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ABSTRACT

Recent advances in digital watermarking make use of deep neural networks for
message embedding and extraction. They typically follow the “encoder-noise
layer-decoder”-based architecture. By deliberately establishing a differentiable
noise layer to simulate the distortion of the watermarked signal, they jointly train
the deep encoder and decoder to fit the noise layer to guarantee robustness. As
a result, they are usually weak against unknown distortions that are not used in
their training pipeline. In this paper, we propose a novel watermarking framework
to resist unknown distortions, namely Adversarial Shallow Watermarking (ASW).
ASW utilizes only a shallow decoder that is randomly parameterized and designed
to be insensitive to distortions for watermarking extraction. During the watermark
embedding, ASW freezes the shallow decoder and adversarially optimizes a host
image until its updated version (i.e., the watermarked image) stably triggers the
shallow decoder to output the watermark message. During the watermark extrac-
tion, it accurately recovers the message from the watermarked image by leverag-
ing the insensitive nature of the shallow decoder against arbitrary distortions. Our
ASW is training-free, encoder-free, and noise layer-free. Experiments indicate
that the watermarked images created by ASW have strong robustness against vari-
ous unknown distortions. Compared to the existing “encoder-noise layer-decoder”
approaches, ASW achieves comparable results on known distortions and better ro-
bustness on unknown distortions. Code is available in the supplementary material.
GPT-5 is adopted to check for grammar, spelling errors, and writing logic issues
in the manuscript

1 INTRODUCTION

Digital watermarking aims to embed a piece of message into a certain type of digital media, e.g.,
images Zhu et al. (2018); Jia et al. (2021), videos Asikuzzaman & Pickering (2017), or audios
Bassia et al. (2001), and is one of the main techniques for copyright protection and source tracing.
A well-designed digital watermarking algorithm is expected to be both imperceptible and robust.
The former requires the watermarked media to be nearly identical to its original version for utility.
The latter requires the watermark message to be reliably recovered when the watermarked media
undergoes a variety of distortions, which is essential for the algorithm to be applicable in real-
world scenarios. Earlier research Van Schyndel et al. (1994) encodes the watermark message by
altering the least significant bits (LSB) of the digital media. Later, more studies are carried out in
the frequency domain, finding it more robust to embed watermarks in the DCT Ko et al. (2020),
DWT Daren et al. (2001), or DFT domains Urvoy et al. (2014) of the digital media.

Like many fields in signal and image processing, digital watermarking is revolutionized by the re-
markable development of deep neural networks (DNNs). A typical watermarking paradigm with
DNNs is Learning-based Deep Watermarking (LDW) Zhu et al. (2018); Liu et al. (2019); Zhang
et al. (2021); Jia et al. (2021); Fang et al. (2023); Tancik et al. (2020); Wengrowski & Dana (2019);
Jia et al. (2022); Liu et al. (2023), which follows an autoencoder-like architecture with three basic
components: a deep encoder to embed the watermark message into the host image, a noise layer
to distort the watermarked image, and a deep decoder to extract the watermark message from the
distorted watermarked image (termed as distorted image for short). By deliberately designing the
differentiable noise layer to approximate the image distortion, they jointly learn the deep encoder
and decoder with the noise layers to guarantee robustness. Despite achieving superior robustness
against known distortions simulated by the noise layer, these approaches often fail to resist unknown
distortions that are not included in the training pipeline, as shown in Fig. 1.
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Figure 1: Illustration of the existing LDW framework
and the proposed ASW framework, with the solid line
representing the case where watermarked images un-
dergo known distortions, and the dashed line repre-
senting the case where watermarked images undergo
unknown distortions.

In this paper, we propose a novel water-
marking framework for resisting unknown
distortions, namely adversarial shallow wa-
termarking (ASW). Our ASW is training-
free, encoder-free, and noise layer-free; it
only uses a fixed decoder for watermark
embedding and extraction (see Fig. 1). Our
insight lies in the fact that, regardless of the
type of distortions, it will ultimately man-
ifest as perturbations in the pixel values of
the watermarked image. As long as the de-
coder is sufficiently insensitive to the per-
turbations of the inputs (i.e., the decoder’s
output remains unchanged after the pertur-
bation), it is expected to be able to accu-
rately extract the watermark message from
the distorted images. In our study, we find
that a randomly parameterized shallow neu-
ral network is sufficient and appropriate to
be the fixed decoder equipped with the aforementioned property. We denote such a network as a shal-
low decoder for short in the following discussions. We further propose an adversarial optimization
strategy for watermark embedding based on the shallow decoder, which freezes the shallow decoder
and iteratively optimizes a host image until its updated version (i.e., the watermarked image) stably
triggers the shallow decoder to output the watermark message. In watermark extraction, by using
the shallow decoder, the watermark message could be accurately recovered from the distorted image
thanks to the insensitivity of the shallow decoder to the image distortions.

