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ABSTRACT

In this work, we present UniG, a view-consistent 3D reconstruction and novel
view synthesis model that generates a high-fidelity representation of 3D Gaus-
sians from sparse images. Existing 3D Gaussians-based methods usually regress
Gaussians per-pixel of each view, create 3D Gaussians per view separately, and
merge them through point concatenation. Such a view-independent reconstruction
approach often results in a view inconsistency issue, where the predicted positions
of the same 3D point from different views may have discrepancies. To address this
problem, we develop a DETR (DEtection TRansformer)-like framework, which
treats 3D Gaussians as decoder queries and updates their parameters layer by layer
by performing multi-view cross-attention (MVDFA) over multiple input images.
In this way, multiple views naturally contribute to modeling a unitary represen-
tation of 3D Gaussians, thereby making 3D reconstruction more view-consistent.
Moreover, as the number of 3D Gaussians used as decoder queries is irrespective
of the number of input views, allow an arbitrary number of input images without
causing memory explosion. Extensive experiments validate the advantages of our
approach, showcasing superior performance over existing methods quantitatively
(improving PSNR by 4.2 dB when trained on Objaverse and tested on the GSO
benchmark) and qualitatively.

1 INTRODUCTION

3D object reconstruction and novel view synthesis (NVS) are pivotal in computer vision and graph-
ics, converting 2D images into detailed 3D structures in various applications such as robotics, aug-
mented reality, virtual reality, medical imaging, archaeology, and more. Neural Radiance Fields
(NeRF) attempts (Xu et al., 2024; Mildenhall et al., 2020; Wang et al., 2021a; Chen et al., 2021; Yu
et al., 2021; Liu et al., 2024a; Xiong et al., 2024) are notable in 3D fields recently. However, their
progress is impeded by slow rendering speeds due to the implicit. Recently, as a semi-implicit repre-
sentation, 3D Gaussian Splatting (3D GS) (Kerbl et al., 2023) has achieved remarkable optimization
speed and high-quality novel view rendering performance in representing objects or scenes.

However, many recent methods based on 3D GS techniques encounter the challenge of view in-
consistency. This issue arises due to imprecise depth estimations from individual views, leading
to duplicated representations of the same object regions within the 3D reconstructions from dif-
ferent perspectives. For instance, MVGamba (Yi et al., 2024) treats images and 3D Gaussians as
sequences in Mamba (Gu & Dao, 2023; Dao & Gu, 2024) which leads to input view order induced
view inconsistency. Splatter Image (Szymanowicz et al., 2024) and LGM (Tang et al., 2024a) pre-
dict pixel-aligned 3D Gaussians for each input view in the camera space of the corresponding input
view. Then these 3D Gaussians are transformed from camera spaces of each view to the world space
and naively merged together to obtain the ultimate 3D Gaussians, as depicted in fig. 1(a).

However, such dimension lifting from 2D images to 3D Gaussians in different views are indepen-
dent and lacks interactions among different views, thus it may result in a single object point being
represented by multiple 3D Gaussians at different positions, leading to the aforementioned view-
inconsistency issue (Yang et al., 2024; Dong & Wang, 2024).

To address this issue, we propose a Unitary 3D Gaussians (UniG) representation. Inspired by De-
formable DETR (Liu et al., 2023b; Li et al., 2024; Zhang et al., 2023; Liu et al., 2022; Li et al.,
2023a) that treats the position and properties of bounding box (Bbox) as queries of the Transformer
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(a). LGM (Tang et al., 2024a) (b). Ours (c). Results
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Figure 1: (a) Previous methods such as LGM (Tang et al., 2024a) directly concatenate Gaussians
from different views, leading to view inconsistency. (b) Our method employs a unitary set of 3D
Gaussians, projecting them onto each view and integrating information across views for Gaussian
updates. (c) Our approach significantly surpasses previous methods in the novel view synthesis task.

decoder, we develop a DETR-like Transformer encoder-decoder framework, which treats 3D Gaus-
sians as decoder queries and updates their parameters layer by layer by performing cross-attention
over multiple input views as keys and values. To work over multi-view input, we propose a multi-
view deformable attention (MVDFA) operation, where each 3D point fetches related information
from multi-view 2D images simultaneously, effectively guaranteeing the consistency. More specif-
ically, MVDFA utilize camera modulation techniques (Karras et al., 2019; Hong et al., 2024) to
diversify queries based on views. The queries are linearly transformed to make difference in each
view, with the weights and bias trained from camera parameters. Such operation gives each view
its corresponding camera pose information. The view-specific queries are then used for performing
deformable attention over corresponding images. Although similar to DFA3D (Li et al., 2023a) and
BEVFormer (Li et al., 2022) in employing deformable attention in 3D with a point projection strat-
egy, our model prioritizes multi-view distinctions (different qureies in different views) to achieve a
more precise 3D representation. Further elaboration is available in section 2.

As the number of 3D Gaussians is usually very large, e.g. over 10,000, the self-attention operation
in a deformable Transformer decoder layer will demand a significant memory and computational
cost. To improve the efficiency, inspired by (Wang et al., 2021b), we introduce a 3D Spatial Effi-
cient Self-Attention (SESA) approach, leveraging Fast Point Sampling (FPS) (Qi et al., 2017a) to
downsize the number of keys and values while preserving the number of queries. Moreover, directly
regressing the positions of 3D Gaussians may lead to convergence challenges (see appendix A.4).
To address this problem, we utilize a coarse-to-fine framework, where a direct lift from 2D to 3D is
employed for every pixel in randomly selected input views at the coarse stage. Then, the 3D Gaus-
sians from this stage serve as the initialization for the deformable Transformer-based refinement
network, facilitating meaningful projected positions and aiding in convergence.

In summary, our contributions are as follows:

• We propose UniG, a novel 3D object reconstruction and NVS algorithm which utilizes
a unitary set of 3D Gaussians as queries in deformable Transformer. Such an approach
allows all input views to contribute to the same 3D representation and effectively addresses
the view inconsistency issue and supports arbitrary number of input views.

• We propose to use MVDFA for tackling the multi-view fusion challenge, SESA for mini-
mizing the memory usage in self-attention, and a coarse-to-fine framework for mitigating
the convergence issue when directly regressing world coordinates of 3D Gaussians.

• Both quantitative and qualitative experiments are conducted for evaluation. Our proposed
method achieves the state-of-the-art performance on the commonly-used benchmark.

