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Abstract001

Vision-language models (VLMs) achieve re-002
markable success in single-image tasks. How-003
ever, real-world scenarios often involve in-004
tricate multi-image inputs, leading to a no-005
table performance decline as models struggle006
to disentangle critical information scattered007
across complex visual features. In this work,008
we propose Focus-Centric Visual Chain, a009
novel paradigm that enhances VLMs’ percep-010
tion, comprehension, and reasoning abilities011
in multi-image scenarios. To facilitate this012
paradigm, we propose Focus-Centric Data013
Synthesis, a scalable bottom-up approach for014
synthesizing high-quality data with elaborate015
reasoning paths. Through this approach, We016
construct VISC-150K, a large-scale dataset017
with reasoning data in the form of Focus-018
Centric Visual Chain, specifically designed for019
multi-image tasks. Experimental results on020
seven multi-image benchmarks demonstrate021
that our method achieves average performance022
gains of 3.16% and 2.24% across two distinct023
model architectures, without compromising the024
general vision-language capabilities. Our study025
represents a significant step toward more robust026
and capable vision-language systems that can027
handle complex visual scenarios: � VISC.028

1 Introduction029

The rapid advancement of VLMs has revolution-030

ized traditional visual tasks with single-image in-031

put, achieving human-level performance in various032

applications (Daniali and Kim, 2023). However,033

real-world scenarios frequently involve more com-034

plex visual input, such as multiple images, where035

current VLMs show significant performance degra-036

dation (Zhao et al., 2024). The challenges stem037

from two complementary traits of multi-image038

tasks: (1) Cross-image correlations: Images are039

often diversely related, requiring a holistic under-040

standing of their contextual relationships. (2) Vi-041

sual discontinuity: The fragmentation of infor-042

Which of the following images contains the 
same object as the first image and shares the 
same attribute weight?

GPT-4o: The first image contains two people sitting at a table 
in a restaurant or café. To determine …Thus, the fifth image is the 
correct choice. 

LLaVA-OneVision: Image 5 contains the same object and 
shares the same attribute weight. 

LLaVA-OneVison-VISC:
What is the main object and the attribute to compare? Focus: Image 1 
-The main object is a human, and the attribute to compare is …
Which other images contain humans? Focus: Images 3, 5 
-Image 3 shows a human skiing, and Image 5 shows multiple …

⋮
Final Answer:
No image clearly shows both the same object (seated humans) and the 
same attribute weight. 

Figure 1: A multi-image QA example: Using Focus-
Centric Visual Chain, our model LLaVA-OneVision-
VISC successfully answers a question that both GPT-4o
and LLaVA-OneVision fail to solve correctly.

mation between images makes it challenging to 043

accurately grasp cross-image relationships. 044

To address these challenges, we propose Focus- 045

Centric Visual Chain, a multi-image reasoning 046

paradigm that progressively focuses on key infor- 047

mation. In this process, VLMs decompose a com- 048

plex task into a sequence of sub-processes, each 049

involving the resolution of a sub-question that fo- 050

cuses on localized visual input. As illustrated in 051

Figure 1, this process allows models to iteratively 052

aggregate the necessary visual evidence guided by 053

the sub-questions, ultimately leading to the resolu- 054

tion of the complex task. 055

To implement this paradigm, high-quality rea- 056

soning data is indispensable. However, despite ex- 057

tensive research on reasoning tasks, reasoning data 058

for multi-image scenarios remains scarce. While 059

there exist approaches leveraging multimodal mod- 060

els to directly generate reasoning chains (Zhang 061

et al., 2023)or distilling data from more muscular 062
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models, such methods present two primary limita-063