Unlike the previous LDW methods that utilize the powerful learning ability of deep networks to fit
a set of distortions to ensure specific robustness, our ASW makes use of the insensitive nature of
the shallow decoder to achieve resistance against a variety of distortion types. In the experiment, we
evaluate our ASW on a dozen of distortion types across a wide range of distortion levels. The results
demonstrate that, despite having no prior knowledge of the distortions, the ASW is able to produce
high-quality watermarked images with strong robustness against almost all types of distortions. Be-
sides, our ASW demonstrates better robustness than the state-of-the-art (SOTA) LDW methods Zhu
et al. (2018); Zhang et al. (2021); Jia et al. (2021); Fang et al. (2023) when the distortions are not
seen in their noise layer. The main contributions of this paper are summarized below:

• We conduct empirical studies and analyses to reveal the limitations of the existing LDW
methods.

• We propose a novel watermarking framework, ASW, which is training-free, encoder-free,
and noise-layer-free, and leverages the insensitivity of shallow networks to guarantee ro-
bustness.

• We empirically demonstrate the feasibility of utilizing a single decoder for watermark em-
bedding and extraction, providing a new perspective for future watermark design.

2 RELATED WORKS

2.1 LEARNING-BASED DEEP WATERMARKING

Recently, learning-based deep watermarking (LDW) methods have been developed, which utilize
the powerful fitting capacity of the DNNs and achieve impressive results Zhu et al. (2018); Liu
et al. (2019); Zhang et al. (2021); Jia et al. (2021); Fang et al. (2023); Tancik et al. (2020); Wen-
growski & Dana (2019); Jia et al. (2022); Liu et al. (2023). LDW typically adopts an “encoder-noise
layer-decoder”-based architecture, where the embedding and extraction processes are accomplished
separately by the deep encoder and the deep decoder. Zhu et al. Zhu et al. (2018) pioneer the re-
search of such a technique, they propose HiDDeN, a LDW scheme capable of resisting several types
of image distortions by setting different noise layers. Liu et al. Liu et al. (2019) propose a two-stage
learning framework for LDW, where the encoder and decoder are trained without the noise layer in
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stage one, and the decoder is fine-tuned alone by non-differentiable distortions in stage two. Zhang
et al. Zhang et al. (2021) find that the main influential component of the noise layer is forward com-
putation rather than the backward propagation. Thus, they propose to replace the back-propagated
gradients with an identity transformation. Jia et al. Jia et al. (2021) propose a method tailored for
resisting JPEG compression, which alternately trains the encoder and decoder using “real JPEG”
and “simulated JPEG” noise. In the latest study, Fang et al. Fang et al. (2023) use an invertible flow
network to achieve watermark embedding and extraction simultaneously, with an invertible noise
layer to simulate black-box distortions. Instead of explicitly modeling the distortion layers, Luo
et al. Luo et al. (2020) utilize the adversarial training strategy Goodfellow et al. (2014) to train a
distortion network to generate potential distortions, which has been shown to be effective in resist-
ing unknown distortions. However, it provides inferior performance compared to the SOTA LDW
methods Jia et al. (2021); Fang et al. (2023). Additionally, it remains unclear whether the distortion
network could model the entire image distortion space.

2.2 ADVERSARIAL PERTURBATION

Deep neural networks are sensitive to perturbations. After Szegedy et al. Szegedy (2013) discover
this intriguing property, many excellent works Goodfellow (2014); Madry (2017); Kurakin et al.
(2018); Moosavi-Dezfooli et al. (2016); Carlini & Wagner (2017) have been proposed to generate
adversarial examples to fool the network. Some of them generate adversarial examples based on gra-
dients ascending Goodfellow (2014); Madry (2017); Kurakin et al. (2018) using one-step methods
for computational efficiency or multi-step methods for more accurate perturbations. Others consider
the generation of adversarial examples as an optimization problem Moosavi-Dezfooli et al. (2016);
Carlini & Wagner (2017), and take off-the-shelf optimizers Fletcher (2000); Kingma & Ba (2014)
to search for the optimal adversarial examples. Adversarial examples have shown to be useful in
many applications. Le et al. Le Merrer et al. (2020) make use of adversarial examples to protect the
copyrights of deep models. Works in Chen et al. (2022); Zhu et al. (2024) utilize adversarial per-
turbations to prevent valuable datasets from being used without authorization to train deep models.
Kishore et al. Kishore et al. (2021) apply adversarial examples in image steganography, designing
high-capacity, anti-detection steganographic algorithms, where a noise layer has to be incorporated
to improve the robustness. In this paper, we propose to take advantage of the adversarial examples in
the domain of robust image watermarking, where we attempt to conduct the deep image watermark-
ing by only using a fixed decoder which is capable of resisting general image distortions without
any training.