2 RELATED WORK

3D reconstruction from images Recently, various methods have been explored to reconstruct
detailed 3D object from limited viewpoints. (Liu et al., 2024b;c; Tang et al., 2024b; Song et al.,
2021a) view the problem as an image-conditioned generation task. Leveraging pretrained generative
models like Rombach et al. (2022), they achieve realistic renderings of novel views. However,
diffusion models require longer time to generate 3D with multi-step denoising process, thus limiting
their applicability in real-time scenarios. Recent methodologies that rely on a single forward process
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for 3D reconstruction, utilizing Neural Radiance Field (NeRF) (Mildenhall et al., 2020) as a robust
3D representation, have demonstrated effective performance in the field of 3D reconstruction. (Yu
et al., 2021; Cao et al., 2022; Guo et al., 2022; Lin et al., 2022; Li et al., 2023b; Müller et al.,
2022; Liu et al., 2024d; Wei et al., 2024; Tochilkin et al., 2024; Xu et al., 2024; Yu et al., 2021;
Wang et al., 2021a; Chen et al., 2021). However, due to the slow rendering speed of NeRF, it is
being supplanted by a new, super-fast, semi-implicit representation—3D Gaussian Splatting (3D
GS) (Kerbl et al., 2023). Triplane-Gaussian (Zou et al., 2024), Gamba (Shen et al., 2024), and
DIG3D (Wu et al., 2024) make promising results on single image 3D reconstruction. To expand the
application of 3D Gaussian Splatting to multi-view situation, SplatterImage (Szymanowicz et al.,
2024), LGM (Tang et al., 2024a), pixelSplat (Charatan et al., 2024), MVSplat (Chen, Yuedong and
Xu, Haofei and Zheng, Chuanxia and Zhuang, Bohan and Pollefeys, Marc and Geiger, Andreas and
Cham, Tat-Jen and Cai, Jianfei, 2024), based on 3D Gaussian Splatting, typically handle each input
view independently and naively concatenate the resulting 3D Gaussian assets from each view. This
method suffers from a lack of information exchange among different views, resulting in inefficient
utilization of 3D Gaussians and being view inconsistency. GS-LRM (Zhang et al., 2024) and GRM
(grm, 2024) take the similar model structure comparing to LGM while still handle each input view
independently, theoretically having the view inconsistency problem because they first predict 3D
Gaussians in each camera space and then naively merge them in world space, as the depth of the
predicted 3D Gaussians in each view would always have errors, which will inevitably lead to the
misaligned 3D Gaussians merged in the world space. Furthermore, these methods are unable to
accommodate an arbitrary number of views as input.

Deformable Transformer in 3D DFA3D (Li et al., 2023a) and BEVFormer (Li et al., 2022) are
introduced to address the feature-lifting challenge in 3D detection and autonomous driving tasks.
They achieve notable performance enhancements by employing a deformable Transformer to bridge
the gap between 2D and 3D. DFA3D initially uses estimated depth to convert 2D feature maps to 3D,
sampling around reference points for deformable attention in each view. However, the 3D sampling
point design causes all projected 2D points to represent a singular point, neglecting view variations.
BEVFormer (Li et al., 2022) regards the Bird’s-Eye-View (BEV) features as queries, projecting
the feature onto each input view. The Spatial Cross-Attention facilitates the fusion of BEV and
image spaces, though challenges persist sampling 4 height values per pillar in the BEV feature for
selecting 3D reference points may limit coverage, posing challenges in accurate keypoint selection
for the model. When contrasting DFA3D and BEVFormer with our MVDFA, a commonality lies
in projecting onto 3D regression targets to extract data from various image perspectives. However,
our model diverges by employing camera modulation to differentiate queries across views, enabling
more specific information retrieval.

3 METHODS

3.1 PRELIMENARIES OF 3D GS

3D GS (Kerbl et al., 2023) is a novel rendering method that can be viewed as an extension of point-
based rendering methods (Kerbl et al., 2023; Chen & Wang, 2024). Hence, 3D Gaussians can serve
as effective 3D representations for efficient differentiable rendering. Each 3D Gaussian ellipsoid
can be described by G = {SH,µ,σ,R,S}. The color of 3D Gaussians is represented by spherical
harmonics (SH ∈ R12) while the geometry is described by the center positions µ ∈ R3, shapes
(covariance matrix Σ), and opacity (σ ∈ R) of ellipsoids (Zwicker et al., 2001; Kerbl et al., 2023).
Especially, the covariance matrix can be optimized through a combination of rotation and scaling
for each ellipsoid as Σ = RSSTRT , where R ∈ R4 (represented by quaternion) represents the
rotation and S ∈ R3 contains the scales in three directions.

3.2 OUR METHOD

Overall framework As illustrated in fig. 2, our model follows an encoder-decoder framework in
a coarse-to-fine manner. We employ unitary 3D Gaussian representation, which define a unitary set
of 3D Gaussians in the world space no matter how many input views are given. During the coarse
stage, one or more images are randomly selected as input for a simple encoder-only model to directly
predict 3D Gaussians, supervised by a RGB loss. Subsequently, in the refinement network, all input
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Figure 2: Overall Framework: In the coarse stage, 3D Gaussians are produced for each pixel of the
sampled random views from the input data. In the refinement stage, 3D Gaussians from the coarse
stage serves as the initialization for the refinement network. Multi-view features extracted by the
feature extractor serves as keys and values of decoder. Queries are updated by the decoder layer
with image features and the positions of the centers of 3D Gaussians. The final 3D Gaussian repre-
sentation is regressed from the queries. MVDFA: multi-view deformable attention in section 3.2.2.
SESA: spatial efficient self-attention in section 3.2.3. FFN: feed-forward network.

images undergo processing through an image encoder and a cross-view attention module to extract
multi-view image features (section 3.2.1).

Each 3D Gaussian is then projected onto each view to query relevant features and update
their respective parameters by query refinement decoder with multi-view deformable attention
(MVDFA)(section 3.2.2). Spatially efficient self-attention is utilized to reduce computational
and memory costs, enabling the utilization of more 3D Gaussians for object reconstruction (sec-
tion 3.2.3). Moreover, the coarse-to-fine design aims to ensure that the initial positions of the center
of 3D Gaussians are not too distant from the ground truth or outside the field of view to gurantee the
training convergence (section 3.2.4). The training objective is detailed in section 3.2.5.

