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Abstract

Deep learning (DL) has surpassed human performance on
standard benchmarks, driving its widespread adoption in
computer vision tasks. One such task is disparity estima-
tion, estimating the disparity between matching pixels in
stereo image pairs, which is crucial for safety-critical ap-
plications like medical surgeries and autonomous naviga-
tion. However, DL-based disparity estimation methods are
highly susceptible to distribution shifts and adversarial at-
tacks, raising concerns about their reliability and general-
ization. Despite these concerns, a standardized benchmark
for evaluating the robustness of disparity estimation meth-
ods remains absent, hindering progress in the field.

To address this gap, we introduce DISPBENCH, a com-
prehensive benchmarking tool for systematically assess-
ing the reliability of disparity estimation methods. DISP-
BENCH evaluates robustness against synthetic image cor-
ruptions such as adversarial attacks and out-of-distribution
shifts caused by 2D Common Corruptions across multiple
datasets and diverse corruption scenarios. We conduct the
most extensive performance and robustness analysis of dis-
parity estimation methods to date, uncovering key corre-
lations between accuracy, reliability, and generalization.
Open-source code for DISPBENCH.

1. Background

The vision task of disparity estimation, also commonly
known as stereo-matching is used to estimate the dispar-
ity between matching pixels in stereo image pairs. Mayer
et al. [41] proposed the first Deep Learning (DL) based
method for disparity estimation called DispNet. This led
to disparity estimation becoming primarily a DL-based
task [2, 26, 39, 55]. However, DL-based methods are known
to be unreliable [1, 3, 13, 20, 47], they tend to learn short-
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Figure 1. Analyzing the generalization ability of some Dispar-
ity estimation methods: GWCNet [26], CFNet [55], and STTR
and STTR-light [39] proposed over time. The y-axis represents
the mean End-Point-Error (EPE) on Syntheticc Corruptions (2D
Common Corrruptions [31]) at different severalties (severity=0 is
ii.d. performance) using the FlyingThings3D [41], i.e., lower is
better. We observe that disparity estimation methods lack the gen-
eralization ability to common corruptions and, thus, are not safe
for real-world deployment.

cuts rather than meaningful feature representations [21] and
can be easily deteriorated even by small perturbations, caus-
ing the evaluation samples to not be independent and iden-
tically distributed (i.i.d.) w.r.t. the training samples. This
shift from i.i.d. samples can be caused due to changes in
the environment, changes in weather conditions, or image
corruption due to sensor noise [5, 14, 25, 31, 56, 57, 61].
Such shifts cause the evaluations to be Out-Of-Distribution
(OOD), and robustness to such shifts is called OOD Ro-
bustness. OOD Robustness is often used as a metric for
the generalization ability of a method [23, 24, 32, 33, 37].
Another possible cause of distribution shifts could be either
accidental or malicious adversarial attacks [38, 42, 43, 51—
53]. Here, the perturbations made to an image are optimized
to fool the method while the semantic meaning of the im-
ages remains the same for a human observer. When ad-
versarial attacks are optimized with full information about
a model and its loss, they are called white-box adversarial
attacks. Since these white-box attacks can potentially sim-
ulate the worst-case scenario for a method, they are often
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used as a proxy to measuring their reliability [4, 22, 35].

In Fig. 1, we provide an overview of the i.i.d. perfor-
mance, generalization ability, and reliability of disparity
estimation methods proposed over time on the FlyingTh-
ings3D dataset [41]. We include old popular methods such
as GWCNet and CFNet and new large transformer-based
STTR and its lightweight version STTR-light, which, due
to its training regime, are proposed as zero-shot disparity
estimation methods. Here, we observe a disturbing pat-
tern: while the i.i.d. performance has improved over time,
since this improvement has been the focus of most works,
the models still lack robustness. This is particularly con-
cerning as disparity estimation is often used in the real
world, especially for safety-critical scenarios such as med-
ical surgery procedures [48, 60], including invasive surg-
eries such as laparoscopy [46] and in autonomous driv-
ing [10]. Here, safety is paramount, and to ensure the safe
deployment of recent DL-based disparity estimation meth-
ods, their reliability and generalization ability need to be
guaranteed. However, no such guarantees can be provided
currently since no works focus on OOD and the adversarial
robustness of disparity estimation methods. This is primar-
ily due to a lack of datasets that enable such studies. Captur-
ing corruptions in the wild and then annotating for disparity
estimation is a time and resource intensive process.

Some prior works have focused on other kinds of robust-
ness; for example, a recent work [62] looks into the robust-
ness of disparity estimation works to domain shifts, while
[40, 63] studies the robustness of methods to occlusions.
Currently, there exists no unified framework to evaluate dis-
parity estimation methods for safe deployment in the real
world. Guo et al. [27] recently proposed a benchmarking
tool for disparity estimation methods. However, this tool is
limited to i.i.d. performance evaluations. This is a signifi-
cant limitation impeding the community’s ability to ensure
safe, reliable, and generalizable DL-based disparity estima-
tion methods for the real world.