3 ANALYSIS OF THE LDW FRAMEWORK

Most of the existing LDW methods train a deep encoder and a deep decoder to fit a fixed set of
distortion layers to guarantee robustness. They demonstrate superior robustness against known dis-
tortions. However, their robustness is usually unsatisfactory against unknown distortions. In this
section, We first analyze such a phenomenon according to the local linear hypothesis Goodfellow
(2014), and then provide a theoretical proof of the empirical observation.

3.1 EMPIRICAL INVESTIGATION

The local linear hypothesis argues that deep neural networks stack too many linear layers and the
popular ReLU activation function Nair & Hinton (2010) runs in a linear fashion. As a result, the
error in the input diffuses and magnifies through the linear operations layer by layer, causing a large
change to the output. Based on such a hypothesis, we conjecture that the deep decoder adopted in
the existing LDW framework is inherently sensitive to perturbations. When their inputs are altered
(i.e., watermarked images are distorted), they tend to output results that differ from the watermark.
On the other hand, the deep decoder itself has strong learning capability. It fits the known distortions
well during the LDW training phase, which makes it insensitive to these distortions. However, for
unknown distortions, it remains sensitive and its output would easily be affected due to the change
of the input. For justification, we create a binary mask M with the same size as the host images
and use it to generate two mutually orthogonal noise patterns, including n+ ∼ N (0, σ) ⊙M and
n− ∼ N (0, σ)⊙M, whereN (0, σ) represents the Gaussian distribution with mean 0 and variance
σ, ⊙ is the element-wise product andM is a binary mask complementingM. The cosine similarity
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between n+ and n− is 0, which means the two noise patterns are completely different. We take the
n+ and n− as the known distortion and unknown distortion, where only n+ is used as the distortion
layer in the LDW training pipeline.

𝑛𝑛+ 𝑛𝑛−

B
ER

（
%
）

The depths of decoder

Figure 2: The BER (%) of the extracted watermark
message for HiDDeN-decoders of different depths
under n+ or n− distortions.

We conduct the experiments on the popular
HiDDeN architecture Zhu et al. (2018), and
train several HiDDeN variants by varying the
depth of its decoder on the COCO dataset Lin
et al. (2014). Then, we evaluate the robust-
ness of the HiDDeN variants to known n+

and unknown n− distortions on the ImageNet
validation dataset Russakovsky et al. (2015).
Fig. 2 shows the bit error rate (BER) of the
extracted watermark from the decoders of dif-
ferent depths under different distortions. We
can see that as the depth of the layer grows,
the BER increases against the unknown dis-
tortion n− (i.e., the blue bar), and decreases
when considering the known distortion n+

(i.e., the pink bar). The former indicates that
the decoder’s sensitivity increases as its depth
grows. The latter implies that the decoder’s learning ability could effectively compensate for its sen-
sitivity to specific known distortions. This implies that taking learned deep watermarking decoders
provide biased robustness against distortions seen in their training, which may not be beneficial for
resisting unknown distortions.

3.2 PROVABLE SENSITIVITY OF DEEP DECODERS

Theorem 1 Consider a decoder consisting of L convolutional layers. When an additive tiny distor-
tion δ is introduced at the input, the variance of the output error ∆yL changes exponentially with
the depth L:

Var[∆yL] = Var[δ] ·
L∏

l=1

(
1

2
nl Var[θl]

)
, (1)

where ∆yL = yL − y
′

L denotes the output error of the network, with yL and y
′

L being the output
before and after the distortion, respectively. Var[·] denotes the variance operator, nl is the number
of filters of the l-th layer, and θl represents the weights of the l-th layer.

We roughly assume that the expectation of the output error ∆yL caused by the unknown distortion δ
is 0, and we approximate the expectation of the squared output error ∆yL by the variance as follows:

E
[
∥ yL − y

′

L∥2
]
≈ Var[δ] ·

L∏
l=1

(
1

2
nl Var[θl]

)
. (2)

Let 1
2nl Var[θl] be denoted as the layer-specific weight variance vl. To solve complex tasks, vl needs

to be relatively larger. For example, the average of vl in a trained decoder in HiDDeN is 32.34. This
suggests that the output error of the HiDDeN decoder grows exponentially with its depth, which is
consistent with experimental data in Empirical Investigation. Proofs of Theorem 1 are provided in
the Appendix A.

