Tm
, and the incentives of all other (non-target) active arms b ∈ Am are all equal to

1 + θ̂b(t
0
m,a), and the second inequality holds since Lemma F.7 gives that in each phase m, every active arm is played for

Tm times before the elimination starts.

According to Lemma F.4, arm a will not be in phases m for all m ≥ ma + 1.

F.4. Comparison with (Dogan et al., 2023a) under Same Regret Metric

Dogan et al. (2023a) use a different regret definition E[RT ] where

RT =

T∑
t=1

(
max
b∈[K]

{θb + µb} − max
z∈[K]

µz −

(
θAt

−
∑
a∈A

πa(t)

))
. (44)

To fairly compare the regret bound, we evaluate the regret bound by E[RT ].

Theorem F.10. Suppose T = Ω(K). By choosing δ = 1/T , Algorithm 5 ensures

E[RT ] = O
(
log

5
3 (KT )K

1
3T

2
3 + log2(KT )

√
KT +K2 log3(KT )

)
.

Proof. We first follow the same reasoning in Appendix E.5 to bound the regret in binary search, elimination period, and the
first phase by O

(
K2 log3(KT/δ)

)
. Then, RT can be written as:

RT = O
(
K2 log3(KT/δ)

)
+
∑
m≥2

Rm,
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where (recall that Algorithm 6 does not play bad arms for stabilization)

Rm =
∑

a∈Am

∑
i≤im,a

∑
t∈T (i)(a;Am)

(
max
b∈[K]

{θb + µb} − max
z∈[K]

µz −

(
θAt

−
∑
v∈A

πv(t)

))

=
∑

a∈Am

∑
i≤im,a

∑
t∈T (i)(a;Am)

(
max
b∈[K]

{θb + µb} − max
z∈[K]

µz − (θAt
− πa(t))

)
,

where the second equality follows from the fact that the proposed incentive is one-hot (arm a has the only positive value) for
all rounds in T (i)(a;Am).

According to the incentive testing, the algorithm proposes one-hot incentives, and thus we have

Rm =
∑

a∈Am

∑
i≤im,a

∑
t∈T (i)(a;Am)

(
max
b∈[K]

{θb + µb} − max
z∈[K]

µz − (θAt − πa(t))

)

=
∑

a∈Am

∑
i≤im,a

∑
t∈T (i)(a;Am)

(
max
b∈[K]

{θb + µb} − max
z∈[K]

µz −
(
θAt

− b
(i)

m,a

))

≤
∑

a∈Am

∑
i≤im,a

∑
t∈T (i)(a;Am)

(
max
b∈[K]

{θb + µb} − max
z∈[K]

µz − θAt + π⋆
a +

2

T

)

=
∑

a∈Am

∑
i≤im,a

∑
t∈T (i)(a;Am)

(
∆a +

2

T

)
I{At = a}

+
∑

a∈Am

∑
i≤im,a

∑
t∈T (i)(a;Am)

(
max
b∈[K]

{θb + µb} − max
z∈[K]

µz − θAt
+ π⋆

a +
2

T

)
I{At ̸= a},

where the inequality uses Lemma F.7 and Lemma F.6 to bound for all i ≤ jm,a:

b
(i)

m,a ≤ b
(jm,a)

m,a ≤ π⋆
a +

2

T
.

Then, we use Eq. (34) to bound∑
a∈Am

∑
i≤im,a

∑
t∈T (i)(a;Am)

(
max
b∈[K]

{θb + µb} − max
z∈[K]

µz − θAt
+ π⋆

a +
2

T

)
I{At ̸= a}

≤ O
(
log(δ−1 log T )

(√
K|Tm| log(T ) + |Am|

√
log ι

))
.