To bridge this gap, we propose DISPBENCH, the first ro-
bustness benchmarking tool for disparity estimation. DISP-
BENCH is easy to use and extending it to future disparity
estimation methods and datasets, when they are proposed,
is straightforward. It is inspired by similar popular bench-
marks for the image classification tasks [12, 58] and object
detection [8, 15, 16, 30, 45]. It enables i.i.d. evaluations of
various DL-based disparity estimation methods across mul-
tiple commonly used disparity estimation datasets. It also
facilitates research in the reliability and generalization abil-
ity of disparity estimation methods, as it enables users to use
synthetic image corruptions, specifically, 5 diverse adver-
sarial attacks and 15 established common corruptions. This
will help researchers build better models that are not limited
to improved performance on identical and independently
distributed (i.i.d.) samples and are less vulnerable to ad-

versarial attacks while generalizing better to image corrup-

tions. Our proposed DISPBENCH facilitates this, streamlin-

ing it for future research to utilize.
The main contributions of this work are as follows:

* We provide a benchmarking tool DISPBENCH to evaluate
the performance of most DL-based disparity estimation
methods over 2 different datasets and synthetic corrup-
tions.

* We benchmark the aforementioned models against com-
monly used adversarial attacks and common corruptions
that can be easily queried using DISPBENCH.

* We perform an in-depth analysis using DISPBENCH and
present interesting findings showing methods that per-
form well on i.i.d. are remarkably less reliable and gener-
alize worse than other non-well-performing methods.

* We show that synthetic corruptions on synthetic datasets
do not represent real-world corruptions; thus, synthetic
corruptions on real-world datasets are required.

2. DISPBENCH Usage

There exists no standardized tool for evaluating the perfor-
mance of disparity estimation methods. Thus, the codebase
for such a tool had to be written from scratch. In the fol-
lowing, we describe the benchmarking tool, DISPBENCH.
Currently, it supports 4 unique architectures (new architec-
tures to be added to DISPBENCH with time) and 2 distinct
datasets, namely FlyingThings3D [41] and KITTI2015 [44]
(please refer Sec. 2.4 for additional details on the datasets).
It enables training and evaluations on all aforementioned
datasets, including evaluations using SotA adversarial at-
tacks such as CosPGD [4] and other commonly used adver-
sarial attacks like BIM [36], PGD [35], FGSM [22], under
various Lipshitz (I,) norm bounds and APGD [59] under
the {..-norm bound. Additionally, it enables evaluations for
Out-of-Distribution (OOD) robustness by corrupting the in-
ference samples using 2D Common Corruptions [31].

We follow the nomenclature set by RobustBench [12]
and use “threat_model” to define the kind of evaluation to be
performed. When “threat_model” is defined to be “None”,
the evaluation is performed on unperturbed and unaltered
images, if the “threat_model” is defined to be an adversar-
ial attack, for example “PGD”, “CosPGD” or “BIM”, then
DISPBENCH performs an adversarial attack using the user-
defined parameters. Whereas, if “threat_model” is defined
to be “2DCommonCorruptions”, the DISPBENCH performs
evaluations after perturbing the images with 2D Common
Corruptions. If the queried evaluation already exists in the
benchmark provided by this work, then DISPBENCH simply
retrieves the evaluations, thus saving computation. Please
refer to Appendix C for details on usage.

Following, we show the basic commands to use DISP-
BENCH. We describe each attack and common corruption
supported by DISPBENCH in detail in Appendix C. Please



refer to Appendix E for details on the arguments.

2.1. Model Zoo

It is challenging to find all checkpoints, whereas training
them is time and compute-exhaustive. Thus, we gather
available model checkpoints made available online by the
respective authors. The trained checkpoints for all models
available in DISPBENCH can be obtained using the follow-
ing lines of code:

from dispbench.evals import load_model
model = load_model (model_name='STTR',
dataset="KITTI2015")

Each model checkpoint can be retrieved with the pair of
‘model_name’, the name of the model, and ‘dataset’, the
dataset for which the checkpoint was last fine-tuned.

2.2. Adversarial Attacks

To evaluate a model for a given dataset on an attack, the
following lines of code are required.

from dispcbench.evals import evaluate

model, results = evaluate(
model_name='STTR', dataset='KITTI2015'
— retrieve_existing=True,
threat_config='config.yml'")

Here, the ‘config.yml’ contains the configuration

for the threat model, for example, when the threat

model is a PGD attack, ‘config.yml’ could contain

‘threat_model=“PGD”’, ‘iterations=20’, ‘alpha=0.01", ‘ep-

silon=8’, and ‘lp_norm="“Linf”’. The argument description

is as follows:

* ‘model name’ is the name of the disparity estimation
method to be used, given as a string.

 ‘dataset’ is the name of the dataset to be used also given
as a string.

* ‘retrieve_existing’ is a boolean flag, which when set to
‘True’ will retrieve the evaluation from the benchmark if
the queried evaluation exists in the benchmark provided
by this work, else DISPBENCH will perform the evalua-
tion. If the ‘retrieve_existing’ boolean flag is set to ‘False’
then DISPBENCH will perform the evaluation even if the
queried evaluation exists in the provided benchmark.

* The ‘config.yml’ contains the following:

— ‘threat_model’ is the name of the adversarial attack to
be used, given as a string.

— ‘iterations’ are the number of attack iterations, given as
an integer.

— ‘epsilon’ is the permissible perturbation budget € given
a floating point (float).

— ‘alpha’ is the step size of the attack, «, given as a float-
ing point (float).

— ‘Ip-norm’ is the Lipschitz continuity norm (l,-norm) to
be used for bounding the perturbation, possible options
are ‘Linf” and ‘L2’ given as a string.

— ‘target’ is false by default, but to do targeted attacks,
either the user can set ‘target’=True, to use the default
target of ﬁ, or can pass a specific tensor to be used as
the target.