tions: (1) Insufficient reliability, even state-of-the-064

art closed-source models (e.g., GPT-4o) demon-065

strate inconsistent performance on multi-image066

tasks (Wang et al., 2024a); and (2) Prohibitive067

costs, the substantial cost of closed-source models068

severely constrains scalability. Hence, we propose069

the Focus-Centric Data Synthesis framework, an070

efficient approach for generating reasoning data071

following a bottom-up strategy. In contrast to our072

reasoning paradigm, which decomposes complex073

tasks into simpler sub-tasks, the framework centers074

on progressive information aggregation. At each075

stage, it expands the existing information set to for-076

mulate reliable reasoning paths and corresponding077

questions from complex visual inputs.078

The Focus-Centric Data Synthesis framework079

comprises four systematically designed modules:080

(1) Feature Extraction constructs comprehensive081

textual profiles for each image, which serve as082

nodes in subsequent process; (2) Pair Connec-083

tion identifies relevant image pairs through object-084

oriented and event-oriented detection, forming085

edges between distinct nodes; (3) Relevance Anno-086

tation categorizes detected connections into three087

predefined types (Temporal, Spatial, and Semantic)088

and detail them; (4) Question Generation produces089

logically chained sub-questions based on the estab-090

lished inter-image network, ultimately synthesizing091

the final composite question and reasoning path.092

The framework’s bottom-up design ensures data093

quality while maintaining computational efficiency094

through exclusive use of open-source models.095

Leveraging this framework, we construct VISC-096

150K composed of 150K high-quality multi-image097

reasoning samples. Extensive experiments across098

seven multi-image benchmarks demonstrate the099

effectiveness of our approach. When integrated100

with different base models, VISC-150K consis-101

tently brings performance improvements across all102

challenging benchmarks, with average accuracy in-103

creased by 3.16% and 2.24%, respectively, achiev-104

ing new state-of-the-art on four out of the seven.105

In summary, our contributions are three-fold:106

• We introduce the Focus-Centric Visual Chain107

paradigm to solve complex multi-image tasks108

through question decomposition and stepwise109

reasoning.110

• We propose Focus-Centric Data Synthesis, a111

framework tackling data scarcity by synthesiz-112

ing reliable, cost-effective, and reproducible 113

reasoning data via open-source models. 114

• We release VISC-150K, a multi-image reason- 115

ing dataset containing 150K data with Focus- 116

Centric Visual Chains. Our dataset deliv- 117

ers consistent performance gains across di- 118

verse model architectures on seven challeng- 119

ing multi-image benchmarks, as validated by 120

comprehensive evaluations. 121

2 Related Work 122

2.1 Vision-Language Models 123

Vision-Language Models (VLMs) integrate visual 124

and textual processing through multimodal archi- 125

tectures, enabling tasks like image captioning. 126

Closed-source models such as GPT-4o (OpenAI, 127

2024a) and Gemini-1.5-Pro (Gemini Team, 2024) 128

demonstrate state-of-the-art performance. While 129

open-source VLMs can be categorized into two 130

types based on their architecture. 131

The first type employs a unified architecture 132

for both visual and textual modality. For ex- 133

ample, Flamingo (Alayrac et al., 2022) incorpo- 134

rates visual information into textual inputs through 135

blocks based on cross-attention. The KOSMOS 136

series (Huang et al., 2023; Peng et al., 2023) uses 137

the same embedding module to encode text and 138

visual information. 139

The second type aligns the two modalities by uti- 140

lizing a connector module to project visual inputs 141

into the textual space. BLIP-2 (Li et al., 2023) con- 142

nects the visual encoder and the language model 143

with Q-former. InstructBLIP (Dai et al., 2023) 144

further proposes an innovative instruction integra- 145

tion to achieve better modality alignment. The 146

LLaVA series (Liu et al., 2023b) adopts a more 147

concise design, using MLP as the mapping layer 148

between modalities. This architecture was widely 149

adopted by recent VLMs, including Mantis (Jiang 150

et al., 2024), LLaVA-OneVision (Li et al., 2024a), 151

and InternVL2 (Chen et al., 2024c). Additionally, 152

Qwen2-VL (Wang et al., 2024b) adopts visual po- 153

sition encoding and Naive Dynamic Resolution. 154

Despite advancements, evaluations reveal 155

two critical limitations of previous works: 156

(1) VLMs struggle with complex multi-image 157

tasks (Zhao et al., 2024) and (2) existing train- 158

ing paradigms offer diminishing returns for multi- 159

image tasks (Campbell et al., 2024). To overcome 160

these limitations, we synthesize a dataset that con- 161

tinuously improves VLMs’ performance on various 162
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multi-image benchmarks, thus providing a new so-163

lution for complex multi-image scenarios.164

2.2 Reasoning of LLMs and VLMs165

Reasoning capabilities in Large Language Mod-166

els (LLMs) have evolved through innovative167

prompting strategies and knowledge integra-168

tion. Chain-of-Thought (CoT) (Wei et al.,169

2022) pioneered reasoning in LLM, later en-170

hanced by Tree-of-Thought(Yao et al., 2023) and171

Graph-of-Thought (Besta et al., 2023). Self-172

consistency (Wang et al., 2023) improves robust-173

ness by aggregating multiple reasoning paths via174

voting strategy. Recent advances like OpenAI’s175

o1 series (OpenAI, 2024b) employ reinforcement176

learning to foster more complex reasoning.177

Beyond focusing on single-modal, multimodal178

reasoning (Wang et al., 2024c) extensions lever-179

age data-centric approaches (Gao et al., 2023;180

Zhang et al., 2024b; Shi et al., 2024; Cheng et al.,181

2024; Xu et al., 2024), knowledge graph integra-182

tion (Zhang et al., 2024a; Lee et al., 2024), and tree183

search (Yao et al., 2024) for transferring reason-184

ing capabilities to VLMs. However, for scenarios185

with multi-image inputs, how to enable VLMs to186

integrate complex visual information and perform187

slow thinking remains an issue that has not been188

fully explored. To address this issue, we design a189

multi-step reasoning paradigm, decomposing the190

initial question into a sequence of sub-questions191

and focusing on a subset of input images in each192

step. The effectiveness of this paradigm is verified193

by experiments in § 4.194

3 Methodology195

The methodology is detailed in two parts. First, we196

formulate the Focus-Centric Visual Chain, which197

enhances the ability of VLMs to handle complex198

multi-image inputs through multi-step reasoning199

(§ 3.1). Then, we present the Focus-Centric Data200

Synthesis framework, a bottom-up approach for201

synthesizing multi-image reasoning data with pre-202

cise control over the reasoning process (§ 3.2).203

3.1 Focus-Centric Visual Chain204

We present Focus-Centric Visual Chain, a rea-205

soning paradigm specifically designed for multi-206

image input scenarios. Given an image collection207

G = {Ik|k = 1, 2, · · · ,K} and an initial question208

Q, the model M progressively constructs a rea-209

soning chain R via multi-step reasoning. At each210

step, the model focuses on a visual evidence subset 211

G ⊆ G through a dynamic selection mechanism. 212

Specifically, at the i-th reasoning step, the model 213

M generates an intermediate sub-question qi and 214

identifies its corresponding focus, a minimized vi- 215

sual information subset Gi, through: 216

qi, Gi = M(Q,G,H<i), (1) 217

where H<i = {q1, q2, · · · , qi−1} represents the 218

sub-question history of previous steps, with H<1 = 219

∅ for initialization. Subsequently, the model de- 220

rives an intermediate answer ai through joint anal- 221

ysis of qi and Gi. According to the existing an- 222

swer set Ai = {a1, a2, · · · , ai}, the model deter- 223

mines whether to extend the reasoning path and 224

outputs a stopping signal zi ∈ {True,False}. Only 225

when zi = True, does the model synthesize the 226

final answer A from the current QA collection 227

Ci = {(q1, a1), (q2, a2), · · · , (qi, ai)} and termi- 228

nate the reasoning; otherwise, it iteratively refo- 229

cuses on distinct visual information. Therefore, the 230

overall reasoning process R can be represented as 231

an ordered sequence: 232

R = [(qi, Gi, ai, zi)]
N
i=1 , (2) 233

where N denotes the total number of executed rea- 234

soning steps. 235

3.2 Focus-Centric Data Synthesis 236

Aiming to implement the reasoning paradigm 237

above in a data-driven manner, we propose Focus- 238

Centric Data Synthesis(FCDS), a bottom-up evo- 239

lutionary data synthesis framework. FCDS cost- 240

effectively facilitates the large-scale synthesis of 241

certifiable cross-image reasoning data through 242

open-source models. The synthesis process begins 243

with a set of images and incrementally assesses 244

their interrelationships. It then formulates interme- 245

diate sub-questions, culminating in a meaningful 246

question that aligns with a coherent reasoning path. 247

Specifically, FCDS consists of four interconnected 248

steps: Feature Extraction, Pair connection, Rel- 249

evance Annotation and Question Generation, as 250

illustrated in Figure 2. 251

Feature Extraction. Following a bottom-up 252

manner, the synthesis process initiates with granu- 253

lar feature extraction, constructing a detailed profile 254

for each image I ∈ G, which consists of four core 255

elements: (1) the overall view of I; (2) background 256

descriptions; (3) object attributes and (4) object in- 257

teractions. These image profiles provide a pathway 258

3



Relevance Annotations

Temporal Spatial Semantic

Reasoning Path &
Corresponding question

Raw Images samples Raw Image Pairs

Large Language 
Model

MLP MLP

Large Language 
Model

Overall View

Background

Object Attributes

Object Interaction

Image Profiles

Image1

Image3

Image2

Image4

Image 
Profiles

Relevance 
Annotations

Image1

Image3

Image2

Image4

Complex 
Question

Final 
Answer

S
ub

-Q
2

(Image1, Image2)
(Image2, Image3)
(Image2, Image4)
(Image3, Image4)

