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ABSTRACT

Video super-resolution (VSR) can achieve better performance compared to sin-
gle image super-resolution by additionally leveraging temporal information. In
particular, the recurrent-based VSR model exploits long-range temporal informa-
tion during inference and achieves superior detail restoration. However, effec-
tively learning these long-term dependencies within long videos remains a key
challenge. To address this, we propose LRTI-VSR, a novel training framework
for recurrent VSR that efficiently leverages Long-Range Refocused Temporal
Information. Our framework includes a tailored training strategy that utilizes
temporal propagation features from long video clips while training on shorter
video clips. Additionally, we introduce a refocused intra&inter-frame transformer
block which allows the VSR model to selectively prioritize useful temporal in-
formation through its attention module while further improving inter-frame in-
formation utilization in the FFN module. We evaluate LRTI-VSR on both CNN
and transformer-based VSR architectures, conducting extensive ablation studies to
validate the contribution of each component. Experiments on long-video test sets
demonstrate that LRTI-VSR achieves state-of-the-art performance while main-
taining training and computational efficiency.

1 INTRODUCTION
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Figure 1: PSNR(dB) and FLOPs(G) comparison on the
REDS4 (Nah et al., 2019) dataset.

Unlike single image super-resolution
(SISR) which relies solely on intra-
frame information to estimate missing
details, video super-resolution (VSR)
additionally leverages temporal infor-
mation to reconstruct high-resolution
frames. This key distinction allows
VSR to achieve a more accurate recov-
ery of the current frame by exploiting
temporal redundancy within video se-
quences. Driven by this benefit, the ef-
fective use of long-range temporal in-
formation has emerged as a critical re-
search focus, playing a pivotal role in
the success of modern VSR models.

Early-stage research (Li et al., 2020;
Wang et al., 2019; Tian et al., 2020;
Liang et al., 2022a; Cao et al., 2021) primarily employed a sliding temporal window strategy, utiliz-
ing sophisticated alignment modules and advanced network architectures to generate high-resolution
(HR) outputs from multiple low-resolution (LR) inputs. As the sliding temporal window limits the
utilization of temporal information to a fixed window size, recurrent-based VSR models which prop-
agate hidden states across the whole video begin to occupy a major position in the literature of VSR.
In this context, numerous advanced information propagation strategies (Fuoli et al., 2019; Isobe
et al., 2020a; Chan et al., 2021; 2022a; Isobe et al., 2022; Shi et al., 2022; Zhou et al., 2024) have
been proposed to make more accurate use of temporal information to achieve better VSR perfor-
mance. Combined with cutting-edge network architectures, the recurrent-based VSR modeles have
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Figure 2: The pipline of our proposed training strategy. Our proposed training strategy can utilize
accurate temporal dependencies in long video sequences to assist training while using short video
clips for high training efficiency. In this figure, −→hf means forward propagation hidden state and
←−hb means backward paopagation hidden state in the bidirectional recurrent-based VSR model.

significantly advanced the state-of-the-art in VSR field (Chan et al., 2022a; Liang et al., 2022a; Qiu
et al., 2022; Liu et al., 2022; Liang et al., 2022b; Shi et al., 2022; Xu et al., 2023; Zhou et al., 2024).

While recurrent-based VSR models have demonstrated strong capabilities in exploiting long-range
temporal information, their training becomes increasingly challenging when longer video clips are
used as input due to their sequential dependency constraints. Recent studies (Chan et al., 2021;
2022b; Liang et al., 2022a; Shi et al., 2022) have found that training recurrent-based VSR models
with longer video clips often leads to more accurate VSR results, as longer sequences facilitate
the learning of long-range temporal dependencies. However, as the depth and temporal modeling
complexity of the VSR network increases, simply extending the length of training clips becomes
highly time-consuming and memory-intensive. Consequently, state-of-the-art recurrent-based VSR
models are typically trained on shorter video clips to balance performance and training efficiency.
This compromise, however, results in models that fail to fully learn accurate long-range temporal
dependencies in long video datasets, ultimately degrading performance. Efficiently capturing long-
term information propagation patterns in long video sequences during VSR model training remains
a critical open challenge in the VSR field.

In this paper, we provide a feasible solution to this issue with a novel VSR training framework uti-
lizing Long-Range Refocused Temporal Information (LRTI-VSR). As the pivotal innovation, we
introduce a generic training strategy for recurrent-based VSR models that efficiently learns accurate
long-term temporal dependencies from long video sequences while maintaining manageable training
overhead. To be more specific, since training solely on short video clips fails to learn the temporal
propagation patterns inherent in long video sequences, we conduct forward and backward propaga-
tion in network training with different lengths of video clips. The forward propagation process is
conducted on long video sequences to obtain accurate intermediate hidden states for all the frames,
while the backward propagation step is performed on short video clips to facilitate efficient training.
Extensive experiments on our proposed model and a wide range of existing recurrent-based VSR
models demonstrate the effectiveness of this strategy, consistently improving performance without
modifying the underlying network architectures. In addition, we rethink the role of aligned redun-
dant temporal propagation hidden states in recovering the current frame and propose a refocused
intra- and inter-frame attention structure. By replacing SoftMax normalization layer with a sparse
refocus activation function ReLU2 in the attention module, our model only selectively prioritizes
useful information from previously processed features. To further enhance inter-frame information
utilization, we also integrate the aligned hidden state from the previous frame into the FFN struc-
ture through a refocused gate unit. These improvements enable the proposed refocused intra- and
inter-frame transformer block to enhance the LRTI-VSR model’s ability to leverage temporal prop-
agation features, establishing a stronger baseline for VSR tasks. Above all, our contributions can be
summarized as follows.

• We propose a novel VSR training framework that efficiently learns the temporal propagation pat-
terns of long videos and precisely utilizing inter-frame dependencies.

• We introduce a generic training strategy for recurrent-based VSR models, which enables the ef-
fective learning of accurate long-term propagation patterns while training on shorter video clips.