The adversarial attacks supported by DISPBENCH are
FGSM, BIM, PGD, APGD, and CosPGD.

In Fig. 2, we show example images perturbed using dif-
ferent adversarial attacks and the change in disparity esti-
mation performed by STTR. Here, all attacks are optimized
for 20 attack iterations, with «=0.01 and € = % under the
£ ~o-norm bound.

2.3. 2D Common Corruptions

To evaluate a model for a given dataset with 2D Common
Corruptions, the following lines of code are required.

from dispbench.evals import evaluate

model, results = evaluate(
model_name='STTR', dataset='KITTI2015',
— retrieve_existing=True,
threat_config='config.yml'")

Here, the ‘config.yml’ contains the configuration for
the threat model; for example, when the threat model
is 2D Common Corruption, ‘config.yml’ could con-
tain ‘threat_model="“2DCommonCorruption”’, and ‘sever-
ity=3". Please note, when the ‘threat_model’ is the common
corruption, DISPBENCH performs evaluations on all cor-
ruptions under the respective ‘threat_model’ and returns the
method’s performance on each corruption at the requested
severity. The argument description is as follows:

* ‘model_name’ is the name of the disparity estimation
method to be used, given as a string.

 ‘dataset’ is the name of the dataset to be used also given
as a string.

* ‘retrieve_existing’ is a boolean flag, which when set to
‘True’ will retrieve the evaluation from the benchmark if
the queried evaluation exists in the benchmark provided
by this work, else DISPBENCH will perform the evalua-
tion. If the ‘retrieve_existing’ boolean flag is set to ‘False’
then DISPBENCH will perform the evaluation even if the
queried evaluation exists in the provided benchmark.

* The ‘config.yml’ contains the following:

— ‘threat_model’ is the name of the common corruption
to be used, given as a string, i.e. ‘2DCommonCorrup-
tion’.

— ‘severity’ is the severity of the corruption, given as an
integer between 1 and 5 (both inclusive).

Di1SPBENCH supports the following 2D Common Corrup-

tion: ‘gaussian_noise’, shot_noise’, ‘impulse_noise’, ‘defo-

cus_blur’, ‘frosted_glass_blur’, ‘motion_blur’, ‘zoom_blur’,



Left Image Right Image

Predictions

i.i.d. Performance

After FGSM attack

After 20 iteration BIM attack

After 20 iteration PGD attack

After 20 iteration CosPGD attack

Figure 2. Example of performing adversarial attacks on STTR
using KITTI2015 dataset under different attacks. We show the
samples before and after the attacks and the predictions before and
after the respective adversarial attacks.

‘snow’, ‘frost’, ‘fog’, ‘brightness’, ‘contrast’, ‘elastic’,
‘pixelate’, ‘jpeg’. For the evaluation, DISPBENCH will

evaluate the model on the validation images from the re-
spective dataset corrupted using each of the aforementioned
corruptions for the given severity and then report the mean
performance over all of them.

In Fig. 3, we show example images perturbed using the
2D Common Corruption: Frost and the change in dispar-
ity estimation performed by STTR over different severity
strengths.

2.4. Dataset Details

DISPBENCH currently supports two distinct disparity
datasets. Following, we describe these datasets in detail.

2.4.1. FlyingThings3D

This is a synthetic dataset proposed by [41] largely used
for training and evaluation of disparity estimation methods.
This dataset consists of 25000 stereo frames, of everyday
objects such as chairs, tables, cars, etc. flying around in
3D trajectories. The idea behind this dataset is to have a
large volume of trajectories and random movements rather
than focus on a real-world application. In their work, [17]
showed models trained on FlyingThings3D can generalize
to a certain extent to other datasets.

2.4.2. KITTI2015

Proposed by [44], this dataset is focused on the real-world
driving scenario. It contains a total of 400 pairs of image
frames, split equally for training and testing. The image
frames were captured in the wild while driving around on
the streets of various cities. The ground-truth labels were
obtained by an automated process.

3. Initial Evaluations using DISPBENCH

We use DISPBENCH to perform some initial benchmarking
and make some interesting observations. Following, we dis-
cuss the details of the benchmarking process. Please note,
we use the FlyingThing3D and the KITTI2015 dataset for
the benchmarking. However, very few pretrained architec-
tures are available for KITTI2015, and thus our evaluations
using KITTI2015 are limited to these. While DISPBENCH
enables the training of architectures of multiple datasets,
doing so is beyond our resource capabilities.

For additional details on the datasets, please refer to
Sec. 2.4.

Measuring Generalization Ability.  Inspired by multi-
ple works [12, 32, 33] that use OOD Robustness of methods
for evaluating the generalization ability of the method, even
evaluate over every common corruption, that is the 15 2D
Common Corruptions: ‘Gaussian Noise’, Shot Noise’, ‘Im-
pulse Noise’, ‘Defocus Blur’, ‘Frosted Glass Blur’, ‘Motion
Blur’, “Zoom Blur’, ‘Snow’, ‘Frost’, ‘Fog’, ‘Brightness’,
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Figure 3. Example of predictions using STTR on KITTI2015 dataset under different severities of the 2D Common Corruption: Frost.

‘Contrast’, ‘Elastic Transform’, ‘Pixelate’, ‘JPEG Com-
pression’. Then, we find the mean EPE w.r.t. the ground
truth for a given method, across all corruptions at a given
severity and report use this to measure the Generalization
Ability. We corrupt the pair of stereo images with the same
corruption at the same severity when evaluating.