4 THE PROPOSED METHOD

Our goal is to develop an image watermarking framework that is robust to arbitrary types of dis-
tortions. To this end, we propose adversarial shallow watermarking (ASW). It first establishes a
randomly parameterized shallow neural network as the watermark decoder that is insensitive to per-
turbations of the input. On top of such a shallow decoder, we conduct the watermark embedding
by adversarial optimization, where a host image is iteratively updated until its watermarked version
stably triggers the shallow decoder to output the watermark message.

4
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4.1 THE SHALLOW DECODER

Weight Setting. The shallow decoder is expected to provide unbiased robustness against arbitrary
distortions. Therefore, it may not be appropriate to use the existing pre-trained deep decoders for
setting the weights of our shallow decoder. Such a strategy may construct a decoder that inherits the
sensitivity of the existing decoders to some specific types of distortions seen in the training. To deal
with such an issue, we propose to randomly set the weights of the shallow decoder. In particular,
we adopt a seed κ to sample the weights of the shallow decoder (say θ) from the standard Gaussian
distribution N (0, 1), i.e.,

θ = Sample(N (0, 1), κ). (3)

Architecture. We set the decoder to a shallow neural network stacked with several aver-
age pooling (AvgPool) layers, convolutional (Conv) layers, instance normalization (IN) lay-
ers, leaky rectified linear units (LeakyReLU), and a full connection (FC) layer, as shown in
Fig. 3. Next, we explain why we choose and stack these layers for our shallow decoder.

3-D image input

1-D message output

Conv:[3, 256, 7, 7]; 

IN: 256 channels

LeakyReLU

Conv:[512, 512, 3, 3]; 

Adaptive AvgPool

Conv:[256, 512, 5, 5]; 

IN, 512 channels

LeakyReLU

AvgPool: 

FC [512, ]

Figure 3: Architecture of the shallow decoder, with s
and t representing the stride and output length, respec-
tively.

The purpose of the AvgPool layer (with
a stride of 4) is to reduce the decoder’s
nonlinear response to perturbations in lo-
cal areas. The weight in each Conv layer
is a 4-dimensional (4-D) tensor with the
first, second, and last two dimensions be-
ing the input channel, output channel,
and kernel sizes, respectively. And the
strides of all these Conv layers are set as
2. As the weights of the decoder are set
randomly, the gradients could have high
variance among different samples. We
adopt the IN layers after the Conv layers,
which do not require the use of the statis-
tics of a mini-batch. After the IN layers,
the popular LeakyReLU is adopted to in-
troduce non-linearity for our shallow decoder. Eventually, an adaptive AvgPool is used to transform
the 3-D features from the last Conv layer into a 1-D feature, followed by an FC layer to map the
feature values to the watermark message.

4.2 ADVERSARIAL WATERMARK EMBEDDING

Let Ih ∈ [0, 1]d denote a RGB host image with d being the number of pixels, andW ∈ {0, 1}t be
a watermark message to be embedded into Ih with t being the total number of bits to be hidden.
Given a shallow decoder SD(·; θ) : [0, 1]d → [0, 1]t parameterized by θ that takes a 3-D image as
input and produces a 1-D message output. The adversarial watermark embedding (AWE) aims to
generate a watermarked image Iw, which is close to Ih, to stably trigger the shallow decoder to
output the watermark message (i.e., SD(Iw; θ) =W).

Unlike the previous LDW methods that train a deep encoder to create the watermarked images,
AWE addresses the problem via an adversarial optimization manner without any knowledge of the
distortion, which could be formulated as follows:

min
Iw

LW + αLI

s.t. Iw ∈ [0, 1]d
(4)

where LW refers to the watermarking embedding loss to measure the distance betweenW and the
output of SD(Iw; θ), which is designed by:

LW = BCE(SD(Iw; θ),W), (5)
where BCE(·) is the binary cross-entropy function. LI is the image distortion loss to measure the
difference between Ih and its watermarked version Iw, where

LI = ||Iw − Ih||22. (6)

5
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Algorithm 1: Adversarial Watermark Embedding
Input: Watermark messageW , shallow decoder SD(·; θ), seed κ, host image Ih, number of

iterations iters, step size η
Output: Watermarked image Iw

1 Iw ← Ih
2 θ ← Sample(N (0, 1), κ) ▷ Initialize SD′s weight
3 for i = 1 to iters do
4 Lall = LW + λLI

5 Iw ← L-BFGS(Lall, η) ▷ Perturb Iw to minimize Lall

6 Iw ← clip10(Iw); ▷ Clip the image to [0, 1]
7 ifH(SD(Iw; θ)) =W & Lall converges then
8 break ▷ Early stopping
9 end

10 end

α is a hyper-parameter for balancing image quality and watermark decoding accuracy.

