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Abstract

Deep learning (DL) has surpassed human performance on001
standard benchmarks, driving its widespread adoption in002
computer vision tasks. One such task is disparity estima-003
tion, estimating the disparity between matching pixels in004
stereo image pairs, which is crucial for safety-critical ap-005
plications like medical surgeries and autonomous naviga-006
tion. However, DL-based disparity estimation methods are007
highly susceptible to distribution shifts and adversarial at-008
tacks, raising concerns about their reliability and general-009
ization. Despite these concerns, a standardized benchmark010
for evaluating the robustness of disparity estimation meth-011
ods remains absent, hindering progress in the field.012

To address this gap, we introduce DISPBENCH, a com-013
prehensive benchmarking tool for systematically assess-014
ing the reliability of disparity estimation methods. DISP-015
BENCH evaluates robustness against synthetic image cor-016
ruptions such as adversarial attacks and out-of-distribution017
shifts caused by 2D Common Corruptions across multiple018
datasets and diverse corruption scenarios. We conduct the019
most extensive performance and robustness analysis of dis-020
parity estimation methods to date, uncovering key corre-021
lations between accuracy, reliability, and generalization.022
Upon acceptance, DISPBENCH will be open-sourced to fa-023
cilitate further research in this direction.024

1. Background025

The vision task of disparity estimation, also commonly026
known as stereo-matching is used to estimate the dispar-027
ity between matching pixels in stereo image pairs. Mayer028
et al. [29] proposed the first Deep Learning (DL) based029
method for disparity estimation called DispNet. This led030
to disparity estimation becoming primarily a DL-based031
task [16, 27, 39]. However, DL-based methods are known032
to be unreliable [13, 33], they tend to learn shortcuts rather033
than meaningful feature representations [14] and can be eas-034
ily deteriorated even by small perturbations, causing the035
evaluation samples to not be independent and identically036
distributed (i.i.d.) w.r.t. the training samples. This shift037
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Figure 1. Analyzing the generalization ability of some Dispar-
ity estimation methods: GWCNet [16], CFNet [39], and STTR
and STTR-light [27] proposed over time. The y-axis represents
the mean End-Point-Error (EPE) on Syntheticc Corruptions (2D
Common Corrruptions [21]) at different severalties (severity=0 is
i.i.d. performance) using the FlyingThings3D [29], i.e., lower is
better. We observe that disparity estimation methods lack the gen-
eralization ability to common corruptions and, thus, are not safe
for real-world deployment.

from i.i.d. samples can be caused due to changes in the 038
environment, changes in weather conditions, or image cor- 039
ruption due to sensor noise [21]. Such shifts cause the eval- 040
uations to be Out-Of-Distribution (OOD), and robustness to 041
such shifts is called OOD Robustness. OOD Robustness 042
is often used as a metric for the generalization ability of 043
a method [22, 23]. Another possible cause of distribution 044
shifts could be either accidental or malicious adversarial at- 045
tacks. Here, the perturbations made to an image are opti- 046
mized to fool the method while the semantic meaning of the 047
images remains the same for a human observer. When ad- 048
versarial attacks are optimized with full information about 049
a model and its loss, they are called white-box adversarial 050
attacks. Since these white-box attacks can potentially sim- 051
ulate the worst-case scenario for a method, they are often 052
used as a proxy for measuring their reliability [1, 15, 25]. 053

In Fig. 1, we provide an overview of the i.i.d. perfor- 054
mance, generalization ability, and reliability of disparity 055
estimation methods proposed over time on the FlyingTh- 056
ings3D dataset [29]. We include old popular methods such 057
as GWCNet and CFNet and new large transformer-based 058
STTR and its lightweight version STTR-light, which, due 059
to its training regime, are proposed as zero-shot disparity 060
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estimation methods. Here, we observe a disturbing pattern:061
while the i.i.d. performance has improved over time, since062
this improvement has been the focus of most works, the063
models still lack robustness. This is particularly concerning064
as disparity estimation is often used in the real world, espe-065
cially for safety-critical scenarios such as medical surgery066
procedures [34, 42], including invasive surgeries such as la-067
paroscopy [32] and in autonomous driving [6]. Here, safety068
is paramount, and to ensure the safe deployment of recent069
DL-based disparity estimation methods, their reliability and070
generalization ability need to be guaranteed. However, no071
such guarantees can be provided currently since no works072
focus on OOD and the adversarial robustness of dispar-073
ity estimation methods. This is primarily due to a lack of074
datasets that enable such studies. Capturing corruptions in075
the wild and then annotating for disparity estimation is a076
time and resource intensive process.077

Some prior works have focused on other kinds of robust-078
ness; for example, a recent work [43] looks into the robust-079
ness of disparity estimation works to domain shifts, while080
[28, 44] studies the robustness of methods to occlusions.081
Currently, there exists no unified framework to evaluate dis-082
parity estimation methods for safe deployment in the real083
world. Guo et al. [17] recently proposed a benchmarking084
tool for disparity estimation methods. However, this tool is085
limited to i.i.d. performance evaluations. This is a signifi-086
cant limitation impeding the community’s ability to ensure087
safe, reliable, and generalizable DL-based disparity estima-088
tion methods for the real world.089

To bridge this gap, we propose DISPBENCH, the first ro-090
bustness benchmarking tool for disparity estimation. DISP-091
BENCH is easy to use and extending it to future disparity092
estimation methods and datasets, when they are proposed,093
is straightforward. It is inspired by similar popular bench-094
marks for the image classification tasks [8, 40] and object095
detection [4, 9, 10, 20, 31]. It enables i.i.d. evaluations of096
various DL-based disparity estimation methods across mul-097
tiple commonly used disparity estimation datasets. It also098
facilitates research in the reliability and generalization abil-099
ity of disparity estimation methods, as it enables users to use100
synthetic image corruptions, specifically, 5 diverse adver-101
sarial attacks and 15 established common corruptions. This102
will help researchers build better models that are not limited103
to improved performance on identical and independently104
distributed (i.i.d.) samples and are less vulnerable to ad-105
versarial attacks while generalizing better to image corrup-106
tions. Our proposed DISPBENCH facilitates this, streamlin-107
ing it for future research to utilize.108

The main contributions of this work are as follows:109

• We provide a benchmarking tool DISPBENCH to evaluate110
the performance of most DL-based disparity estimation111
methods over 2 different datasets and synthetic corrup-112
tions.113

• We benchmark the aforementioned models against com- 114
monly used adversarial attacks and common corruptions 115
that can be easily queried using DISPBENCH. 116

• We perform an in-depth analysis using DISPBENCH and 117
present interesting findings showing methods that per- 118
form well on i.i.d. are remarkably less reliable and gener- 119
alize worse than other non-well-performing methods. 120

• We show that synthetic corruptions on synthetic datasets 121
do not represent real-world corruptions; thus, synthetic 122
corruptions on real-world datasets are required. 123

2. DISPBENCH Usage 124

There exists no standardized tool for evaluating the perfor- 125
mance of disparity estimation methods. Thus, the code- 126
base for such a tool had to be written from scratch. In 127
the following, we describe the benchmarking tool, DISP- 128
BENCH. Currently, it supports 4 unique architectures 129
(new architectures to be added to DISPBENCH with time) 130
and 2 distinct datasets, namely FlyingThings3D [29] and 131
KITTI2015 [30] (please refer Appendix B for additional 132
details on the datasets). It enables training and evalua- 133
tions on all aforementioned datasets, including evaluations 134
using SotA adversarial attacks such as CosPGD [1] and 135
other commonly used adversarial attacks like BIM [26], 136
PGD [25], FGSM [15], under various Lipshitz (lp) norm 137
bounds and APGD [41] under the ℓ∞-norm bound. Ad- 138
ditionally, it enables evaluations for Out-of-Distribution 139
(OOD) robustness by corrupting the inference samples us- 140
ing 2D Common Corruptions [21]. 141

We follow the nomenclature set by RobustBench [8] and 142
use “threat model” to define the kind of evaluation to be 143
performed. When “threat model” is defined to be “None”, 144
the evaluation is performed on unperturbed and unaltered 145
images, if the “threat model” is defined to be an adversar- 146
ial attack, for example “PGD”, “CosPGD” or “BIM”, then 147
DISPBENCH performs an adversarial attack using the user- 148
defined parameters. Whereas, if “threat model” is defined 149
to be “2DCommonCorruptions”, the DISPBENCH performs 150
evaluations after perturbing the images with 2D Common 151
Corruptions. If the queried evaluation already exists in the 152
benchmark provided by this work, then DISPBENCH simply 153
retrieves the evaluations, thus saving computation. Please 154
refer to Appendix D for details on usage. 155

Following, we show the basic commands to use DISP- 156
BENCH. We describe each attack and common corruption 157
supported by DISPBENCH in detail in Appendix D. Please 158
refer to Appendix F for details on the arguments. 159

2.1. Model Zoo 160

It is challenging to find all checkpoints, whereas training 161
them is time and compute-exhaustive. Thus, we gather 162
available model checkpoints made available online by the 163
respective authors. The trained checkpoints for all models 164
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available in DISPBENCH can be obtained using the follow-165
ing lines of code:166

from dispbench.evals import load_model
model = load_model(model_name='STTR',

dataset='KITTI2015')

Each model checkpoint can be retrieved with the pair of167
‘model name’, the name of the model, and ‘dataset’, the168
dataset for which the checkpoint was last fine-tuned.169