Ideally, one would like to evaluate the generalization
ability and reliability of methods using real-world samples
captured in the wild. However, annotation of these samples
is a challenging and time-consuming task, and thus, no such
dataset is available for disparity estimation. Sakaridis et al.
[50] captured such data in the wild with domain shifts due
to changes in time of day and changes in weather conditions
like snowfall, rain, and fog. They also provide pixel-level
annotations for their images, however, these annotations are
only available for semantic segmentation, and these im-
ages are monocular and not stereo. They propose this as
the Adverse Conditions Dataset with Correspondences for
Semantic Driving Scene Understanding (ACDC) dataset.
Interestingly, in their work, Agnihotri et al. [7] showed a
very strong positive correlation between the performance of
most methods on the ACDC dataset and their performance
against in-domain images corrupted with the 2D Common
Corruptions to cause a synthetic domain shift. This is an
important finding as it proves that 2D Common Corruptions
can be used as a proxy to real-world domain shifts. We dis-
cuss this in Appendix A. For details on the dataset, please
refer to the appendix.

Measuring Reliability Under Adversarial Attacks.
Adversarial attacks, especially white-box attacks, serve as
a proxy to the worst-case scenario and help understand the
quality of the representations learned by a model [4, 53, 59].
DISPBENCH provides the ability to evaluate the models
against some popular adversarial attacks, as discussed in
Sec. 2.2. However, we focus this work towards realistic
corruptions possible in the real world. For evaluations over
adversarial attacks, please refer to Appendix F.

Architectures Used.  Disparity estimation networks es-
sentially estimate optimal correspondence matching be-
tween pixels on epipolar lines in the left and right images
to infer depth. Most disparity estimation architectures used
a cost volume with cross-correlation or contamination of
feature representations for the left and right images. How-
ever, GWCNet-G [26] proposed using group-wise correla-
tions to construct the cost volume. This leads to a significant
boost in i.i.d. performance and inference speed. CFNet [55]
proposed fusing on multiple low-resolution dense cost vol-
umes to enlarge the receptive field, enabling extraction of
robust structural representations, followed by cascading the
cost volume representations to alleviate the unbalanced dis-
parity estimation. It was proposed to be robust to large do-
main differences and was SotA when proposed. Stereo-
Transformers (STTR), Li et al. [39] proposes to replace
the cost volume construction with dense pixel matching us-
ing position information and attention to enable sequence-
to-sequence matching. This relaxes the limitation of a fixed
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Figure 4. Using the FlyingThings3D dataset for disparity estimation, we perform an initial benchmarking of i.i.d. performance and
generalization abilities of four popular disparity estimation methods. CFNet and GWCNet are traditional CNN-based stereo matching
methods, whereas STTR and STTR-light are newly proposed transformer-based large models capable of zero-shot disparity estimation.
Here, we use their fine-tuned versions for the FlyingThings3D dataset. The y-axis reports the mean EPE over the entire validation set for
the respective corruption, and the x-axis denotes the severity of the 2D Common Corruption used to corrupt the input images. We report
the i.i.d. performance at severity=0. Here we observe that while all four methods are highly vulnerable to Noise and Weather corruptions,
newly proposed STTR and STTR-light are surprisingly less robust than the older CNN-based methods against weather corruptions. This
finding is interesting and concerning as weather corruptions are the most likely real-world domain shift.

disparity range and identifies occluded regions with con-
fidence estimates. STTR generalizes across different do-
mains, even without fine-tuning. However, in our evalua-
tions, we use fine-tuned checkpoints for a fair comparison

of reliability and generalization capabilities. STTR-light is
the lightweight version of STTR proposed for faster infer-
ence with only a marginal drop in i.i.d. performance. We
evaluate using publicly available pre-trained checkpoints.



4. Key Findings

In the following, we present the key findings made using the
initial benchmarking using the DISPBENCH.

4.1. FlyingThings3D

Following, we discuss the observations made in the robust-
ness benchmark created using DISPBENCH. We report the
evaluations in Fig. 4. Here, we observe that indeed the i.i.d.
performance of the new methods like STTR and STTR-light
is better than the older CNN-based CFNet and GWCNet-G,
however, the same is not always true for their generalization
abilities. All four considered methods appear to be robust
to digital corruptions such as changes in brightness, con-
trast, elastic transform, pixelated, and JPEG compression to
a significant extent. While, all four methods appear to be
extremely non-robust to additive noise, possible in the real
world due to sensor error, causing the mean errors to go as
high as 100. Please note that compared to the single-digit
EPE values for i.i.d. performance, these errors are signifi-
cantly high.

The most interesting behavior is seen under different
weather corruptions: Snow, Frost, and Fog. Here, all four
methods are non-robust, however, the newer transformer-
based methods STTR and STTR-light are significantly
more non-robust. This is quite alarming, as weather cor-
ruptions are the most natural domain shifts possible in the
real world, and here, the large models fail significantly
worse. Especially under Frost and Fog corruptions, the
larger STTR performs worse than its lightweight counter-
part, STTR-light. This raises some interesting concerns that
warrant further study and deeper analysis.

4.2. KITTI2015

There are very limited pre-trained architectures available
on KITTI2015 for the disparity estimation task, namely
GWCNet-G and STTR. We perform our analysis using
these and report the evaluations in Fig. 5. We observe that
the newly proposed STTR is less robust than GWCNet-C
across all corruptions and severities. This does not align
with the observations made with synthetic corruptions on
the synthetic dataset FlyingThings3D. This suggests that
further analysis is required.