Questioner

⋯ ⋯

Large Language 
Model

Connector

Image 
Profiles

Nodes

Graph

Vision 
Encoder

Vision 
Encoder

Extractor

Large Language 
Model

Annotator

Feature Extraction Pair Connection Relevance Annotation Question Generation

Figure 2: The Focus-Centric Data Synthesis framework consists of four stages: Feature Extraction processes raw
visual input, extracting object-level attributes and interactions into structured image profiles. Pair Connection links
related image nodes based on their profiles. Relevance Annotation identifies and annotates relationships between
nodes from temporal, spatial, and semantic perspectives. Question Generation utilizes the extracted image profiles
and relationship annotations to construct multi-image reasoning paths and corresponding questions.

for capturing object-level features and modeling259

their relationships. All profiles are generated by260

our specialized vision-language model Extractor,261

which comprises three fundamental components:262

a visual encoder fe for visual feature encoding, a263

vision-language connector fc for modality align-264

ment, and a large language model fϕ for semantic265

understanding as well as content generation.266

Specifically, for each image I ∈ G, the visual267

encoder fe projects I into a sequence of latent em-268

beddings:269

XV = fe(I) = ⟨xV1 , xV2 , . . . , xVn ⟩, (3)270

where each visual token xVi ∈ RdV corresponds271

to an image patch, with dV denoting the output272

dimension of the visual encoder. The number of273

visual tokens n depends on the visual encoder 1.274

Next, the vision-language connector fc performs275

dimension-aware projection to align visual features276

with textual semantics:277

XT = fc(X
V ) = ⟨xT1 , xT2 , . . . , xTn ⟩, (4)278

where each xTi ∈ RdT represents an aligned token.279

Here, dT is the dimension of fϕ. XT is then fed280

into the large language model fϕ to generate the281

1In some VLMs (e.g., LLaVA-OneVision), n is a fixed
number. While for some VLMs (e.g., Qwen2-VL), n increases
with the resolution of I

profile p = fϕ(X
T ) for I . Each generated profile 282

is treated as a node in the reasoning path. 283

Pair Connection. Since connecting arbitrary 284

nodes may lack semantic validity, we establish 285

edges only between nodes with potential relevance. 286

We propose two criteria to determine node related- 287

ness: (1) Object-oriented, where images share co- 288

occurring objects, and (2) Event-oriented, where 289

images depict shared or related events. Given pro- 290

file collection P of image set G, a large language 291

model Connector is implemented to identify valid 292

pairwise connections: 293

{(i, j)|i, j ∈ [0,K), i ̸= j} = Connector(P),
(5) 294

where each pair (i, j) indicates a potential con- 295

nection between image Ii and Ij . By identifying 296

correlations between different nodes, we establish 297

the basic structure of the reasoning path. 298

Relevance Annotation. To systematically char- 299

acterize inter-node relevance, we classify it into 300

three categories: Temporal, Spatial, and Semantic, 301

as detailed as follows: 302

• Temporal: The paired images depict a chrono- 303

logical sequence, with one distinctly preceding the 304

other in temporal succession. 305

• Spatial: Visual elements in paired images ex- 306

hibit geometric and positional correlations, forming 307

spatial continuity or progression. 308
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• Semantic: The paired images exhibit intangi-309

ble associations containing thematic, logical and310

causal relationships. Notably, this category accom-311

modates abstract connections beyond direct visual312

correspondence.313

To formalize the relation annotation process, we314

develop Annotator, which also comprises three315

components: a visual encoder fe, a vision-language316

connector fc, and a large language model fϕ. Given317

connected image pair s = (Ii, Ij), Annotator first318

performs independent encoding of both images fol-319

lowed by feature concatenation:320

XV
i = fe(Ii) = ⟨xVi,1, xVi,2, . . . , xVi,n⟩, (6)321

XV
j = fe(Ij) = ⟨xVj,1, xVj,2, . . . , xVj,n⟩, (7)322

XV = concat(XV
i , XV

j ), (8)323

where XV denotes the concatenated embeddings324

of the encoded image pair, resulting in a sequence325

of 2n visual tokens. Subsequently, XV is mapped326

to aligned textual tokens XT through the vision-327

language connector fc:328

XT = fc(X
V ) = ⟨xTi,1, . . . , xTi,n, xTj,1, . . . , xTj,n⟩.