3.2.1 FEATURE EXTRACTOR

To extract image features from multi-view input, we utilize UNet (Ronneberger et al., 2015; Song
et al., 2021b), a widely employed feature extractor in 3D reconstruction tasks, as demonstrated in
Tang et al. (2024a); Szymanowicz et al. (2024). To enhance the network’s understanding of the
complete 3D object, multi-view cross-attention is employed to transfer information among views
right after the UNet block, activated when the number of input views exceeds one. In this config-
uration, each input view acts as queries, while the concatenation (post-flattening) of the remaining
views serves as keys and values. To efficiently enable cross-attention across all views, we employ
shifted-window attention, as introduced in the Swin Transformer (Liu et al., 2021). This mechanism
reduces interactions by focusing on tokens within a local window, effectively reducing memory us-
age for large input sequences. By processing tokens within a fixed window, shifted-window attention
effectively lowers the computational complexity, thereby enhancing the overall efficiency.

3.2.2 VIEW-AWARE QUERY REFINEMENT DECODER

Decoder structure In the decoder module, we employ a fixed number of queries Q ∈ RN×C

with N and C denote the number of Gaussians and the hidden dimension to model 3D Gaussians by
associating queries with 3D Gaussian ellipsoid parameters G, including the center µ, opacity σ, ro-
tation R, scaling S, and Spherical Harmonics SH. As depicted in fig. 2, the queries navigate through
multiple decoder layers, each including a multi-view deformable attention (MVDFA) (section 3.2.2)
mechanism to leverage image features, a spatial efficient self-attention (SESA) (section 3.2.3) layer
for inter-Gaussian interactions, and a feed-forward network (FFN). The functionality of a decoder
layer can be summarized by eq. (1), where F represents image features from different views and Pl
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signifies reference points in the l-th layer.

Ql+1 = FFN(SESA(MVDFA(Ql,Pl,F)) (1)

Finally, queries are processed through a splatter head S to compute ∆G = S(Q) for updating the
3D Gaussian parameters: G′ = G+∆G (except for rotation, which is updated by multiplication).
Here, all views contribute to unitary 3D Gaussians, emphasizing the most relevant features. This
strategy effectively alleviates the view inconsistency issue and is computationally more efficient.

Multi-view deformable attention (MVDFA) The goal of MVDFA is to enhance the unified
queries and Gaussian representations by integrating multi-view image features. Following origi-
nal design of DFA, trainable sampling points are employed on the image features to sample the most
relevant image features as values (Carion et al., 2020; Zhu et al., 2021). The remaining problem
lies in determining the sampling points and attention scores. Specifically, we project the 3D queries
onto each image view and adjust it using camera modulation to account for view discrepancies. The
sampling offsets and attention scores are subsequently obtained from the view-specific queries.

By leveraging the center µ of each 3D Gaussian from the previous layer, along with the correspond-
ing camera poses πi and intrinsic parameters Ki for the i-th image, we can compute UV coordinates
Pi by projecting the center coordinates of each 3D Gaussian onto the image plane of the i-th in-
put image using the pinhole camera model (Forsyth & Ponce, 2003; Hartley & Zisserman, 2003):
Pi = Kiπiµ. In this context, both matrices Ki and πi are expressed in homogeneous form. These
UV coordinates in Pi then function as the reference points for 2D deformable attention.

As depicted fig. 3 (a), in 3D, we have a set of queries associated with 3D Gaussian paremeters G
while the queries for each image planes should to be adjusted to suit each view individually. To
tackle this issue, we start by using camera modulation with the adaptive layer norm (adaLN) (Hong
et al., 2024; Karras et al., 2019; 2020; Viazovetskyi et al., 2020) to generate view-specific queries.
More information on this modulation is provided in fig. 3(b). Subsequently, a linear layer to predicts
the sampling offsets ∆s for retriving images features as values and another linear layer to predicts
the attention scores α of the sampling points s. Following (Zhang et al., 2023; Zhu et al., 2021),
we compute attention scores directly from queries, omitting keys to streamline calculations. Then,
we apply the grid sampling algorithm with bilinear interpolation to extract image features at these
sampling points, which act as the values v for cross attention.

Finally, for each input view, we compute the updated queries for each view using the attention
scores α and sampled values v. The ultimate unitary queries are then computed as a weighted sum
of individual view queries, with the weights calculated using an linear layer on the view-specific
queries. Detailed pseudo code for our multi-view deformable cross-attention is available in fig. 3(b).

3.2.3 SPATIAL EFFICIENT SELF-ATTENTION (SESA)

Our multi-view deformable cross-attention mechanism demonstrates a superior efficiency in terms
of computational cost and memory usage. However, self-attention is computationally expensive,
especially with numerous 3D Gaussians. Updating each Gaussian with information from all oth-
ers may not always be essential, as neighboring Gaussians often contain similar information. To
tackle this problem, drawing inspiration from Wang et al. (2021b), we introduce a method to re-
duce the number of keys and values while keeping the number of queries unchanged during self-
attention. This selective update strategy enables each query to be updated with a subset of related
queries, effectively enhancing the information exchange efficiency. To ensure crucial information
flow, we leverage the Fast Point Sampling (FPS) algorithm from point cloud methodologies (Qi
et al., 2017a;b). By utilizing Gaussian centers µ to identify distant points for querying, we opti-
mize memory usage while guaranteeing essential information sharing among Gaussians. Additional
details are in appendix A.1.

3.2.4 COARSE-TO-FINE MODEL

Locating Gaussian centers in the world space In Szymanowicz et al. (2024), the Gaussian cen-
ters are located in each input view’s camera space, i.e. µcam = [xcam, ycam, zcam] = [u1d+∆x, u2d+
∆y, d+∆z], where the center coordinates xcam, ycam, zcam are parameterized by the depth d and off-
set values (∆x,∆y,∆z). The depth d represents the length of a ray originating from the camera
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(a) MVDFA on the n-th 3D Gaussian

1 def MVDFA(F, K, π, Q, µ):
2 # Prepare camera embedding
3 camera=concat(K, π).flatten() #[B, I, 16]
4 cam_embed=MLP(camera) #[B, I, C]
5 # Modulate query by cameras, [B, I, N, C]
6 shift, scale=MLP(cam_embed).chunk(2)
7 q=LayerNorm(Q)*(1+scale)+shift #[B, I, N, C]
8 α=softmax(Linear(q)) #Attn score [B, I, N, Ns]
9 # Sampling points