Note that line 12 of Algorithm 6 implies that
∑

i≤im,a

∑
t∈T (i)(a;Am) I{At = a} ≤ O(Tm). Hence, using Tm+1 = Θ(Tm)

for all m, we have

∑
a∈Am

∑
i≤im,a

∑
t∈T (i)(a;Am)

∆aI{At = a} ≤ O

(
Tm

∑
a∈Am

∆a

)

≤ O
(
|Am|

√
Tm log(KT/δ)

)
≤ O

(√
|Am||Tm| log(KT/δ)

)
.

where the second inequality uses the same approach in Eq. (37) with Lemma F.9, and the last inequality holds due to
|Am|Tm ≤ |Tm|. Therefore,

∑
m≥2

Rm ≤O

∑
m≥2

(√
|Am||Tm| log(KT/δ) + log(δ−1 log T )

(√
K|Tm| log(T ) + |Am|

√
log ι

))
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Algorithm 7 Proposed algorithm for linear reward model
Input: confidence δ ∈ (0, 1), horizon T .
Initialize: active arm set A1 = A, bad arm set B1 = ∅, ϵ0 = 1.

1 for m = 1, 2, . . . do

2 Set Tm = 2m+4d log(4KTδ−1) and ϵm = 4

√
d log(4KTδ−1)

min{Tm,(d log(4KTδ−1))1/3T
2/3
m }

.

3 if Bm ̸= ∅ then
4 Find a design ωm for Z = Bm and C = 2 in Definition G.1.
5 for a ∈ Bm do ▷ Stabilize estimators for bad arms

6 Propose incentives π0(a; 2d+ T−1) for Um(a) = ⌈ωm(a)(d log(4TK/δ))1/3 · T 2/3
m ⌉ rounds.

7 Find a design find a design ρm for Z = Am and C = 2 in Definition G.1.
8 Invoke Algorithm 8 with input (ϵm−1, T

−1) to get output cm ∈ Rd. ▷ Search parameter for s⋆

9 for a ∈ Am do
10 Set bm,a = min

{
2d+ T−1,maxb∈A ⟨cm, b− a⟩+ (1 + 32d)ϵm−1 +

1
T

}
.

11 For the following ⌈ρm(a)Tm⌉ rounds, propose incentive π0(a; bm,a).

12 Update estimates

ν̂m = V −1
m

∑
t∈Tm

AtXAt(t), where Vm =
∑

a∈Am

⌈ρm(a)Tm⌉aa⊤ +
∑
b∈Bm

Um(a)bb⊤, (45)

where Tm is a set contains all rounds when interaction occurs in line 11 and line 6 in phase m.
13 Invoke Algorithm 8 again with input (ϵm, T−1) to get output c′m ∈ Rd.
14 for a ∈ Am do ▷ Offline Elimination
15 if maxb∈Am

⟨ν̂m + c′m, b− a⟩ > (7 + 32d)ϵm then
Update Am+1 = Am − {a} and Bm+1 = Bm ∪ {a}

≤ O
(
log2(KT/δ)

√
KT

)
.

Combining all the above, we have

RT = O
(
log2(KT/δ)

√
KT +K2 log3(KT/δ)

)
.

By choosing δ = T−1, we complete the proof.

G. Omitted Proof for Linear Reward in Section 5
G.1. Omitted Pseudocode of Algorithm 7 and Algorithm 8

We present the following definition.
Definition G.1. Let Z ⊆ Rd be a finite and compact set. A distribution π : Z → [0, 1] is a C-approximate design with an
approximation factor C ≥ 1, if supz∈Z ∥z∥2G(π;Z)−1 ≤ C · d where G(π;Z) =

∑
z∈Z π(z)zz⊤.

Since the exactly optimal design (i.e., C = 1) is typically hard to compute, we consider the 2-approximately optimal design,
which can be computed efficiently (Todd, 2016).

The omitted pseudocode can be found in Algorithm 7 and Algorithm 8.

G.2. Notations

We introduce some notations that will be used throughout the proof. Refer to Appendix A for some general notations.

• Let m(t) be the phase that round t lies in.
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Algorithm 8 Multiscale steiner potential with conservative cut
Input: error ϵ > 0, ξ > 0.
Initialize: let current round be t0, St0 = B(0, 1), A = {z : z = x− y s.t. x ̸= y ∈ A}, zi = 2−i/(8d), ∀i ∈ N.

