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Abstract

We propose a general and efficient framework to control auto-regressive generation
models with NeurAlly-Decomposed Oracle (NADO). Given a pre-trained base
language model and a sequence-level boolean oracle function, we propose to
decompose the oracle function into token-level guidance to steer the base model
in text generation. Specifically, the token-level guidance is approximated by a
neural model trained with examples sampled from the base model, demanding no
additional auxiliary labeled data. Based on posterior regularization, we present
the closed-form optimal solution to incorporate the token-level guidance into the
base model for controllable generation. We further provide a theoretical analysis
of how the approximation quality of NADO affects the controllable generation
results. Experiments conducted on two tasks: (1) text generation with lexical
constraints and (2) machine translation with formality control demonstrate that
our framework efficiently guides the base model towards the given control factors
while maintaining high generation quality.

1 Introduction

Auto-regressive language models have been widely used for text generation. With the recent develop-
ment of large-scale pre-trained language models (Radford et al., 2019; Brown et al., 2020; Raffel
et al., 2020; Lewis et al., 2020), they have achieved state-of-the-art performances in applications
such as machine translation (Bahdanau et al., 2015; Luong et al., 2015), image captioning (Anderson
et al., 2018; You et al., 2016) and open domain text generation (Zhang and Lapata, 2014; Yao et al.,
2019; Vinyals and Le, 2015; Shang et al., 2015; Lu et al., 2018). However, many applications such
as open-domain creative generation (Yao et al., 2019; Goldfarb-Tarrant et al., 2020; Tian and Peng,
2022; Han et al., 2022; Chen et al., 2022; Spangher et al., 2022) require to control model output with
specific sequence-level attributes. The attributes can be specified by a set of rules? or by an abstract
concept (e.g., the generated text follows a particular writing style). How to control auto-regressive
language models to satisfy these attributes is an open challenge.

In this paper, we propose a general and flexible framework for controllable text generation. Given a
base pre-trained language model and a sequence-level oracle function indicating whether an attribute
is satisfied, our goal is to guide the text generation to satisfy certain attributes using the oracle. To

*equal contribution
2For example, lexical constraints require certain words to appear in the generated text (Hokamp and Liu,
2017; Lin et al., 2020)
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(a) Take lexically constrained generation as an exam-
ple, where the oracle checks whether all keywords
in the input x are incorporated in generated text y.
With proper training using samples from the base
model p (dashed arrow) labeled by the oracle, we
decompose the oracle into token-level guidance and
parameterize it by an auxiliary model Ry (NADO).
We use Ry to provide guidance when generating
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(b) Illustration of the controlled generation pro-
cess. Both the base model and the auxiliary model
(NADO) take input x and the generated sequence
(prefix) y <1, as input. The base model, in each step,
outputs a token distribution p(y;|x,y<;). Guided
by NADO Ry, we obtain the distribution g (See Sec.
3.2), based on which we generate the output token.

text with the base model (see details in Fig. 1(b)).

Figure 1: Illustration of pipeline incorporating NADO (left) and model architecture (right).

this end, we propose to decompose the sequence-level oracle into token-level guidance, such that
when generating the 7—th token in the output sequence given the prefix, instead of sampling from
the base model, we modify the probability distribution of the output token based on the token-level
guidance. Specifically, we formulate the control as an optimization problem based on posterior
regularization (Ganchev et al., 2010) and solve the closed-form optimal solution to incorporate the
token-level guidance for text generation. The decomposition is approximated by an auxiliary neural
network model, called NeurAlly-Decomposed Oracle (NADO), which is trained on data sampled
from the base model and supervised by the sequence-level oracle (see the illustration Fig. 1a). We
further provide theoretical analysis on how NADQ’s approximation quality affects the controllable
generation results. Note that in the entire process, we treat the base model and the sequence-level
oracle as black-box functions, without the need for any refactoring or fine-tuning.