10 ∆s=Linear(q) #[B, I, N, Ns, 2]
11 P=pinhole_proj(camera, µ) #[B, I, N, 1, 2]
12 s=P+∆s #[B, I, N, Ns, 2]
13 # Weighted sum of view-specific queries
14 V=Linear(F) # [B, I, H*W, C]
15 v=grid_sample(V, s) #[B, I, Ns, C]
16 q′=(α · v).sum(-1) #[B, I, N, C]
17 w=sigmoid(Linear(q′)) #[B, I, C]
18 Q′=(w · q′).sum(-2) #[B, N, C]

19 return Q
′
#[B, N, C]

(b) Pseudo code

Figure 3: MVDFA: Qn denotes the n-th unitary queries while qni denotes the n-th query on the
i-th view modulated by the i-th camera Cami. Linear layers are used on qni to compute the sam-
pling offsets ∆sni and attention score αni. The n-th 3D Gaussian is projected onto images, and
surrounding sampling points sni = Pni + ∆sni are sampled using offsets ∆sni. Values vni are
image features sampled at sni. The final query is calculated by the weighted sum of updated view-
specific queries q′

ni, where wi is the weight calculated by a linear layer on q′
ni. B is batch size, I is

the number of views, C is the hidden dimension, N is the number of Gaussians, pinhole proj is the
projection from 3D to 2D with the pinhole model. F is the image feature with height H and weight
W . K and π are camera intrinsics and extrinsics, respectively.

center. u1, u2 are the UV coordinates of the ray passing through the corresponding input image.
This design represents each point with multiple Gaussians, potentially introducing view inconsis-
tency due to concatenation issues at various points caused by depth inaccuracies and tend to shortcut
input views (Wu et al., 2024). In our framework, we define unitary Gaussians in the world space,
project their centers to each input view for feature retrieval, as depicted in fig. 3(a). The centers
of Gaussians can be written as µworld = [xworld, yworld, zworld]. However, during the initial training
phases, discrepancies between the 3D Gaussian centers and ground truth often result in imprecise
selection of image features at sampling points, presenting challenges for model convergence.

We employ a relative coordinate system, where the camera poses for all views are known. The
initial input view is established as the world coordinates (with the camera pose represented by the
identity matrix), and subsequently, all other views are transformed to align with these coordinates.
This approach allows us to represent all 3D data within this consistent relative coordinate system.

Coarse-to-fine To address this issue, we utilize a coarse network that directly regress 3D Gaussian
parameters with one or more randomly selected input images as input. The role of this network is
to provide a coarse initialization of 3D Gaussians for the subsequent refinement network. We use
the UNet architecture as the feature extractor to train the coarse network. Subsequently, we use this
trained parameters to initialize the refinement stage and independently train the refinement network.

3.2.5 TRAINING OBJECTIVE

Building upon prior 3D Gaussian-based reconstruction approaches, we leverage the differentiable
rendering implementation by Kerbl et al. (2023) to generate RGB images from the 3D Gaussians
produced by our model. For each object, we render 4 input views and 8 additional views (12 views in
total) for supervision. Furthermore, aligning with the methodologies ((Hong et al., 2024; Tang et al.,
2024a)), we employ a RGB loss in eq. (2), which consists of both a mean square error loss LMSE and
a VGG-based LPIPS (Learned Perceptual Image Patch Similarity) loss (Zhang et al., 2018a) LLPIPS
to guide the rendered views. Here Ipd represents the rendered views supervised by the ground truth
images Igt.

L = LMSE(Ipd, Igt) + λLLPIPS(Ipd, Igt) (2)
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4 EXPERIMENTS

This section delves into experiment details and outcomes. In section 4.1, we give dataset specifics,
evaluation metrics, and implementation details. section 4.2 delves into quantitative and qualitative
results for sparse view novel view synthesis, along with the visualization of 3D Gaussian centers as
a point cloud. section 4.3 provides a comparative analysis of processing speeds and memory costs.
section 4.4 presents an ablation study. Lastly, The versatility of our model extends to tasks such as
image-to-3D and text-to-3D generation using a diffusion model, detailed in section 4.5.

4.1 DATASET AND EXPERIMENT SETTINGS

Dataset We utilized a refined subset of the Objaverse LVIS dataset (Deitke et al., 2023) for train-
ing and validation. The training dataset comprised two sets of rendered images: one set featured 12
random camera poses, while the other included input rendering images captured from fixed view-
points (front, back, left, right). Supervision was provided from 32 random views spanning elevations
between -30 to 30 degrees. The resolution of the rendered images was downscaled to 128× 128.

To evaluate our model, we conducted tests on the Google Scanned Objects (GSO) benchmark. Two
test sets were utilized: one with fixed-view inputs (e.g., front, left, back, right) at 0 degrees elevation,
tested on 32 random views with elevations ranging from 0 to 30 degrees, and the other includes
25 random views with corresponding camera poses. Importantly, there are no constraints on the
elevation of the rendered views. We refer to these test sets as GSO-random and GSO-fixed in our
subsequent analysis. More details for dataset can be found in appendix A.2.

Evaluation metric We compute the peak signal-to-noise ratio (PSNR), structural similarity index
(SSIM) (Wang et al., 2004), and perceptual distance (LPIPS) (Zhang et al., 2018b) between the ren-
dered images and the ground truth. Additionally, we offer visual representations of both the rendered
images and the 3D Gaussian centers as a point cloud. More details are provided in appendix A.2.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We provide the comparison with the state-of-the-art methods in this section.

4.2.1 FIXED VIEW INPUT

Table 1: Quantitative results for inputting 4 views on GSO-
fixed dataset. *The results of MV-Gamba are cited from the
paper as they do not provide code or a test set.

Method PSNR ↑ SSIM ↑ LPIPS ↓

Splatter Image (Szymanowicz et al., 2024) 25.6241 0.9151 0.1517
LGM (Small) (Tang et al., 2024a) 17.4810 0.7829 0.2180
LGM (Large) (Tang et al., 2024a) 26.2487 0.9249 0.0541
InstantMesh (Xu et al., 2024) 23.0177 0.8893 0.0886
MV-Gamba* (Yi et al., 2024) 26.2500 0.8810 0.0690

Our Model 30.4245 0.9614 0.0422

We evaluated recent multi-view re-
construction models using 4 views as
input. Splatter Image (Szymanow-
icz et al., 2024) were trained with
their native data loaders, adjusting in-
puts to 4 views and supervision to
12. LGM and InstantMesh were eval-
uated using the provided checkpoints,
with “Small” indicating models tai-
lored to 128 resolution and “Large”
to 256 resolution. All models were
assessed assuming the same number
of training views.

table 1 showcases the performance of these methods in novel view synthesis using 4 fixed views
(front, back, right, left) on the GSO-fixed dataset. Our model surpassed previous approaches in
PSNR, SSIM, and LPIPS for novel view synthesis, with a significant improvement of approximately
4.2 dB in PSNR. Additional results for 6 and 8 view inputs are available in appendix A.3.2.