1 for t = t0, . . . do
2 Pick xt = (a1t − a2t )/

∥∥a1t − a2t
∥∥ where a1t − a2t ∈ argmaxu∈A width(St, u) and a1t ̸= a2t ∈ A

3 Find largest index i such that width(St, xt) ≤ 2−i.

4 if zi < 4
∥∥a1t − a2t

∥∥−1
ϵ then

5 Break and randomly pick a vector from St to return.

6 else
7 Query yt such that

Vol
(
v ∈ St + ziB(0, 1) : ⟨v, xt⟩ ≥

∥∥a1t − a2t
∥∥−1

(yt − ϵ)
)
=

1

2
Vol(St + ziB(0, 1)).

8 Propose incentive πa1
t
(t) = d+ ξ, πa2

t
(t) = d+ ξ + yt, and πb(t) = 0 for all b ̸= a1t , a

2
t .

9 if At = a1t then
10 Update St+1 =

{
v ∈ St : ⟨v, xt⟩ ≥

∥∥a1t − a2t
∥∥−1

(yt − ϵ)
}

.

11 else
12 Update St+1 =

{
v ∈ St : ⟨v, xt⟩ ≤

∥∥a1t − a2t
∥∥−1

(yt + ϵ)
}

.

• Let Tm be the set of rounds that in phase m, excluding those rounds for running Algorithm 8. In other words, Tm is a
set contains all rounds when interaction occurs in line 11 and line 6 in phase m.

• Let Tm,a = {t ∈ Tm : At = a}.

• Let T E
m,a be a set of all rounds when Algorithm 7 runs line 11 or line 6 for target arm a in phase m. In fact, Lemma G.6

implies that conditioning on E , T E
m,a = Tm,a.

• Let Ut =
∑t

s=1 AsA
⊤
s and let U†

t be its pseudo-inverse. With the definition of Ut, ŝt can be written as:

ŝt = U†
t

t∑
s=1

RAs(s)As.

• Let T>1 be the set of all rounds that not in phase 1 and let us define event

E = EPrinciple ∩ EAgent,

where

EAgent =

{
∀(a, t) ∈ A× T>1 : |⟨ŝt − s⋆, a⟩| ≤

√
2 ∥a∥U−1

t
log

(
4KT

δ

)}
,

and

EPrinciple =

{
∀(a,m) ∈ A× N : |⟨ν̂m − ν⋆, a⟩| ≤

√
2 ∥a∥V −1

m
log

(
4KT

δ

)}
.

Notice that in phase 1, every arm will be played deterministically according to (approximately) G-optimal design. Therefore,
once phase 1 ends, for all t ∈ T>1, Ut is invertible which implies that U†

t = U−1
t .
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G.3. Proof of Theorem 5.1

The following analysis conditions on E , which occurs with probability at least 1− δ by a standard analysis of linear bandits
(Lattimore & Szepesvári, 2020, Section 20). As the algorithm runs in phases, we bound the regret in phase m = 1 can be
bounded by

(
d2 log(KT/δ)

)
since per-round regret is O(d) and T1 = O(d log(KTδ−1)). Then we bound the regret in

each phase m ≥ 2. Lemma G.5 shows Algorithm 8 lasts at most O(d log2(dϵm−1)) ≤ O(d log2(dKT/δ)) rounds in phase
m ≥ 2. As the number of phases is at most O(log T ), we have

RT ≤ O
(
d2 log2(dKT/δ) · log(T )

)
+
∑
m≥2

Rm,

where

Rm =
∑
t∈Tm

(
max
a∈A

{⟨ν⋆, a⟩ − πa(t)} − (⟨ν⋆, At⟩ − πAt
(t))

)
.