A few existing controllable generation works (e.g., Lu et al. (2021, 2022b)) design search algorithms
for generating texts with lexical constraints. However, their approaches cannot generally be applied
to constraints such as style. Another line of work such as PPLM (Dathathri et al., 2020), GeDI
(Krause et al., 2021), and FUDGE (Yang and Klein, 2021) also aim to guide the base model with an
auxiliary model. However, they either shift the base model distribution in a post-hoc manner without
theoretical guarantee, or/and require external labeled data to train the auxiliary model. Khalifa et al.
(2021); Korbak et al. (2022) propose a generation with distributional control approach. Our control
objective derived through posterior regularization resembles their energy-based model representation.
However, they approximate the energy-based model using a KL-adaptive distributional policy, while
we propose to decompose the sequence-level oracles into token-level approximated by NADO. With
the decomposition, base models receive explicit controlling signal in generating every token from
the oracle. Furthermore, since NADO is trained on the data sampled from the base models, it aligns
better with the base model’s distribution and thus can achieve better control.

We conduct experiments on lexically constrained generation (LCG) tasks and a machine translation
(MT) formality change task. In LCG tasks, the oracle is a rule-based keyword checker. We achieve
almost perfect keyword incorporation with significantly boosted BLEU scores compared to previous
approaches that design specific decoding algorithms (Lu et al., 2021). In the formality-controlled
MT task, we are provided with a formality oracle predicting whether a sentence is formal or not, and
the goal is to guide the model to generate formal translations. Compared with recent work (Yang
and Klein, 2021), we improve the BLEU score by 3 points as well as improve the formality rate,
demonstrating NADOQO'’s superior ability to incorporate external oracle supervision. Both experiments
demonstrate the effectiveness of our framework in dealing with various types of control while
maintaining high-quality generation results.?

*Our code can be found at https://github. com/MtSomeThree/constrDecoding.



2 Related Work

Controllable Text Generation with Auto-regressive Models. Most previous work on controllable
text generation are based on the auto-regressive framework. Zhang et al. (2022) summarize these
methods into three categories: fine-tuning, refactor/retraining and post-processing. The first two
categories, e.g., fine-tuning with control code (Peng et al., 2018; Keskar et al., 2019) or prompt-based
methods (Sheng et al., 2020; Shin et al., 2020; Lester et al., 2021; Li and Liang, 2021), are usually
weaker in controllability and inefficient in training considering the size of language models are
dramatically increasing nowadays. Generally, the post-processing methods are considered expensive
in inference and low quality in generated texts. However, our framework, as a kind of post-processing
method, is able to achieve high generation quality demonstrated in the experiments and maintains
efficient inference.

Controllable Text Generation via Post-processing. There are two major lines in post-processing:
(1) modifying the decoding algorithm and (2) guiding generation with an auxiliary model. For
some token-level controlled generation tasks like lexically constrained generation, we can inject the
constraints into the decoding algorithm (e.g., constrained beam search (Anderson et al., 2017; Post
and Vilar, 2018) and NeuroLogic decoding (Lu et al., 2021, 2022b)). Though shown effectiveness in
lexically constrained generation, these algorithmic methods fail to fundamentally touch the token
distribution, and are hard to handle other abstract attributes.

In the second line, PPLM (Dathathri et al., 2020) proposes an auxiliary discriminator for the expected
attribute to guide the model; GeDi (Krause et al., 2021) and DEXPERTS (Liu et al., 2021) apply
contrastive learning and train an auxiliary language model to reweight the token distribution in
each step; Plug-and-Blend (Lin and Riedl, 2021) further extends the GeDi framework by adding a
planner architecture. FUDGE (Yang and Klein, 2021) leverages external token-level oracle to train a
discriminator for guiding the base model. These methods either require external token-level oracle
guidance or auxiliary labeled datasets to train the auxiliary models. However, the distribution of the
data used to train the auxiliary model is different from what the based model is trained on. This
distributional discrepancy causes the drop of generating quality as we will show in the experiments.
For example, given a controlling attribute a, Fudge generates next token y; based on Bayesian rule
P(yily<i;a) < P(aly<i)P(yi|ly<i). However, their P(aly<;) and P(y;|y<;) are not estimated
based on the same distribution. In contrast, NADO is trained with data sampled from the base model.
Therefore, it learns to incorporate with the base model, which avoids the distributional discrepancy.
We also provide a principle, theoretical framework to discuss the optimal solution of incorporating
the sequence-level oracle.