(9)
329

Finally, the large language model fϕ generates the330

relation r = fϕ(X
T ) where r denotes the anno-331

tated relation for s. Notably, multiple relation types332

may be simultaneously present in a single pair.333

Question Generation. The reasoning path is con-334

structed by sampling a sequential chain of K inter-335

connected nodes. For each connected image pair si336

along this path, we generate targeted sub-questions337

qi based on their annotated relations ri and corre-338

sponding image profiles. The question generation339

process is implemented through a specialized large340

language model Questioner:341

qi = Questioner(si, ri, pi,1, pi,2), (10)342

where pi,1 and pi,2 represent the profiles of the343

two images in si. Finally, these sub-questions are344

synthesized into a coherent overarching question345

Q through aggregation:346

Q = Questioner({qi}|Ki=1). (11)347

We utilized LLaVA-OneVision-7B 2 (Li et al.,348

2024a) as the base model for the Extractor and An-349

notator, while Qwen2.5-7B-Instruct 3 (Yang et al.,350

2https://huggingface.co/lmms-lab/llava-onevision-qwen2-
7b-ov

3https://huggingface.co/Qwen/Qwen2.5-7B-Instruct

2024) served as the base model for the Connector 351

and Questioner. Through our carefully designed 352

framework, we constructed VISC-150K, a high- 353

quality dataset comprising 150K multi-image rea- 354

soning data instances following the Focus-Centric 355

Visual Chain paradigm. The image resources are 356

collected from publicly accessible websites and in- 357

clude real-world photographs with diverse scenes 358

and comics. More details about our dataset are 359

introduced in Appendix A. 360

4 Experiments 361

We first evaluate the effectiveness of our method 362

across diverse multi-image tasks. We then conduct 363

more investigations into our method through multi- 364

faceted experimental studies and in-depth analysis. 365

4.1 Experimental Setup 366

We apply Focus-Centric Visual Chains to two pre- 367

trained models, LLaVA-OneVision-7B and Qwen2- 368

VL-7B-Instruct4 (Wang et al., 2024b), which have 369

been extensively fine-tuned on large-scale multi- 370

image datasets and exhibit robust capability. Both 371

models undergo LoRA (Hu et al., 2022) fine-tuning 372

on VISC-150k for one epoch with a batch size of 8. 373

The learning rate is set to 1e-5 with a warmup ratio 374

of 0.05 and as a cosine scheduler. The maximum 375

context length is set to 32,768. 376

When conducting evaluations, the temperature 377

is set to 0 and the max new tokens is 1,024. For 378

Qwen2-VL-7B, the image resolution is cropped 379

between 128×28×28 and 1280×28×28 to reduce 380

memory consumption and improve inference speed. 381

More details about experimental settings are re- 382

ported in Appendix B. 383

4.2 Baselines 384

For open-source VLMs, our baselines include 385

Qwen2-VL (Wang et al., 2024b), Qwen-VL- 386

Chat (Bai et al., 2023), LLaVA-OneVision (Li et al., 387

2024a), LLaVA-1.6 (Liu et al., 2024), LLaVA- 388

1.5 (Liu et al., 2023a), InternVL2.5 (Chen et al., 389

2024b), InternVL2 (Chen et al., 2024c), Mantis- 390

Idefics2 (Jiang et al., 2024), Idefics2 (Laurençon 391

et al., 2024), VILA-1.5 (Lin et al., 2023) and 392

OpenFlamingo-v2 (Awadalla et al., 2023). Among 393

close-source VLMs, we select GPT-4V/GPT- 394

4o (OpenAI, 2024a) as the baseline. Please refer to 395

Appendix C for more details. 396

4https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct
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Model Size MMIU MuirBench MIRB BLINK NLVR2 Mantis-Eval MVBench

GPT-4V/GPT-4o - 55.70 68.00 53.05 51.14 88.80 62.67 43.50
Qwen-VL-Chat 7B 15.90 20.42 14.38 31.17 58.72 39.17 42.15
LLaVA-1.5 7B 19.20 23.46 28.47 37.13 53.88 31.34 36.00
LLaVA-1.6 7B 22.20 27.42 29.83 39.55 58.88 45.62 40.90
Idefics2 8B 27.80 26.08 33.02 45.18 86.87 48.85 29.68
VILA-1.5 8B 32.45 33.12 36.52 39.30 76.45 51.15 49.40
OpenFlamingo-v2 9B 22.30 23.73 28.80 39.18 36.41 12.44 7.90
Mantis-Idefics2 8B 45.60 44.50 34.82 49.05 89.71 57.14 51.38
InternVL2 8B 42.00 48.70 50.00 50.90 - 65.40 65.80
InternVL2.5 8B 46.70 51.10 52.50 54.80 - 67.70 72.00

LLaVA-OneVision 7B 40.32 41.77 51.18 48.20 89.40 64.20 56.70
+VISC-150K 7B 46.52(↑6.20) 49.62(↑7.85) 53.02(↑1.84) 50.24(↑2.04) 89.88(↑0.48) 66.36(↑2.16) 58.23(↑1.53)

Qwen2-VL 7B 50.00 39.12 58.67 53.20 86.42 69.60 67.00
+VISC-150K 7B 52.76(↑2.76) 44.50(↑5.38) 60.16(↑1.49) 55.34(↑2.14) 89.82(↑3.40) 69.12(↓0.48) 68.01(↑1.01)

Table 1: Performance comparison of LLaVA-OneVision and Qwen2-VL based models across seven multi-image
benchmarks, with the highest scores being bolded and the second highest underlined. Results highlighted in gray
indicate experiments using closed-source models, while the remaining results are from open-source models.