• We design a refocused intra&inter-frame transformer block, which selectively prioritizes useful
information from redundant temporal propagation hidden states to enhance current frame recovery.
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Figure 3: Structure of feature propagation module. The commonly used feature propagation
module contains a second-order grid propagation structure (red and green solid lines) that leverages
the computed hidden states ht−2

warp and ht−1
warp of the previous two frames warped (feature alignment

module) with the current frame’s feature Xt to assist in the restoration of the current frame.

• We evidence the superiority of our LRTI-VSR through extensive comparisons with state-of-the-art
VSR models, achieving superior performance while maintaining manageable training overhead.

2 METHODOLOGY

2.1 PRELIMINARY

Given a low-resolution video input ILR ∈ RT×H×W×3 with T frames, the goal of the VSR model is
to reconstruct the corresponding high-resolution video IHR ∈ RT×sH×sW×3, where s is the scaling
factor and H , W , 3 are the height, width and number of channels of the input frames, respectively.

Current VSR methods can be categorized into sliding-window based and recurrent-based ap-
proaches. Unlike sliding-window based VSR methods (Li et al., 2020; Wang et al., 2019; Cao et al.,
2021; Liang et al., 2022a) which rely on a limited number of adjacent frames, recurrent-based VSR
methods exploit long-range temporal information, enabling more efficient and robust restoration
during inference. The structure of temporal information propagation in recurrent-based VSR mod-
els (i.e. the feature propagation module) is illustrated in Fig. 3. As highlighted in previous works on
recurrent-based VSR (Fuoli et al., 2019; Chan et al., 2021), the feature propagation module lever-
ages high-dimensional hidden states computed from previous frames to assist in the computation of
the current frame feature. By incorporating longer video sequences during training, the recurrent-
based VSR model can more accurately learn long-range temporal propagation patterns, which can
significantly improve its performance.

Furthermore, effective modeling of inter-frame information is also crucial for better VSR perfor-
mance. To this end, recent studies (Chan et al., 2022a; Shi et al., 2022) have introduced second-order
connection structures to extract supplementary temporal information from previous frames, enhanc-
ing inter-frame redundancy (as also shown in Fig. 3). The feature alignment module then align
these hidden states from previous frames with current frame’s feature by the optical flow Ot−2→t

and Ot−1→t obtained from the low-resolution input for better performance. Combined with ad-
vanced inter-frame alignment techniques (Liang et al., 2022b; Shi et al., 2022; Xu et al., 2023) and
cross-attention modules (Zhou et al., 2024), these approaches enable more accurate exploitation of
temporal information, further advancing the state-of-the-art in video super-resolution.

2.2 LEARNING LONG-TERM DEPENDENCIES VIA SHORT VIDEO CLIP TRAINING

As discussed in previous subsection, temporal propagation hidden states play an important role in
the performance of recurrent-based video super-resolution models. Recent studies (Chan et al.,
2021; 2022b; Liang et al., 2022a; Shi et al., 2022) have shown that incorporating longer video
clips into training leads to better SR results. However, since recurrent-based VSR methods typ-
ically rely on the Back-Propagation Through Time (BPTT) (Werbos, 1990) strategy, simply in-
creasing the length of training video clips makes the training process time-consuming and memory-
intensive. To address this issue, we propose a truncated backpropagation training strategy inspired
by TBPTT (Williams & Zipser, 2013). Our approach enables the model to learn temporal propaga-
tion patterns from long video sequences while efficiently training on shorter clips.

3
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Forward propagation on long video sequences. Before training with short video clips as in-
put, the model performs a forward propagation on the corresponding long video sequence ILR =
{x1, x2, . . . , xT } of T frames to obtain the temporal propagation hidden states H for all frames:

H = VSR-model.forward(ILR). (1)

This process follows the original bidirectional recurrent-based VSR inference method, where the
initial frame has no additional temporal propagation features as input.

Backpropagation on short video clips. A short video clip of length L is selected from the long
video sequence before training, which can be expressed as:

ILR
clip = {xt}tstart+L−1

t=tstart
, tstart ∼ Uniform(1, T − L+ 1), (2)

where tstart denotes the starting frame position of the selected short video clip within the long video
sequence. In practice, we additionally input the two previous and subsequent frames of the selected
video clip for the bidirectional optical flow estimation:

OLR
clip = foptical flow({xt}tstart+L+1

t=tstart−2
), tstart ∼ Uniform(3, T − L− 1), (3)

The bidirectional recurrent VSR model then takes the selected video clip along with the correspond-
ing temporal propagation hidden states Hclip = {htstart−2,htstart−1,htstart+L,htstart+L+1} be-
fore and after starting and ending frames of the clip and optical flow estimation OLR

clip as input:

ÎHR
clip = VSR-model(ILR

clip,Hclip,O
LR
clip), (4)

where ÎHR
clip is the output of the forward propagation process during the VSR model’s training. This

configuration aligns with the foundational setup of bidirectional second-order grid propagation,
a widely adopted paradigm in state-of-the-art VSR frameworks (Chan et al., 2022a; Liang et al.,
2022b; Shi et al., 2022; Xu et al., 2023; Zhou et al., 2024). With leveraging the advanced feature
alignment model (Shi et al., 2022), our VSR model utilizes the aligned hidden states of long video
sequences to further assist the restoration of the whole video sequence.

Algorithm 1 Workflow of the proposed training strategy.

Require: training VSR-model fθ(·)
Require: Paired training dataset (ILR, IHR), Sample times N , Truncated video clip length L,

Whole video length T
1: while not converged do
2: Sample ILR ▷ Select a long video sequence
3: H = VSR-model.forward(ILR) ▷ Hidden states of the video sequence
4: for n = 0, 1, · · · , N − 1 do
5: Sample tstart ∼ Uniform(3, T − L− 1) ▷ Select a small video clip
6: ILR

clip = {xt}tstart+L−1
t=tstart

7: OLR
clip = foptical flow({xt}tstart+L+1

t=tstart−2
) ▷ Optical flow of the video clip

8: Hclip = {htstart−2,htstart−1,htstart+L,htstart+L+1} ▷ Hidden states of the video clip
9: ÎHR

clip = VSR-model(ILR
clip,Hclip,O

LR
clip) ▷ VSR with aligned hidden states

10: Lsr = Charbonnier Loss(ÎHR
clip , I

HR
clip )

11: VSR-model.backward()
12: end for ▷ This video sequence has been fully utilized
13: end while
14: return Converged VSR-model fθ(·).