3 Methodology

We approach the sequence-level controllable text generation problem by decomposing the sentence-
level oracle into token-level guidance. We formulate this as an optimization problem. Since the token-
level guidance is intractable, we propose to train an auxiliary model, called NeurAlly-Decomposed
Oracle (NADO), to approximate it. During the inference time, NADO guides the base model to
generate sequences that satisfy the oracle constraints.

In the rest of this section, we discuss 1) the formulation to decompose the sequence-level oracle
function into token-level guidance; 2) the formulation to incorporate the token-level guidance into
the base model to achieve control; 3) the approximation of the token-level guidance using NADO; 4)
a theoretical analysis of the impact of NADO approximation to the controllable generation results;
and 5) the training of NADO.

3.1 Setup: Notations and Problem Formulation

We use x € X to denote the input and y € ) to denote the generated sequence. y; is the i—th
token in y and y; is the sequence prefix from the beginning to the (¢ — 1)—th token. We denote
the base auto-regressive generation model as p(y;|X, y <), hence the sequence-level distribution is
given by p(y|x) = [[, p(vi|x, y<i). A sequence-level oracle is defined as a boolean function C' :
X x)Y — {0,1}. We formalize the optimization objective based on posterior regularization (Ganchev
et al., 2010). Basically, we explore a token-level distribution ¢*(y;|x,y<;) and its corresponding
sequence-level distribution ¢*(y|x), satisfying



1. ¢*(y|x) = [, ¢*(yi|x,y<s), i.e., ¢" can be treated as an auto-regressive model.
2. ¢*(y|x) =0if C(x,y) =0, i.e., ¢* only generates sequences satisfying the oracle C.

3. Given an input x, K L(p(y|x)|l¢* (y|x)) is minimized, i.e., ¢* should be as similar to the
base model as possible.

Khalifa et al. (2021); Korbak et al. (2022) derive a similar optimization formulation as property
2, 3, to represent constraints through energy-based models and approximate it with distributional
policy gradient. In this work, we propose to decompose oracle to token-level guidance to steer the
generation. We discuss our approach in the following.

3.2 Token-level Guidance and Closed-Form Solution For ¢*

Before we compute the solution for ¢*, given the base model p and oracle C', we first define the
token-level guidance as a success rate prediction function Rg (x), which defines the probability of

the sequence generated by p satisfies the oracle C' given the input x. We similarly define Rg(x7 y<i)
as the probability of success given input x and prefix y ;. By definition, we have

RJ(x) = Pryopiyin [CO6y) =11 = p(y[x)C(x,y)
yey (1)

Rg(X,ySi) = Pryfvp(y\x) [C(X7 y) = 1|y<i] = Zyey p(y‘xv y<i)C(Xay)'

With the function Rg , we now derive the closed-form solution of ¢* considering conditions 2 and 3
defined in Sec. 3.1. Given input x, we define the feasible sequence-level distribution set () as

= x) =0}, 2
Qi={dlD | [ yym0 1) =0} @
then the sequence-level closed-form solution for ¢* is given by

pyX)C(xy)

RS (x) ®)

7 (ylx) = argglgigKL(p(yIX)Hq(YIX)) =

Considering condition 1 in Sec. 3.1 to make ¢* tractable, we decompose ¢*(y|x) into token-level.
The closed-form solution is given by

RC X, i
0 (il y <) = -2 yg))p<yix,y<i>. @

Rg (Xv Y<i-1
The decomposition is unique. The proof and detailed derivation can be found in the appendix.

Control with Soft Constraints. In Eq. (2) we define the feasible distribution set as distribution that
the possibility of a sequence violate the oracle function is 0. However, in some applications, we expect
to control the generation with soft constraints. For example, we want the model to generate sentence
about sports with probability » = 0.8. Our framework also supports controlling the generation with
soft constraints. To achieve this, with a pre-defined ratio » € [0, 1], we alternatively define a general

feasible set @ as
Qi={a13 ) gy (PO =11,

where Eq. (2) is the special case when » = 1. The general token-level closed-form solution is

aRS (x,y<i) + B(1 — RS (x,y<:))
O‘Rg(X7YSi—1) + ﬁ(l - RE(X7 Y§i—1))

q (Yilx, y<i) = p(yilx,y<i),

1—r
where o« = =+ = .
RS (x)’ B I-RS (%)

Similar to Eq. (4), once we have access to RS, we can directly compute the closed-form solution
even though the form is much more complicated. In this paper we only focus on hard constraints
(r = 1), however, here we demonstrate that our framework is capable of handling soft constraints as
well.