4.3 Benchmarks397

We evaluate our method on seven comprehensive398

multi-image benchmarks that span diverse scenar-399

ios. The statics of each benchmark are detailed in400

Appendix D, with characteristics listed as follows:401

(1) MMIU (Meng et al., 2024) categorizes multi-402

image relationships into three primary types: se-403

mantic, spatial, and temporal. These categories are404

further subdivided into seven subtypes, covering405

52 distinct multi-image understanding tasks.406

(2) MuirBench (Wang et al., 2024a) covers 12407

distinct multi-image understanding tasks and en-408

compassing 10 types of multi-image relationships.409

(3) MIRB (Zhao et al., 2024) includes four evalua-410

tion dimensions: perception, visual world knowl-411

edge, reasoning, and multi-hop reasoning. Each412

category consists of tasks requiring comparison413

and inference across multiple images.414

(4) BLINK (Fu et al., 2024) incorporates 14 visual415

perception tasks that humans can quickly solve,416

covering indoor, outdoor, and natural scenes.417

(5) NLVR2 (Suhr et al., 2019) contains examples418

of English sentences paired with online photos,419

focusing on rich linguistic and visual content to420

support diverse reasoning tasks.421

(6) Mantis-Eval (Jiang et al., 2024) comprises422

high-quality multi-image reasoning samples, de-423

signed for diverse multi-image skills such as co-424

reference, reasoning, and comparison.425

(7) MVBench (Li et al., 2024b) consists of 20 chal-426

lenging video understanding tasks, which cover427

a wide range of temporal understanding skills in428

video scenarios.429

4.4 Results 430

The experimental results are presented in Table 1. 431

Both LLaVA-OneVision and Qwen2-VL demon- 432

strate consistent performance improvements across 433

seven benchmarks after fine-tuning with our syn- 434

thesized dataset VISC-150K, indicating the effec- 435

tiveness of our method across different VLM archi- 436

tectures. 437

LLaVA-OneVision achieves benchmark-leading 438

improvements of 6.20% on MMIU and 7.85% on 439

MuirBench, demonstrating breakthrough capabil- 440

ities. Significantly, our method elevates even the 441

already superior Qwen2-VL model across multiple 442

benchmarks, achieving an average gain of 2.24% 443

over its strong baselines. When combined with 444

LLaVA-OneVision’s 3.16% average improvement, 445

these consistent enhancements across both high- 446

performing and emerging models conclusively val- 447

idate the universality of our approach. 448

Our method establishes new state-of-the-art re- 449

sults on four benchmarks: MMIU, MIRB, BLINK, 450

and NLVR2. These improvements can be attributed 451

to three key characteristics: (1) the richness of vi- 452

sual information, (2) the diversity of inter-image 453

relationships, and (3) the complexity of task formu- 454

lations. These characteristics align well with our 455

method’s enhanced capabilities in visual percep- 456

tion, comprehension, and reasoning. 457

Moreover, our method demonstrates measur- 458

able performance gains on the video benchmark 459

MVBench. Given that a video is essentially a col- 460

lection of frames, it falls into a multi-image sce- 461

nario with temporal correlations, where our method 462
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Figure 3: The impact of dataset scale on LLaVA-
OneVision’s performance across MMIU and MuirBench
benchmarks. As the data scale increases, the model’s
accuracy progressively improves.

maintains efficacy. This result substantiates that our463

Focus-Centric Visual Chain reasoning paradigm464

operates in a domain-agnostic manner, exhibiting465

robust applicability as well as transferability.466

4.5 Discussions467

In this section, we propose five research questions468

and conduct an in-depth investigation to provide a469

more comprehensive evaluation of our method.470

RQ1: How does data size affect performance?471

To investigate the impact of the data scale, we472

create five subsets from VISC-150K through ran-473

dom sampling, which contain 25K, 50K, 75K,474

100K, and 125K instances respectively. Each sub-475

set is used to fine-tune LLaVA-OneVision using476

LoRA for one epoch. The fine-tuned models are477

then evaluated on the MMIU and MuirBench, and478

the result is visualized in Figure 3.479

The performance curves reveal a non-linear rela-480

tionship: the model achieves rapid improvements481

when increasing data size from 0 to 125K, fol-482

lowed by a more gradual improvement from 125K483

to 150K, suggesting diminishing returns but contin-484

ued learning potential. We attribute the rapid per-485

formance leap observed with the 0–25K data scale486

to a capability activation process, where the model487

unlocks stronger multi-image potential by learn-488

ing from reasoning data under the new paradigm.489

This result suggests that data constructed through490

Focus-Centric Data Synthesis framework can be491

effectively scaled up, which is essential for further492

enhancing performance by expanding the data size.493

RQ2: What is the effect on different sub-tasks?494

To better understand our approach’s strengths,495

Geographic 
Understanding

Counting

Action 
Understanding

Visual 
Grounding

Image-Text 
Matching

Diagram 
UnderstandingDifference 

Spotting

Attribute 
Similarity

Visual 
Retrieval

Ordering

Scene 
Understanding

Cartoon 
Understanding

Figure 4: The accuracy comparison of LLaVA-
OneVision on 12 MuirBench sub-tasks with and without
being fine-tuned on VISC-150K.

we conducted a detailed analysis across different 496

multi-image tasks in MuirBench. We compare the 497

performance of LLaVA-OneVision before and af- 498

ter being finetuned on VISC-150K, as illustrated 499

in Figure 4. Across all twelve sub-tasks in Muir- 500

Bench, only four of them do not exhibit substantial 501

improvements. These tasks face dual constraints 502

stemming from (1) intrinsic limitations in vision- 503

language architectures and (2) capacity constraints 504

of foundational language models. This is exempli- 505

fied by the 3D spatial reasoning required for Scene 506

Understanding and the nuanced semantic interpre- 507

tation essential for Cartoon Understanding. 508

In contrast, the remaining eight tasks show sig- 509

nificant improvements. These tasks predominantly 510

involve similarity analysis or comparative reason- 511

ing at the image or feature level, such as visual re- 512

trieval and attribute similarity. Additionally, some 513

of these sub-tasks (e.g., geographic understanding) 514

involve image types and task categories that are not 515

present in VISC-150K, which emphasize the cross- 516

domain generalization capabilities of our method. 517

RQ3: How does the number of input images 518

impact performance? 519

To investigate how the number of input images 520

impacts our method, we conducted a detailed analy- 521

sis of LLaVA-OneVision on the MMIU benchmark. 522

The instances are grouped into different buckets by 523

the number of input images. 524

As demonstrated in Figure 5, when handling 3-8 525

images, LLaVA-OneVision-VISC achieves remark- 526

able improvements, suggesting successful identi- 527
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Figure 5: The distribution of task accuracy for LLaVA-
OneVision based models across varying numbers of
input images, grouped into eight buckets from 1 to 16
images with an interval of 2.

fication of cross-image relationships in medium-528

sized image sets. This capability persists even529

with larger inputs (11-14 images), where LLaVA-530

OneVision-VISC maintains superior performance531

compared to baseline models while avoiding per-532

formance degradation from information overload.533

However, when processing more than 15 images,534

the performance of LLaVA-OneVision-VISC ex-535

hibits slight degradation, which may be attributed536

to amplified noise levels or interference from irrel-537

evant data patterns in prolonged image sequences.538

RQ4: Does VISC-150K affect general ability?539

Although our method demonstrates remarkable540

improvements in multi-image tasks, it is crucial to541

evaluate whether these gains come at the expense of542

general task performance. To investigate this issue,543

we adopt Qwen2-VL as the base model and con-544

duct analysis on four benchmarks in other domains.545

These benchmarks are based on single-image in-546

puts and evaluate the fine-tuned model’s perfor-547

mance from various perspectives, including hal-548

lucination, single-image data language capability,549

domain-specific knowledge, and mathematical rea-550

soning. Specifically: HallusionBench (Guan et al.,551

2023) is designed to assess VLMs’ ability to com-552

prehend and interpret visual data; MMStar (Chen553

et al., 2024a) requires advanced multi-modal capa-554

bilities for accurate interpretation; MMMU (Yue555

et al., 2024) focuses on evaluating models’ abil-556

ity to apply domain-specific knowledge; Math-557

Vista (Lu et al., 2023) integrates mathematical558

reasoning with visual tasks. The results are pre-559

sented in Table 2. The model fine-tuned on VISC-560

150K maintains comparable or superior perfor-561

mance across all benchmarks, indicating that our562

method enhances the model’s ability to perceive563

Model HallusionBench MMStar MMMU MathVista

Qwen2-VL-7B 64.8 60.7 54.1 58.2
Qwen2-VL-7B-VISC 66.3 60.4 54.3 58.5

Table 2: After fine-tuning, the model based on the
Qwen2-VL architecture shows comparable or slightly
improved performance across four vertical vision-
language benchmarks.