2.2. Adversarial Attacks170

To evaluate a model for a given dataset on an attack, the171
following lines of code are required.172

from dispcbench.evals import evaluate
model, results = evaluate(
model_name='STTR', dataset='KITTI2015'

retrieve_existing=True,↪→

threat_config='config.yml')

Here, the ‘config.yml’ contains the configuration173
for the threat model, for example, when the threat174
model is a PGD attack, ‘config.yml’ could contain175
‘threat model=“PGD”’, ‘iterations=20’, ‘alpha=0.01’, ‘ep-176
silon=8’, and ‘lp norm=“Linf”’. The argument description177
is as follows:178
• ‘model name’ is the name of the disparity estimation179

method to be used, given as a string.180
• ‘dataset’ is the name of the dataset to be used also given181

as a string.182
• ‘retrieve existing’ is a boolean flag, which when set to183

‘True’ will retrieve the evaluation from the benchmark if184
the queried evaluation exists in the benchmark provided185
by this work, else DISPBENCH will perform the evalua-186
tion. If the ‘retrieve existing’ boolean flag is set to ‘False’187
then DISPBENCH will perform the evaluation even if the188
queried evaluation exists in the provided benchmark.189

• The ‘config.yml’ contains the following:190
– ‘threat model’ is the name of the adversarial attack to191

be used, given as a string.192
– ‘iterations’ are the number of attack iterations, given as193

an integer.194
– ‘epsilon’ is the permissible perturbation budget ϵ given195

a floating point (float).196
– ‘alpha’ is the step size of the attack, α, given as a float-197

ing point (float).198
– ‘lp norm’ is the Lipschitz continuity norm (lp-norm) to199

be used for bounding the perturbation, possible options200
are ‘Linf’ and ‘L2’ given as a string.201

– ‘target’ is false by default, but to do targeted attacks,202
either the user can set ‘target’=True, to use the default203

target of
−→
0 , or can pass a specific tensor to be used as204

the target.205
The adversarial attacks supported by DISPBENCH are206

FGSM, BIM, PGD, APGD, and CosPGD.207

Left Image Right Image

Predictions

i.i.d. Performance

After FGSM attack

After 20 iteration BIM attack

After 20 iteration PGD attack

After 20 iteration CosPGD attack

Figure 2. Example of performing adversarial attacks on STTR
using KITTI2015 dataset under different attacks. We show the
samples before and after the attacks and the predictions before and
after the respective adversarial attacks.

In Fig. 2, we show example images perturbed using dif- 208
ferent adversarial attacks and the change in disparity esti- 209
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Left Image Right Image Prediction
i.i.d. Performance

After Frost Corruption Severity=1

After Frost Corruption Severity=3

After Frost Corruption Severity=5

Figure 3. Example of predictions using STTR on KITTI2015 dataset under different severities of the 2D Common Corruption: Frost.

mation performed by STTR. Here, all attacks are optimized210
for 20 attack iterations, with α=0.01 and ϵ = 8

255 under the211
ℓ∞-norm bound.212

2.3. 2D Common Corruptions213

To evaluate a model for a given dataset with 2D Common214
Corruptions, the following lines of code are required.215

from dispbench.evals import evaluate
model, results = evaluate(
model_name='STTR', dataset='KITTI2015',

retrieve_existing=True,↪→

threat_config='config.yml')

Here, the ‘config.yml’ contains the configuration for216
the threat model; for example, when the threat model217
is 2D Common Corruption, ‘config.yml’ could con-218
tain ‘threat model=“2DCommonCorruption”’, and ‘sever-219
ity=3’. Please note, when the ‘threat model’ is the common220
corruption, DISPBENCH performs evaluations on all cor-221
ruptions under the respective ‘threat model’ and returns the222
method’s performance on each corruption at the requested223
severity. The argument description is as follows:224
• ‘model name’ is the name of the disparity estimation225

method to be used, given as a string.226
• ‘dataset’ is the name of the dataset to be used also given227

as a string.228
• ‘retrieve existing’ is a boolean flag, which when set to229

‘True’ will retrieve the evaluation from the benchmark if230
the queried evaluation exists in the benchmark provided231

by this work, else DISPBENCH will perform the evalua- 232
tion. If the ‘retrieve existing’ boolean flag is set to ‘False’ 233
then DISPBENCH will perform the evaluation even if the 234
queried evaluation exists in the provided benchmark. 235

• The ‘config.yml’ contains the following: 236
– ‘threat model’ is the name of the common corruption 237

to be used, given as a string, i.e. ‘2DCommonCorrup- 238
tion’. 239

– ‘severity’ is the severity of the corruption, given as an 240
integer between 1 and 5 (both inclusive). 241

DISPBENCH supports the following 2D Common Corrup- 242
tion: ‘gaussian noise’, shot noise’, ‘impulse noise’, ‘defo- 243
cus blur’, ‘frosted glass blur’, ‘motion blur’, ‘zoom blur’, 244
‘snow’, ‘frost’, ‘fog’, ‘brightness’, ‘contrast’, ‘elastic’, 245
‘pixelate’, ‘jpeg’. For the evaluation, DISPBENCH will 246
evaluate the model on the validation images from the re- 247
spective dataset corrupted using each of the aforementioned 248
corruptions for the given severity and then report the mean 249
performance over all of them. 250

In Fig. 3, we show example images perturbed using the 251
2D Common Corruption: Frost and the change in dispar- 252
ity estimation performed by STTR over different severity 253
strengths. 254

3. Initial Evaluations using DISPBENCH 255

We use DISPBENCH to perform some initial benchmarking 256
and make some interesting observations. Following, we dis- 257
cuss the details of the benchmarking process. Please note, 258
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Figure 4. Using the FlyingThings3D dataset for disparity estimation, we perform an initial benchmarking of i.i.d. performance and
generalization abilities of four popular disparity estimation methods. CFNet and GWCNet are traditional CNN-based stereo matching
methods, whereas STTR and STTR-light are newly proposed transformer-based large models capable of zero-shot disparity estimation.
Here, we use their fine-tuned versions for the FlyingThings3D dataset. The y-axis reports the mean EPE over the entire validation set for
the respective corruption, and the x-axis denotes the severity of the 2D Common Corruption used to corrupt the input images. We report
the i.i.d. performance at severity=0. Here we observe that while all four methods are highly vulnerable to Noise and Weather corruptions,
newly proposed STTR and STTR-light are surprisingly less robust than the older CNN-based methods against weather corruptions. This
finding is interesting and concerning as weather corruptions are the most likely real-world domain shift.

we use the FlyingThing3D and the KITTI2015 dataset for259
the benchmarking. However, very few pretrained architec-260
tures are available for KITTI2015, and thus our evaluations261
using KITTI2015 are limited to these. While DISPBENCH262
enables the training of architectures of multiple datasets,263
doing so is beyond our resource capabilities.264

For additional details on the datasets, please refer to Ap-265
pendix B.266

Measuring Generalization Ability. Inspired by multi-267
ple works [8, 22, 23] that use OOD Robustness of methods268
for evaluating the generalization ability of the method, even269
evaluate over every common corruption, that is the 15 2D270
Common Corruptions: ‘Gaussian Noise’, Shot Noise’, ‘Im-271
pulse Noise’, ‘Defocus Blur’, ‘Frosted Glass Blur’, ‘Motion272
Blur’, ‘Zoom Blur’, ‘Snow’, ‘Frost’, ‘Fog’, ‘Brightness’,273
‘Contrast’, ‘Elastic Transform’, ‘Pixelate’, ‘JPEG Com-274
pression’. Then, we find the mean EPE w.r.t. the ground275
truth for a given method, across all corruptions at a given276
severity and report use this to measure the Generalization277
Ability. We corrupt the pair of stereo images with the same278
corruption at the same severity when evaluating.279

Ideally, one would like to evaluate the generalization280
ability and reliability of methods using real-world samples281
captured in the wild. However, annotation of these samples282
is a challenging and time-consuming task, and thus, no such283
dataset is available for disparity estimation. Sakaridis et al.284
[36] captured such data in the wild with domain shifts due285

to changes in time of day and changes in weather conditions 286
like snowfall, rain, and fog. They also provide pixel-level 287
annotations for their images, however, these annotations are 288
only available for semantic segmentation, and these images 289
are monocular and not stereo. They propose this as the Ad- 290
verse Conditions Dataset with Correspondences for Seman- 291
tic Driving Scene Understanding (ACDC) dataset. Interest- 292
ingly, in their work, Anonymous [3] showed a very strong 293
positive correlation between the performance of most meth- 294
ods on the ACDC dataset and their performance against 295
in-domain images corrupted with the 2D Common Corrup- 296
tions to cause a synthetic domain shift. This is an important 297
finding as it proves that 2D Common Corruptions can be 298
used as a proxy for real-world domain shifts. We discuss 299
this in Appendix A. 300