3.3 Approximating RE by NADO and Theoretical Analysis

Unfortunately, function RS defined in Eq. (1) is intractable. We cannot enumerate all possible
sequences y since the space is exponentially large and essentially infinite. Hence, we train a neural
model NADO to approximate this well-defined function. We use R to denote NADO parameterized
by 6. In this section, we derive bounds to provide a theoretical analysis about the correlation between
errors in approximation and errors in corresponding sequence-level distribution. Generally, when
Rg approximates Rz(f precisely enough, we have an upper bound for the sequence-level distribution
discrepancy. The following lemma provides the formal definition.

Lemma 1 We define distribution
jo (X7 yf?)

So—— ~PWilX, Y<i) 5
Rg(x,ygiil)p(y Ix,y<i) 5)

q(yilx, y<i)

Re (x,y<7
RS (x,y<i)
KL(q"(y[x)llq(y|x)) < (2L +2)InJ,

where L is the length of the sequence y.

If there exists 6 > 1 such that given input x, Vy ., % < < 4, we have

We also notice that by definition, Rg satisfies the following equation:
Zy’_ RS (%, y<i)p(yilx, y<i) = R (X, y<i-1)- (6)

If R also satisfies Eq. (6), we can tighten this bound. Formally,

Lemma 2 Given the condition in Lemma 1, if ¢ is naturally a valid distribution without normalization
C .
(EDY Mysl))p(yﬂx,}ki) = 1), we have

Yi RS (X, y<i—1
Va, KL(q" (y[x)lla(y|x)) < 2Ind.

This lemma shows that with the auto-regressive property, the error does not accumulate along with
the sequence. The proof is in the appendix. These two bounds indicate that when training the model
RS, we should push it to satisfy Eq. (6) while approximating RS

3.4 Training NADO

In Fig. 1b we show the architecture of NADO. In general, NADO can be any seq2seq model. During
training, it takes x, y as input and predicts from RS (x,y<o) to RS (x,y<). During the inference
time, there are two parallel forward pass* to compute the token distribution ¢. Considering the size of
the NADO is usually much smaller than the base model, the whole forward pass takes no more than
2x base model forward pass time.

Now we discuss the training objective. In training, with some predefined input distribution X', we
sample x ~ X,y ~ p(y|x). We take these sampled (x,y) pairs as training examples, and use the
boolean value C(x,y) as their labels for all steps. We use cross entropy (denoted as CE(,-)) as
the loss function, formally, L g (x,y, RS) = 3.1, CE(RS (x,y<i), C(x,y)). Given a particular
input x, in expectation, we have

Eywp(y\x)LCE(X7Y5Rg) = Zy p(y|X)LCE(X7y7RGC)

T

=Y R{(x,y<i)log R (x, y<iH1-R (x,y <)) log(1-Rf (x, y<i))
=0

T

=Y CE(R{(x,y<i), R§ (x,y<i))

=0

(7

*In practice, to avoid enumerating the vocabulary, RS outputs a vector over vocabulary (i.e., RY (%X, y<i—1 D
y) for all possible y, @ is the concatenation operation), then we can directly do element-wise multiplication
between RS and p.




Therefore, Lo g empirically estimates the cross entropy loss between Rg and the ground truth Rg
which is intractable.

As we analyze above, we also regularize Rg for satisfying Eq. (6) based on KL-divergence:

Lreg(xvy7 RGC) = .fKL <Z RGC(XaySl)p(yl‘)g Y<i)a Rg(xv Y§1—1)> .

Yi

fxr(p,q) = plog % +(1—p)log }%Z is KL-divergence regarding p and ¢ as two Bernoulli distribu-
tions. We use a hyper-parameter A > 0 to balance these losses. The final training loss is

L(Xa Y, Rg) = LCE(Xa y, RGC) + ALreg(xa Y, ROC) (8)

3.5 Sampling

In Sec. 3.4 we describe that we train NADO by sampled data from base model p. One advantage
is that we are able to leverage different sampling strategies to better adapt to different application
scenarios. It is also possible to leverage reinforcement learning to train RQC, and we discuss our
connection to reinforcement learning in the appendix. In this section, we introduce two sampling
strategies and their corresponding properties.