Implementation details. In practice, we sample a fixed number of short clips from each long video
for back-propagation. The entire workflow of the proposed training strategy is shown in Alg. 1. We
intuitively ensure that the product of sampling times and truncation video clips length to be close to
the total video sequence length to better balance training efficiency and VSR performance. Finally,
we validate the effectiveness of our training strategy on previous CNN and Transformer-based state-
of-the-art VSR models, respectively, and further evaluate the time and memory efficiency of the
proposed training strategy. The detailed experimental setup and results can be seen in Section 3.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2ReLUSoftMax (1) Layer 1 (2) Layer 3 (3) Layer 6

Figure 4: Attention map comparison. We compare the visualization of the intra&inter attention
map under ReLU2 and the original SoftMax. The Top 50 values of all tokens (64×192) of the
attention maps under different network depths using these two activation functions are also counted.

2.3 REFOCUSED INTER- AND INTRA-FRAME TRANSFORMER

When utilizing temporal propagation hidden states enhances inter-frame correlation in VSR models,
inaccurate optical flow alignment will may degrade VSR model performance (Shi et al., 2022).
Some methods (Shi et al., 2022; Liang et al., 2022b; Xu et al., 2023) suggest using more advanced
alignment modules to alleviate this problem. To address this, we propose a Refocused Inter&intra-
Frame Transformer Block (RITB), which extends the approach in (Zhou et al., 2024) by directly
applying intra- and inter-frame attention to both previously hidden states and current frame features.
Our RITB selectively prioritizes features with positive contributions from inter-frame information
while mitigating the influence of irrelevant features. Specifically, we first generate Query Tokens
from the current frame feature and Key/Value Tokens from both the current frame feature and hidden
states of previous frames, which is same as (Zhou et al., 2024):

Qt
m,n = Xt

m,nW
Q
m,n,

Kt
m,n =

[
ht−1
m+1;h

t−2
m+1;X

t
m,n

]
WK

m,n,

V t
m,n =

[
ht−1
m+1;h

t−2
m+1;X

t
m,n

]
W V

m,n,
(5)

Where Qt
m,n, Kt

m,n and V t
m,n are the Query, Key and Value Tokens generated from the current input

feature Xt
m,n and the temporal propagation hidden states {ht−1

m+1,h
t−2
m+1} of the previous frames

which are aligned by the feature alignment model; WQ
m,n, WK

m,n and W V
m,n are the respective

projection matrices; m and n denote the m-th feature propagation module and the n-th RITB
block within the feature propagation module, respectively.

Refocused attention with sparse refocus activation. As mentioned above, to mitigate the influence
of irrelevant features in aligned hidden states, we introduce the sparse refocus activation function

Table 1: The effects of different activa-
tion functions after the attention map.

Activation Function PSNR(dB)

SoftMax 30.83
SoftMax w/o negative similarity 30.92

ReLU2 31.02

ReLU2 during the attention calculation:

RITBAttention = ReLU2(Qt
m,nK

t
m,n

T
/
√
d+B)V t

m,n,
(6)

where d is the channel dimension of the token, and B is
the learnable relative positional encoding. Unlike tradi-
tional transformer blocks that use SoftMax to retain all
feature correlations, we employ the ReLU2 function to set negative values in the Q ×K matrix to
zero while amplifying positive correlation values. This leads to more effective utilization of inter-
frame temporal information, as illustrated in Fig. 4 and Table 1. By setting negative attention values
to zero and enhancing positive ones with ReLU2, we achieved consistent performance gains.

Refocused gated unit (RGU). Beyond the attention module, we further leverage inter-frame tem-
poral information within the Feed-Forward Networks (FFN) module by introducing a Refocused
Gated Unit (RGU). Specifically, we leverage the aligned temporal propagation hidden state ht−1

m+1
of the previous frame for FFN calculation after calculating the refocused intra&inter-frame attention
to enhance the feature Xt

m,n
′ of the current frame:

RITBFFN = g(ReLU2(f(Xt
m,n

′
))⊙ f(ht−1

m+1)), (7)

Where f(·) and g(·)are linear projections, ⊙ is indicates element-wise multiplication and we also
used ReLU2 as the non-linear activation function. Additionally, our transformer layer incorporates
LayerNorm, a common component in Transformer-based architectures (Liang et al., 2022b; Shi
et al., 2022; Xu et al., 2023; Zhou et al., 2024). The overall structure of the proposed refocused
intra&inter-frame transformer block (RITB) is illustrated in Fig. 5.

5
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2.4 MODEL IMPLEMENTATIONS
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Figure 5: Illustration of the refocused
intra&inter frame transformer block
(RITB). More details of our RITB block can
be found in Subsection 2.3.