visual information without diminishing its general 564

vision-language capabilities. 565

RQ5: How is the quality of synthesized data? 566

Quality assurance is particularly critical for our 567

fully automated data synthesis process. We con- 568

ducted a rigorous quality assessment by engaging 569

three Ph.D. students with expertise in computer 570

vision and natural language processing. They eval- 571

uated a stratified random sample of 200 instances, 572

with each instance independently assessed by all an- 573

notators. The overall accuracy is calculated based 574

on three metrics: focus accuracy, sub-question cor- 575

rectness, and final answer correctness. A sample is 576

counted as a positive instance when all three met- 577

rics are unanimously assessed as correct by at least 578

two annotators, or regarded as a negative instance. 579

With the synthesized data attaining 97.5% overall 580

accuracy (Fleiss’ κ (Fleiss, 1971) = 0.637), these 581

results robustly validate the method’s reliability 582

across measurement dimensions. 583

5 Conclusion 584

This study addresses the challenges from multi- 585

image scenarios through two key innovations: (1) 586

the Focus-Centric Visual Chain, a structured rea- 587

soning paradigm that breaks down complex tasks 588

into targeted sub-questions with explicit visual 589

focus, and (2) a bottom-up framework for auto- 590

mated synthesis of reasoning data in the form of 591

Focus-Centric Visual Chain. Through this method- 592

ology, a large-scale multimodal dataset of 150K 593

instances featuring multi-image compositions and 594

cascaded reasoning chains, systematically gener- 595

ated via our automated synthesis framework. Mod- 596

els fine-tuned on VISC-150K achieve consistent 597

improvements across multiple multi-image bench- 598

marks. Our work not only breaks performance 599

ceilings in existing tasks but also establishes an ad- 600

vanced framework for data-driven visual reasoning, 601

providing actionable pathways to resolve persistent 602

bottlenecks on multi-image tasks. 603
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Limitations604

While our approach demonstrates promising re-605

sults, we identify several important limitations. The606

Focus-Centric Data Synthesis framework requires607

pairwise relevance annotation across images, lead-608

ing to quadratic computational complexity. We609

maintain moderate sizes of image sets to balance610

data diversity and computational efficiency.611

Moreover, Our VISC-150K dataset primarily fo-612

cuses on real-world photographs and comics. The613

approach’s effectiveness remains untested on struc-614

tured visual content such as charts, diagrams, and615

code snippets, which may require different reason-616

ing patterns.617

In addition, the current implementation is con-618

strained by the language models’ inherent ca-619

pabilities. Consequently, our method inherits620

their limitations in managing complex spatial dy-621

namics, domain-exclusive contexts, and expertise-622

dependent visual subtleties.623

These limitations suggest promising directions624

for future research in multi-image understanding625

and reasoning.626
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A Dataset Details 893

VISC-150K comprises 152,061 entries, with im- 894

ages aggregated from publicly accessible web- 895

sites 5 established open-source visual datasets. It 896

includes reasoning paths of lengths 1–8, formatted 897

as open-ended QA and single-choice tasks, and cov- 898

ers varying numbers of input images. The detailed 899

composition is illustrated in Figure 6. 900

B Experimental Settings 901

All experiments were conducted on 8 NVIDIA 902

A100 (80GB) GPUs. For training, we applied 903

LoRA fine-tuning with a rank of 16, an initial learn- 904

ing rate of 1e-5, a warmup ratio of 0.05, and a co- 905

sine learning rate scheduler. The batch size was 906

set to 8 with a maximum context length of 32,768, 907

using the bfloat16 floating-point format. During in- 908

ference, we configured the temperature to 0 for de- 909

terministic generation, set max new tokens to 1,024, 910

and accelerated computations with FlashAttention- 911

2. Notably, for Qwen2-VL, we dynamically resized 912

input image resolutions to the range of 128×28×28 913

– 1280×28×28 to balance inference speed and com- 914

putational resource consumption. 915

C Baseline Details 916

Qwen2-VL (Wang et al., 2024b) incorporates M- 917

RoPE to handle positional information and is capa- 918

ble of processing images of any resolution dynami- 919

cally. These techniques allow the model to capture 920

detailed visual information more effectively. 921

Qwen-VL-Chat (Bai et al., 2023) is built upon the 922

foundation of Qwen and is enhanced with visual 923

capabilities through training on high-resolution im- 924

ages and fine-grained datasets. 925

5WikiHow (https://www.wikihow.com), eHow
(https://www.ehow.com)
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Figure 6: The image count distribution in VISC-150K
spans 1–8 images per instance, with samples containing
2–5 images accounting for 80.9% of the total dataset.