For details on the dataset, please refer to the appendix. 301

Measuring Reliability Under Adversarial Attacks. 302
Adversarial attacks, especially white-box attacks, serve as 303
a proxy for the worst-case scenario and help understand the 304
quality of the representations learned by a model [1, 37, 41]. 305
DISPBENCH provides the ability to evaluate the models 306
against some popular adversarial attacks, as discussed in 307
Sec. 2.2. However, we focus this work towards realistic 308
corruptions possible in the real world. For evaluations over 309
adversarial attacks, please refer to Appendix G. 310
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Architectures Used. Disparity estimation networks es-311
sentially estimate optimal correspondence matching be-312
tween pixels on epipolar lines in the left and right images313
to infer depth. Most disparity estimation architectures used314
a cost volume with cross-correlation or contamination of315
feature representations for the left and right images. How-316
ever, GWCNet-G [16] proposed using group-wise correla-317
tions to construct the cost volume. This leads to a significant318
boost in i.i.d. performance and inference speed. CFNet [39]319
proposed fusing on multiple low-resolution dense cost vol-320
umes to enlarge the receptive field, enabling extraction of321
robust structural representations, followed by cascading the322
cost volume representations to alleviate the unbalanced dis-323
parity estimation. It was proposed to be robust to large do-324
main differences and was SotA when proposed. Stereo-325
Transformers (STTR), Li et al. [27] proposes to replace326
the cost volume construction with dense pixel matching us-327
ing position information and attention to enable sequence-328
to-sequence matching. This relaxes the limitation of a fixed329
disparity range and identifies occluded regions with con-330
fidence estimates. STTR generalizes across different do-331
mains, even without fine-tuning. However, in our evalua-332
tions, we use fine-tuned checkpoints for a fair comparison333
of reliability and generalization capabilities. STTR-light is334
the lightweight version of STTR proposed for faster infer-335
ence with only a marginal drop in i.i.d. performance. We336
use the publicly available pre-trained checkpoints for our337
evaluations.338

4. Key Findings339

Following, we present the key findings made using the ini-340
tial benchmarking using the DISPBENCH.341

4.1. FlyingThings3D342

Following, we discuss the observations made in the robust-343
ness benchmark created using DISPBENCH. We report the344
evaluations in Fig. 4. Here, we observe that indeed the i.i.d.345
performance of the new methods like STTR and STTR-light346
is better than the older CNN-based CFNet and GWCNet-G,347
however, the same is not always true for their generalization348
abilities. All four considered methods appear to be robust349
to digital corruptions such as changes in brightness, con-350
trast, elastic transform, pixelated, and JPEG compression to351
a significant extent. While, all four methods appear to be352
extremely non-robust to additive noise, possible in the real353
world due to sensor error, causing the mean errors to go as354
high as 100. Please note, compared to the single-digit EPE355
values for i.i.d. performance, these errors are significantly356
high.357

The most interesting behavior is seen under different358
weather corruptions: Snow, Frost, and Fog. Here, all four359
methods are non-robust, however, the newer transformer-360
based methods STTR and STTR-light are significantly361

more non-robust. This is quite alarming, as weather cor- 362
ruptions are the most natural domain shifts possible in the 363
real world, and here, the large models fail significantly 364
worse. Especially under Frost and Fog corruptions, the 365
larger STTR performs worse than its lightweight counter- 366
part, STTR-light. This raises some interesting concerns that 367
warrant further study and deeper analysis. 368

4.2. KITTI2015 369

There are very limited pre-trained architectures available 370
on KITTI2015 for the disparity estimation task, namely 371
GWCNet-G and STTR. We perform our analysis using 372
these and report the evaluations in Fig. 5. We observe that 373
the newly proposed STTR is less robust than GWCNet-C 374
across all corruptions and severities. This does not align 375
with the observations made with synthetic corruptions on 376
the synthetic dataset FlyingThings3D. This suggests that 377
further analysis is required. 378

5. Synthetic Corruptions on Synthetic Dataset 379

vs Synthetic Corruptions on Real World 380

Dataset 381

Following the findings from Sec. 4.2, we investigate 382
whether the performance of models on synthetic corrup- 383
tions (2D Common Corruptions) on synthetic dataset (Fly- 384
ingThings3D) can serve as a proxy for the performance of 385
models on synthetic corruptions (2D Common Corruptions) 386
on real-world data (KITTI2015). We report this analysis 387
in Fig. 6 and observe that synthetic corruptions on syn- 388
thetic datasets do not represent synthetic corruptions on 389
real-world datasets. As known from [3], synthetic cor- 390
ruptions on real-world datasets represent real-world cor- 391
ruptions. By extension, synthetic corruptions on synthetic 392
datasets do not represent real-world corruptions. This cru- 393
cial finding eliminates the possibility of using synthetic sim- 394
ulators like CARLA [12], LGSVL (SVL Simulator) [35], 395
AirSim [38], and others for possible applications in the real 396
world. 397

6. Conclusion 398

Evaluating a model’s robustness is vital for real-world ap- 399
plications. However, capturing corruptions in the real world 400
is time and resource intensive. Here, synthetic corrup- 401
tions appear to be an attractive alternative. Thus, we pro- 402
pose DISPBENCH, the first robustness benchmarking tool 403
and a novel benchmark on synthetic corruptions for dispar- 404
ity estimation methods. We discuss the unique features of 405
DISPBENCH in detail and demonstrate that the library is 406
user-friendly, such that adding new methods or perform- 407
ing evaluation is very intuitive. We use DISPBENCH to 408
evaluate the i.i.d. performance and OOD generalization of 409
some popularly used disparity estimation methods. We ob- 410
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Figure 5. Using the KITTI2015 dataset for disparity estimation, we perform an initial benchmarking of i.i.d. performance and gener-
alization abilities of the two popular and available disparity estimation methods. GWCNet is a traditional CNN-based stereo matching
method, whereas STTR is a newly proposed transformer-based large model capable of zero-shot disparity estimation. Here, we use their
fine-tuned versions for the KITTI2015 dataset. The y-axis reports the mean EPE over the entire validation set for the respective corruption,
and the x-axis denotes the severity of the 2D Common Corruption used to corrupt the input images. We report the i.i.d. performance at
severity=0. Here, we observe that while both the methods are highly vulnerable to Noise and Weather corruptions, the newly proposed
STTR is surprisingly less robust than the older CNN-based method against all corruptions. This finding is interesting and concerning as it
contradicts the findings on the Synthetic Dataset FlyingThings3D in Fig. 4.
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Figure 6. For the same architecture, we evaluate checkpoint pretrained on Flyingthings3D against synthetic 2D Common Corruption on
Flyingthings3D and correlate its performance with the checkpoint trained on KITTI2015 against synthetic 2D Common Corruptions on
KITTI2015. Here, we report the mean EPE across all corruptions for a given severity level. For individual corruptions, please refer to
Fig. 9. We observe no correlation in performance, indicating that synthetic corruptions on synthetic datasets cannot be used as a proxy for
real-world corruptions.

serve that under realistic scenarios, recently proposed large411
transformer-based methods known to be SotA on i.i.d. sam-412
ples do not generalize well to image corruptions, demon-413
strating the gap in current research when considering real-414
world applications. Lastly, we show experimentally that415
synthetic corruptions on synthetic datasets do not repre-416
sent real-world corruptions, thus, synthetic corruptions on417
real-world datasets present a more promising path. DISP-418
BENCH enables a more in-depth understanding of reliabil-419
ity and generalization abilities to disparity estimation meth-420
ods, and its consolidated nature would make future research421
more streamlined.422

Future Work. Very recently, OpenStereo [17] has been 423
made public that supports newly proposed stereo matching 424
methods, which are foundational models for stereo match- 425
ing like StereoAnything [19], and LightStereo [18]. We in- 426
tend to adapt our evaluator into OpenStereo to enable safety 427
studies of SotA disparity estimation methods. 428

Limitations. Benchmarking disparity estimation meth- 429
ods is a compute and labor-intensive endeavor. Thus, best 430
utilizing available resources, we currently use DISPBENCH 431
to benchmark a limited number of settings, using the most 432
popular works for now. The benchmarking tool itself offers 433
significantly more combinations that can be benchmarked. 434
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Reproducibility Statement435

Every experiment in this work is reproducible and is part436
of an effort toward open-source work. DISPBENCH will be437
open-source and publicly available, including all evaluation438
logs and model checkpoint weights. This work intends to439
help the research community use synthetic corruptions to440
build more reliable and generalizable disparity estimation441
methods such that they are ready for deployment in the real442
world even under safety-critical applications.443
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DISPBENCH: A Robustness Evaluator For Disparity Estimation638

Paper #4 Supplementary Material639

Table Of Content640

The supplementary material covers the following information:641

• Appendix A: We show that synthetic 2D Common Corruptions are indeed serve as a proxy to domain shifts in the real642
world.643

• Appendix B: Details for the datasets used.644
– Appendix B.1: FlyingThings3D645
– Appendix B.2: KITTI2015646

• Appendix C: Additional implementation details for the evaluated benchmark.647

• Appendix D: In detail description of the attacks.648

• Appendix E: DISPBENCH function call to get model weights.649

• Appendix F: In detail explanation of the available functionalities of the DISPBENCH benchmarking tool and description of650
the arguments for each function.651

• Appendix G: Here we provide additional results from the benchmark evaluated using DISPBENCH.652

• At the end, we attach the anonymous paper of [3] for the ease of the reviewer.653

Please note, due to the similarity of the objective, many aspects of this appendix are very similar to Anonymous [3].654