In this subsection, we detail the implementation of
our proposed LRTI-VSR model. Our LRTI-VSR
framework is built upon the bi-directional second-
order grid propagation framework of BasicVSR++
(Chan et al., 2022a), which has also been adopted
in recent state-of-the-art methods (Shi et al., 2022;
Xu et al., 2023; Zhou et al., 2024). The whole model
consists of three parts, i.e. the shallow feature extrac-
tion part, the recurrent feature refinement part and the
feature reconstruction part. Generally, the recurrent
feature refinement part comprises M feature propa-
gation modules and each feature propagation mod-
ule consists of N cascaded processing RITB blocks.
We follow previous works (Chan et al., 2022a; Shi
et al., 2022; Xu et al., 2023; Zhou et al., 2024) which
use a plain convolution operation to extract shallow
features and adopt a pixel-shuffle layer (Shi et al.,
2016) to reconstruct HR output with refined features.
The patch alignment method used in PSRT (Shi et al.,
2022) is used to align the hidden states with the cur-
rent frame. Following previous state-of-the-art approaches, we utilize the Charbonnier loss (Char-

bonnier et al., 1994) Lsr =
√
∥ ÎHQ − IHQ ∥2 +ε2(ϵ = 10−3) between the estimated HR image

ÎHQ and the ground truth image IHQ to train our network in all of our experiments. The detailed
overall architecture of the proposed LRTI-VSR model and structural comparison of the proposed
RITB block with MFSAB and IIAB adapoted in PSRT (Shi et al., 2022) and MIA-VSR (Zhou et al.,
2024) are shown in the Appendix A.2. Furthermore, the specific settings of our LRTI-VSR model
in the various comparison experiments will be introduced in Section 3.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

To evaluate the ability of our proposed LRTI-VSR model to learn long-term dependencies with short
video clips, we conduct extensive experiments on the REDS (Nah et al., 2019) and ToS3 (Chu et al.,
2020) datasets. The REDS dataset is a widely-used video dataset with each video sequence contains
100 frames, and the ToS3 dataset is the test set of 3 long video sequences (room,bridge,and face)
of lengths 150, 166 and 233. We train our LRTI-VSR model on the REDS dateset with bicubic
downsampling from scratch for 600K iterations, and evaluate all the proposed VSR models on the
REDS testing data (i.e. REDS4) and ToS3 datatset. In addition, we also validate our LRTI-VSR
model on the real-world VideoLQ (Chan et al., 2022b) dataset, and the experimental visual results
are in the Appendix A.4. We implement our model with PyTorch and train and test all of our models
with RTX 4090 GPUs. The respective hyper-parameters used for ablation studies and comparison
with state-of-the-art methods will be introduced in the following subsections and Appendix A.5.

3.2 ABLATION STUDY

The effectiveness of proposed training strategy. In order to demonstrate the effectiveness of our
proposed truncated backpropagation (denoted as TB) training strategy, we first apply it to several
previous state-of-the-art CNN-based and Transformer-based VSR models, e.g. BasicVSR(Chan
et al., 2021), BasicVSR++(Chan et al., 2022a) and PSRT(Shi et al., 2022), respectively. For CNN-
based VSR methods BasicVSR and BasicVSR++, we follow their original basic training setups
and train them using our proposed TB training strategy (truncated length 15 frames, sampling 7
times and truncated length 30 frames, sampling 5 times). For the Transformer-based PSRT method,
we perform 100K iterations on the pre-trained model using the proposed TB training strategy

6
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Table 2: Ablation studies of our proposed truncated
backpropagation strategy (denoted as TB) on previous
state-of-the-art CNN&Transformer VSR models.

Methods Training REDS4 GPU
Length PSNR SSIM days

BasicVSR(Chan et al., 2021) 15 31.42dB 0.8909 31.2
+TB strategy 15 31.56dB 0.9060 35.2

BasicVSR++(Chan et al., 2022a) 30 32.39dB 0.9069 57.6
+TB strategy 30 32.49dB 0.9176 60.8

PSRT(Shi et al., 2022) 16 32.72dB 0.9106 235
+TB strategy 16 32.84dB 0.9234 +21.2

(truncation length 16 frames, sampling 6
times) to enhance efficiency. The VSR
results of these models on the REDS4
(Nah et al., 2019) dataset are shown in
Table 2. We also report the baseline train-
ing time (gray font) and the training time
required after applying our proposed TB
training strategy in this table. With only
marginally increased training costs, our
proposed training strategy improves the
PSNR of the CNN-based VSR models
BasicVSR and BasicVSR++ by 0.14dB and 0.1dB, respectively; and for the previous state-of-the-art
PSRT model, our TB training strategy improves the performance of its VSR results by 0.12dB. These
results highlight the generalizability of our training strategy across different VSR architectures.

Table 3: Ablation studies on the effectiveness of our proposed
truncated backpropagation training strategy (TB).

Method TB Training Memory GPU REDS4
Length days PSNR SSIM

Ours

8 3.9GB 3.33 31.08dB 0.8987√
8 3.8GB 3.75 31.44dB 0.9052
24 10.9GB 9.12 31.44dB 0.9045
40 18.4GB 15.40 31.61dB 0.9079

Table 4: Ablation studies on different trun-
cated lengths for training.

Truncated Total Memory GPU PSNRLength Length days

- 8 3.9GB 3.33 31.08dB
4 40 2.9GB 2.83 31.22dB
8 40 3.8GB 3.75 31.44dB

16 40 4.1GB 8.62 31.50dB
- 40 18.4GB 18.4 31.61dB

Furthermore, to evaluate the training efficiency of our proposed training strategy for long video se-
quences, we separately instantiate our LRTI-VSR model and train 300K iterations from scratch. We
use 6 RITB blocks to to build feature propagation modules and instantiate our LRTI-VSR model
with 4 feature propagation modules. Concretely, we set different training lengths of video clips to
compare the efficiency of using only truncated length 8 frames with our proposed training strategy
(sampling 5 times within 40 frame-length video clips). We also report the GPU memory consump-
tion and the number of GPU days required for each experiment. To ensure a fair comparison, all
these models are trained with batch size of 1 and evaluated on one RTX4090 GPU. As shown
in Table 3, the proposed truncated back-propagation training strategy achieves a performance com-
parable to training with video clips of length 24 when using video clips truncated to a length of 8,
while attaining an acceleration of nearly 2.5× in training time and an reduction of nearly 2.9× in
GPU memory consumption. In Table 4, we also report the results for different truncated lengths
(sampling 5 times within 40 frame-length video clips). Since our training strategy loads new video
sequences only after a certain number of iterations,, our training strategy can effectively reduce the
amount of VRAM required during training. Additionally, our training strategy incurs only an ac-
ceptable increase in training time compared to the baseline approach of training with video clips of
length 8, but yields a substantial performance improvement of 0.36dB.