LLaVA-OneVision (Li et al., 2024a) is built upon926

LLaVA-NeXT series, leveraging large language927

models (LLMs) and vision encoders connected928

through a simple projection module.929

LLaVA-1.6 (Liu et al., 2024) addresses the limi-930

tations of existing VLMs that primarily focus on931

single-image tasks. The model leverages an inter-932

leaved data format as a general template to unify933

different visual scenarios.934

LLaVA-1.5 (Liu et al., 2023a) is designed to im-935

prove visual reasoning and instruction-following936

capabilities by leveraging visual instruction tuning.937

InternVL2.5 (Chen et al., 2024b) is a state-of-the-938

art VLM built upon the architecture of InternVL2.939

Its key features include a robust vision encoder,940

flexible language model integration, dynamic high-941

resolution processing, and effective test-time scal-942

ing.943

InternVL2 (Chen et al., 2024c) employs a pro-944

gressive alignment training strategy, allowing the945

model to scale from smaller to larger sizes while946

refining the training data from coarse to fine.947

Mantis-Idefics2 (Jiang et al., 2024) builds on ex-948

isting LMM architectures and modifies them to949

support interleaved multi-image inputs. It uses a950

text-image interleaving format to mark boundaries951

between images, enabling the model to better un-952

derstand and reason over multiple images.953

Idefics2 (Laurençon et al., 2024) incorporates954

learned pooling strategies to reduce the number955

of visual tokens, significantly improving computa-956

tional efficiency while maintaining or even enhanc-957

ing performance.958

VILA-1.5 (Lin et al., 2023) is designed to effec-959

tively integrate visual inputs with the strengths of960

large language models. Interleaved training data961

and joint SFT enable the model to achieve supe- 962

rior performance on vision-language tasks while 963

retaining strong text-only capabilities. 964

OpenFlamingo-v2 (Awadalla et al., 2023) utilizes 965

frozen language models augmented with layers that 966

cross-attend to outputs from a frozen vision en- 967

coder. The training on web-scraped image-text se- 968

quences enables it to process interleaved sequences 969

of images and text. 970

D Benchmark Details 971

MMIU (Meng et al., 2024) categorizes multi- 972

image relationships into three primary types: se- 973

mantic, spatial, and temporal, grounded in cog- 974

nitive psychology theory. These categories are 975

further subdivided into seven subtypes, cover- 976

ing 52 distinct multi-image understanding tasks. 977

The benchmark comprises 77K images and 11K 978

multiple-choice questions. 979

MuirBench (Wang et al., 2024a) consists of 11,264 980

images and 2,600 multiple-choice questions, cov- 981

ering 12 distinct multi-image understanding tasks 982

and encompassing 10 types of multi-image relation- 983

ships. By incorporating diverse tasks and image 984

relationships, it establishes a novel and comprehen- 985

sive benchmark for multi-image understanding. 986

MIRB (Zhao et al., 2024) includes four evalua- 987

tion dimensions: perceptual understanding, visual 988

world knowledge integration, complex reasoning, 989

and multi-hop reasoning Each dimension incor- 990

porates specialized tasks requiring sophisticated 991

cross-image comparison and analytical reasoning. 992

BLINK (Fu et al., 2024) reinterprets traditional 993

computer vision problems as multiple-choice ques- 994

tions, incorporating 14 visual perception tasks that 995

humans can quickly solve. It consists of 3,807 996

multiple-choice questions accompanied by 7,358 997

images sourced from multiple datasets, covering 998

indoor, outdoor, and natural scenes. 999

NLVR2 (Suhr et al., 2019) focuses on natural lan- 1000

guage grounding in visual contexts, presenting 1001

paired images with corresponding English descrip- 1002

tions. This benchmark emphasizes the evaluation 1003

of fine-grained linguistic-visual alignment through 1004

diverse reasoning tasks, requiring precise under- 1005

standing of both textual and visual modalities. 1006

Mantis-Eval (Jiang et al., 2024) comprises 217 1007

high-quality multi-image reasoning samples, cov- 1008

ering a range of multi-image skills such as co- 1009

reference, reasoning, and comparison. 1010

MVBench (Li et al., 2024b) consists of 20 chal- 1011
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lenging video understanding tasks that assess tem-1012

poral reasoning capabilities.1013

E Prompt1014

For the four stages of data synthesis, we meticu-1015

lously crafted structured prompts to achieve the1016

finest-grained task decomposition at each phase.1017

The prompts for each component are demonstrated1018

below:1019

Feature Extraction:
You are a visual description expert. Please pro-
vide a detailed, comprehensive, and natural lan-
guage description of the following image, cov-
ering every visible detail.
Overall View: - Summarize the scene in 1-2
sentences, focusing on the general setting, light-
ing, time of day, and the environment. Ensure
to include the general mood and ambiance.
Main Objects: - For each key object, describe
these aspects in fluent natural language: - What
is it (e.g., a person, a car, a building)? - Quan-
tity, color, size, shape, material, texture, and any
distinctive features. - Where is it located (fore-
ground, center, background)? - State/Function:
Is it active or stationary? What is its function in
the scene?
Secondary Objects and Background: - Describe
smaller or less prominent objects and elements
in the background. How do they relate to the
main objects? Mention any supporting objects
that add depth to the scene (e.g., objects on a
table, items in the background, etc.).
Object Interactions: - Highlight interactions or
relationships between objects (e.g., people talk-
ing, animals interacting). Describe any dynamic
actions or static arrangements.
Text: - If there are text in the image, extract all
the text and analyze its meanings.
Atmosphere&Theme: - Convey the mood or
theme of the scene, using descriptive adjectives
(e.g., lively, serene, chaotic). If unsure, use
"seems to" to indicate speculation about the
tone.
Detailed Natural Language Description: - In-
tegrate all of the above details into a flowing,
cohesive narrative. Ensure to describe every
element in fine detail, maintaining clarity and
logical structure. Avoid redundancy or skipping
any visible detail.

1020

Pair Connection:
You are a professional visual content analyst
skilled in analyzing image pairs that exhibit
clear correlations.
User will provide a set of structured descrip-
tions corresponding to images. Based on these
descriptions, you are required to analyze the
images through an object-oriented or event-
oriented approach to identify which image pairs
are most strongly correlated. Specifically, you
should focus on determining whether there are
common objects or associated events/themes
between the images. By evaluating the co-
occurrence of objects or the relationships be-
tween events or topics, return the correlated
image pairs as a tuple.

1021

Relevance Annotation:
You are a professional visual content analyst
skilled in analyzing relationships between im-
age pairs, including temporal, spatial, and se-
mantic connections.
User will provide you with two images. Please
generate relationship annotations between them
based on the following requirements:
Task Requirements:
1. Temporal Relationship: Identify if there is a
clear sequence of events between Image A and
Image B. - First, analyze whether the scenes
or events in the two images represent a clear
chronological order. - If there is a clear tempo-
ral sequence, describe the progression or transi-
tion between the two images, noting the overall
process.
2. Spatial Relationship: Analyze if there are
any spatial connections or changes in scene or
object positions between Image A and Image B.
- Check if both images depict the same scene
or objects in similar layouts. - If shared objects
or settings are present, compare their positions,
orientations, or size differences in both images.
3. Semantic Relationship: Evaluate if there is
a thematic, emotional, or causal connection be-
tween Image A and Image B. - Determine if the
themes, emotional tones, or meaning presented
in both images are consistent or related. - As-
sess if there is a cause-and-effect relationship
or logical connection between the two images.
Output Format should be in JSON.

1022
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Distribution Samples

Unanimously Correct 191
2 Correct vs. 1 Incorrect 4
1 Correct vs. 2 Incorrect 2
Unanimously Incorrect 3

Table 3: Statistical analysis of human annotation results
conducted on 200 sampled instances. Each instance’s
annotation outcome was classified into four categories:
(1) unanimously correct, (2) two annotators rated as
correct vs. one incorrect, (3) two annotators rated as
incorrect vs. one correct, and (4) unanimously incor-
rect. A data instance is considered valid if at least two
annotators labeled it as correct; otherwise, it is deemed
invalid.