5. Synthetic Corruptions on Synthetic Dataset
vs Synthetic Corruptions on Real World
Dataset

Following the findings from Sec. 4.2, we investigate
whether the performance of models on synthetic corrup-
tions (2D Common Corruptions) on synthetic dataset (Fly-
ingThings3D) can serve as a proxy to the performance of
models on synthetic corruptions (2D Common Corruptions)
on real-world data (KITTI2015). We report this analysis

in Fig. 6 and observe that synthetic corruptions on syn-
thetic datasets do not represent synthetic corruptions on
real-world datasets. As known from [7], synthetic cor-
ruptions on real-world datasets represent real-world cor-
ruptions. By extension, synthetic corruptions on synthetic
datasets do not represent real-world corruptions. This cru-
cial finding eliminates the possibility of using synthetic sim-
ulators like CARLA [18], LGSVL (SVL Simulator) [49],
AirSim [54], and others for applications in the real world.

6. Conclusion

Evaluating a model’s robustness is vital for real-world ap-
plications. However, capturing corruptions in the real world
is time and resource intensive. Here, synthetic corrup-
tions appear to be an attractive alternative. Thus, we pro-
pose DISPBENCH, the first robustness benchmarking tool
and a novel benchmark on synthetic corruptions for dispar-
ity estimation methods. We discuss the unique features of
DISPBENCH in detail and demonstrate that the library is
user-friendly, such that adding new methods or perform-
ing evaluation is very intuitive. We use DISPBENCH to
evaluate the i.i.d. performance and OOD generalization of
some popularly used disparity estimation methods. We ob-
serve that under realistic scenarios, recently proposed large
transformer-based methods known to be SotA oni.i.d. sam-
ples do not generalize well to image corruptions, demon-
strating the gap in current research when considering real-
world applications. Lastly, we show experimentally that
synthetic corruptions on synthetic datasets do not represent
real-world corruptions, thus, synthetic corruptions on real-
world datasets present a more promising path. DISPBENCH
enables a deeper understanding of the reliability and gen-
eralization abilities of disparity estimation methods, and its
consolidated nature facilitates more streamlined research.

Future Work.  Very recently, OpenStereo [27] has been
made public that supports newly proposed stereo matching
methods, which are foundational models for stereo match-
ing like StereoAnything [29], and LightStereo [28]. We in-
tend to adapt our evaluator into OpenStereo to enable safety
studies of SotA disparity estimation methods. Additionally,
more in-depth analysis of the disparity estimation methods,
for example, as done by [19] for classification methods,
would help understand the models and their workings, es-
pecially in terms of their robustness performance.

Limitations.  Benchmarking disparity estimation meth-
ods is a compute and labor-intensive endeavor. Thus, best
utilizing available resources, we currently use DISPBENCH
to benchmark a limited number of settings, using the most
popular works for now. The benchmarking tool itself offers
significantly more combinations that can be benchmarked.
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Figure 5. Using the KITTI2015 dataset for disparity estimation, we perform an initial benchmarking of i.i.d. performance and gener-
alization abilities of the two popular and available disparity estimation methods. GWCNet is a traditional CNN-based stereo matching
method, whereas STTR is a newly proposed transformer-based large model capable of zero-shot disparity estimation. Here, we use their
fine-tuned versions for the KITTI2015 dataset. The y-axis reports the mean EPE over the entire validation set for the respective corruption,
and the x-axis denotes the severity of the 2D Common Corruption used to corrupt the input images. We report the i.i.d. performance at
severity=0. Here, we observe that while both the methods are highly vulnerable to Noise and Weather corruptions, the newly proposed
STTR is surprisingly less robust than the older CNN-based method against all corruptions. This finding is interesting and concerning as it
contradicts the findings on the Synthetic Dataset FlyingThings3D in Fig. 4.
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Figure 6. For the same architecture, we report the mean EPE across all corruptions for a checkpoint pretrained on Flyingthings3D against
synthetic 2D Common Corruption on Flyingthings3D and correlate its performance with the checkpoint trained on KITTI2015 against
synthetic 2D Common Corruptions on KITTI2015. For individual corruptions, please refer to Fig. 9. We observe no correlation in
performance, indicating that synthetic corruptions on synthetic datasets cannot be used as proxy for real-world corruptions.

Reproducibility Statement

Every experiment in this work is reproducible and is
part of an effort toward open-source work.  DISP-
BENCH will be open-source and publicly available, in-
cluding all evaluation logs and model checkpoint weights.
This work intends to help the research community use
synthetic corruptions to build more reliable and gen-
eralizable disparity estimation methods such that they
are ready for deployment in the real world even un-
der safety-critical applications. The open-source code
and model weights for DISPBENCH is available here:
https://github.com/shashankskagnihotri/
benchmarking_robustness/tree/disparity_
estimation/final/disparity_estimation.
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Figure 7. Results from work by Agnihotri et al. [7]. Here they find a very strong positive correlation between mean mloU over the
ACDC evaluation dataset [50] and mean mloU over each 2D Common Corruption [31] over the Cityscapes dataset [11]. All models
were trained using the training subset of the Cityscapes dataset. ACDC is the Adverse Conditions Dataset with Correspondences for
Semantic Driving Scene Understanding captured in similar scenes are cityscapes but under four different domains: Day/Night, Rain, Snow,
and Fog in the wild. ACDC is a community-used baseline for evaluating the performance of semantic segmentation methods on domain
shifts observed in the wild.
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Appendix F: Here we provide additional results from the benchmark evaluated using DISPBENCH.