The effectiveness of RITB. In this part, we validate the effectiveness of the proposed refocused
intra&inter transformer block (RITB). We firstly compare the RITB with the multi-frame self-

Table 5: Ablation studies on the proposed RITB block.
More details can be found in the subsection 3.2.

Methods ReLU2 RGU TB Params REDS4
(M) PSNR SSIM

MFSAB(Shi et al., 2022) 6.41 30.76 0.8918
IIAB(Zhou et al., 2024) 6.06 30.83 0.8929

RITB

√
6.06 31.02 0.8969√
6.06 30.97 0.8976√ √
6.06 31.08 0.8987√ √ √
6.06 31.44 0.9052

attention block (MFSAB) and
intra&inter-frame attention block
(IIAB) which were adopted in PSRT
(Shi et al., 2022) and MIA-VSR
(Zhou et al., 2024). As mentioned
above, we also use 6 MFSAB or
IIAB or RITB to build feature prop-
agation modules and instantialize
VSR models with 4 feature propaga-
tion modules and also evaluate these
models on one RTX4090 GPU.

In addition, we perform ablation experiments on the improvements proposed in RITB respectively
to verify the effectiveness of each part of RITB. As can be found in Table 5, our model achieves
a 0.19dB improvement over the baseline IIAB-VSR model with the addition of only the ReLU2

activation function, and a 0.14dB improvement when only the Refocused Gated Unit (RGU) is
added. When combining both modifications, our LRTI-VSR model with the RITB block outper-
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Table 6: Quantitative comparison (PSNR/SSIM) on the REDS4 (Nah et al., 2019) and ToS3 (Chu
et al., 2020) datasets for 4× video super-resolution task. The number of FLOPs(T) are computed on
an LR frame size of 180× 320. For all experiments, we color the best performance with red.

Method Training Params(M) FLOPs(T) REDS4 ToS3
Length PSNR SSIM PSNR SSIM

TOFlow(Xue et al., 2019) 5 - - 27.98 0.7990 - -
EDVR(Wang et al., 2019) 5 20.6 2.95 31.09 0.8800 32.96 0.9100
MuCAN(Li et al., 2020) 5 - - 30.88 0.8750 - -
VSR-T(Cao et al., 2021) 5 32.6 1.60 31.19 0.8815 33.11 0.9125
VRT(Liang et al., 2022a) 6 35.6 1.37 31.60 0.8888 33.68 0.9217

BasicVSR(Chan et al., 2020) 15 6.3 0.33 31.42 0.8909 32.51 0.9015
IconVSR(Chan et al., 2020) 15 8.7 0.51 31.67 0.8948 33.69 0.9260

BasicVSR++(Chan et al., 2022a) 30 7.3 0.39 32.39 0.9069 34.24 0.9339
LRTI-VSR-small 16 6.06 0.58 32.56 0.9084 34.37 0.9342

VRT(Liang et al., 2022a) 16 35.6 1.37 32.19 0.9006 34.09 0.9289
RVRT(Liang et al., 2022b) 30 10.8 2.21 32.75 0.9113 34.47 0.9354

PSRT-recurrent(Shi et al., 2022) 16 13.4 2.39 32.72 0.9106 34.48 0.9361
MIA-VSR(Zhou et al., 2024) 16 16.5 1.61 32.78 0.9115 34.12 0.9330

IART(Xu et al., 2023) 16 13.4 2.51 32.90 0.9138 34.63 0.9386
LRTI-VSR 16 12.9 1.54 33.06 0.9162 34.81 0.9399

Frame 4425, room, ToS3

LQ (x4) BasicVSR++ RVRT PSRT-recurrent

MIA-VSR IART LRTI-VSR (Ours) GT

LQ (x4) BasicVSR++ RVRT PSRT-recurrent

MIA-VSR IARTFrame 003, Clip 000, REDS LRTI-VSR (Ours) GT

Figure 6: Visual comparison on REDS4 (Nah et al., 2019) and ToS3 (Chu et al., 2020) dataset.

forms the IIAB-VSR model by 0.24dB with no additional parameter increase. Furthermore, with
the integration of our proposed truncated backpropagation training strategy, the LRTI-VSR model
demonstrates a performance improvement by a large margin of 0.61dB and 0.68dB over the baseline
IIAB-VSR (Zhou et al., 2024) and MFSAB-VSR (PSRT) (Shi et al., 2022) model. Furthermore, for
the model used in our ablation study (named LRTI-VSR-small in Table 6), we trained it from scratch
using the basic experimental setup of BasicVSR++ (Chan et al., 2022a) with a shorter training length
(16 vs. 30), resulting in a performance improvement of over 0.17 dB compared to BasicVSR++.

3.3 COMPARISON WITH STATE-OF-THE-ART METHODS

In this subsection, we compare the proposed LRTI-VSR model with current state-of-the-art VSR
methods. We compare the proposed LRTI-VSR with representative sliding-window based methods
TOFlow (Xue et al., 2019), EDVR (Wang et al., 2019), MuCAN (Li et al., 2020), VSR-T (Cao
et al., 2021), VRT (Liang et al., 2022a), RVRT (Liang et al., 2022b) and recurrent-based methods
BasicVSR (Chan et al., 2020), BasicVSR++ (Chan et al., 2022a), PSRT (Shi et al., 2022), IART(Xu

8
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et al., 2023) and MIA-VSR(Zhou et al., 2024); among which VRT, RVRT, PSRT-recurrent, IART
and MIA-VSR are Transformer-based approaches and the other approaches are CNN-based models.

In order to compare with state-of-the-art methods, we instantialize our LRTI-VSR model with 4
feature propagation modules and each feature propagation module contains 18 RITB blocks. Among
them, we set the interval of skip connections to [6,6,6]. The spatial window size, head size and
channel size are set to 8 × 8, 6 and 120 accordingly. The number of parameters in our model is on
par with the recent state-of-the-art methods PSRT-recurrent (Shi et al., 2022) and IART(Xu et al.,
2023). In particular, we use our proposed truncated backpropagation training strategy for our LRTI-
VSR model, which the truncated video clip length is set to 16 and then sampling 6 times within the
whole video (100 frames, REDS).