We present visualization results for novel view synthesis in fig. 4 and 3D Gaussian centers repre-
sented as point clouds in appendix A.3.1. In our experiments, with resolution of 128, the LGM
model corresponds to the small version. Observations in the figures reveal view inconsistency in
LGM and a lack of details in InstantMesh, whereas our model maintains both details and view
consistency. Further visualizations at a resolution of 256 are accessible in appendix A.3.1.
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4.2.2 RANDOM VIEW INPUT

Table 2: Quantitative results for inputting 4 views
on GSO-random dataset.

Method PSNR ↑ SSIM ↑ LPIPS ↓
Splatter Image 25.7660 0.8932 0.2575
LGM 15.1113 0.8440 0.1592
InstantMesh 17.3073 0.8525 0.1376

Our Model 26.3020 0.9255 0.0836

Previous methods (LGM and InstantMesh) usu-
ally rely on fixed views as input, as they align
well with views generated from diffusion mod-
els like ImageDream (Wang & Shi, 2023). In
real-world scenarios, users are more inclined
to provide random views as input. table 2 dis-
plays the results when utilizing random 4 views
as input on the GSO-random dataset. Notably,
there is a performance drop observed in LGM
and InstantMesh with random input views. ap-
pendix A.3.1 provides the visualization results.
For Splatter Image, although the PSNR does

not reduced much, its SSIM and LPIPS reduced significantly. We provide more visualization in
appendix A.3.1 fig. 14.

4.2.3 INFERENCE ON ARBITRARY NUMBER OF VIEWS

2 4 6 8
Number Views

23

24

25

26

27

PS
N

R

PSNR of Different Views for Each Method

Splatter Image
InstantMesh
Ours

Figure 5: Quantitative results with random num-
ber of views as input. The model is trained with 4
random input views and tested with variate num-
ber of views.

Training costs for 3D methods are consider-
able, often requiring 32 NVIDIA A100 (80G)
GPUs over multiple days. Additionally, mem-
ory costs for previous methods increase linearly
with the number of views, presenting challenges
for training models with varying input views.
Therefore, a model supporting inference with
any number of inputs while being trained on a
fixed set, such as 4 views, would provide signif-
icant advantages.

Our model retains unitary 3D Gaussians in world
coordinates, treating views as complementary
sources without compromising overall 3D in-
tegrity. This enables adaptability to variable
view counts during inference, despite training on
a fixed number of views. fig. 5 showcases the re-
sults of training the model with 4 random views
and testing it with different number of views.
More views results are in appendix A.3.2 fig. 17.

While other methods demonstrate satisfactory performance with 4 views during inference, their
effectiveness diminishes as the view count deviates from 4. In contrast, our model excels as the
number of views increases. It is important to highlight that LGM is not part of this comparison due
to its incapacity to handle variations in the number of views between the training and testing phases.

4.3 INFERENCE TIME AND MEMORY COST

Table 3: Inference time comparison. 3D: forward
time, render: rendering time, inference: time of
one forward and 32 rendering. Unit in seconds.

Method 3D ↓ Render ↓ Inference ↓

DreamGaussian 118.3245 0.0038 118.4461
InstantMesh 0.6049 0.6206 20.4641
LGM 1.6263 0.0090 1.9143

Our Model 0.6939 0.0019 0.7538

We performed inference time tests across dif-
ferent model types, including a diffusion-
based method (DreamGaussian (Tang et al.,
2024b)), a NeRF-based model (InstantMesh
(Xu et al., 2024)), a previous Gaussian-based
model (LGM (Tang et al., 2024a)), and our
model, as detailed in table 3. Our model
maintains a reduced number of Gaussians and
achieves the fastest rendering speed.

In contrast to previous methods that compute
3D Gaussians per pixel per input view, our
model retains a single 3D Gaussian irrespective

8
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OursInstantMeshLGMInput GT

Figure 4: Novel views on GSO-fixed dataset for inputting 4 views with resolution 128.

of the number of views. While conventional methods exhibit linear memory expansion with addi-
tional views or higher image resolutions, our approach sustains a consistent memory overhead or
experiences slight increments due to the marginally higher cost of the image feature extractor. This
design theoretically enables our model to accommodate more input views and higher resolutions for
enhanced outcomes, potentially circumventing the out-of-memory limitations encountered by other
methods.

4.4 ABLATION STUDIES

table 4 illustrates an ablation study that evaluates different components of the model architecture. All
the experiments are evaluated on the Objaverse validation dataset. Removing the coarse stage and
initializing randomly (without any constraint) results in the lowest performance. This problem arises
from utilizing image features around the projected 3D Gaussian center within each image view, po-
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tentially causing zero features and steep gradients when projections extend beyond the image plane.
When the coarse stage is randomly initialized within the cone of vision (CoV), performance im-
proves. To provide a more meaningful initialization, we incorporate a coarse stage to acquire the
approximate Gaussian locations, followed by a refinement stage. This refined initialization empow-
ers our model to achieve superior performance. Moreover, removing cross-view attention leads to a
moderate decrease in performance compared to the full model. Using only the coarse stage (UNet-
based) slightly underperforms the full model. Furthermore, removing the camera modulation on
queries or use 3D sampling points instead of sampling on each view adversely impacts the results,
underscoring the critical significance of this view-specific design. The full model achieves the best
performance across all metrics, indicating that each component contributes positively to the overall
model effectiveness. Additionally, we offer details on hyperparameter selections in appendix A.4.

Table 4: Ablation study on model design.