The details of our proposed scheme are given in Algorithm 1. We first set Iw as Ih and use a seed κ
to set the weights of the shallow decoder (i.e., θ). We iteratively perturb Iw to minimize the weighted
sum ofLW andLI (sayLall). In each iteration, we calculateLall according to Iw in the current step.
Then, we use the L-BFGS solver Fletcher (2000) to perturb Iw to minimize Lall. The perturbed Iw
is then clipped into the range of [0, 1] by the clip function clip10(·) = max(min(·, 1), 0).
We perform early stopping when the following two conditions are satisfied: 1) the output of the
shallow decoder (after applying the heaviside step functionH(·)) equals the watermark messageW ,
and 2) the Lall converges. After the optimization, we enlarge Iw 255 times to transform it into the
range of [0, 255] and quantize it to obtain its RGB version. It should be noted that, in case the image
quality of Iw is poor, we will carry out re-embedding from a random point in the ϵ-ball around Ih,
which is given by

Iw ← Ih + n ∼ U(−1, 1)⊙ ϵ, (7)

where n is a random noise sampled from the standard uniform distribution U(−1, 1).
In watermark extraction, we can simply feed Iw to the shallow decoder to extract the watermark by

W = H(SD(Iw; θ)) (8)

5 EXPERIMENTS

Datasets and Settings.

To evaluate the effectiveness of the proposed ASW, we test it on 1,000 randomly selected images
from the ImageNet validation dataset Russakovsky et al. (2015). The width and height of the host
image are set to 256, and the length of the watermark message t is set to 36. The hyper-parameter
α, which balances image quality and watermark accuracy, is fixed at 0.75. In ASW embedding, the
seed κ is set as a random integer greater than 0, and the number of iterations iters and the step size
η are set to 25 and 0.05, respectively. The parameter of ϵ for re-embedding is set to 0.005. The σ in
Sec.3 is set to 10

255 .

Benchmarks. We compare our ASW with several SOTA LDW methods, including HiDDeN Zhu
et al. (2018), FASL Zhang et al. (2021), MBRS Jia et al. (2021), FIN Fang et al. (2023) and DADW
Luo et al. (2020). To evaluate the robustness, we choose 12 different types of distortions, including
JPEG Compression, Gaussian Blur, Median Blur, Gaussian Noise, Poisson Noise, Salt&Pepper
Noise, Brightness Shifting, Contrast Shifting, Saturation Shifting, Cropout, Resize, and Rotation.
For the Resize and Rotation distortions, we resize/rotate the distorted image back to its original size
before conducting the watermark extraction. For a fair comparison, under the same settings for
host image size and watermark message length as ours, we retrain the compared methods Zhu et al.
(2018); Zhang et al. (2021); Jia et al. (2021); Fang et al. (2023) with their default distortion layers
on the MS-COCO dataset Lin et al. (2014). We would like to mention that none of their default
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Methods PSNR(dB) ↑ SSIM ↑ BER(%) ↓
HiDDeN Zhu et al. (2018) 36.45 0.9674 19.31
FASL Zhang et al. (2021) 26.99 0.8956 20.08
MBRS Jia et al. (2021) 39.91 0.9825 0.00
FIN Fang et al. (2023) 40.15 0.9695 0.00
ASW 38.60 0.9707 0.00

Host Images Watermarked  Images Residual  ×10

HiDDeN FASL MBRS FIN ASW

Figure 4: Visualization of the watermarked images generated using the compared LDW methods
and the proposed ASW.

Figure 5: Visual quality of the watermarked images and BER (%) of the extracted watermark mes-
sage from the watermarked images, with the best result in bold. “↑”: the larger the better, “↓”: the
smaller the better.

distortion layers cover all the tested distortions. In other words, there are both known distortions
and unknown distortions for them. In contrast, all mentioned distortions are unknown distortions
for our ASW. Since the source code of DADW is unavailable, we perform a tailored comparison by
evaluating our ASW under the same experimental settings used in DADW Luo et al. (2020) (See
Appendix B).

Evaluation metrics. There are two metrics adopted to measure the visual quality of the watermarked
images, including Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) Wang
et al. (2004). The larger values of PSNR and SSIM indicate higher image quality. For robustness,
we directly utilize the bit error rate (BER) between the extracted and original watermark messages
as the evaluation metric, and the smaller BER indicates better robustness. Unless stated otherwise,
we report average results on the tested 1,000 images.

The experimental section is organized as follows: Section 5.1 presents the performance of our ASW
and the comparison methods when the watermark image is not subjected to any distortion. Section
5.2 demonstrates their robustness against various types of distortions. Section 5.3 compares the
computational efficiency of different watermarking methods. Due to space constraints, we place
the ablation experiments of our ASW in Appendix C, which investigate ASW’s performance when
varying its shallow decoder depth, using different initialization methods for parameter initialization,
and testing the influence of the AvgPool layer placed in front of our shallow decoder.