It remains to bound Rm for m ≥ 2. Then, let consider a fixed m ≥ 2 and bound

Rm =
∑
t∈Tm

(
⟨ν⋆, a⋆t ⟩+ ⟨ŝt, a⋆t ⟩ −max

b∈A
⟨ŝt, b⟩ − (⟨ν⋆, At⟩ − πAt

(t))

)
=
∑

a∈Am

∑
t∈Tm,a

(
⟨ν⋆, a⋆t ⟩+ ⟨ŝt, a⋆t ⟩ −max

b∈A
⟨ŝt, b⟩ − (⟨ν⋆, At⟩ − πAt

(t))

)

+
∑

a∈Bm

∑
t∈Tm,a

(
⟨ν⋆, a⋆t ⟩+ ⟨ŝt, a⋆t ⟩ −max

b∈A
⟨ŝt, b⟩ − (⟨ν⋆, At⟩ − πAt

(t))

)

=
∑

a∈Am

∑
t∈Tm,a

(
⟨ν⋆, a⋆t ⟩+ ⟨ŝt, a⋆t ⟩ −max

b∈A
⟨ŝt, b⟩ − (⟨ν⋆, a⟩ − πa(t))

)

+
∑

a∈Bm

∑
t∈Tm,a

(
⟨ν⋆, a⋆t ⟩+ ⟨ŝt, a⋆t ⟩ −max

b∈A
⟨ŝt, b⟩ − (⟨ν⋆, a⟩ − πa(t))

)

≤
∑

a∈Am

∑
t∈Tm,a

(
⟨ν⋆, a⋆t ⟩+ ⟨ŝt, a⋆t ⟩ −max

b∈A
⟨ŝt, b⟩ − (⟨ν⋆, a⟩ − πa(t))

)
+O

(
d

4
3T

2
3
m log

1
3 (TK/δ)

)
,

where the first equality holds due to the definition of a⋆t , the third equality follows from Lemma G.6, and the fact that the
proposed incentives in these rounds are one-hot, and the last inequality bounds the regret on all bad arms by multiplying the
number of rounds by O(d) (the upper bound of per-round regret).

Then, for each active arm a ∈ Am and t ∈ Tm,a, we turn to bound

⟨ν⋆, a⋆t ⟩+ ⟨ŝt, a⋆t ⟩ −max
b∈A

⟨ŝt, b⟩ − (⟨ν⋆, a⟩ − πa(t))

≤ ⟨ν⋆, a⋆t ⟩+ ⟨s, a⋆t ⟩+ ϵm−1 −max
b∈A

⟨ŝt, b⟩ − (⟨ν⋆, a⟩ − πa(t))

≤ ⟨ν⋆ + s⋆, a⋆⟩+ ϵm−1 −max
b∈A

⟨ŝt, b⟩ − (⟨ν⋆, a⟩ − πa(t))

≤ O
(
∆a + dϵm−1 +

1

T

)
,

where the first inequality holds due to Lemma G.7, and the last inequality uses Lemma G.8.

By Lemma G.6, each active arm a ∈ Am will be played for ⌈ρm(a)Tm⌉ times in Tm,a = T E
m,a. As |Tm,a| = ⌈ρm(a)Tm⌉

for any active arm a, Tm+1 = Θ(Tm) for all m, and |supp(νm)| ≤ O(d log log d), we have∑
a∈Am

∑
t∈Tm,a

(
⟨ν⋆, a⋆t ⟩+ ⟨ŝt, a⋆t ⟩ −max

b∈A
⟨ŝt, b⟩ − (⟨ν⋆, a⟩ − πa(t))

)
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≤ O

(
Tm

∑
a∈Am

ρm(a)∆a +
Tm

T
+ Tmdϵm−1 + d log log d

)

≤ O

(
Tm

∑
a∈Am

ρm(a)∆a + d
3
2

√
Tm log(KT/δ) +

Tm

T
+ d

4
3T

2
3
m log

1
3 (TK/δ) + d log log d

)
,

where the last inequality bounds

ϵm−1 = 4

√
d log (4KTδ−1)

min{Tm−1, (d log(4KTδ−1))1/3T
2/3
m−1}

≤ 4

√
d log (4KTδ−1)

Tm−1
+ 2

√
d log (4KTδ−1)

(d log(4KTδ−1))1/3T
2/3
m−1

.