The VSR results of different methods on the long-video test datasets can be found in Table 6. Our
model improves the PSNR of the baseline MIA-VSR by 0.28dB on the REDS dataset and 0.69dB on
the ToS3 dataset, while having a lower number of parameters and FLOPs. Furthermore, our model
improves the PSNR of the state-of-the-art IART model by 0.16dB on the REDS dataset and 0.18dB
on the ToS3 dataset, while the number of FLOPs (test on the REDS4 dataset, 180 × 320 in size)
is nearly 40% lower. Some visual results from different VSR results can be found in Fig.6, our
LRTI-VSR method is able to recover more natural and sharp textures from the input LR sequences.
More visual examples are also provided in our in the Appendix A.7.

4 RELATED WORK

We discuss with the most relevant literature here and provide a more discussion in Appendix A.6.

Recurrent-based Video Super-Resolution Models. Compared with Temporal sliding-window
methods (Li et al., 2020; Wang et al., 2019; Cao et al., 2021; Liang et al., 2022a) that only use
short-range temporal information, another category of approaches applies recurrent neural networks
to exploit long-range temporal information from more frames during inference. BasicVSR (Chan
et al., 2020) utilized bi-directional hidden states, and BasicVSR++ (Chan et al., 2022a) further im-
proved BasicVSR with second-order grid propagation and flow-guided deformable alignment. Re-
cently, more advanced inter-frame alignment modules (e.g. RVRT (Liang et al., 2022b), PSRT (Shi
et al., 2022) and IART (Xu et al., 2023)) and computationally efficient network layers (e.g. MIA-
VSR (Zhou et al., 2024)) have been proposed to improve the utilization efficiency of inter-frame
information. Combined with the advanced Transformer architecture, the performance of VSR is
improved to a new level. Our proposed LRTI-VSR model follows the general framework of existing
transformer-based recurrent VSR models but leverages long-term dependencies within long video
sequences with affordable training overhead.

Efficient Training Strategy of RNNs. Training RNNs often relies on the resource-intensive Back-
Propagation Through Time (Werbos, 1990) (BPTT) method. To address its computational challenge,
Truncated Back-Propagation Through Time (Williams & Zipser, 2013) (TBPTT) was originally
designed for recurrent neural networks to model long natural language sequences. PGT (Pang et al.,
2021) is the first attempt to introduce the TBPTT strategy into video modeling in high-level vision
tasks. In the VSR field, Lin et al. (2023) proposed to accelerate training by gradually increasing
the video resolution and frame length, but it was still limited by peak memory usage. Our proposed
training strategy bears conceptual similarity to TBPTT. It not only maintains the original training
cost but also further facilitates its learning of long-term dependencies of long video sequences.

5 CONCLUSION

In this paper, we proposed a novel recurrent video super-resolution training framework which lever-
ages long-range refocused temporal information, named LRTI-VSR. We develop a generic training
strategy for the recurrent-based VSR model that effectively learns the accurate temporal propagation
patterns within long video sequences and facilitates training using shorter video clips. Further more,
a refocused intra&inter-frame Transformer block is proposed to select and refocus features with
positive contributions from the previously hidden states for current frame restoration. We evaluated
our LRTI-VSR model on various benchmark video super-resolution datasets, and our model is able
to achieve state-of-the-art video super-resolution results.
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REPRODUCIBILITY STATEMENT

We provide detailed hyperparameter settings in Section 3 and Appendix A.5. To further facilitate
reproducibility, we will release our implementation and trained model checkpoints, enabling the
reported results to be reproduced.
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A APPENDIX

In this file, we provide more implementation and experimental details which are not included in
the main text. In Section A.1, We provide an explanation in the paper regarding the use of large
language models (LLMs). In Section A.2, we provide a detailed diagram of the network architecture
for the entire LRTI-VSR model and structural comparison of the proposed RITB block with previous
work. In Section A.3, we provide the complexity analysis of our proposed LRTI-VSR model with
previous advanced Video super-resolution methods. In Section A.4, we provide additional validation
experiment of the LRTI-VSR model under the real-world video dataset. In Section A.5, we provide
more implementation details and more information about the dataset. In Section A.6, We provide a
more detailed discussion on the related work of our proposed LRTI-VSR model. In Section A.7, we
provide more visual examples of our proposed LRTI-VSR model.

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) to aid in polishing the writing. Specifically, LLMs were
employed to improve grammar, clarity, and readability of the manuscript. No part of the research
ideation, methodological design, or experimental analysis relied on LLMs.

A.2 MODEL STRUCTURE

The overall architecture of our proposed LRTI-VSR and structural comparison of the proposed RITB
block with MFSAB (Shi et al., 2022) and IIAB (Zhou et al., 2024) are shown in Figure 8 and
Figure 9. We built our LRTI-VSR framework upon the bi-directional second-order grid propagation
framework of BasicVSR++ (Chan et al., 2022a) and the attention structure of MIA-VSR (Zhou
et al., 2024). Besides the commonly used shallow feature extraction, recurrent feature refinement
and feature reconstruction parts, we utilize the proposed truncated backpropagation training method
and refocused intra&inter Transformer block (RITB) to train and build our LRTI-VSR model.

A.3 COMPLEXITY ANALYSIS

Table 7: Comparison of model size and complexity of different state-of-the-art VSR models on the
REDS(Nah et al., 2019) dataset.

Model Params(M) FLOPs(T) Runtime(ms) PSNR(dB)

RVRT*(Liang et al., 2022b) 10.8 2.21 473 32.75
PSRT(Shi et al., 2022) 13.4 2.39 1041 32.72

MIA-VSR(Zhou et al., 2024) 16.5 1.61 822 32.78
IART(Xu et al., 2023) 13.4 2.51 1080 32.90

LRTI-VSR 12.9 1.54 848 33.06

* means that uses customized CUDA kernels for better performance.