Sampling with Temperature Control. In some task, the output sequences are not diverse much,
in other words, the token distribution in each step is very peaky. Since our NADO is trained on the
sampled examples, we expect those examples to cover as much tokens combination as possible to
avoid overfitting. Therefore, we add temperature factor 7' to smooth the distribution (Ackley et al.,
1985). Specifically, we sample y from distribution p(y|x) T, and add coefficient p(y|x)'~ T when
computing the cross-entropy loss. Formally, the expected loss is

_ 1
3 PO T Loptey BO| = Y0 pyLon(x,y, BS),

which is same as the original expected loss in Eq. (7).

y~p(y|x)

Importance Sampling. In practice, the training process of NADO can be extraordinarily difficult
when samples generated by the base model p hardly satisfy C'. i.e. Ey.,(yx)[P(C|%,y)] ~ 0. Hence,
we introduce the importance sampling (Hammersley and Morton, 1954) to tackle this issue. Basically,

we leverage existing partially trained Ry to form distribution g. Although Ry is not well-trained, it is
still able to provide positive guidance to produce samples satisfying C. Note that ¢ does not have to

be updated in each training epoch. With coefficient gg‘l;‘; , the expected loss is same as the original
expected loss:

ply|x
EYNd(y\x) qAEy:X;LCE(XJ’, Rec)] Zyeyp(ﬂx)LCE(X,y,jo)-

4 Experiments

We conduct experiments on two tasks: lexically constrained generation (LCG) and machine translation
(MT) with formality change. For the former, we use GPT-2 (Radford et al., 2019) as the base model
and for the latter, we use a sequence-to-sequence model, MarianMT (Junczys-Dowmunt et al., 2018).
We demonstrate our framework is generally effective in both scenarios. The boolean oracle is a
rule-based function checking whether all lexical constraints are satisfied in LCG task, while in MT it
is a classifier trained on an external dataset identifying the formality of the text. We put all details
about hyper-parameter settings in the appendix.

4.1 Text Generation with Lexical Constraints
We evaluate our model on two general classes of LCG problems:

* Unsupervised LCG: annotation for lexical constraints are not available during training, but
are expected to be in their exact order and lexical form during inference.



* Supervised LCG: annotation for lexical constraints are available, yet the words may appear
in a different lexical form (e.g., “look™ can appear in the past tense “looked”) or a different
order in the generated text.

In both cases, we define oracle C' as a boolean function indicating whether the generated sequence
satisfies all of the lexical constraints. We do not naturally have negative samples (i.e. the sequences
that do not satisfy all constraints) to train the auxiliary model in both settings, thus, it is non-trivial to
compare against methods requiring both positive and negative labeled data for training the auxiliary
model like FUDGE and GeDi.

Data Setup For unsupervised LCG, we follow the settings in POINTER (Zhang et al., 2020) and
conduct our experiments on Yelp! Review and News dataset. Each of the unsupervised LCG dataset
contains a great number of un-annotated, raw sequences for training (160K for Yelp! Review and
268,586 for News). During inference, the model is expected to generate text lexically constrained in
the exact order and form by a specific number of keywords (7 for Yelp! Review and 4 for News). For
supervised LCG, we evaluate the proposed method on CommonGen (Lin et al., 2020). CommonGen
is a supervised LCG task that aims to examine the commonsense of neural text generation models.
For training, it contains 32,651 unique key concepts (i.e. the constraints) with 67,389 completed
sequences in total. It also contains a validation set with 993 concepts and 4018 reference sequences.
For a more robust evaluation, the dataset maintains an open leaderboard that benchmarks different
approaches on a withheld test set. We follow most of the data configurations specified in the original
paper that first introduced the datasets.

General Model Setup We investigate the effectiveness of different factors in our framework by
enumerating different combinations of them. We implement two types of base model:

* (Seq2seq base model) A sequence-to-sequence model p(y|x) that takes into account the
lexical constraints as condition sequence input;

* (DA base model) A language model that is only domain-adapted to p(y) but unconditioned
on anything. This is a challenging setting, since we impose the lexical constraints only
with NADO. This setting is to better verify the effectiveness and efficiency of the proposed
method and control irrelevant factors.