Please note that due to the similarity of the objective, many aspects of this appendix are very similar to Agnihotri et al. [7].
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A. Do Synthetic Corruptions Represent The Real World?

In their work Agnihotri et al. [7], they find the correlation between mean mloU over the ACDC evaluation dataset [50] and
mean mloU over each 2D Common Corruption [31] over the Cityscapes dataset [11]. We include Figure 7 from their work
here for ease of understanding. All models were trained using the training subset of the Cityscapes dataset. ACDC is the
Adverse Conditions Dataset with Correspondences for Semantic Driving Scene Understanding captured in similar scenes
are cityscapes but under four different domains: Day/Night, Rain, Snow, and Fog in the wild. ACDC is a community-used
baseline for evaluating the performance of semantic segmentation methods on domain shifts observed in the wild. They
find that there exists a very strong positive correlation between the two. This shows, that yes, synthetic corruptions can
serve as a proxy for the real world. Unfortunately, a similar “in the wild” captured dataset does not exist for optical flow
estimation to evaluate the effect of domain shifts on the performance of optical flow methods. However, given that for the
task of semantic segmentation, we find a very high positive correlation between the performance on real-world corruptions
and synthetic corruptions, it is a safe assumption that the same would hold true for optical flow estimation as well. Thus, in
this work, we evaluate against synthetic 2D Common Corruptions [31] and synthetic 3D Common Corruptions [34].

B. Implementation Details Of The Benchmark

Following, we provide details regarding the experiments done for creating the benchmark used in the analysis.

Compute Resources. Most experiments were done on a single 40 GB NVIDIA Tesla V100 GPU each, however, MS-
RAFT+, FlowFormer, and FlowFormer++ are more compute-intensive, and thus 80GB NVIDIA A100 GPUs or NVIDIA
H100 were used for these models, a single GPU for each experiment.

Datasets Used. Performing adversarial attacks and OOD robustness evaluations are very expensive and compute-intensive.
Thus, performing evaluation using all model-dataset pairs is not possible given the limited computing resources at our dis-
posal. Thus, for the benchmark, we only use FlyingThings3D and KITTI2015, as these are the most commonly used datasets
for evaluation [29, 39, 41, 55].

Metrics Calculation. In this work, for robustness evaluations we consider the mC-EPE, which is the mean End-Point-
Error of a method, against common corruptions at a given severity, over every input image from the validation dataset.
We use all 15 2D Common Corruptions: ‘Gaussian Noise’, Shot Noise’, ‘Impulse Noise’, ‘Defocus Blur’, ‘Frosted Glass
Blur’, ‘Motion Blur’, ‘Zoom Blur’, ‘Snow’, ‘Frost’, ‘Fog’, ‘Brightness’, ‘Contrast’, ‘Elastic Transform’, ‘Pixelate’, ‘JPEG
Compression’. All the common corruptions are at severity={1, 2, 3, 4, 5}. [34] offers more 3D Common Corruptions,
however computing them is resource intensive. Thus, given our limited resources and an overlap in the corruptions between
2D Common Corruptions and 3D Common Corruptions, we focus on generating 3D Common Corruptions for now, however,
we intend to extend DISPBENCH to also evaluate on the 3D Common Corruptions.

Calculating the EPE. FE PFE is the Euclidean distance between the two vectors, where one vector is the predicted flow by
the disparity estimation method and the other vector is the ground truth in case of i.i.d. performance evaluations, non-targeted
attacks evaluations, and OOD robustness evaluations, while it is the target flow vector, in case of targeted attacks. For each
dataset, the E'PE value is calculated over all the samples of the evaluation set of the respective dataset and then the mean
FE PE value is used as the mean-E P E of the respective method over the respective dataset.

C. Description of DISPBENCH

Following, we describe the benchmarking tool, DISPBENCH. There exists no standardized tool for evaluating the perfor-
mance of disparity estimation methods. Thus, the codebase for such a tool had to be written from scratch. In the following,
we describe the benchmarking tool, DISPBENCH. Currently it supports 4 unique architectures (new architectures to be added
to DISPBENCH with time) and 3 distinct datasets, namely FlyingThings3D [41], KITTI2015 [44], MPI Sintel [9] (clean and
final) (please refer Sec. 2.4 for additional details on the datasets). It enables training and evaluations on all aforementioned
datasets including evaluations using SotA adversarial attacks such as CosPGD [4], and other commonly used adversarial
attacks like BIM [36], PGD [35], FGSM [22], under various Lipshitz (I,) norm bounds. Additionally, it enables evaluations
for Out-of-Distribution (OOD) robustness by corrupting the inference samples using 2D Common Corruptions [31].
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Following we show the basic commands to use DISPBENCH. We describe each attack and common corruption supported
by DISPBENCH in detail in Appendix C. It enables training and evaluations on all aforementioned datasets including eval-
uations using SotA adversarial attacks such as CosPGD [4], and other commonly used adversarial attacks like BIM [36],
PGD [35], FGSM [22], under various lipshitz (/,,) norm bounds. Additionally, it enables evaluations for Out-of-Distribution
(OOD) robustness by corrupting the inference samples using 2D Common Corruptions [31].