In Table 7, we report the number of parameters, the number of FLOPs, the Runtime and the PSNR on
the REDS dataset by different current state-of-the art Transformer-based VSR methods. Our LRTI-
VSR method has a similar or smaller number of parameters but requires the least number of FLOPs
when processing video sequences. As for the runtime, our model is not as fast as RVRT, because the
authors of RVRT have implemented the key components of RVRT with customized CUDA kernels.
As the acceleration and optimization of transformers still require further research, there is room for
further optimization of the runtime of our method by our relatively small FLOPs.

A.4 EVALUATE ON THE REAL-WORLD DATASET

Real-world VSR is a variant of the VSR task where the low-resolution inputs are corrupted with
different non-deterministic degradation. The classical VSR method usually has yield excessively
smoothed results on this kind of dataset. To further prove that our proposed truncated back-
propagation training method is also suitable for VSR models trained for real scenarios, we applied it
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RealBasicVSR
RealBasicVSR

TB + RealBasicVSRTB + RealBasicVSR

Figure 7: Qualitative comparison on VideoLQ (Chan et al., 2022b) dataset. Our proposed TB
training strategy recovers the aircraft textures and reduces the curtain artifacts, which RealBasicVSR
does not recover.

to the RealBasicVSR (Chan et al., 2022b) model. It is obvious in the Fig. 7 that our training method
can help produce more realistic and fine-grained results.

A.5 DATASET AND IMPLEMENTATION DETAILS

A.5.1 DATASETS

REDS (Nah et al., 2019) REDS is a widely-used video dataset for evaluating video restoration
tasks. It has 270 clips with a spatial resolution of 1280 × 720. We follow the experimental settings
of (Chan et al., 2020; 2022a; Shi et al., 2022) and use REDS4 (4 selected representative clips, i.e.,
000, 011, 015 and 020) for testing and training our models on the remaining 266 sequences.

ToS3 (Chu et al., 2020) ToS3 is a long video test dataset for evaluating video super-resolution tasks.
It contains 3 video clips (i.e, room, bridge and face) and the length of each video clip is 150, 166
and 233 (534×1280). We follow the experimental settings of (Chan et al., 2020; 2022a; Shi et al.,
2022; Xu et al., 2023; Zhou et al., 2024) to train the LRTI-VSR model on the REDS datatset and
use the 3 sequences in the ToS3 dataset to evaluate current state-of-the-art VSR models.

VideoLQ (Chan et al., 2022b) VideoLQ is a test dataset with non-deterministic degradation for
evaluating real-world VSR tasks. It contains 50 video clips and the length of each video clip is 100.
We follow the experimental settings of (Chan et al., 2022b) to train RealBasicVSR model with our
proposed TB training strategy on the REDS datatset and use the VideoLQ dataset to compare with
the original RealBaiscVSR model.

A.5.2 TRAINING AND TESTING DETAILS

Comparison with State-of-the-Art VSR Methods in Table 6. We train our LRTI-VSR model
with the REDS (Nah et al., 2019) training dataset with zooming factor 4. We follow the experimental
settings of BasicVSR++ (Chan et al., 2022a) and train our LRTI-VSR and LRTI-VSR-small models
for 600K iterations. The initial learning rate is set as 2×10−4 and a cosine learning rate decay to 1e-
7. We train our model with Adam optimizer and the batch size is set as 24. In the testing phase, we
evaluate LRTI-VSR model’s performance on the REDS4 (Nah et al., 2019) dataset and ToS3 (Chu
et al., 2020) dataset. We calculate PSNR and SSIM on the RGB channel for these datatsets. For the
calculation of the FLOPs in Table 4, we compare all VSR models with an input low-resolution (LR)
frame size of 180×320 on the REDS4 dataset.

Ablation Studies of Proposed Truncated Backpropagation Training Strategy in Table 2, Table
3 and Table 4 . For the ablation study of the truncated backpropagation (TB) training strategy, we
follow the original training settings of the BasicVSR (Chan et al., 2021) and BasicVSR++ (Chan
et al., 2022a) models, respectively. Both models are trained from scratch using our proposed TB
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Figure 8: The overall architecture of LRTI-VSR. We develop a truncated backpropagation training
strategy for the VSR model (A) learning long-term propagation patterns within long video sequences
from short video clips and further proposed a refocused intra&inter Transformer block (RITB) used
in the LRTI-VSR architecture to selectively prioritize useful information and suppress irrelevant
features from temporal propagation hidden states to recover the current frame (B).
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Figure 9: The structural comparison of MFSAB, IIAB and RITB. Our proposed a refocused
intra&inter Transformer block (RITB) improves the previous MFSAB(Shi et al., 2022) block and
IIAB(Zhou et al., 2024) block in two aspects: (1) We replace SoftMax with the sparse refocus ac-
tivation function ReLU2 to suppress irrelevant features with negative impacts on the current frame’s
recovery while refocusing on beneficial features in the cross-attention module; (2) We integrate the
aligned hidden state from previous frame into the FFN structure through a refocused gate unit, fur-
ther improving inter-frame information utilization.

training strategy. For the transformer-based method PSRT (Shi et al., 2022), we fine-tune the pre-
trained model with an initial learning rate of 1e-4 with TB training strategy. The learning rate was
decayed to 1e-7 using a cosine schedule over 100K iterations with batchsize of 4.
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For Table 3 and Table 4, we also instantiate the LRTI-VSR model with the bi-directional second-
order grid propagation strategy. The total training iterations are set to 300,000, with a learning rate
initialized at 1e-4 and subjected to a cosine learning rate decay, reaching 1e-7 at the end of training.
For efficiency, the batch size used for these experiments is 1, respectively. All models are trained
and evaluated on the REDS dataset.