From Lemma G.10, if a suboptimal arm a is active in phase m, then m ≤ ma where ma is the smallest phase such that
∆a > (9 + 64d)ϵma . This implies that ∀a ∈ Am:

∆a ≤ (9 + 64d)ϵma−1 ≤ (9 + 64d)ϵm−1 ≤ O

(
d

3
2

√
log(KT/δ)

Tm−1
+ d

4
3 (Tm−1)

− 1
3 log

1
3 (TK/δ)

)
, (46)

where the second inequality uses m ≤ ma.

By again using Tm+1 = Θ(Tm) for all m and
∑

a∈Am
ρm(a) = 1, we have

RT ≤ O

(
d

3
2

√
log(KT/δ)

∑
m

√
Tm + d

4
3 log

1
3 (KT/δ)

∑
m

T
2
3
m + d2 log2(dKT/δ) log T

)
≤ O

(
d

3
2 log(KT/δ)

√
T + d

4
3T

2
3 log

2
3 (KT/δ) + d2 log2(dKT/δ) log T

)
,

where the last inequality uses Hölder’s inequality together with the fact that the number of phases is at most O(log T ) ≤
O(log(TK/δ)).

G.4. Technical Lemmas for Algorithm 8

Lemma G.2. If index i is selected at round t and the algorithm does not break this round, then

Vol(St+1 + ziB) ≤ 7

8
Vol(St + ziB).

Proof. According to the incentive proposed during running Algorithm 8, the agent picks either a1t or a2t at any round t. For
the case At = a1t , a similar argument of (Liu et al., 2021) gives that Vol(St+1 + ziB) ≤ 3

4Vol(St + ziB). For the case

At = a2t , we have St+1 =
{
v ∈ St : ⟨v, xt⟩ ≤

∥∥a1t − a2t
∥∥−1

(yt + ϵ)
}

. Notice that{
v ∈ St+1 + ziB : ⟨v, xt⟩ ≤

∥∥a1t − a2t
∥∥−1

(yt − ϵ)
}

=
{
v ∈ St + ziB : ⟨v, xt⟩ ≤

∥∥a1t − a2t
∥∥−1

(yt − ϵ)
}
.

Due to the half-cut (line 7 in Algorithm 8), we have

Vol
({

v ∈ St+1 + ziB : ⟨v, xt⟩ ≤
∥∥a1t − a2t

∥∥−1
(yt − ϵ)

})
=

1

2
Vol(St + ziB).

Then, we bound the volume of St+1 + ziB with ⟨v, xt⟩ ≥
∥∥a1t − a2t

∥∥−1
(yt − ϵ). Let C be the largest volume of a section

of St + ziB along the direction xt. By the analysis of (Liu et al., 2021, Lemma 2.1), we have

Vol(St + ziB) ≥ 4ziC. (47)
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Since
{
v ∈ St+1 + ziB : ⟨v, xt⟩ ≥

∥∥a1t − a2t
∥∥−1

(yt − ϵ)
}

has cross-section with volume at most C, the width is zi +

2
∥∥a1t − a2t

∥∥−1
ϵ ≤ 3

2zi where the inequality uses the non-break condition (recall line 4), we have

Vol
({

v ∈ St+1 + ziB : ⟨v, xt⟩ ≥
∥∥a1t − a2t

∥∥−1
(yt − ϵ)

})
≤ 3

2
ziC ≤ 3

8
Vol(St + ziB),

where the last inequality holds due to Eq. (47). Combining both volumes, the proof is complete.

Lemma G.3. For each round t that Algorithm 8 runs in phase m, if | ⟨ŝt − s⋆, a⟩ | ≤ ϵ/2 for all a ∈ A, then s⋆ ∈ St for
all those t.

Proof. For any round t, we assume At = a1t (the other case At = a2t is analogous). The agent selects a1t indicates that〈
ŝt, a

1
t

〉
+ d+ ξ ≥

〈
ŝt, a

2
t

〉
+ d+ ξ + yt.