A. Do Synthetic Corruptions Represent The Real World?655

In their work Anonymous [3], they find the correlation between mean mIoU over the ACDC evaluation dataset [36] and656
mean mIoU over each 2D Common Corruption [21] over the Cityscapes dataset [7]. We include Figure 7 from their work657
here for ease of understanding. All models were trained using the training subset of the Cityscapes dataset. ACDC is the658
Adverse Conditions Dataset with Correspondences for Semantic Driving Scene Understanding captured in similar scenes659
are cityscapes but under four different domains: Day/Night, Rain, Snow, and Fog in the wild. ACDC is a community-used660
baseline for evaluating the performance of semantic segmentation methods on domain shifts observed in the wild. They661
find that there exists a very strong positive correlation between the two. This shows, that yes, synthetic corruptions can662
serve as a proxy for the real world. Unfortunately, a similar “in the wild” captured dataset does not exist for optical flow663
estimation to evaluate the effect of domain shifts on the performance of optical flow methods. However, given that for the664
task of semantic segmentation, we find a very high positive correlation between the performance on real-world corruptions665
and synthetic corruptions, it is a safe assumption that the same would hold true for optical flow estimation as well. Thus, in666
this work, we evaluate against synthetic 2D Common Corruptions [21] and synthetic 3D Common Corruptions [24].667

B. Dataset Details668

DISPBENCH currently supports two distinct disparity datasets. We intent to extend DISPBENCH to 4 other commonly used669
datasets by integrating DISPBENCH with OpenStereo [17]. Following, we describe these datasets in detail.670
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Figure 7. Results from work by Anonymous [3]. Here they find a very strong positive correlation between mean mIoU over the ACDC
evaluation dataset [36] and mean mIoU over each 2D Common Corruption [21] over the Cityscapes dataset [7]. All models were
trained using the training subset of the Cityscapes dataset. ACDC is the Adverse Conditions Dataset with Correspondences for Semantic
Driving Scene Understanding captured in similar scenes are cityscapes but under four different domains: Day/Night, Rain, Snow, and
Fog in the wild. ACDC is a community-used baseline for evaluating the performance of semantic segmentation methods on domain shifts
observed in the wild.

B.1. FlyingThings3D 671

This is a synthetic dataset proposed by [29] largely used for training and evaluation of disparity estimation methods. This 672
dataset consists of 25000 stereo frames, of everyday objects such as chairs, tables, cars, etc. flying around in 3D trajectories. 673
The idea behind this dataset is to have a large volume of trajectories and random movements rather than focus on a real-world 674
application. In their work, [11] showed models trained on FlyingThings3D can generalize to a certain extent to other datasets. 675

B.2. KITTI2015 676

Proposed by [30], this dataset is focused on the real-world driving scenario. It contains a total of 400 pairs of image frames, 677
split equally for training and testing. The image frames were captured in the wild while driving around on the streets of 678
various cities. The ground-truth labels were obtained by an automated process. 679

C. Implementation Details Of The Benchmark 680

Following we provide details regarding the experiments done for creating the benchmark used in the analysis. 681

Compute Resources. Most experiments were done on a single 40 GB NVIDIA Tesla V100 GPU each, however, MS- 682
RAFT+, FlowFormer, and FlowFormer++ are more compute-intensive, and thus 80GB NVIDIA A100 GPUs or NVIDIA 683
H100 were used for these models, a single GPU for each experiment. 684

Datasets Used. Performing adversarial attacks and OOD robustness evaluations are very expensive and compute-intensive. 685
Thus, performing evaluation using all model-dataset pairs is not possible given the limited computing resources at our dis- 686
posal. Thus, for the benchmark, we only use FlyingThings3D and KITTI2015, as these are the most commonly used datasets 687
for evaluation [19, 27, 29, 39]. 688

Metrics Calculation. In this work, for robustness evaluations we consider the mC-EPE, which is the mean End-Point- 689
Error of a method, against common corruptions at a given severity, over every input image from the validation dataset. 690
We use all 15 2D Common Corruptions: ‘Gaussian Noise’, Shot Noise’, ‘Impulse Noise’, ‘Defocus Blur’, ‘Frosted Glass 691
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Blur’, ‘Motion Blur’, ‘Zoom Blur’, ‘Snow’, ‘Frost’, ‘Fog’, ‘Brightness’, ‘Contrast’, ‘Elastic Transform’, ‘Pixelate’, ‘JPEG692
Compression’. All the common corruptions are at severity={1, 2, 3, 4, 5}. [24] offers more 3D Common Corruptions,693
however computing them is resource intensive. Thus, given our limited resources and an overlap in the corruptions between694
2D Common Corruptions and 3D Common Corruptions, we focus on generating 3D Common Corruptions for now, however,695
we intend to extend DISPBENCH to also evaluate on the 3D Common Corruptions.696

Calculating the EPE. EPE is the Euclidean distance between the two vectors, where one vector is the predicted flow by697
the disparity estimation method and the other vector is the ground truth in case of i.i.d. performance evaluations, non-targeted698
attacks evaluations, and OOD robustness evaluations, while it is the target flow vector, in case of targeted attacks. For each699
dataset, the EPE value is calculated over all the samples of the evaluation set of the respective dataset and then the mean700
EPE value is used as the mean-EPE of the respective method over the respective dataset.701

D. Description of DISPBENCH702

Following, we describe the benchmarking tool, DISPBENCH. There exists no standardized tool for evaluating the perfor-703
mance of disparity estimation methods. Thus, the codebase for such a tool had to be written from scratch. In the following,704
we describe the benchmarking tool, DISPBENCH. Currently it supports 4 unique architectures (new architectures to be added705
to DISPBENCH with time) and 3 distinct datasets, namely FlyingThings3D [29], KITTI2015 [30], MPI Sintel [5] (clean and706
final) (please refer Appendix B for additional details on the datasets). It enables training and evaluations on all aforementioned707
datasets including evaluations using SotA adversarial attacks such as CosPGD [1], and other commonly used adversarial at-708
tacks like BIM [26], PGD [25], FGSM [15], under various Lipshitz (lp) norm bounds. Additionally, it enables evaluations709
for Out-of-Distribution (OOD) robustness by corrupting the inference samples using 2D Common Corruptions [21].710

Following we show the basic commands to use DISPBENCH. We describe each attack and common corruption supported711
by DISPBENCH in detail in Appendix D. It enables training and evaluations on all aforementioned datasets including eval-712
uations using SotA adversarial attacks such as CosPGD [1], and other commonly used adversarial attacks like BIM [26],713
PGD [25], FGSM [15], under various lipshitz (lp) norm bounds. Additionally, it enables evaluations for Out-of-Distribution714
(OOD) robustness by corrupting the inference samples using 2D Common Corruptions [21].715

We follow the nomenclature set by RobustBench [8] and use “threat model” to define the kind of evaluation to be per-716
formed. When “threat model” is defined to be “None”, the evaluation is performed on unperturbed and unaltered images,717
if the “threat model” is defined to be an adversarial attack, for example “PGD”, “CosPGD” or “PCFA”, then DISPBENCH718
performs an adversarial attack using the user-defined parameters. Whereas, if “threat model” is defined to be “2DCom-719
monCorruptions” or “3DCommonCorruptions”, the DISPBENCH performs evaluations after perturbing the images with 2D720
Common Corruptions and 3D Common Corruptions respectively.721

If the queried evaluation already exists in the benchmark provided by this work, then DISPBENCH simply retrieves the722
evaluations, thus saving computation.723

D.1. Adversarial Attacks724

Please note that due to the similarity of the objective, many aspects of this appendix are very similar to Agnihotri et al. [2].725
DISPBENCH enables the use of many white-box adversarial attacks to help users better study the reliability of their disparity726
methods. We choose to specifically include these white-box adversarial attacks as they either serve as the common benchmark727
for adversarial attacks in classification literature (FGSM, BIM, PGD, APGD) or they are unique attacks proposed specifically728
for pixel-wise prediction tasks (CosPGD). These attacks can either be Non-targeted which are designed to simply fool the729
model into making incorrect predictions, irrespective of what the model eventually predicts, or can be Targeted, where the730
model is fooled to make a certain prediction. Most attacks can be, designed to be either Targeted or Non-targeted, these731
include, FGSM, BIM, PGD, APGD, CosPGD, and Adversarial Weather. In our current implementation, we are limited to732
Non-targeted attacks. Following, we discuss these attacks in detail and highlight their key differences.733

FGSM. Assuming a non-targeted attack, given a model fθ and an unperturbed input sample Xclean and ground truth label734
Y , FGSM attack adds noise δ to Xclean as follows,735

Xadv = Xclean + α · sign∇XcleanL(fθ(X
clean),Y ), (1)736

δ = ϕϵ(Xadv −Xclean), (2)737

12



CVPR
#0006

CVPR
#0006

CVPR 2025 Submission #0006. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Xadv = ϕr(Xclean + δ). (3) 738

Here, L(·) is the loss function (differentiable at least once) which calculates the loss between the model prediction and 739
ground truth, Y . α is a small value of ϵ that decides the size of the step to be taken in the direction of the gradient of the loss 740
w.r.t. the input image, which leads to the input sample being perturbed such that the loss increases. Xadv is the adversarial 741
sample obtained after perturbing Xclean. To make sure that the perturbed sample is semantically indistinguishable from the 742
unperturbed clean sample to the human eye, steps from Eq. (2) and Eq. (3) are performed. Here, function ϕϵ is clipping the δ 743
in ϵ-ball for ℓ∞-norm bounded attacks or the ϵ-projection in other lp-norm bounded attacks, complying with the ℓ∞-norm or 744
other lp-norm constraints, respectively. While function ϕr clips the perturbed sample ensuring that it is still within the valid 745
input space. FGSM, as proposed, is a single step attack. For targeted attacks, Y is the target and α is multiplied by -1 so that 746
a step is taken to minimize the loss between the model’s prediction and the target prediction. 747