Method PSNR ↑ SSIM ↑ LPIPS ↓
w/o coarse (ran. init.) 12.1213 0.6531 0.6224
w/o coarse (ran. init. in CoV) 22.6740 0.8711 0.2383
w/o cross view attention 25.3923 0.9013 0.1007
coarse stage only (UNet) 25.6033 0.9107 0.0930
w/o camera modulation 26.1328 0.9201 0.0883
3D sampling points 25.8392 0.9117 0.0945

Full model 26.5334 0.9344 0.0667

Moreover, we add the ablation
study on the number of views
or different views input in the
coarse stage in appendix A.4
table 9. We also give more
view inconsistency visualization
problem by visualize center of
Gaussians from each view in
different colors, as shown in
fig. 7. Furthermore, remov-
ing the background use masks
for Splatter Image and LGM
may slightly improve the perfor-

mance (fig. 16, table 6)

4.5 APPLICATIONS IN 3D GENERATION

Image-to-3D conversion represents a fundamental application in 3D generation. Following the
methodology of LGM and InstantMesh (Tang et al., 2024a; Xu et al., 2024), we initially leverage
a multi-view diffusion model, ImageDream (Wang & Shi, 2023), to generate four predetermined
views. Subsequently, our model is utilized for 3D Gaussian reconstruction. A comparative analysis
with LGM and InstantMesh is detailed in appendix A.3.2. We also showcase the quality results of
our model on both the GSO dataset and in-the-wild images in appendix A.3.1.

Our model can also do the Text-to-3D task. To evaluate quality, we utilize MVDream (Shi et al.,
2024) to generate a single image from a text prompt. Subsequently, a diffusion model is employed
to produce multi-view images, which are then processed by our model to derive a 3D representation.
A qualitative comparison of the text-to-3D generation is presented in appendix A.3.1.

5 CONCLUSION AND LIMITATION

In this paper, we have introduced a novel sparse view 3D reconstruction and novel view synthe-
sis method. Initially, a fixed number of 3D Gaussians with predefined properties are initialized,
and each Gaussian ellipsoid is projected onto input image features extracted by a feature extractor.
We propose the MVDFA block to integrate image features surrounding the projected 3D Gaussians
from each view to refine the 3D Gaussians, employing a coarse-to-fine strategy to ensure robust
model convergence. Additionally, we develop a spatially efficient self-attention mechanism to min-
imize computational costs, tackling view inconsistency and computational inefficiency. Our model
accommodates an arbitrary number of views as input and showcases its effectiveness through quan-
titative and qualitative experiments compared to state-of-the-art methods trained on Objaverse and
tested on the GSO dataset. Furthermore, with the aid of an off-the-shelf diffusion model, our model
undertakes generation tasks such as image-to-3D and text-to-3D conversions. We present an ab-
lation study elucidating the significance of each model component. While our model signifies a
notable advancement in sparse view 3D reconstruction, there are inherent limitations. Presently,
user-provided camera parameters, both camera poses and intrisics, are necessary for projecting 3D
Gaussians onto images, presenting potential challenges in 3D reconstruction. Addressing this issue
stands as a focal point for future research.
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Figure 6: Spatially Efficient Self-Attention: While employing all queries as query in the self-
attention mechanism, we leverage Farthest Point Sampling (FPS) to downsample certain 3D Gaus-
sians. This process enables the extraction of their corresponding queries as keys and values within
the self-attention operation.

A APPENDIX

A.1 SPATIAL EFFICIENT SELF ATTENTION (SESA)

While our 3D-aware deformable attention mechanism is notably efficient, the computational cost
and memory occupation mainly arises in the self-attention component, particularly when dealing
with a large number of 3D Gaussians. However, updating each 3D Gaussian with information from
all others is not always necessary because those neighbouring 3D Gaussians usually carry similar
information.

To mitigate this issue, as depicted in fig. 6 and drawing inspiration from Wang et al. (2021b), we
introduce a technique aimed at reducing the size of the key and value components while maintain-
ing the query component unaltered within the self-attention process. The core concept behind this
approach is that while each 3D Gaussian requires updating, not every other 3D Gaussian needs to
contribute to this update. We achieve this by selectively updating each query solely with a subset of
corresponding queries linked to other 3D Gaussians.

To retain crucial information flow, we leverage the Fast Point Sampling (FPS) algorithm commonly
used in point cloud methodologies like PointNet (Qi et al., 2017a) and PointNet++ (Qi et al., 2017b).
Specifically, we employ the Gaussian centers µ to identify the most distantly located points and use
these points to index the queries. By implementing this strategy, we significantly reduce the model’s
overall memory footprint while preserving essential information exchange among the Gaussians.

A.2 IMPLEMENTATION DETAILS

Dataset We utilized a refined subset of the Objaverse LVIS dataset (Deitke et al., 2023) for both
training and validating our model. This subset was curated to exclude low-quality models, result-
ing in a dataset containing 36,044 high-quality objects. This open-category dataset encompasses a
diverse range of objects commonly encountered in everyday scenarios. For training, we leveraged
rendered images provided by zero-1-to-3 (Liu et al., 2023a) for the random input setting. Each object
in the dataset is associated with approximately 12 random views, accompanied by their respective
camera poses. We partitioned 99% of the objects for training purposes, reserving the remaining 1%
for validation. During training, we randomly selected a subset of views as input while using all 12
views for supervision. Each rendered image has a resolution of 512× 512, which we downscaled to
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Point_clouds

LGM

Splatter Image

Ours

Input

Figure 7: Point clouds of the center of Gaussians from each view. The Gaussians from different
views are in different colors.

128 × 128. For the fixed view setting, we render the images with fixed views as input and 32 more
random views with elevation in (−30, 30) degrees for supervision.

To evaluate our model’s performance in open-category settings, we conducted tests on the Google
Scanned Objects (GSO) benchmark (Downs et al., 2022). The GSO dataset comprises 1,030 3D
objects categorized into 17 classes. For this evaluation, we utilized rendered images sourced from
Free3D (Zheng & Vedaldi, 2024), which consist of 25 random views along with their corresponding
camera poses. Notably, there are no restrictions on the elevation of the rendered views. We utilized
the initial views as inputs and the remaining views for assessing our novel view synthesis task.
Additionally, we observed that LGM (Tang et al., 2024a) only support fixed-view inputs (e.g., front,
left, back, and right). To address this, we evaluated a new rendered GSO dataset at 0 degrees
elevation, testing it on 32 random views with elevations ranging from 0 to 30 degrees. To distinguish
between the two test sets, we refer to them as GSO-random and GSO-fixed respectively in the
following analysis.