5.1 VISUAL QUALITY AND BER.

Table 5 presents the numerical results for HiDDeN Zhu et al. (2018), FASL Zhang et al. (2021),
MBRS Jia et al. (2021), FIN Fang et al. (2023), and our ASW. We can see that, compared to HiDDeN
and FASL, our ASW outperforms them in terms of RNSR and SSIM of the watermarked images, as
well as in the BER of the extracted watermark message. All of MBRS, FIN, and our ASW provide
reliable watermark extraction accuracy, with all of them being 0.00%. Despite the visual quality of
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the watermarked images generated by ASW being slightly inferior to that of MBRS and FIN, the
proposed ASW achieves superior robustness when the watermarked image is distorted, which will
be discussed in the next section.

Fig. 4 illustrates the watermarked images using different methods. We can see that all of the HiD-
DeN, MBRS, FIN, and our ASW create watermarked images with high visual quality. The differ-
ence between the host images and their watermarked versions is minimal and almost imperceptible
to the human eye. In contrast, FASL’s watermarked images contain undesirable color deviation
problems. The last column of Fig. 4 shows the magnified residual between the host images and
our watermarked images. We can see that, ASW adaptively embeds the watermark message into the
host image, where the texture-rich region is embedded with more watermark information. This is
beneficial to improve transparency.
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Figure 6: BER (%) of the extracted watermark message for the compared LDW methods and the
proposed ASW under different distortions. The solid and dashed lines represent the results of these
methods under known and unknown distortions, respectively. The distortion strength increases along
the horizontal axis from left to right in all subfigures.

5.2 ROBUSTNESS

To evaluate the robustness, we test the compared methods and our ASW on a dozen of distortion
types across a wide range of distortion levels and show the results in Fig. 6. It can be seen that ASW
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Methods Training (h) Embedding (s) Extraction (s) Depths
HiDDeN Zhu et al. (2018) 4.36 0.062 0.016 9
FASL Zhang et al. (2021) 6.64 0.078 0.020 9
MBRS Jia et al. (2021) 10.72 0.066 0.012 17
FIN Fang et al. (2023) 16.85 0.072 0.072 128
ASW - 0.887 0.002 3

Table 1: Comparison of computational efficiency with the last two columns presenting the FLOPs
and depths of the decoders.

achieves nearly 0% BER against most types of distortions, especially in cases with low distortion
levels. which is significantly better than that of HiDDeN Zhu et al. (2018) and FASL. Specifically,
we provide a decrease in BER of approximately 20% compared to them across most types of distor-
tions and a wide range of distortion levels.

Regarding resistance to JPEG compression, our ASW achieves favorable results and maintains a
BER of less than 10% under JPEG compression with a quality factor of 30. The SOTA MBRS
and FIN methods demonstrate impressive robustness and achieve better results than our method.
Notably, JPEG compression is simulated and included in their training pipeline.

When encountering unknown distortions (e.g., Gaussian Blur and Median Blur), ASW achieves a
lower BER than MBRS and FIN. In particular, under Gaussian Blur with a kernel size of 7, ASW
can extract the watermark almost losslessly, while MBRS and FIN have a BER of around 10% and
30%, respectively. A similar result can be observed in the case of resisting Salt & Pepper Noise.
Surprisingly, ASW demonstrates the best robustness against Cropout distortion that is a known
distortion for HiDDeN and FIN. This indicates the advantages of the proposed method, thanks to
the designed shallow decoder, which is insensitive to perturbations.

5.3 COMPUTATIONAL EFFICIENCY

LDW framework first jointly trains the deep encoder and deep decoder. Then, it embeds and extracts
the watermark message by performing a single forward propagation of the trained encoder and
decoder, respectively. In contrast, the proposed ASW framework does not require training networks
and uses only a shallow decoder to embed and extract watermarks. It performs dozens of iterations
to update the host image for watermark embedding and a single forward pass of the shallow decoder
for watermark extraction.

Table 5.1 presents the average computational times for the compared LDW method and our ASW at
training, embedding, and extraction stages. We can see that training the deep encoder and decoder
of FIN Fang et al. (2023) takes nearly 17 hours (h), which is not long. However, the LDW frame-
work usually requires adjusting the network architecture and retraining the model to accommodate
different image resolutions and watermark lengths. This makes the framework time-consuming in
real-world applications. Our ASW does not require training networks. Although the embedding time
of ASW is longer than that of LDW methods, it takes less than 1.0 seconds (s), which is adequate for
use in the majority of real-world scenarios. The extraction time of our ASW is significantly shorter
than that of the LDW methods, thanks to our designed shallow decoder with the lowest depths.