Quesiton Generation:
Task Requirements: 1. Generate Three Com-
plex Reasoning Questions: - Each question
should be a multi-step reasoning question, and
involve at least three images. - Questions should
be object-oriented, or event-oriented. - Avoid
begin with ’How’ if possible, and make sure the
answer is not open-ended. - Questions should
be about fine-grained features instead of coarse
understanding. - Questions types: - Detail anal-
ysis and comparison - Fact judgment - Sequence
ordering - Scene understanding - Visual ground-
ing - Counterfactual reasoning - Action predic-
tion - Visual navigation - Don’t specify images
explicitly. - Each question must be a single
sentence without clauses connected by ’and’.
2. Decompose Each Complex Question into
Sub-Questions and Build a Reasoning Chain:
- Each sub-question specifies one or two im-
ages. - Don’t focus on the same image twice.
- Construct a logical reasoning chain for each
question, showing the step-by-step connection
of sub-questions and answers.
3. Step-by-Step Answer Each Reasoning Chain
to Arrive at the Final Answer
4. Ensure Data Quality: - The questions and
answers must be clear, specific, and logically
consistent. - Avoid irrelevant details or ambigu-
ity, ensuring that all generated content is directly
related to the provided image information.
Output Format should be JSON.

1023

F Details of Human Annotations1024

We recruited three annotators (Ph.D. students in1025

Computer Science and Technology) to evaluate the1026

correctness of 200 randomly sampled instances 1027

from VISC-150K. For each instance, the evaluation 1028

criteria included three dimensions: 1029

• Final Answer Correctness: Whether the annotator 1030

deemed the final answer to accurately resolve the 1031

original question; 1032

• Sub-Question Answer Correctness: Whether in- 1033

termediate answers correctly addressed their corre- 1034

sponding sub-questions; 1035

• Visual Focus Validity: Whether the visual focus 1036

at each step aligned with the minimal essential 1037

visual information required for reasoning. 1038

An instance was labeled as correct by an an- 1039

notator only when all three criteria were satisfied. 1040

The annotation results from the three annotators 1041

are summarized in Table 3. A data instance was 1042

marked as valid if at least two annotators labeled 1043

it as correct; otherwise, it was deemed invalid. 1044

Based on the evaluation results, our synthetic data 1045

achieved a 97.5% validity rate under substantial 1046

inter-annotator agreement (Fleiss’ κ = 0.637). s 1047

G Case Study 1048

We present test cases for Qwen2-VL-VISC and 1049

LLaVA-OneVision-VISC fine-tuned on VISC- 1050

150K, illustrated in Figure 7 and Figure 8 respec- 1051

tively. These cases effectively demonstrate the 1052

multi-image reasoning and integrated information 1053

processing capabilities of our data-augmented mod- 1054

els. 1055
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Question: What's the paper title of citation [21] on page 14?

Qwen2-VL-VISC:

Step_1: Identify the citation [21] in page number.  Foucs: Image2,Image3,Image4\n  Answer: Citation [21] is 
located on page 14.
Step_2: Determine the paper title referenced by citation [21].\n  Focus: Image2\n  Answer: The paper title 
referenced by citation [21] is "Long short-term memory".
Step_3: Confirm the details of citation [21].  Focus: Image2\n  Answer: Citation [21] is a study named “Long 
short-term memory”, conducted by two authors and published on Neural computation. 
Final_answer: The paper title referenced by citation [21] is "Long short-term memory".

Figure 7: In the cross-image visual reasoning case, Qwen2-VL-VISC trained on the VISC-150K dataset with the
acquired Focus-Centric Visual Chain reasoning paradigm accurately resolves the reasoning task.

15



The corresponding actions are: step 1: CLICK: (929, 676)\nstep 2: CLICK: (561, 612)\nstep 3: CLICK: (516, 514)\nstep 4: 
CLICK: (716, 74)\nstep 5: CLICK: (356, 85)\nstep 6: TYPE: Cybersecurity Threats\nstep 7: CLICK: (856, 874)\nstep 8: 
CLICK: (452, 314)\nstep 9: CLICK: (724, 915)\nstep 10: CLICK: (508, 873)\nstep 11: CLICK: (733, 79)\nstep 12: 
COMPLETE\n
Which app-combination list was used in this GUI navigation episode?

LLaVA-OneVision-VISC:

Step_1:\n  What is the first action taken in the screenshot?\n  References: image1\n  Answer: The first action taken is clicking 
on a button labeled 'AP News'.\n\n
Step_2:\n  What is the second action taken after clicking on the 'AP News' button?\n  References: image2\n  Answer: The 
second action taken is selecting 'NewsBreak' from the list of options.\n\n
Step_3:\n  What is the third action taken after selecting 'NewsBreak'?\n  References: image3\n  Answer: The third action 
taken is clicking on a location option to set the primary location.\n\n
Step_4:\n  What is the fourth action taken after setting the primary location?\n  References: image4\n  Answer: The fourth 
action taken is typing 'Cybersecurity Threats' into the search bar.\n\n
Step_5:\n  What is the fifth action taken after typing 'Cybersecurity Threats'?\n  References: image5\n  Answer: The fifth 
action taken is clicking on a news article titled 'Top cybersecurity threats to children'.\n\n
Step_6:\n  What is the sixth action taken after clicking on the news article?\n  References: image6\n  Answer: The sixth action 
taken is sharing the news article via social media platforms.\n\n
Step_7:\n  What is the seventh action taken after sharing the news article?\n  References: image7\n  Answer: The seventh 
action taken is creating a post on a social media platform with the shared news article link.\n\n
Step_8:\n  What is the eighth action taken after creating the post?\n  References: image8\n  Answer: The eighth action taken 
is viewing the shared news article on a different device or browser.\n\n
Step_9:\n  What is the ninth action taken after viewing the shared news article?\n  References: image9\n  Answer: The ninth 
action taken is scrolling through a news feed on a social media platform.\n\n
Step_10:\n  What is the tenth action taken after scrolling through the news feed?\n  References: image10\n  Answer: The tenth 
action taken is watching a video on a news channel.\n\n
Final_answer: ['NewsBreak', 'Facebook']

Figure 8: In a cross-image GUI navigation case study, LLaVA-OneVision-VISC, guided by the Focus-Centric
Visual Chain paradigm, constructs a multi-step reasoning trajectory. By iteratively focusing on GUI elements within
individual images at each stage, it deduces a comprehensive operational workflow and ultimately arrives at the
correct solution.
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