We follow the nomenclature set by RobustBench [12] and use “threat_model” to define the kind of evaluation to be per-
formed. When “threat_model” is defined to be “None”, the evaluation is performed on unperturbed and unaltered images,
if the “threat_model” is defined to be an adversarial attack, for example “PGD”, “CosPGD” or “PCFA”, then DISPBENCH
performs an adversarial attack using the user-defined parameters. Whereas, if “threat_model” is defined to be “2DCom-
monCorruptions” or “3DCommonCorruptions”, the DISPBENCH performs evaluations after perturbing the images with 2D
Common Corruptions and 3D Common Corruptions respectively.

If the queried evaluation already exists in the benchmark provided by this work, then DISPBENCH simply retrieves the
evaluations, thus saving computation.

C.1. Adversarial Attacks

Please note that due to the similarity of the objective, many aspects of this appendix are very similar to Agnihotri et al. [6].
DISPBENCH enables the use of many white-box adversarial attacks to help users better study the reliability of their disparity
methods. We choose to specifically include these white-box adversarial attacks as they either serve as the common benchmark
for adversarial attacks in classification literature (FGSM, BIM, PGD, APGD) or they are unique attacks proposed specifically
for pixel-wise prediction tasks (CosPGD). These attacks can either be Non-targeted which are designed to simply fool the
model into making incorrect predictions, irrespective of what the model eventually predicts, or can be Targeted, where the
model is fooled to make a certain prediction. Most attacks can be, designed to be either Targeted or Non-targeted, these
include, FGSM, BIM, PGD, APGD, CosPGD, and Adversarial Weather. In our current implementation, we are limited to
Non-targeted attacks. Following, we discuss these attacks in detail and highlight their key differences.

FGSM. Assuming a non-targeted attack, given a model fy and an unperturbed input sample X “'°®® and ground truth label
Y, FGSM attack adds noise & to X 2™ ag follows,

Xadv _ Xclean +La- signVXcleanL(fg ()(clean>7 Y), (1)
5 = ¢5(Xadv o )(clean)7 2)
Xadv — qi)r()(clcan + (5) (3)

Here, L(-) is the loss function (differentiable at least once) which calculates the loss between the model prediction and
ground truth, Y. « is a small value of e that decides the size of the step to be taken in the direction of the gradient of the loss
w.r.t. the input image, which leads to the input sample being perturbed such that the loss increases. X1V is the adversarial
sample obtained after perturbing X '°". To make sure that the perturbed sample is semantically indistinguishable from the
unperturbed clean sample to the human eye, steps from Eq. (2) and Eq. (3) are performed. Here, function ¢€ is clipping the o
in e-ball for /.-norm bounded attacks or the e-projection in other /,,-norm bounded attacks, complying with the ¢.,-norm or
other [,-norm constraints, respectively. While function ¢" clips the perturbed sample ensuring that it is still within the valid
input space. FGSM, as proposed, is a single step attack. For targeted attacks, Y is the target and « is multiplied by -1 so that
a step is taken to minimize the loss between the model’s prediction and the target prediction.

BIM. This is the direct extension of FGSM into an iterative attack method. In FGSM, X ¢!*®" was perturbed just once.
While in BIM, X¢lean jg perturbed iteratively for time steps ¢ € [0, T, such that ¢t € Zt, where T are the total number of
permissible attack iterations. This changes the steps of the attack from FGSM to the following,

Xt = X2 4 signVoaan, L(fo(X*Y),Y), )
5= ¢€(Xath+1 _ Xclean)7 (5)
Xade_l _ (br(Xclcan + 5) (6)

Here, at t=0, X ?dve= X clean
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PGD. Since in BIM, the initial prediction always started from X 12" the attack required a significant amount of steps to
optimize the adversarial noise and yet it was not guaranteed that in the permissible e-bound, X ?Vi+1 was far from X clean,
Thus, PGD proposed introducing stochasticity to ensure random starting points for attack optimization. They achieved this
by perturbing X " with U/ (—e, €), a uniform distribution in [—e, €], before making the first prediction, such that, at t=0

Xadvt — ¢T(Xclean —|—Z/[(—€,6)). (7

APGD. Auto-PGD is an effective extension to the PGD attack that effectively scales the step size « over attack iterations
considering the compute budget and the success rate of the attack.

CosPGD. All previously discussed attacks were proposed for the image classification task. Here, the input sample is a 2D
image of resolution H x W, where H and W are the height and width of the spatial resolution of the sample, respectively.
Pixel-wise information is inconsequential for image classification. This led to the pixel-wise loss £(-) being aggregated to
L(-), as follows,

1

Lfo(X*™),Y) = e

> L(fo(XM),, ). ®)

i€EHXW

This aggregation of £(+) fails to account for pixel-wise information available in tasks other than image classification, such as
pixel-wise prediction tasks like Optical Flow estimation, and disparity estimation. Thus, in their work [4] propose an effective
extension of the PGD attack that takes pixel-wise information into account by scaling £(-) by the alignment between the
distribution of the predictions and the distributions of Y before aggregating leading to a better-optimized attack, modifying
Eq. (4) as follows,

Xodverr = XN o sign Vo Y cos ($(fo(X)), W(YD)) - £ (fo(X*)i, Vi) ©)
i€eHXW

Where, functions ) and ¥ are used to obtain the distribution over the predictions and Y;, respectively, and the function cos
calculates the cosine similarity between the two distributions. CosPGD is the unified SotA adversarial attack for pixel-wise
prediction tasks.

In Figure 2, we show examples of adversarial attacks, on STTR using the KITTI2015 dataset. We show the samples before
and after the attacks and the predictions before and after the respective adversarial attacks.