6 CONCLUSION

In this paper, we propose a novel watermarking framework to resist unknown distortions, namely
Adversarial Shallow Watermarking (ASW). Based on the analysis which reveals the limitations of
the existing LDW methods, we equip our ASW with a shallow decoder that is randomly param-
eterized and designed to be insensitive to distortions for watermarking embedding and extraction.
ASW conducts the watermark embedding by adversarial optimization, where a host image is itera-
tively updated until its updated version stably triggers the shallow decoder to output the watermark
message. During the watermark extraction, it accurately recovers the message from the distorted im-
age by leveraging the insensitive nature of the shallow decoder against arbitrary distortions. ASW
is training-free, encoder-free, and noise layer-free. Extensive experiments have been conducted to
demonstrate the advantages of our proposed method for resisting unknown distortions.
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A PROOF OF THEOREM 1

In this part, we investigate the propagation of tiny perturbations through a watermark decoder com-
prising L convolutional layers. Each layer l is represented by the weight tensor θl ∈ Rnl×nl−1×k×k,
where nl and nl−1 denote the number of filters and the number of channels in the filters, respectively,
and k is the kernel size. We assume that the activation function used is ReLU, i.e., ϕ(·) = max(0, ·).
We consider a simple case where k = 1, and the convolutional layers degenerate into fully connected
layers, with the weight matrices θl ∈ Rnl×nl−1 . Let δ ∈ Rnl represent a small perturbation. The
input and output of the l-th layer are denoted by xl and xl+1, respectively. The input and output
errors at the l-th layer, caused by the perturbation δ, are denoted by ∆xl and ∆xl+1, respectively.
Initially, we set ∆x1 = δ. We assume that the direction of error diffusion in each layer is random,
and thus, we approximate the expectation E[∆xl] of the errors as zero.

The output error ∆xl+1 can be expressed as:

∆xl+1 = ϕ(θl(xl +∆xl))− ϕ(θlxl).

For small perturbations, the error can be approximated by the following first-order expansion:

∆xl+1 ≈ Dl · θl ·∆xl,

where Dl = 1θlxl>0 is the indicator function, denoting the activation state of the neurons. The
matrix Dl is a diagonal matrix with entries of 0 or 1, making it an idempotent matrix, i.e., DT

l Dl =
Dl. The variance of ∆xl+1 is given by:

Var(∆xl+1) = E
[
(Dlθl∆xl)

T
(Dlθl∆xl)

]
= E

[
∆xl

T θl
TDlθl∆xl

]
.

We roughly assume that the activation state of the decoder neurons is approximately 0.5, the ex-
pected disturbance variance can be approximated as:

Var(∆xl+1) ≈
1

2
nlE

[
∆xl

T θl
T θl∆xl

]
.

Following previous empirical studies Tian et al. (2021); Huang et al. (2021), it has been shown that
the weight distribution of trained neural networks tends to follow a symmetric Gaussian distribution.
Thus, we assume that the decoder weights are independent and have zero mean. Therefore, the
covariance matrix of the weights satisfies:

E
[
θTl θl

]
= nlVar(θl)I,

where I is the identity matrix. Consequently, the disturbance propagation formula becomes:

Var(∆xl+1) =
1

2
nlVar(θl) · Var(∆xl).

After propagating through L layers, the total output disturbance variance is given by:

Var[∆yL] = Var[δ] ·
L∏

l=1

(
1

2
nl Var[θl]

)
.

B COMPARISON AGAINST DADW

Like ASW, DADW Luo et al. (2020) is designed to resist unknown distortions. The difference is that
DADW follows the LDW framework and utilizes an adversarial training strategy to train a distortion
network that generates potential distortions. As the source code of DADW remains unavailable, we
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evaluate our ASW using the same experimental settings as those employed by DADW Luo et al.
(2020). Specifically, a test set containing 3,000 images is randomly selected from the MS-COCO
dataset Lin et al. (2014). All images are resized to 128×128 pixels, with the watermark length t set
to 30 bits.

Metrics DADW Luo et al. (2020) ASW
PSNR (dB) 33.70 37.40
JPEG Compression (50) 18.30 13.63
Gaussian Noise (0.06) 4.40 0.00
Gaussian Noise (0.10) 10.50 0.00
Salt and Pepper (0.05) 4.30 2.71
Salt and Pepper (0.15) 22.90 15.25
Adjust Hue (0.2) 6.00 27.69
Adjust Hue (0.6) 57.60 53.63
Resize Width (0.9) 0.10 0.00
Resize Width (0.5) 32.90 0.00

Table 2: Performance comparison of DADW and ASW.