Under both p(y|x) and p(y) settings, we fine-tune the base model from the pre-trained GPT2-Large.

During training, NADO is trained as a Seq2seq-like model®, which takes in the keys (for unsupervised
LCGs, they are generated by randomly sampling a specific number of natural words in the original
sentence) and generates the token-level guidance Ry (x,y<;). For each pseudo key, we sample 32
target text with top-p (p = 0.8) random sampling from base model p. We conduct experiments to test
different training setups for NADO:

* (NADO training) The proposed training process described in Sec. 3.4.

e (Warmup) We warm up NADO by maximizing the likelihood of positive samples, but
only backpropagating the gradient to the parameters of Ry. The warm-up RS is used for
importance sampling described in Sec. 3.5. With DA base models, however, the warmup
process is always incorporated for practical success of training (see the results for DA
pretrained w/o warmup).

We also consider the setting with warmup only, which can be treated as a stronger baseline to verify
that the major improvement of our framework is not coming from the extended capacity in NADO.

Results and Analysis We compare the performance under different setups of our model to previous
state-of-the-art methods on LCG tasks, including insertion-based models (Levenshtein Transformer
(Gu et al., 2019) with Lexical Constraints (Susanto et al., 2020), InsNet (Lu et al., 2022a), etc.) and
decoding-based algorithms. We also compare the results with a simple baseline which address the
problems with a standard Seq2seq pipeline. The results are as shown in Table 1.

NADO consistently improves the BLEU score and coverage in different setups. Furthermore, under
the best setting of each task (see bolded items in the table), NADO performs significantly better than
most baselines in generation quality and can achieve very good lexical constraints coverage rate.

>In this experiment, the input x is only describing the lexical constraint C. However, our framework also
supports general inputs in other Seq2seq tasks with constraints. For example, machine translation with lexical
constraints where the constraint C' is different from the input x.
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Figure 2: Comparative study of the effectiveness of regularization in NADO training.

Compared to InsNet, it is much easier for an autoregressive model with NADO to handle flexible
reordering/transformation of lexical constraints. This is reflected in the performance comparison of
InsNet and NADO on CommonGen dataset. Under most settings, a Seq2seq base model makes it
easier for the framework to perform well, as it guarantees a reasonable level of lexical constraint
coverage in even the initial state of the model.

Using a DA pretrained base model is a even challenging setup since the lexical constraints are only
imposed with NADO. Therefore, the base model distribution is much distinct from the one filtered
by the oracle, which is shown by poor performances on both metrics. However, with warmup and
NADO under importance sampling, we show that it is still possible to obtain a powerful model with
the proposed method.

To further study the correlation between the base model quality and the improvement of NADO, we
conduct experiments on GPT-2 base model. The GPT-2 base model has lower scores with and without
NADO compared with GPT-2 large, while the coverage improvements are similar. It shows NADO is
capable to push the base model distribution towards the oracle if the base model has decent quality.

We also do human evaluation on base model (GPT-2 Large fine-tune) and the best NADO system,
together with the gold reference for comparison. The results are shown in Tab. 2. The evaluation
metrics are detailed described in the Appendix. Some qualitative are shown in Tab. 3.

To study the importance of the regularization term, we conduct an ablative study under the optimal
setting on the CommonGen dataset (Seq2seq base model with NADO only). The results are shown
in Figure 2. While the success of achieving lexical control does not degenerate when NADO w/o
regularization overfits, adding regularization can significantly improve the robustness of NADO
generation quality when training NADO for more epochs.

4.2 Machine Translation with Formality Change

Datasets and Setup We follow the experimental setting in FUDGE (Yang and Klein, 2021) to
formalize the results of machine translation. Given an informal source sentence, our goal is to
translate it into formal sentence written in the target language. We conduct our experiments on Fisher
and CALLHOME Spanish-English Speech Translation Corpus (Post et al., 2013), where both of the
Spanish source and English reference are informal and casual. Instead of evaluating the translation
on original references, we use the formal and fluent rewritten version of references (Salesky et al.,
2019) to evaluate the translation quality by BLEU scores. In the training process, the formal version
reference is unseen to the models. We also evaluate the formality scores by a discriminator trained on
GYAFC formality dataset (Rao and Tetreault, 2018) as what FUDGE paper does. In this experiment,
pre-trained Marian MT model (Junczys-Dowmunt et al., 2018) is used as the base model.