By rearranging the above, we have yt ≤
〈
ŝt, a

1
t − a2t

〉
. We use the assumption to get

yt ≤
〈
ŝt, a

1
t − a2t

〉
≤
〈
s⋆, a1t − a2t

〉
+ ϵ,

Dividing the above by
∥∥a1t − a2t

∥∥ on both sides, we have

yt
∥a1t − a2t∥

≤
〈
s⋆,

a1t − a2t
∥a1t − a2t∥

〉
+

ϵ

∥a1t − a2t∥
= ⟨s⋆, xt⟩+

ϵ

∥a1t − a2t∥
.

Based on the update rule, we have s ∈ St+1. As this holds for each t, the proof is complete.

Lemma G.4. If Algorithm 8 breaks at round t and the condition in Lemma G.3 holds, then

max
u∈A

width(St, u) ≤ 32dϵ where A = {z : z = x− y such that x ̸= y ∈ A} .

Proof. At each round t, if index i is selected, then width(St, xt) ≤ 2−i. We note that Lemma G.3 gives that s⋆ ∈ St and
hence the index i is well-defined. When the algorithm breaks, we have

zi =
2−i

8d
≤ 4

∥∥a1t − a2t
∥∥−1

ϵ.

which immediately leads to

4
∥∥a1t − a2t

∥∥−1
ϵ ≥ 1

8d
width(St, xt).

As xt =
∥∥a1t − a2t

∥∥−1
(a1t − a2t ), multiplying

∥∥a1t − a2t
∥∥ on both sides gives width(St, a

1
t − a2t ) ≤ 32dϵ. Recall the

definition of A and the way to picking a1t , a
2
t from Algorithm 8, and thus the proof is complete.

Lemma G.5. Suppose E holds. If Algorithm 8 runs in phase m and the input ϵ satisfies | ⟨ŝt − s⋆, a⟩ | ≤ ϵ/2 for all a ∈ A
and all t that the algorithm runs in this phase, then it lasts at most O

(
d log2(dϵ))

)
rounds.

Proof. From Lemma G.3, s ∈ St for all t, and thus Vol(St + ziB) ≥ Vol(ziB) = zdi Vol(B). Whenever index i is chosen,
Vol(St + ziB) decreases by a constant factor, which implies that an index i can be picked at most O (d log(1/zi)) times.

Then, we claim that any index i that does not incur a break, must satisfy z−1
i ≤ (2ϵ)−1 and i ≤ ⌈log2(4d/ϵ)⌉. We prove

this by contradiction. Assume the algorithm picks index i with z−1
i > 1/(2ϵ) and does not break. In this case, we have

zi < 2ϵ = 4ϵ
2 ≤ 4ϵ

∥a1
t−a2

t∥
, which forms a contradiction.

Rearranging z−1
i ≤ (2ϵ)−1 yields i ≤ ⌈log2(4d/ϵ)⌉. Therefore, the total number of round that the algorithm will last is at

most

O

 ∑
i≤⌈log2(4d/ϵ)⌉

d log(z−1
i )

 ≤ O

 ∑
i≤⌈log2(4d/ϵ)⌉

d log(1/ϵ)

 ≤ O
(
d log2(d/ϵ)

)
,

which completes the proof.
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Lemma G.6. Suppose that E occurs. For all phase m, all a ∈ A and all t ∈ T E
m,a,

πa(t) > π⋆
a(t).

Proof. Notice that since every target bad arm a will be assigned with incentive πa(t) = 2d + T−1, and π⋆
a(t) =

maxb∈A ⟨ŝt, b− a⟩ ≤ maxb∈A ∥ŝt∥ ∥b− a∥ ≤ 2d, we have πa(t) > π⋆
a(t) for all a ∈ T E

m,a.

We then prove the claim for all active arms by using induction on m. For the base case m = 1. In this case, for all a ∈ Am

and all t ∈ T E
m,a, πa(t) = 2d+ T−1. From the same analysis for bad arms, the claim holds for m = 1.