Table 2 compares the performance of DADW with our ASW against various unknown distortions,
where the DADW metrics are directly reproduced from the original paper Luo et al. (2020). We
can see that ASW achieves higher visual quality, showing a 3.70 dB improvement in PSNR com-
pared to DADW. Furthermore, ASW maintains lower BER in most distortion scenarios, including
perfect 0.00% BER under Gaussian noise and image resizing distortions. Notably, DADW exhibits
better robustness against the hue adjustment distortion. We attribute this to its adversarially-trained
distortion network that better adapts to the distortion space of hue adjustments.

C ABLATION STUDY

Metrics Depth (d) of the decoder (s = 4) Stride (s) of AvgPool layer (d = 3)
d = 3 d = 4 d = 5 d = 6 s = 1 s = 2 s = 4 s = 8

PSNR (dB) 38.60 42.57 48.12 51.59 37.89 37.97 38.60 38.47
JPEG Compression (50) 4.11 13.28 30.73 39.52 17.74 7.04 4.11 0.74
Gaussian Blur (9) 4.78 16.50 34.80 42.66 28.47 15.95 4.78 3.20
Poisson Noise (0.2) 3.24 15.08 35.14 43.96 0.14 0.50 3.24 22.03
Contrast Shifting (0.5) 4.62 17.32 36.09 44.14 0.11 2.15 4.62 22.66
Cropput (0.75) 12.47 15.14 20.18 27.93 0.52 2.72 12.47 28.36
Resize (0.7) 0.00 0.02 4.50 23.02 0.41 0.00 0.00 0.00

Table 3: Ablation study with the third row displaying the visual quality of the watermarked images,
while the following rows report the BER (%) of the extracted watermark message from the distorted
images.

Sensitivity Analysis of Decoder Depths. We increase the depth of the decoder in Fig. 3 and test
ASW’s performance. To achieve this, we insert a group of Conv layer, IN layer, and LeakyReLU
layer before the last Conv layer of the baseline shallow decoder. The results are presented in Ta-
ble 4 (columns 2-5). Due to space limitations, we report only a subset of tested distortions. As
shown, deeper decoders improve the visual quality of watermarked images, with PSNR increasing
from 38.60 dB (d = 3) to 51.59 dB (d = 6). However , this enhanced depth simultaneously re-
duces robustness to distortions. For example , BER under JPEG compression (QF=50) rises from
4.11% (d = 3) to 39.52% (d = 6). This occurs because deeper decoders become more sensitive
to perturbations. This sensitivity enables our adversarial watermark embedding (ASE) algorithm to
discover smaller perturbations that activate the sensitive decoder to output the watermark message,
thereby improving the quality of the watermarked images. Nevertheless , when applying distortions
to watermarked images, the sensitive decoder propagates and amplifies noise-caused pixel changes
layer by layer, producing mismatched watermarking messages.

Influence of Initial AvgPool Layer. We test the influence of the AvgPool layer placed in front of
our shallow decoder by varying its stride (s) and show the results in Table 4 (columns 6-9), where s
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= 1 corresponds to the case in which the AvgPool layer is not used. We can see that, larger strides
(s = 4 or 8) enhance robustness against structured distortions like JPEG compression (BER drops
from 17.74% to 0.74%) and Gaussian blur (BER decreases from 28.47% to 3.20%). However, this
comes at the cost of reduced resilience to Poisson noise, Contrast Shifting, and Cropout distortions.
To strike a balance, we set s to 4.

Influence of Weight Initializaion Methods.

Initialization Methods Kaiming Xavier Uniform(0,1) Gaussian(0,1)
PSNR ( dB) 22.21 18.99 23.53 38.60
JPEG (50) 0.03 0.31 45.48 4.11
Gaussian Blur (9) 0.02 0.03 47.00 4.78
Poisson Noise (0.2) 0.02 0.09 48.91 3.24

Table 4: Performance of ASW when its shallow decoder is initialized by different methods.

The performance of ASW with its shallow decoder initialized using Kaiming Initialization, Xavier
Initialization, Uniform Distribution, and Gaussian Distribution is given in Table 4. The PSNR values
for the different initializations are 22.21 dB, 18.99 dB, 23.53 dB, and 38.60 dB, respectively. For
BER against JPEG compression at a quality factor of 50, the corresponding values are 0.03%, 0.31%,
45.48%, and 4.11%, while for BER against Gaussian blur, they are 0.02%, 0.03%, 47.00%, and
4.78%. These results show that the Gaussian distribution initialization with a mean of 0 and standard
deviation of 1 provides the best trade-off between visual quality and watermark accuracy.
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