Experiment setting We train our model on the setting of 4 views, each time we randomly select
4 views as input and all the views for supervision. In the coarse stage, we train the model with less
views (i.e. 2 views) with resolution 128 × 128 and generate 16384 3D Gaussians as initialization
of the fine stage. In the fine stage, We use 19600 3D Gaussians to represent the 3D object. For
the 3D Gaussians from the coarse stage, we use the mask to remove the background points and
padding the number of 3D Gaussians to 19600 by copying some of the remaining 3D Gaussians.
The selected 3D Gaussians are then utilized to project queries onto image plane in the refine stage.
In each deformable attention layer, we utilize 4 sampling points for each projected 3D Gaussian
reference point to sample values on the image.

We use 4 decoder layers and the hidden dimension is 256. Moreover, when training the fine stage,
we finetune both the coarse stage and the encoder. We use a mixed-precision training (Narang et al.,
2018) with BF16 data type. We train our model with Adam (Kingma & Ba, 2015) optimizer and the
learning rate is 0.0001. We take 300K iteration with batch size 4. For the coarse stage, we train it
on 8 3090 GPUs (24G) for 5 days and for the fine stage, we train it on 8 A100 (80G) for 3 days.

A.3 MORE RESULTS

A.3.1 QUALITY RESULTS

View consistency problem We gives more view inconsistency visualization problem by visualize
center of Gaussians from each view in different colors, as shown in fig. 7. Gaussians from different
views representing the same part of the object may lays on the different position in the 3D space and
thus cause the view inconsistency problem.
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Input Point Cloud

Figure 8: 3D Gaussian center as point cloud on GSO-fixed dataset for inputting 4 views.

OursInstantMeshLGMInput GT

Figure 9: Quality for rendered novel views on GSO-fixed dataset for inputting 4 views with resolu-
tion 256 LGM large model.

More visualization We show the point cloud visualization in fig. 8 underscores our model’s ability
to capture geometry effectively, not just rendering quality.
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OursInstantMeshLGMInput GT

Figure 10: Quality for rendered novel views on GSO-random dataset for inputting 4 views.

As shown in fig. 9, when given limited number of input, neither LGM nor InstantMesh gives the
meanful geomery.

fig. 10 presents the quantitative results of novel views rendered by recent models trained on 4 views.
When provided with 4 random views as input, LGM (Tang et al., 2024a) demonstrates a loss of
geometry and encounters view inconsistency problems stemming from its training on fixed views.
In contrast, our approach produces a cohesive 3D Gaussian set that effectively captures object ge-
ometries.

OursInstantMeshLGMInput GT

Figure 11: Quality for rendered novel views on GSO dataset for inputting 1 view and using Image-
Fusion to generate 4 views.

fig. 11 and fig. 12, respectively. The figures illustrate that LGM encounters the issue of view incon-
sistency; for instance, there are multiple handles visible for the mushroom teapot. InstantMesh loses
some details due to its utilization of a discrete triplane to represent continuous 3D space.

fig. 13 shows the result of text-to-3D task. We have incorporated text-to-3D capabilities into our
model. To assess quality, we employ MVDream (Shi et al., 2024) to create a single image from a
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NVSInput Gaussian center point cloud

Figure 12: Quality for rendered novel views on in the wild data for inputting 1 view and using
ImageDream to generate 4 views.

NVS Gaussian center point cloudInput

A one ear red cup

Furry dog head

Lion head

An astronaut

Purple jacket

Figure 13: Quality for rendered novel views on inputting text and using MVDream to generate 4
views.

text prompt. Subsequently, a diffusion model is utilized to generate multi-view images, which are
then processed by our model to obtain a 3D representation.

The setting of random input view is obvious a more challenging task than the setting of fixed input
view, thus our method also inevitably suffers from a performance drop but still perform better than
other state-of-the-art methods. As for Splatter Image (Szymanowicz et al., 2024), it also meets
a significant performance drop when random input views are used as its SSIM ↑ decreased from
0.9151 to 0.8932 and LPIPS ↓ increased from 0.1517 to 0.2575 despite its PSNR ↑ has a slight
increase. We visualize the results of the two settings to show the difference in fig. 14.

A.3.2 QUANTITY RESULTS

Splatter Image visualization PSNR of Splatter Image in table 2 is good but SSIM and LPIPS are
not good enough, we further provide the visualization is in fig. 15.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Splatter image random vs fixed visualization
Random viewFixed view

PSNR:27.37 
SSIM: 0.93
LPIPS: 0.15

PSNR: 28.22
SSIM: 0.94
LPIPS: 0.13

PSNR: 26.14
SSIM: 0.93
LPIPS: 0.14

PSNR: 25.12
SSIM: 0.92
LPIPS:0.14

PSNR: 26.37
SSIM: 0.8804
LPIPS: 0.2088

PSNR: 28.03
SSIM: 0.89
LPIPS: 0.17

PSNR: 26.37
SSIM: 0.90
LPIPS: 0.17

PSNR: 24.19
SSIM: 0.87
LPIPS: 0.25

Figure 14: Visualization for Splatter Image with fixed view input and random view input.

Ours (refinement)

Splatter Image

Rendered novel views

Ours (coarse)

Figure 15: Visualization for Splatter Image with fixed view input and random view input.
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LGM and splatter image with mask

LGM (masked)

LGM

Splatter Image (masked)

Splatter Image

Rendered novel views Point Clouds

Figure 16: Removing the background use mask for Splatter Image and LGM

Table 5: Quantitative results trained on Objaverse LVIS and tested on GSO. 3D sup. means need 3D
supervision.

Method PSNR ↑ SSIM ↑ LPIPS ↓ 3D sup. Inference time

Triplane-Gaussian (Zou et al., 2024) 18.61 0.853 0.159 ! 1.906

Ours 23.45 0.897 0.093 % 0.476

Single image reconstruction There are common points between our model and TriplaneGaussian
and Instant3D that we all use a unitary representation and use Transformer to regress. For In-
stant3D, it transformers image to Nerf, making longer rendering time. For Triplane Gaussian, which
is a single view reconstruction model with complex and costly triplane representation, representing
compresses 3D space, leading to a lack of detailed information in the 3D structure and imposing
a rigid grid alignment that limits flexibility (Tang et al., 2024a; Qi et al., 2017a). In the contrast,
we use a more efficient way (deformable attention) to decode Gaussians. The comparison between
Triplane-Gaussian and our methods is shown in table 5. Triplane Gaussian requires 3D supervision
and takes longer inference time while get worse performance comparing to our model. We test on
the given light-weight checkpoint in the github on the single view situation.