BIM. This is the direct extension of FGSM into an iterative attack method. In FGSM, Xclean was perturbed just once. 748
While in BIM, Xclean is perturbed iteratively for time steps t ∈ [0,T ], such that t ∈ Z+, where T are the total number of 749
permissible attack iterations. This changes the steps of the attack from FGSM to the following, 750

Xadvt+1 = Xadvt + α · sign∇XadvtL(fθ(X
advt),Y ), (4) 751

752
δ = ϕϵ(Xadvt+1 −Xclean), (5) 753

754
Xadvt+1 = ϕr(Xclean + δ). (6) 755

Here, at t=0, Xadvt=Xclean. 756

PGD. Since in BIM, the initial prediction always started from Xclean, the attack required a significant amount of steps to 757
optimize the adversarial noise and yet it was not guaranteed that in the permissible ϵ-bound, Xadvt+1 was far from Xclean. 758
Thus, PGD proposed introducing stochasticity to ensure random starting points for attack optimization. They achieved this 759
by perturbing Xclean with U(−ϵ, ϵ), a uniform distribution in [−ϵ, ϵ], before making the first prediction, such that, at t=0 760

Xadvt = ϕr(Xclean + U(−ϵ, ϵ)). (7) 761

APGD. Auto-PGD is an effective extension to the PGD attack that effectively scales the step size α over attack iterations 762
considering the compute budget and the success rate of the attack. 763

CosPGD. All previously discussed attacks were proposed for the image classification task. Here, the input sample is a 2D 764
image of resolution H × W, where H and W are the height and width of the spatial resolution of the sample, respectively. 765
Pixel-wise information is inconsequential for image classification. This led to the pixel-wise loss L(·) being aggregated to 766
L(·), as follows, 767

L(fθ(X
advt),Y ) =

1

H×W

∑
i∈H×W

L(fθ(Xadvt)i,Yi). (8) 768

This aggregation of L(·) fails to account for pixel-wise information available in tasks other than image classification, such as 769
pixel-wise prediction tasks like Optical Flow estimation, and disparity estimation. Thus, in their work [1] propose an effective 770
extension of the PGD attack that takes pixel-wise information into account by scaling L(·) by the alignment between the 771
distribution of the predictions and the distributions of Y before aggregating leading to a better-optimized attack, modifying 772
Eq. (4) as follows, 773

Xadvt+1 = Xadvt + α · sign∇Xadvt

∑
i∈H×W

cos
(
ψ(fθ(X

advt)i),Ψ(Yi)
)
· L

(
fθ(X

advt)i,Yi

)
. (9) 774

Where, functions ψ and Ψ are used to obtain the distribution over the predictions and Yi, respectively, and the function cos 775
calculates the cosine similarity between the two distributions. CosPGD is the unified SotA adversarial attack for pixel-wise 776
prediction tasks. 777

In Figure 2, we show examples of adversarial attacks, on STTR using the KITTI2015 dataset. We show the samples before 778
and after the attacks and the predictions before and after the respective adversarial attacks. 779

13



CVPR
#0006

CVPR
#0006

CVPR 2025 Submission #0006. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

E. Model Zoo780

It is challenging to find all checkpoints whereas training them is time and compute-exhaustive. Thus we gather available781
model checkpoints made available online by the respective authors. The trained checkpoints for all models available in782
DISPBENCH can be obtained using the following lines of code:783

from dispbench.evals import load_model
model = load_model(model_name='STTR',

dataset='KITTI2015')

Each model checkpoint can be retrieved with the pair of ‘model name’, the name of the model, and ‘dataset’, the dataset for784
which the checkpoint was last finetuned.785

F. DISPBENCH Usage Details786

Following we provide a detailed description of the evaluation functions and their arguments provided in DISPBENCH.787

F.1. Adversarial Attacks788

To evaluate a model for a given dataset, on an attack, the following lines of code are required.789

from dispcbench.evals import evaluate
model, results = evaluate(
model_name='STTR', dataset='KITTI2015' retrieve_existing=True,
threat_config='config.yml')

Here, the ‘config.yml’ contains the configuration for the threat model, for example, when the threat model is a PGD attack,790
‘config.yml’ could contain ‘threat model=“PGD”’, ‘iterations=20’, ‘alpha=0.01’, ‘epsilon=8’, and ‘lp norm=“Linf”’. The791
argument description is as follows:792
• ‘model name’ is the name of the disparity estimation method to be used, given as a string.793
• ‘dataset’ is the name of the dataset to be used also given as a string.794
• ‘retrieve existing’ is a boolean flag, which when set to ‘True’ will retrieve the evaluation from the benchmark if the795

queried evaluation exists in the benchmark provided by this work, else DISPBENCH will perform the evaluation. If the796
‘retrieve existing’ boolean flag is set to ‘False’ then DISPBENCH will perform the evaluation even if the queried evaluation797
exists in the provided benchmark.798

• The ‘config.yml’ contains the following:799
– ‘threat model’ is the name of the adversarial attack to be used, given as a string.800
– ‘iterations’ are the number of attack iterations, given as an integer.801
– ‘epsilon’ is the permissible perturbation budget ϵ given a floating point (float).802
– ‘alpha’ is the step size of the attack, α, given as a floating point (float).803
– ‘lp norm’ is the Lipschitz continuity norm (lp-norm) to be used for bounding the perturbation, possible options are ‘Linf’804

and ‘L2’ given as a string.805

– ‘target’ is false by default, but to do targeted attacks, either the user can set ‘target’=True, to use the default target of
−→
0 ,806

or can pass a specific tensor to be used as the target.807

F.2. 2D Common Corruptions808

To evaluate a model for a given dataset, with 2D Common Corruptions, the following lines of code are required.809

from dispbench.evals import evaluate
model, results = evaluate(
model_name='STTR', dataset='KITTI2015', retrieve_existing=True,
threat_config='config.yml')

Here, the ‘config.yml’ contains the configuration for the threat model; for example, when the threat model is 2D Com-810
mon Corruption, ‘config.yml’ could contain ‘threat model=“2DCommonCorruption”’, and ‘severity=3’. Please note, when811
the ‘threat model’ is a common corruption type, DISPBENCH performs evaluations on all corruptions under the respective812
‘threat model’ and returns the method’s performance on each corruption at the requested severity. The argument description813
is as follows:814
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• ‘model name’ is the name of the disparity estimation method to be used, given as a string. 815
• ‘dataset’ is the name of the dataset to be used also given as a string. 816
• ‘retrieve existing’ is a boolean flag, which when set to ‘True’ will retrieve the evaluation from the benchmark if the 817

queried evaluation exists in the benchmark provided by this work, else DISPBENCH will perform the evaluation. If the 818
‘retrieve existing’ boolean flag is set to ‘False’, then DISPBENCH will perform the evaluation even if the queried evalua- 819
tion exists in the provided benchmark. 820

• The ‘config.yml’ contains the following: 821
– ‘threat model’ is the name of the common corruption to be used, given as a string, i.e. ‘2DCommonCorruption’. 822
– ‘severity’ is the severity of the corruption, given as an integer between 1 and 5 (both inclusive). 823

DISPBENCH supports the following 2D Common Corruption: ‘gaussian noise’, shot noise’, ‘impulse noise’, ‘defocus blur’, 824
‘frosted glass blur’, ‘motion blur’, ‘zoom blur’, ‘snow’, ‘frost’, ‘fog’, ‘brightness’, ‘contrast’, ‘elastic’, ‘pixelate’, ‘jpeg’. 825
For the evaluation, DISPBENCH will evaluate the model on the validation images from the respective dataset corrupted using 826
each of the aforementioned corruptions for the given severity, and then report the mean performance over all of them. 827

G. Extension To Analysis 828

Following, we extend the analysis from Section 4 and report additional evaluations from DISPBENCH. 829

G.1. KITTI2015 830

Following, we provide evaluations of on the KITTI2015 dataset. In Figure 8 we report the evaluations of all considered
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Iteration

100
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PE

BIM

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iteration

PGD

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iteration

APGD

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iteration

CosPGD

Disparity Estimation Method
Architecture CFNet GWCNet-G STTR STTR-Light Backbone Type Convolution Transformer

Figure 8. Evaluations of all considered adversarial attacks with ϵ = 8
255

and α=0.01 under the ℓ∞-norm bound using the KITTI2015
validation dataset.

831
adversarial attacks with ϵ = 8

255 and α=0.01 under the ℓ∞-norm bound using the KITTI2015 validation dataset. 832
In Figure 9, we extend the evaluations from Figure 6, showing that the observations made over the mean performance over 833

all corruptions also hold for every individual corruption. 834
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Figure 9. For the same architecture, we evaluate checkpoints pretrained on Flyingthings3D against synthetic 2D Common Corruption
on Flyingthings3D and correlate its performance with the checkpoint trained on KITTI2015 against synthetic 2D Common Corruptions
on KITTI2015. Here, we report the EPE across every individual corruption for a given severity level. We observe no correlation in
performance, indicating that synthetic corruptions on synthetic datasets cannot be used as a proxy for real-world corruptions.
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Figure 1. Comparing images with weather corruptions captured in the wild (ACDC [31]) and images corrupted using synthetic corrup-
tions [19] and the predictions using a Mask2Former [7] with a Swin-Base [26] backbone trained on the Cityscapes [9] dataset.