Assume that the claim also holds for phase m− 1 ≥ 1, and then we prove the claim for phase m. In what follows, we focus
on those rounds t ∈ T E

m,a. For shorthand, let
zt ∈ argmax

a∈A
⟨ŝt, a⟩ .

If πa(t) = 2d+ T−1, then, we have πa(t) > π⋆
a(t) by the same argument used to prove for bad arms. Thus, we assume that

πa(t) ̸= 2d+ T−1.

By the definition of E , for any round t in phase m ≥ 2:

max
a∈A

|⟨ŝt − s⋆, a⟩| ≤ max
a∈A

√
2 ∥a∥U−1

t
log

(
4KT

δ

)

≤ max
a∈A

√
2 ∥a∥V −1

m(t)−1
log

(
4KT

δ

)

≤ 2

√√√√ d log (4KTδ−1)

min{Tm(t)−1, (d log(4KTδ−1))1/3T
2/3
m(t)−1}︸ ︷︷ ︸

=
ϵm(t)−1

2

, (48)

where the first inequality uses the definition of E , the second inequality holds due to Ut ⪰ Vm(t)−1, and the last inequality
follows from the induction hypothesis that each a ∈ A is played for t ∈ Tm(t)−1,a. We further show that for all rounds
t ∈ T E

m,a:

πa(t)− π⋆
a(t)

= max
b∈A

〈
cm(t), b− a

〉
+ (1 + 32d)ϵm(t)−1 +

1

T
− ⟨ŝt, zt − a⟩

≥
〈
cm(t), zt − a

〉
+ (1 + 32d)ϵm(t)−1 +

1

T
− ⟨ŝt, zt − a⟩

≥
〈
cm(t), zt − a

〉
+ (1 + 32d)ϵm(t)−1 +

1

T
−
(
⟨s⋆, zt − a⟩+ ϵm(t)−1

)
=
〈
cm(t) − s⋆, zt − a

〉
+ 32dϵm(t)−1 +

1

T

≥ −32dϵm(t)−1 + 32dϵm(t)−1 +
1

T
− ϵm(t)−1

=
1

T
,

where the first inequality uses the definition of zt, the second inequality uses Eq. (48), and the last inequality uses Lemma G.4
with ϵ = ϵm(t)−1 (the condition to invoke this lemma is checked by Eq. (48)). Once the induction is done, we complete the
proof.

Lemma G.7. Suppose E holds. For all t ∈ [T ] with m(t) ≥ 2,

max
a∈A

|⟨ŝt − s⋆, a⟩| ≤ ϵm(t)−1.
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Proof. With Lemma G.6 in hand, we repeat Eq. (48) for all m(t) ≥ 2 to complete the proof.

Lemma G.8. For all m ≥ 2, all a ∈ A, and all t ∈ T E
m,a

πa(t)−
(
max
b∈A

⟨ŝt, b⟩ − ⟨s⋆, a⟩
)

≤ (2 + 64d) ϵm(t)−1 +
1

T
.

Proof. Let bt ∈ argmaxa∈A
〈
cm(t), b

〉
, zt ∈ argmaxa∈A ⟨ŝt, a⟩, and m(t) be the phase that round t lies in. One can show

πa(t)−
(
max
b∈A

⟨ŝt, b⟩ − ⟨s⋆, a⟩
)

= max
b∈A

〈
cm(t), b− a

〉
+ (1 + 32d)ϵm(t)−1 +

1

T
− ⟨ŝt, zt⟩+ ⟨s⋆, a⟩

≤
〈
cm(t), bt − a

〉
+ (1 + 32d)ϵm(t)−1 +

1

T
− ⟨ŝt, bt⟩+ ⟨s⋆, a⟩

≤
〈
cm(t) − s⋆, bt − a

〉
+ (2 + 32d) ϵm(t)−1 +

1

T

≤ (2 + 64d) ϵm(t)−1 +
1

T
,

where the first inequality uses the definition of zt, the second inequality holds due to E and the last inequality uses Lemma G.4
with ϵ = ϵm(t)−1.