Table 6: Comparison between masked and original pixel aligned methods

Method PSNR ↑ SSIM ↑ LPIPS ↓
LGM 17.4810 0.7829 0.2180
LGM (masked) 21.6008 0.8608 0.1232
Splatter Image 25.6241 0.9151 0.1517
Splatter Image (masked) 25.0648 0.9147 0.1684

Comparison to masked LGM and Splatter Image To better explain that the view inconsistency
problem is not caused by the background points from previous methods, we provide the results on
removing background points of LGM and Splatter Image. LGM uses mask loss to make the most
of the pixels contribute to the object itself, even for the background pixels, therefore, removing
background use mask makes the results more sparse. It also removing some outliers and thus the
rendering results is better as shown in table 6. Splatter Image keep most of the pixels contribute
to its original position, making most of the background points still located on a plane instead of
the object. Therefore, removing background use mask does not influence the rendering result much
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but the rendering quality still reduced a little. Moreover, the view-inconsistency is not caused by
the background points but the mis-alignment of 3D Gaussians from different views, removing the
background use mask does not help solving the problem. We show the visualization in fig. 16

Other number of view results We present the results of training with varying numbers of views
(2, 6, 8) and evaluate the corresponding results with the same number of views in table 7.

Table 7: Quantitative results of novel view synthesis training using 2, 6, and 8 input views, tested on
the GSO-random dataset across 2, 6, and 8 views.

Method 2 views 6 views 8 views
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Splatter Image 22.6390 0.8889 0.1569 26.1225 0.9178 0.1620 26.4588 0.9166 0.1714

Our Model 23.8384 0.8995 0.1254 28.1035 0.9489 0.0559 28.8262 0.9537 0.0492

More views result

Figure 17: Visualization for Splatter Image with
fixed view input and random view input.

Our model is positioned on the ‘sparse view’
setting, which indicates the number of views
less then 10, so we only reports the perfor-
mance of views from 2 to 8 in the main paper.
With the increase of input views, information
from similar views becomes redundant, so the
gain for our model has become plateaued while
other methods suffer from performance drop as
they cannot handle too many input views due to
the view inconsistent problem. As we keep in-
creasing the number of input views larger than
8, our method can still benefit from more input
views (as shown in fig. 17) while others meet
the CUDA-out-of-memory problem.

Image-to-3D Image-to-3D conversion repre-
sents a fundamental application in 3D genera-
tion. Following the methodology of LGM and

InstantMesh (Tang et al., 2024a; Xu et al., 2024), we first leverage a multi-view diffusion model,
ImageDream (Wang & Shi, 2023), to generate four predetermined views. Subsequently, our model
is employed for 3D Gaussian reconstruction. A comparative analysis with LGM and InstantMesh is
detailed in table 8. For this particular scenario, we utilize the fixed-view GSO test set with elevations
ranging between 0 and 30 degrees. Given potential variations in camera poses among the generated
multi-views, which may not align precisely with standard front, right, back, and left perspectives,
we selectively retain 266 objects that consistently yield accurate images under the provided camera
poses.

Table 8: Quantitative results for single view reconstruction on GSO dataset.

Method PSNR ↑ SSIM ↑ LPIPS ↓
LGM (Tang et al., 2024a) 20.8139 0.8581 0.1508
InstantMesh (Xu et al., 2024) 19.4667 0.8379 0.1842

Our Model 22.3534 0.8567 0.1492

A.4 ABLATION STUDY

Number of views in the coarse stage We add the ablation study on the number of images used
during the coarse stage here. The results shown is that the number of images used during the coarse
stage does not influence the final result. The reason that we choose the number of views being 2 is
that we want to support any number of input views. For example, if we choose the number of views
in the coarse stage being 8, we should at least provide 8 views so that the model can not support the
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Figure 18: Left: PSNR with different down sampling rate in the spatial efficient self attention.
Right: PSNR with different number of Gaussians.

number of views smaller than 8. And we tried to change the input views but the number of input
views keeping 2 unchanged, the variance of PSNR for 10 different experiments is within 0.185.

Table 9: Ablation study results of different view and different number of views for the coarse stage
(with 4 views in the refinement stage)

Number of views in coarse stage PSNR ↑ SSIM ↑ LPIPS ↓
1 30.2312 0.9608 0.0413
2 30.4245 0.9614 0.0422
3 30.3442 0.9618 0.0419
4 30.4521 0.9620 0.0412

Convergence for different regression target Upon investigation, we observe that prior tech-
niques frequently predict depth rather than the centers of Gaussians. In our exploration, we con-
duct experiments focusing on regressing the centers of 3D Gaussians while keeping other aspects
constant. Through this analysis, we discover that regressing the positions of 3D Gaussians can in-
troduce convergence obstacles. Table table 10 illustrates the outcomes of these experiments on the
Objaverse validation dataset after 100K steps.

Table 10: Ablation study on parameter selection.

Regression target PSNR ↑ SSIM ↑ LPIPS ↓
Depth 24.3792 0.9012 0.1014
3D Gaussian centers (random initialize in visual cone) 19.2551 0.8343 0.1876

Coarse-to-fine 25.5338 0.9126 0.0833

More ablation studies Here we gives more ablation study mainly for hyperparameter selection.
Due to computational costs, ablation models are trained at 100k iteration and test on Objaverse
validation dataset.

Hyperparameter selection As previously highlighted, the memory bottleneck of our model lies
in the pointwise self-attention mechanism. To address this, we implement a spatially efficient self-
attention technique to alleviate memory consumption. Illustrated in fig. 18 (left), as we augment
the downsampling rate of the key and value in the self-attention mechanism, the memory overhead
diminishes linearly, while the PSNR reduction is not as rapid. Consequently, we opt for a down-
sampling rate located at the inflection point, which we determine to be 0.01, balancing memory
efficiency with reconstruction quality. Similarly, we select the number of Gaussians as 19600 as
shown in fig. 18 (right).

In table 11, we opted for 4 decoder layers over 6, as the latter offers marginal improvement but
demands significantly more computational resources. Additionally, we experimented with using the
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Table 11: Ablation study on parameter selection.

Method PSNR ↑ SSIM ↑ LPIPS ↓
2 decoder layers 24.5229 0.9195 0.1021
6 decoder layers 26.2442 0.9352 0.0778
Freeze coarse stage finetune encoder 25.6902 0.9223 0.0826
Freeze both coarse stage and encoder 25.3211 0.9264 0.1003

Default model 26.2313 0.9351 0.0788

fine stage initialized with the coarse stage as the encoder and tested the efficacy of fine-tuning both
stages. Our findings indicate that fine-tuning both stages yields the best results.
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