Abstract

Deep learning (DL) models are widely used in real-world001
applications but remain vulnerable to distribution shifts, es-002
pecially due to weather and lighting changes. Collecting di-003
verse real-world data for testing the robustness of DL mod-004
els is resource-intensive, making synthetic corruptions an005
attractive alternative for robustness testing. However, are006
synthetic corruptions a reliable proxy for real-world cor-007
ruptions? To answer this, we conduct the largest bench-008

marking study on semantic segmentation models, compar- 009
ing performance on real-world corruptions and synthetic 010
corruptions datasets. Our results reveal a strong correla- 011
tion in mean performance, supporting the use of synthetic 012
corruptions for robustness evaluation. We further analyze 013
corruption-specific correlations, providing key insights to 014
understand when synthetic corruptions succeed in repre- 015
senting real-world corruptions. The code and datasets will 016
be released upon acceptance. 017
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1. Introduction018

Although very successful in benchmark scenarios, the re-019
liability of deep-learning (DL)-based models for semantic020
segmentation in real-world scenarios remains a major con-021
cern. Potentially unseen variations in the data (a.k.a. distri-022
bution shifts), for example, due to changes in weather con-023
ditions (e.g., fog, rain, snow) and lighting (e.g., nighttime,024
glare), can heavily degrade model performance. Ensuring025
robustness to such shifts is critical for safe and reliable de-026
ployment, particularly in applications like autonomous driv-027
ing [9, 27] or medical imaging [11, 30]. To evaluate model028
robustness, researchers often rely on synthetic corruptions,029
such as [19]. These perturbations — designed to mimic030
real-world conditions — offer a scalable and controlled way031
to assess model performance without the cost of real-world032
data collection.033

Several previous works [4, 23, 31] have also attempted034
to draw focus towards threats posed in real-world applica-035
tions when facing slight domain shifts, for example, through036
noise or simply through changing weather. Specific evalua-037
tions involve the study of Out-Of-Distribution (OOD) sam-038
ples to mimic realistic domain shifts.039

Despite their widespread use, the correlation between040
model performance on synthetic and real-world corruptions041
is not well understood. Figure 1 shows one such scenario042
with real-world corruptions (Snow and Fog) captured in the043
ACDC dataset [31] and similar synthetic corruptions added044
on in-domain images from the cityscapes validation dataset.045
We observe very similar trends in the lack of robustness046
of the model towards both real-world and synthetic corrup-047
tions. However, a fundamental question remains:048

“Are synthetic corruptions a reliable proxy for049
real-world corruptions?”050

If a strong correlation exists, synthetic corruptions could051
serve as a cost-effective alternative for robustness evalua-052
tion. Conversely, if the correlation is weak, extensive tests053
on real-world settings remain necessary at all stages.054

Here, we conduct a large benchmarking study, analyzing055
the correlation between model performance on real-world056
and synthetic corruptions for semantic segmentation. The057
main contributions of this work are as follows:058

• We benchmark multiple DL-based semantic segmentation059
models on real-world corruptions from the ACDC dataset060
and synthetic corruptions from Cityscapes + 2D Common061
Corruptions.062

• We provide an in-depth analysis of corruption-specific063
trends, identifying cases where synthetic corruptions suc-064
ceed or fail as proxies.065

• We provide benchmarking of semantic segmentation066
methods against synthetic corruptions on ADE20k [37]067
and PASCAL VOC 2012 [13] datasets.068

Our findings reveal a high correlation in mean perfor- 069
mance, suggesting that synthetic corruptions can indeed 070
serve as a reliable proxy for real-world robustness evalua- 071
tion. However, we also highlight key cases where synthetic 072
corruptions fail to fully capture real-world effects, under- 073
scoring the need for more nuanced evaluation methods. 074

2. Related Work 075

The robustness of DL-based methods to distribution shifts 076
is often used as a measure of their generalization abil- 077
ity [20, 21]. Common Corruptions [19] and 3D Common 078
Corruptions [24] are tools proposed for benchmarking the 079
robustness of image classification models, but they can be 080
extended to other vision tasks as for example done in [23]. 081
However, both are synthetic corruptions, and distribution 082
shifts occurring in the real world might be slightly different. 083
Conversely, Sakaridis et al. [31] proposed “ACDC: The Ad- 084
verse Conditions Dataset with Correspondences for Robust 085
Semantic Driving Scene Perception”. This dataset contains 086
images captured in the wild in different conditions, such 087
as during Night, Rain, Snow, and Fog. While ACDC does 088
not cover many other possible conditions that can cause dis- 089
tribution shifts, it serves as a community-accepted tool for 090
benchmarking real-world OOD robustness to a certain ex- 091
tent. 092

In this work, we use both Common Corruptions and 093
ACDC to benchmark OOD robustness and thus measure 094
the generalization ability of various semantic segmentation 095
methods, including recently proposed SotA methods like 096
Mask2Former [7] and InternImage [32], with the goal to 097
investigate whether synthetic datasets that are easy to gen- 098
erate can serve as a proxy for a model’s real world OOD 099
robustness. 100

[4] provides a new benchmark for robustness against 101
anomalies, while relevant for real-world applications, we 102
intend to focus this work on traditional OOD robustness. 103

In their work, Michaelis et al. [28] proposed datasets 104
combining 2D Common Corruptions with datasets such as 105
MS-COCO [25], PASCAL VOC 2007 [12], and Cityscapes. 106
However, their evaluations were limited to 2D Common 107
Corruptions and how different severities of the corruptions 108
on the images impact the downstream task performance. 109
We find correlations between performance against 2D Com- 110
mon Corruptions and real-world corruptions. We use their 111
proposed Cityscapes-C (Cityscapes + 2D Common Corrup- 112
tions) as our synthetic corruptions dataset. 113

3. Metrics For Analysis At Scale 114

This is the first work to analyze semantic segmentation 115
methods, especially under the lens of reliability and gen- 116
eralization ability on such a large scale. The most com- 117
monly used metrics for reporting evaluations on seman- 118
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tic segmentation are mean Intersection over Union (mIoU),119
mean class Accuracy (mAcc), and mean Accuracy of all120
pixels (aAcc) [1, 2, 36]. We capture these metrics while121
evaluating models against both ACDC and the 15 2D Com-122
mon Corruptions on the Cityscapes validation dataset. As123
per the commonly accepted practice of such OOD evalua-124
tions, all models are pre-trained on the Cityscapes training125
dataset.126

Similar to [28], the 15 2D Common Corruptions [19]127
considered in this work are: ‘gaussian noise’, ‘shot noise’,128
‘impulse noise’, ‘defocus blur’, ‘frosted glass blur’, ‘motion129
blur’, ‘zoom blur’, ‘snow’, ‘frost’, ‘fog’, ‘brightness’, ‘con-130
trast’, ‘elastic’, ‘pixelate’, ‘jpeg’. Similar to [19], Michaelis131
et al. [28] shows that synthetic corruptions with corruption132
severity=1 are too weak, and corruptions with corruption133
severity=5 are too strong for the downstream task. Thus,134
we use corruption severity=3 in our evaluations.135

As discussed, multiple image classification works [10,136
20, 21] and some semantic segmentation works [23, 28] use137
OOD Robustness of models for evaluating the generaliza-138
tion ability of the method. However, different image cor-139
ruptions impact the performance of the semantic segmenta-140
tion methods differently. As we are interested in the worst141
possible case, we define Generalization Ability Measure142
(GAM) as the worst mIoU across all image corruptions at143
a given severity level. That is, we ask the question “For144
a given dataset, what is the worst possible performance of145
a given method?”. Answering this question tells us about146
the reliability and generalization ability of a method. We147
find the minimum of the mIoU of the segmentation masks148
predicted under image corruptions w.r.t. the ground truth149
masks for a given method, across all corruptions at a given150
severity and report this as the GAMseverity level . For ex-151
ample, for severity=3, the measure would be denoted by152
GAM3. The higher the GAM value, the better the general-153
ization ability of the given semantic segmentation method.154
In Appendix A, we show that our observations are not lim-155
ited to the mIoU metric and extend to other metrics as well.156

4. Analysis And Key Findings157

We analyze the correlation in mean performance to deter-158
mine whether synthetic corruptions can serve as a reliable159
proxy for real-world corruptions. Additionally, we conduct160
an in-depth examination of corruption-specific trends, iden-161
tifying cases where synthetic corruptions effectively mimic162
real-world effects and where they fall short.163

4.1. Are Synthetic Corruptions Useful?164

We attempt to study if synthetic corruption like that intro-165
duced by [19] does represent the distribution shifts in the166
real world. While this assumption has driven works such as167
[19, 23, 24], to the best of our knowledge, it has not yet been168
proven. Previous works on robustness [15] simply report169

performance on both, thus, to save compute in the future, 170
we prove this assumption in Fig. 2. 171