In FUDGE, the authors train an auxiliary model also on GYAFC modeling token-level guidance
P(formal|y<;), and leverage it to guide the base model by Bayesian rule

P(yi|y<i, formal) oc P(y;|y<;)P(formally<;). )

For the formality supervision, FUDGE leverages an external token-level oracle. In NADO, we load
the same oracle but exclusively leverage sequence-level binary supervision as oracle C'. We randomly



Table 1: Unsupervised/Supervised Lexically Constrained Generation results on Yelp Review (unsu-
pervised), News (unsupervised) and CommonGen (supervised) dataset. CVRG stands for constraints
coverage. For insertion-based models, on CommonGen dataset we directly use the keyword as initial
context with no further permutation. p, ¢ denote the base model and the combined model in our
framework, respectively. The domain adaptation pretrained model produces samples unconditioned
on the constraints, and thus results in worse results than other setups. Results with * mark are from
the open leader board on the test set instead of development set.

Dataset |Yelp Review (test)[News (test) |CommonGen (dev)
Metrics |BLEU-2/4/CVRG [BLEU-2/4/CVRGBLEU-3/4 |CVRG
Insertion-based Baselines

InsNet-Sequential (Lu et al., 2022a) 19.4/5.8 [100% [16.3/5.0 [100% (26.2/18.7 [100%
ConstLevT (Susanto et al., 2020) 14.8/4.0 |100% |11.8/1.9 [100% |21.3/12.3* |96.9%*
Algorithmic Baselines

GPT-2-Large Finetune + Sampling 16.4/5.3 |94.5% |13.2/4.2 |81.8% |34.2/24.7* |82.2%%*
Neural Logic (Lu et al., 2022a) - - - - 36.7/26.7* |97.7%%*
A*esque Decoding (Lu et al., 2022b) - - - - -/28.2% 97.6%*
Model Setups (Ours)

p (Domain Adaptation pretrain) 5.3/04 [5.4% [4.0/0.8 0.9% |9.3/3.9 8.5%

p (Seq2seq pretrain) 16.6/4.8 |91.2% |13.0/3.4 [74.0% |34.2/23.5 (87.0%
q (DA pretrained p + warmup) 16.2/4.3 [75.4% [12.6/2.8 [66.7% (32.7/20.9 [79.7%
g (DA pretrained p + warmup + NADO) 16.9/54 |95.6% |15.4/4.7 |92.3%|37.8/26.2 |96.1%
q (Seq2seq pretrained p + warmup) 16.8/5.7 (94.2% |13.6/4.2 |85.0% |35.2/24.8 [90.2%
q (Seq2seq pretrained p + NADO) 17.4/6.0 (96.7% (15.0/4.5 [91.9% |40.9/30.8 [97.1%
q (Seq2seq pretrained p + warmup + NADO)|16.7/4.7 (92.8% (14.4/4.4 |86.1% |40.2/30.3 {95.9%
GPT-2 Base Reference

q (Seq2seq pretrained p) - - - - 32.17/22.98|76.8%
q (Seq2seq pretrained p + NADO) - - - - 33.61/24.01|185.5%

Table 2: Human evaluation of generated texts in CommonGen test set. The detailed description
for the four metrics (scale: from 1 to 3) and the evaluation setups can be found in the Appendix.
Baseline stnads for GPT-2 Large fine-tune setting, and NADO stands for the best system, Seq2seq
pretrained + NADO. We also evaluate the first gold reference provided in the dataset for comparison.
NADO outperforms base model in all four metrics. (The difference is statistical significant tested by
Wilcoxon signed ranks one-sided test, p-value < 0.02)

Model | Quality | Plausibility | Concepts | Overall
Baseline 2.39 2.46 2.40 2.37
NADO (Ours) | 2.51 2.52 2.52 2.47
Gold Ref. 2.53 2.58 2.59 2.56

choose 10,000 (7.2%) source texts from the training set as input examples, and sample 8 target texts
by sampling with temperature 7' from base model p for each source text. We use those sampled
examples to train NADO. In total, we have 80, 000 training samples, which is similar to the number of
training data (105k) for the token-level oracle in FUDGE. All the methods are using greedy decoding.