D. Model Zoo

It is challenging to find all checkpoints whereas training them is time and compute-exhaustive. Thus we gather available
model checkpoints made available online by the respective authors. The trained checkpoints for all models available in
DI1SPBENCH can be obtained using the following lines of code:

from dispbench.evals import load_model
model = load_model (model_name='STTR',
dataset="KITTI2015")

Each model checkpoint can be retrieved with the pair of ‘model_name’, the name of the model, and ‘dataset’, the dataset for
which the checkpoint was last finetuned.

E. DisPBENCH Usage Details

Following we provide a detailed description of the evaluation functions and their arguments provided in DISPBENCH.
E.1. Adversarial Attacks

To evaluate a model for a given dataset, on an attack, the following lines of code are required.

from dispcbench.evals import evaluate

model, results = evaluate(

model_name='STTR', dataset='KITTI2015' retrieve_existing=True,
threat_config='config.yml'")
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Here, the ‘config.yml’ contains the configuration for the threat model, for example, when the threat model is a PGD attack,
‘config.yml’ could contain ‘threat_model=“PGD”’, ‘iterations=20’", ‘alpha=0.01’, ‘epsilon=8’, and ‘Ip_norm="“Linf”’. The
argument description is as follows:

* ‘model_name’ is the name of the disparity estimation method to be used, given as a string.

» ‘dataset’ is the name of the dataset to be used also given as a string.

* ‘retrieve_existing’ is a boolean flag, which when set to ‘True’ will retrieve the evaluation from the benchmark if the
queried evaluation exists in the benchmark provided by this work, else DISPBENCH will perform the evaluation. If the
‘retrieve_existing’ boolean flag is set to ‘False’ then DISPBENCH will perform the evaluation even if the queried evaluation
exists in the provided benchmark.

* The ‘config.yml’ contains the following:

— ‘threat_model’ is the name of the adversarial attack to be used, given as a string.

‘iterations’ are the number of attack iterations, given as an integer.

— ‘epsilon’ is the permissible perturbation budget € given a floating point (float).

— ‘alpha’ is the step size of the attack, «, given as a floating point (float).

— ‘Ip_norm’ is the Lipschitz continuity norm (/,,-norm) to be used for bounding the perturbation, possible options are ‘Linf’
and ‘L2’ given as a string.

— ‘target’ is false by default, but to do targeted attacks, either the user can set ‘target’=True, to use the default target of 6>
or can pass a specific tensor to be used as the target.

E.2. 2D Common Corruptions
To evaluate a model for a given dataset, with 2D Common Corruptions, the following lines of code are required.

from dispbench.evals import evaluate

model, results = evaluate(

model_name='STTR', dataset='KITTI2015', retrieve_existing=True,
threat_config='config.yml'")

Here, the ‘config.yml’ contains the configuration for the threat model; for example, when the threat model is 2D Com-

mon Corruption, ‘config.yml’ could contain ‘threat_model=“2DCommonCorruption”’, and ‘severity=3". Please note, when

the ‘threat_model’ is a common corruption type, DISPBENCH performs evaluations on all corruptions under the respective

‘threat_model’ and returns the method’s performance on each corruption at the requested severity. The argument description

is as follows:

* ‘model_name’ is the name of the disparity estimation method to be used, given as a string.

 ‘dataset’ is the name of the dataset to be used also given as a string.

* ‘retrieve_existing’ is a boolean flag, which when set to “True’ will retrieve the evaluation from the benchmark if the
queried evaluation exists in the benchmark provided by this work, else DISPBENCH will perform the evaluation. If the
‘retrieve_existing’ boolean flag is set to ‘False’, then DISPBENCH will perform the evaluation even if the queried evalua-
tion exists in the provided benchmark.

* The ‘config.yml’ contains the following:

— ‘threat_model’ is the name of the common corruption to be used, given as a string, i.e. ‘2DCommonCorruption’.
— ‘severity’ is the severity of the corruption, given as an integer between 1 and 5 (both inclusive).

Di1sPBENCH supports the following 2D Common Corruption: ‘gaussian_noise’, shot_noise’, ‘impulse_noise’, ‘defocus_blur’,

‘frosted_glass_blur’, ‘motion_blur’, ‘zoom_blur’, ‘snow’, ‘frost’, ‘fog’, ‘brightness’, ‘contrast’, ‘elastic’, ‘pixelate’, ‘jpeg’.

For the evaluation, DISPBENCH will evaluate the model on the validation images from the respective dataset corrupted using

each of the aforementioned corruptions for the given severity, and then report the mean performance over all of them.

F. Extension To Analysis
Following, we extend the analysis from Section 4 and report additional evaluations from DISPBENCH.

F.1. KITTI2015

Following, we provide evaluations of on the KITTI2015 dataset. In Figure 8 we report the evaluations of all considered
adversarial attacks with € = % and a=0.01 under the ¢,,-norm bound using the KITTI2015 validation dataset.
In Figure 9, we extend the evaluations from Figure 6, showing that the observations made over the mean performance over

all corruptions also hold for every individual corruption.
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Figure 9. For the same architecture, we evaluate checkpoints prett@ned on Flyingthings3D against synthetic 2D Common Corruption
on Flyingthings3D and correlate its performance with the checkpoint trained on KITTI2015 against synthetic 2D Common Corruptions
on KITTI2015. Here, we report the EPE across every individual corruption for a given severity level. We observe no correlation in
performance, indicating that synthetic corruptions on synthetic datasets cannot be used as a proxy for real-world corruptions.
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