For this analysis, we used methods trained on the train- 172
ing set of Cityscapes and evaluated them on 2D Common 173
Corruptions [19] and the ACDC datasets. ACDC is the Ad- 174
verse Conditions Dataset with Correspondences, consisting 175
of images from similar regions and scenes as Cityscapes 176
but captured under different conditions such as Day/Night, 177
Fog, Rain, and Snow. These are corruptions in the real 178
world, thus, we attempt to find correlations between per- 179
formance against synthetic corruptions from 2D Common 180
Corruptions (severity=3) and ACDC. We analyze each com- 181
mon corruption separately and also the mean performance 182
across all 2D Common Corruptions. 183

In Fig. 2, we observe a very strong positive correlation in 184
performance against ACDC and mean performance across 185
all 2D Common Corruptions. This novel finding helps the 186
community significantly. It means that we do not need to 187
go into the wild to capture images with distribution shifts, 188
as synthetic corruptions serve as a reliable proxy for real- 189
world conditions. Next, we look at the correlation be- 190
tween the worst-case scenario measure using GAM3 and 191
ACDC. Here, we observe a higher correlation than the pre- 192
vious case, indicating that the performance against worst- 193
case corruption serves as a reliable proxy for real-world cor- 194
ruptions. Lastly, as a sanity check, we find the correlation 195
between mean performance against all corruptions and per- 196
formance against worse-case corruption to observe a very 197
high correlation. Showing that the two can be used inter- 198
changeably. 199

4.2. When Do Synthetic Corruptions Succeed? 200

Since some synthetic corruptions attempt to directly mimic 201
the real-world scenarios in ACDC, like changes in light- 202
ing due to Day/Night changes or changes in weather due 203
to snowfall or fog, we analyze the correlation of relevant 204
corruptions to ACDC. As discussed in Sec. 4.1, the mean 205
performance correlation is high. However, we observe in 206
Fig. 3 that individual corruptions exhibit varying levels of 207
agreement between synthetic and real-world effects. We 208
observe that the Snow corruption shows a very strong align- 209
ment (Pearson correlation 0.867), indicating that synthetic 210
snow corruptions effectively mimic real-world snow-related 211
degradation, despite the corrupted images looking different 212
to a human observer (as shown in Fig. 1). 213

Brightness (Pearson correlation 0.270) and Fog (Pear- 214
son correlation 0.349) exhibit weak alignment, suggesting 215
that synthetic versions of these corruptions fail to fully cap- 216
ture real-world complexities. Specifically, brightness cor- 217
ruptions struggle to model real-world nighttime conditions, 218
while synthetic fog does not accurately represent atmo- 219
spheric distortions seen in real-world data. 220

These findings highlight that while synthetic corruptions 221
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Figure 2. To empirically determine if synthetic common corruptions such as those proposed by [19] truly represent the distribution and
domain shifts in the real world, we try to find correlations in evaluations on ACDC and 2D Common Corruptions. Each model is trained on
the training dataset of the Cityscapes dataset. Left plot: The y-axis represents values from evaluations on the ACDC dataset, and the x-axis
represents mean performance from evaluations on the Common Corruptions at severity=3. We observe a high positive correlation. Centre
plot: The y-axis again represents values from evaluations on the ACDC dataset, while the x-axis represents GAM3, which is the worst
performance of the methods across all the Common Corruptions at severity=3. We observe a slightly higher positive correlation. Right
plot: serves as a sanity check, where the y-axis represents GAM3 and the x-axis represents mean performance from evaluations on the
Common Corruptions at the same severity. We observe a very high correlation in performance. Thus, given the high positive correlations
between performance on the ACDC and mean performance against all synthetic common corruption, we conclude for relative analysis that
synthetic corruptions do serve as a reliable proxy for real-world corruptions.

50 60 70
(mean) 2D Common Corruption mIoU

30

40

50

60

AC
D

C
 m

Io
U

Pearson Correlation 0.759

60 70 80
2D Brightness Corruption mIoU

10

20

30

40

AC
D

C
 N

ig
ht

 m
Io

U

Pearson Correlation 0.270

20 30 40 50 60 70
2D Snow Corruption mIoU

30

40

50

60

AC
D

C
 S

no
w

 m
Io

U

Pearson Correlation 0.867

50 60 70 80
2D Fog Corruption mIoU

40

50

60

70

80
AC

D
C

 F
og

 m
Io

U
Pearson Correlation 0.349

40 50 60 70
2D Frost Corruption mIoU

40

50

60

70

80

AC
D

C
 F

og
 m

Io
U

Pearson Correlation 0.680

Figure 3. Correlation between model performance (legend as in Fig. 2) on ACDC (real-world corruptions) and 2D Common Corruptions
(synthetic) for different corruption types. The left-most plot shows the correlation between mean mIoU across all 2D Common Corruptions
and ACDC, with a strong Pearson correlation of 0.759, indicating that synthetic corruptions are generally a reasonable proxy for real-world
robustness. The remaining plots analyze specific corruptions: brightness (synthetic) vs. night (real) with correlation 0.270, snow (synthetic)
vs. snow (real) with correlation 0.867, fog (synthetic) vs. fog (real) with correlation 0.349, and frost (synthetic) vs. fog (real) with
correlation 0.680. While some synthetic corruptions (e.g., snow) closely align with their real-world counterparts, others (e.g., brightness
for night) exhibit weaker correlations, highlighting cases where synthetic corruptions may fail as accurate proxies.

can approximate real-world robustness trends, they are not222
universally reliable across all corruption types.223

Interestingly, we observe a moderate positive correlation224
(Pearson correlation 0.680) in performance against ACDC225
Fog and 2D Common Corruption Frost. Since the Frost 2D226
Common Corruption involves superimposing a randomly227
chosen frost image on the input image with some trans-228
parency, one might hypothesize that the model finds the dis-229
tribution shifts between the two to be moderately similar.230

5. Conclusion231

Our study provides the most comprehensive benchmarking232
to date on the reliability of synthetic corruptions as a proxy233
for real-world distribution shifts in semantic segmentation.234
Through extensive experiments, we observe a strong cor-235

relation in mean performance between synthetic and real- 236
world corruptions, supporting their utility for robustness 237
evaluation. However, a deeper analysis of individual cor- 238
ruption types reveals that while some synthetic corruptions 239
(e.g., snow) closely align with real-world performance, oth- 240
ers (e.g., brightness, fog) exhibit weak correlations, high- 241
lighting gaps in current benchmarking approaches. 242

These findings underscore the importance of refining 243
synthetic corruption benchmarks to better capture real- 244
world conditions. To promote OOD evaluations on syn- 245
thetic datasets, we provide benchmarking of all 15 2D Com- 246
mon Corruptions on the most commonly used semantic seg- 247
mentation datasets, namely, Cityscapes, ADE20k, and PAS- 248
CAL VOC2012 datasets. We release our datasets and code 249
to facilitate further research in this direction. 250
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Are Synthetic Corruptions A Reliable Proxy For Real-World Corruptions? 412

Paper #0005 Supplementary Material 413

Table Of Content 414

The supplementary material covers the following information: 415

• Appendix A: Here we show a high positive correlation in the different metrics captures for correlation between performance 416
against real-world corruptions and synthetic corruptions. 417

• Appendix B: Additional implementation details for the evaluated benchmarking, such as: 418

– Appendix B.1: Compute resources used. 419
– Appendix B.2: Details for the datasets used. 420

* Appendix B.2.1: ADE20K 421

* Appendix B.2.2: Cityscapes 422

* Appendix B.2.3: PASCAL VOC2012 423
– Appendix B.3: A comprehensive look-up table for all the semantic segmentation methods’ model weight and datasets 424

pair available in SEMSEGBENCH and used for evaluating the benchmark. 425

• Appendix C: Description of the 2D Common Corruptions used and visualizations of some corruptions on the Cityscapes 426
validation dataset and the performance of InternImage-Base on these corrupted images. 427

• Appendix D: Here we provide benchmarking results from 2D Common Corruption evaluations at severity 3, for the 428
ADE20K, Cityscapes, and PASCAL VOC2012 datasets. 429

• Appendix E: Extension To Related Work: Here, we extend the related work to discuss a few other important works. 430

• Appendix F Future Work: Following, we discuss the future directions possible from this work and extension of this work. 431

• Appendix F.1 Limitations: We discuss the limitations of this work in detail. 432

A. Correlation In Metrics 433

Here, we provide a comparison of mean accuracy across synthetic (2D Common Corruptions) and real-world (ACDC) cor- 434
ruptions. The top plot presents mAcc (mean class accuracy) with a stronger correlation of 0.782–0.858, while the bottom plot 435
shows results for aAcc (all pixel accuracy) with a Pearson correlation of 0.688–0.767. These results indicate that synthetic 436
corruptions serve as a reasonable proxy for real-world robustness. Thus, the analysis made using mIoU would also hold if 437
made using other metrics. 438

B. Implementation Details Of The Benchmarking 439

Following, we provide details regarding the experiments done for creating the benchmark used in the analysis. 440

B.1. Compute Resources. 441

Most experiments were done on a single 40 GB NVIDIA Tesla V100 GPU each, however, SegFormer [34] and 442
Mask2Former [7] with large backbones are more compute-intensive, and thus 80GB NVIDIA A100 GPUs or NVIDIA H100 443
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Figure 4. Comparison of mean accuracy across synthetic (2D Common Corruptions) and real-world (ACDC) corruptions. The top plot
presents mAcc (mean class accuracy) with a stronger correlation of 0.782–0.858, while the bottom plot shows results for aAcc (all pixel
accuracy) with a Pearson correlation of 0.688–0.767. These results indicate that synthetic corruptions serve as a reasonable proxy for
real-world robustness, even when measured using metrics other than mIoU

were used for these models, a single GPU for each experiment. Training some of the architectures with large backbones444
required using two to four GPUs in parallel.445