Results and Discussion The experimental results are shown in Table 4. Compared to FUDGE,
although only the sequence-level supervision is leveraged, we are consistently better in both metrics,
especially in BLEU score we boost about 3 points. We conjecture that the improvement is because our
formulation is more principle and correct. In methods using auxiliary model to guide the base model,
including FUDGE, their formulation is based on Eq. 9. However, the auxiliary model is trained on
a distribution different from where the base model is pretrained on, which leads to a distributional
discrepancy issue. In other words, directly multiplying these two terms is not rigorous, since they are
estimated on two different distributions. On the contrary, NADO is trained specifically to the base
model. This avoids the discrepancy issue and provides an accurate guidance. Considering we are



Table 3: Some more qualitative generation results with randomly selected concepts about NeurIPS.

Constraint: The generated texts should contain all the given concepts in arbitrary order

Concepts look forward discuss NeurIPS
Base Model Sample #1 ~ Players discuss the look of forward NeurrIPS. (NeurIPS)
Base Model Sample #2  Football player and forward discuss a look at the move. (NearIPS)

NADO Sample #1 People look forward to discussing the future of NeurIPS.
NADO Sample #2 We look forward to meeting and discussing the future of NeurIPS.
Concepts excite paper accept NeurIPS

Base Model Sample #1 =~ Researchers are excited after acceptance of their paper at IPS. (NeurHPS)
Base Model Sample #2  Scientists excited to accept paper accepted at NeurIPS.

NADO Sample #1 NeurlPS is excited to accept the paper of researcher.

NADO Sample #2 NeurlIPS is excited to announce that it has accepted papers.

Table 4: Formal Machine Translation results. We follow (Yang and Klein, 2021) setting to choose
BLEU score and average formality scores as the metric. We slightly improve the formality score
compared to FUDGE, while significantly boost the BLEU score.

Method | BLEU | Avg. Formality
MarianMT (Junczys-Dowmunt et al., 2018) | 16.98 0.45
FUDGE (Yang and Klein, 2021) 17.96 0.51
NADO + Random Sampling 20.84 0.54
NADO + Sampling with ' = 5/4 21.04 0.53
NADO + Sampling with T' = 5/3 20.77 0.52

using the same oracle function and similar number of training samples, the higher generation quality
reflected by BLEU scores supports our conjecture.

In sampling, for each input we sample 8 examples to train RQC, which are usually identical in this
task. Applying temperature in sampling allows NADO to be trained with more diverse data. Results
show that with a properly set temperature, we can further improve the generation quality.

It is still possible that the neural oracle leverages some superficial or even spurious features and
NADO is catering those features in order to improve the formality scores. For example, some
informal little words like “hmm” “uh”, and some abbreviations like ““ ‘cause ” “gonna” could make
the formality score lower. We find that NADO tends to fix them (see Appendix D). However, how to

get an good oracle is orthogonal to our contributions.

5 Conclusion

We purpose a general and efficient framework for controllable generation. We leverage an auxiliary
neural model, NADO, to approximate the decomposed oracle guidance, and incorporate it with a
fixed base model. By training with sampled data from the base model, NADO aligns better with the
base model, and our framework is more flexible dealing with various application scenarios provided
by different sampling methods. As NADO is a general framework, in the future, we plan to apply
it in boarder application scenarios. For example, reducing societal bias (Sheng et al., 2019) (e.g.,
gender or racial bias) in generation by providing corresponding oracle.
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Limitation

In this work we assume that a base model with decent quality (e.g., large pretrained language models)
and a good oracle for controlling attributes are available. However, in some applications, the quality
of the base model may be low and the oracle may only capture superficial shortcut between constraints
and labels. How to control a generation model under these situations is an interesting future work
direction.

Similar to other language generation approaches, we note that there is a risk that malicious users may
use NADO to generate improper or toxic texts. Also, the generated text may contain societal biases
inherited from data. However, on the other hand, NADO provides a powerful weapon against toxicity
as developers can design constraints to detoxify the generated text. We refer readers to the discussion
in Sheng et al. (2019, 2021); Zellers et al. (2019); Bender et al. (2021); Radford et al. (2019); Brown
et al. (2020); Dev et al. (2021); Dhamala et al. (2021).
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