Ablation Studies of Proposed Refocused Intra&inter Transformer Block (RITB) in Table 1 and
Table 5. For ablation studies of sparse refocus activation function ReLU2, we instantiate the the
baseline IIAB model (Zhou et al., 2024) in the same configuration as the previous ablation studies
in Table 3 with vanilla SoftMax activation function. For ablation studies of refocused intra&inter
Transformer block in Table 5, we instantiate the LRTI-VSR model in the same configuration as the
previous ablation studies in Table 3. The total number of training iterations of these experiments
are both set to 300,000, with the learning rate initialized at 1e-4 and subject to cosine learning rate
decay, reaching 1e-7 at the end of training.

A.6 RELATED WORK

A.6.1 VIDEO SUPER-RESOLUTION

According to how the temporal information is utilized, all previous deep learning-based VSR meth-
ods can be divided into two categories: temporal sliding-window based methods and recurrent based
methods.

Temporal sliding-window methods tend to restore a single frame using several neighboring reference
frames within a temporal window, such as estimating HR images from multiple input images in a
temporal sliding window manner (Li et al., 2020; Wang et al., 2019; Cao et al., 2021; Liang et al.,
2022a). The alignment module plays an essential role in temporal sliding-window based method
in modeling the inter-frame relationship. In the earlier stage, several sliding-window methods (Ca-
ballero et al., 2017; Liu et al., 2017; Tao et al., 2017) explicitly estimated the optical flow to align
adjacent frames. Dynamic filters (Jo et al., 2018), deformable convolutions (Dai et al., 2017; Tian
et al., 2020; Wang et al., 2019) and attention modules (Isobe et al., 2020b; Li et al., 2020) have been
developed to conduct motion compensation implicitly in the feature space. Although the alignment
module allows sliding-window-based VSR networks to better exploit temporal information from
adjacent frames, the accessible temporal information is constrained by the window size, limiting the
models’ ability to utilize data from only a small number of input frames.

Compared with Temporal sliding-window methods that only use short-range temporal information,
another category of approaches applies recurrent neural networks to exploit long-range temporal
information from more frames. FRVSR (Sajjadi et al., 2018) first proposed a recurrent framework
that utilizes optical flow to align the previous HR estimation and the current LR input for VSR.
RLSP (Fuoli et al., 2019) propagates high-dimensional hidden states instead of the previous HR
estimation to better exploit long-term information. RSDN (Isobe et al., 2020a) further extended
RLSP (Fuoli et al., 2019) by decomposing the LR frames into structure and detail layers and intro-
duced an adaptation module to selectively use the information from hidden states. BasicVSR (Chan
et al., 2020) utilized bi-directional hidden states, and BasicVSR++ (Chan et al., 2022a) further im-
proved BasicVSR with second-order grid propagation and flow-guided deformable alignment. Re-
cently, more advanced inter-frame alignment modules (e.g. RVRT (Liang et al., 2022b), PSRT (Shi
et al., 2022) and IART (Xu et al., 2023)) and computationally efficient network layers (e.g. MIA-
VSR (Zhou et al., 2024)) have been proposed to improve the utilization efficiency of inter-frame
information. Combined with the advanced Transformer architecture, the performance of VSR is
improved to a new level. Our proposed LRTI-VSR model follows the general framework of existing
transformer-based recurrent VSR models but leverages long-term dependencies within long video
sequences with affordable training overhead.

A.6.2 EFFICIENT MODELING OF LONG SEQUENCES

How to incorporate long sequence dependencies into training efficiently has always been a key issue
in sequence model research. Training RNNs often relies on the resource-intensive Back-Propagation
Through Time (Werbos, 1990) (BPTT) method. To address its computational challenge, Truncated
Back-Propagation Through Time (Williams & Zipser, 2013) (TBPTT) was originally designed for
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recurrent neural networks to model long natural language sequences. In later stages, researchers
proposed unbiased approximations like NoBackTrack (Ollivier et al., 2015) and UORO (Tallec &
Ollivier, 2017a), which update model parameters online and avoid the memory and computational
overhead caused by backpropagation over time, facilitating efficient training of sequence models.
ARTBP (Tallec & Ollivier, 2017b) utilizes a flexible memory method and compensatory factors to
mitigate noise while maintaining accuracy and efficiency for long sequences. Most recently in the
research of large language model, in order to make the Transformer-based sequence model able to
use the information of long sequences for training, sparse Transformer (Child et al., 2019; Beltagy
et al., 2020; Ding et al., 2023), compressed memory (Liu et al., 2018), KV cache (Shazeer, 2019;
Dao et al., 2022; Kwon et al., 2023), linear Transformer (Katharopoulos et al., 2020) and sequence
parallelism (Li et al., 2021; Gu et al., 2021) strategies are usually used for efficient long sequence
modeling. PGT (Pang et al., 2021) is the first attempt to introduce the TBPTT strategy into video
modeling in high-level vision tasks. However, efficiently incorporating long-term information into
video restoration model training remains a critical challenge in the field of low-level vision. To the
best of our knowledge, our study is the first work in this field that utilizes long-term propagation
patterns of long video sequences to assist training with short video clips, requiring a minor increase
in training overhead.

A.7 VISUAL RESULTS

We conducted further visual comparisons between existing VSR methods and the proposed
Transformaer-based recurrent video super-resolution framework utilizing long-range refocused tem-
poral information (LRTI-VSR). The LRTI-VSR model is trained on the REDS dataset using a trun-
cated sequence length of 16 frames. Figure 10 and Figure 11 illustrate the visualization results.
As observed, the proposed method not only improves quantitative performance but also produces
images with sharp edges, fine details, and visually appealing quality, such as the edge details of
buildings, license plate numbers, and intricate details in cinematic scenes. In contrast, existing
methods suffer from texture distortions or loss of detail in these scenarios.
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Frame 002, Clip 011, REDS
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Figure 10: Visual comparison for 4× VSR on REDS4 dataset.
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Frame 13967, room, ToS3

LQ (x4) BasicVSR++ RVRT PSRT-recurrent
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Figure 11: Visual comparison for 4× VSR on ToS3 dataset.
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