G.5. Lemmas for Elimination

Lemma G.9. Suppose that E occurs. For every phase m, a⋆ ∈ Am.

Proof. We prove this by induction on m. Obviously, the base case holds. Suppose that the claim holds for phase m and we
consider phase m+ 1. By the definition of E , for any phase m

∀a ∈ Am : |⟨ν̂m − ν⋆, a⟩| ≤

√
2 ∥a∥V −1

m
log

(
4KT

δ

)
≤ 2

√
d log (4KTδ−1)

Tm
≤ ϵm, (49)

where the second inequality uses Lemma G.6 which gives that each active arm a will be played for ⌈ρm(a)Tm⌉ times. We
have for each a ∈ Am

0 ≤ ⟨ν⋆ + s⋆, a⋆ − a⟩
≤ ⟨ν̂m + s⋆, a⋆ − a⟩+ 2ϵm

= ⟨ν̂m + c′m, a⋆ − a⟩+ ⟨s⋆ − c′m, a⋆ − a⟩+ 2ϵm

≤ ⟨ν̂m + c′m, a⋆ − a⟩+ 32dϵm + 2ϵm,

where the second inequality follows from Eq. (49) as well as the induction hypothesis a⋆ ∈ Am, and the last inequality uses
Lemma G.4 with ϵ = ϵm. To use Lemma G.4, we needs to verify the condition. By the definition of E , for any round t in
elimination period:

max
a∈A

|⟨ŝt − s⋆, a⟩| ≤ max
a∈A

√
2 ∥a∥U−1

t
log

(
4KT

δ

)

≤ max
a∈A

√
2 ∥a∥V −1

m(t)
log

(
4KT

δ

)

≤ 2

√√√√ d log (4KTδ−1)

min{Tm(t), (d log(4KTδ−1))1/3T
2/3
m(t)}︸ ︷︷ ︸

=
ϵm(t)

2

, (50)
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where the first inequality follows from the definition of E , the second inequality uses Lemma G.6, and the last inequality holds
due to Vm(t) ⪰

∑
a∈Am

⌈ρm(a)Tm⌉aa⊤ and Vm(t) ⪰
∑

b∈Bm
Um(a)bb⊤ where Um(a) = ⌈ωm(a)(d log(4TK/δ))1/3 ·

T
2/3
m ⌉.

This inequality implies a⋆ ∈ Am+1. Once the induction done, the proof is complete.

Lemma G.10. Let ma be the smallest phase such that ∆a > (9 + 64d)ϵma
. Suppose that E occurs. For each arm a with

∆a > 0, it will not be in Am for all phases m ≥ ma + 1.

Proof. Consider any arm a with ∆a > 0. We only need to consider a ∈ Ama and otherwise, the claim naturally holds. One
can show

max
b∈Ama

〈
c′ma

+ ν̂ma , b
〉
−
〈
c′ma

+ ν̂ma , a
〉
− (7 + 32d)ϵma

≥
〈
c′ma

+ ν̂ma
, a⋆
〉
−
〈
c′ma

+ ν̂ma
, a
〉
− (7 + 32d)ϵma

≥
〈
c′ma

+ ν⋆, a⋆
〉
−
〈
c′ma

+ ν⋆, a
〉
− (9 + 32d)ϵma

= ⟨s⋆ + ν⋆, a⋆ − a⟩ −
〈
s⋆ − c′ma

, a⋆ − a
〉
− (9 + 32d)ϵma

≥ ∆a − (9 + 64d)ϵma

> 0,

where the first inequality follows from Lemma G.9 that a⋆ ∈ Ama
, the second inequality holds due to Eq. (49), and the

third inequality uses Lemma G.4 with ϵ = ϵm (the condition to use Lemma G.4 is checked in Eq. (50)). According to the
elimination rule (see elimination period in Algorithm 7), arm a will not be in phases m for all m ≥ ma + 1.
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