B.2. Dataset Details446

Performing OOD robustness evaluations is very expensive and compute-intensive. Thus, for the benchmark, we only use447
ADE20k, Cityscapes, and PASCAL VOC2012 as these are the most commonly used datasets for evaluation [1, 7, 23, 34, 36].448

B.2.1. ADE20K449

ADE20K [37] dataset contains pixel-level annotations for 150 object classes, with a total of 20,210 images for training, 2000450
images for validation, and 3000 images for testing. Following common practice [1, 34] we evaluate using the validation451
images.452

B.2.2. Cityscapes453

The Cityscapes dataset [9] comprises a total of 5000 images sourced from 50 different cities in Germany and neighboring454
countries. The images were captured at different times of the year and under typical meteorological conditions. Each image455
was subject to pixel-wise annotations by human experts. The dataset is split into three subsets: training (2975 images),456
validation (500 images), and testing (1525 images). This dataset has pixel-level annotations for 30 object classes.457
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B.2.3. PASCAL VOC2012 458

The PASCAL VOC 2012 [13], contains 20 object classes and one background class, with 1464 training images, and 1449 459
validation images. We follow common practice [14, 17, 35, 36], and use work by Hariharan et al. [16], augmenting the 460
training set to 10,582 images. We evaluate using the validation set. 461

Calculating the mIoU. mIoU is the mean Intersection over Union of the predicted segmentation mask with the ground 462
truth segmentation mask. 463

B.3. Models Used 464

Table 1 presents a comprehensive reference table for all semantic segmentation models used in our benchmarking. These 465
methods include some of the first efforts in DL-based semantic segmentation methods like UNet [30], and some of the most 466
recent SotA methods like InterImage [32]. Each model is trained on the respective training subset of its dataset and evaluated 467
on the corresponding validation set. The evaluations on 2D Common Corruptions are conducted using the validation sets. 468

C. 2D Common Corruptions 469

[19] propose introducing a distribution shift in the input samples by perturbing images with a total of 15 synthetic corruptions 470
that could occur in the real world. These corruptions include weather phenomena such as fog, and frost, digital corruptions 471
such as jpeg compression, pixelation, and different kinds of blurs like motion, and zoom blur, and noise corruptions such 472
as Gaussian and shot noise amongst others corruption types. Each of these corruptions can perturb the image at 5 different 473
severity levels between 1 and 5. The final performance of the model is the mean of the model’s performance on all the 474
corruptions, such that every corruption is used to perturb each image in the evaluation dataset. Since these corruptions are 475
applied to a 2D image, they are collectively termed 2D Common Corruptions. 476

We show examples of perturbed images over some corruptions and the changed predictions in Figure 5. 477
In Figure 6, we extend the visualizations from Figure 1, additionally showing Night and Rain for ACDC, and Brightness 478

and Frost for 2D Common Corruptions. 479

D. Benchmarking Results 480

Following, we include the results from the 2D Common Corruptions evaluations of all the semantic segmentation methods 481
over all of the common corruptions, for PASCAL VOC2012 in Figure 7, for Cityscapes in Figure 8, and for ADE20K in 482
Figure 9. 483

E. Extension To The Related Work 484

Kamann and Rother [23] provide an OOD robustness benchmark for semantic segmentation. While they use multiple back- 485
bone architectures, such as variants of ResNet [18], MobileNet [22], and Xception [8], their evaluations are limited to the 486
DeepLabV3+ [6] architecture. Our evaluated benchmark extends to multiple architectures and backbones, including recently 487
proposed SotA methods like Mask2Former [7] and InternImage [32]. 488

F. Future Work 489

Distribution shifts in the real world can be caused by multiple factors, one such factor is lens aberrations. [29] presents 490
many such lens aberrations. Additionally, Kar et al. [24] recently proposed 3D Common Corruptions that take scene depth 491
into account to make corruptions more realistic-looking. We intend to extend our analysis to include these, enabling a more 492
comprehensive robustness study. 493

F.1. Limitations 494

Benchmarking the robustness of semantic segmentation methods is a computationally and labor-intensive endeavor. Thus, 495
best utilizing available resources, we benchmark a limited number of settings. While more evaluations like correlation with 496
different severity levels would be interesting, this is the most comprehensive robustness benchmark to date and instills interest 497
to further improve our synthetic corruptions. 498
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Table 1. An Overview of all the semantic segmentation methods used in the benchmark in this work made using SEMSEGBENCH. Each of
the mentioned backbones has been evaluated using each of the architectures and datasets mentioned in the row in this table.

Backbone Architecture Datasets Time Proposed (yyyy-mm-dd)

ResNet101 [18]
DeepLabV3 [5], DeepLabV3+ [6],

Mask2Former [7], PSPNet [36]
ADE20K, Cityscapes,
PASCAL VOC 2012 2017-12-05

ResNet18 [18]
DeepLabV3 [5], DeepLabV3+ [6],

PSPNet [36] Cityscapes 2017-12-05

ResNet50 [18]
DeepLabV3 [5], DeepLabV3+ [6],

Mask2Former [7], PSPNet [36]
ADE20K, Cityscapes,
PASCAL VOC 2012 2017-12-05

Swin-Base [26] Mask2Former [7]
ADE20K, Cityscapes,
PASCAL VOC 2012 2022-06-15

Swin-Small [26] Mask2Former [7]
ADE20K, Cityscapes,
PASCAL VOC 2012 2022-06-15

Swin-Tiny [26] Mask2Former [7]
ADE20K, Cityscapes,
PASCAL VOC 2012 2022-06-15

MIT-B0 [34] SegFormer [34]
ADE20K, Cityscapes,
PASCAL VOC 2012 2021-10-28

MIT-B1 [34] SegFormer [34]
ADE20K, Cityscapes,
PASCAL VOC 2012 2021-10-28

MIT-B2 [34] SegFormer [34]
ADE20K, Cityscapes,
PASCAL VOC 2012 2021-10-28

MIT-B3 [34] SegFormer [34]
ADE20K, Cityscapes,
PASCAL VOC 2012 2021-10-28

MIT-B4 [34] SegFormer [34]
ADE20K, Cityscapes,
PASCAL VOC 2012 2021-10-28

MIT-B5 [34] SegFormer [34]
ADE20K, Cityscapes,
PASCAL VOC 2012 2021-10-28

UNet Convolutions UNet [30] Cityscapes 2015-05-18

BEiT-Base [3] UPerNet [33] ADE20K 2022-09-03

BEiT-Large [3] UPerNet [33] ADE20K 2022-09-03

InternImage-Base [32] UPerNet [33]
ADE20K, Cityscapes,
PASCAL VOC 2012 2023-04-17

InternImage-Huge [32] UPerNet [33] ADE20K 2023-04-17

InternImage-Large [32] UPerNet [33] ADE20K, Cityscapes 2023-04-17

InternImage-Small [32] UPerNet [33]
ADE20K, Cityscapes,
PASCAL VOC 2012 2023-04-17

InternImage-Tiny [32] UPerNet [33]
ADE20K, Cityscapes,
PASCAL VOC 2012 2023-04-17

InternImage-XLarge [32] UPerNet [33] ADE20K, Cityscapes 2023-04-17
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Figure 5. Illustrating changes in prediction due to different 2D Common Corruptions on a randomly chosen input image from the
Cityscapes dataset, when attaching the semantic segmentation method InterImage-Base. In the subfigures with semantic segmenta-
tion mask predictions, Left: Ground Truth Mask, and Right: Predicted Mask.
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Figure 6. An extension to Figure 1, comparing images with weather corruptions captured in the wild (ACDC [31] and images corrupted
using synthetic corruptions [19] and the predictions using a Mask2Former [7] with a Swin-Base [26] backbone trained on the Cityscapes [9]
dataset.
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Figure 7. Dataset used: PASCAL VOC2012. The correlation in the performance of semantic segmentation methods against different 2D
Common Corruptions. The respective axis shows the name of the common corruption used. Colors are used to show different architectures
and marker styles are used to show different backbones used by the semantic segmentation methods. For the limited PASCAL VOC2012
evaluations we observe some correlation between the number of learnable parameters and the performance against common corruptions,
however, more evaluations (more publicly available checkpoints) are required for a meaningful analysis.
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Figure 8. Dataset used: Cityscapes. The correlation in the performance of semantic segmentation methods against different 2D Common
Corruptions. The respective axis shows the name of the common corruption used. Colors are used to show different architectures and
marker styles are used to show different backbones used by the semantic segmentation methods. Except for DeepLabV3+ with a ResNet18
backbone, most other methods show a weak positive correlation between the number of learnable parameters used by a method and
its performance against most of the common corruption. Multiple occurrences of an Architecture and Backbone pair are due to their
evaluations being performed at two different crop sizes i.e. 512×512, and 512×1024.
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Figure 9. Dataset used: ADE20K. The correlation in the performance of semantic segmentation methods against different 2D Common
Corruptions. The respective axis shows the name of the common corruption used. Colors are used to show different architectures and
marker styles are used to show different backbones used by the semantic segmentation methods. Except for DeepLabV3, all other methods
show some positive correlation between the number of learnable parameters used by a method and its performance against any common
corruption.
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