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ABSTRACT

Federated learning (FL) has emerged as a promising solution to enable distributed1

learning on sensitive data without centralized storage and sharing. However, FL is2

vulnerable to data poisoning attacks, where malicious clients aim to manipulate3

the training process by injecting poisonous data. Existing defense mechanisms for4

FL suffer from limitations, including a trade-off between precision and robustness,5

assumptions on asymptotic optimal bounds on error rates of parameters, i.i.d. data6

distributions, and strong-convexity assumptions on the optimization problem. To7

address these limitations, we propose a novel framework called Federated Learning8

Optimal Transport (FLOT). Our method leverages the Wasserstein barycentric9

technique to obtain a global model from a set of locally trained models on client10

devices. Additionally, FLOT introduces a loss function-based rejection (LFR)11

mechanism to suppress malicious updates and a dynamic weighting scheme to12

optimize the Wasserstein barycentric aggregation function. We evaluate FLOT13

on four benchmark datasets: GTSRB, KBTS, CIFAR10, and EMNIST. Our ex-14

perimental results demonstrate that FLOT outperforms existing baseline methods15

under single and multi-client attack settings. Also, it serves as a robust client16

selection technique under no attack. We also prove the Byzantine resilience of17

FLOT to demonstrate its effectiveness. These results underscore the practical18

significance of FLOT as an effective defense mechanism against data poisoning19

attacks in FL while maintaining high accuracy and scalability. The robustness and20

effectiveness of FLOT make it a promising solution for real-world applications21

where data privacy and security are critical.22

1 INTRODUCTION23

Federated Learning (FL) revolutionizes collaborative machine learning (ML) by establishing a client-24

server framework that upholds data privacy without necessitating the sharing of sensitive information25

[Xu et al., 2019a; Guo et al., 2020; Fang et al., 2021; 2020a]. Its practical applications span a26

wide range, encompassing mobile user personalization Gboard [gbo, 2017], healthcare [Kumar27

& Singla, 2021], and blockchain [Cao et al., 2023], among others. However, the decentralized28

nature of FL renders it highly susceptible to adversarial attacks [Mothukuri et al., 2021; Shejwalkar29

et al., 2022]. Consequently, comprehending the characteristics of such attacks becomes pivotal for30

ensuring FL security. Hence, this paper focuses on the prevalent and pertinent category of attacks31

encountered in production deployments, specifically, untargeted black-box online data poisoning32

attacks as stated in recent research [Shejwalkar et al., 2022]. In this context, attackers aim to induce33

general misclassifications rather than explicitly targeting particular labels. Nevertheless, FLOT can34

also be applied to defend against white-box poisoning attacks since it is agnostic to the type of attack35

at the clients.36

Existing defenses against data poisoning attacks in FL fall into two primary categories: anomaly37

detection and innovative model aggregation techniques [Shen et al., 2016; Rieger et al., 2022; Blan-38

chard et al., 2017; Yin et al., 2018]. Anomaly detection methods scrutinize various aspects of client39

updates to identify malicious clients, while novel aggregation techniques claim to possess Byzan-40

tine robustness. However, the latter approach exhibits significant drawbacks, including impractical41

asymptotic bounds, strong assumptions of i.i.d. data distribution, and strongly convex optimization42
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problems that often do not align with real-world scenarios. To address these limitations and effectively43

counteract poisoning attacks in FL, we introduce Federated Learning Optimal Transport (FLOT), a44

novel dynamic weighted federated aggregation method founded on Optimal Transport (OT) principles45

[Monge, 1781], [Kantorovich, 2006].46

Our defense strategy is grounded in the premise that updates from a malicious client en-47

gaged in data poisoning will exhibit distinguishable characteristics compared to benign48

client updates, particularly regarding validation loss at the server. This divergence can be49

identified and addressed through our hypothesis on Loss Function-based Rejection (LFR).50

Figure 1: Validation losses of individual client
model at the server for 100 global communica-
tion rounds under 33% multi-attack settings for the
KBTS dataset.

Figure 1 provides insight into the validation loss51

of 10 clients operating under multi-client attack52

conditions. We observe a clear dispersion in the53

loss values of malicious clients during the initial54

rounds, which tend to converge after approxi-55

mately 60 rounds as the global model is updated56

with the remaining benign client updates. For57

the next iteration, all the clients train their lo-58

cal models using the new global model. Previ-59

ous research [Bhagoji et al., 2019; Fang et al.,60

2020b] has underscored the efficacy of LFR and61

accuracy-checking methods for detecting mali-62

cious updates in FL. Both of these methods rely63

on a validation dataset at the server to evaluate64

the quality of updates received from clients. It is65

important to note that using a validation dataset66

at the server is a well-established practice in the FL field and does not intrude upon clients’ privacy.67

Fang et al. [2020b] have explored methods for implementing a validation dataset without compromis-68

ing client privacy, such as utilizing a synthetic dataset to mimic the distribution of real data generated69

by the server [Bhagoji et al., 2019]. FLOT aligns seamlessly with existing literature and maintains70

the versatility of FL applications. Moreover, we harness the advantages of Wasserstein Barycenters71

[Agueh & Carlier, 2011] for deriving a global model from local models and employ LFR to furnish72

weighted coefficients for the Wasserstein Barycentric function, thereby facilitating the identification73

and elimination of malicious updates.74

The primary contributions of this work can be summarized as follows: (i) We pioneer the application75

of OT as an optimization technique to counter data poisoning attacks in the FL domain. To the best76

of our knowledge, our work represents the first utilization of OT in an adversarial FL context. (ii)77

We propose FLOT, a novel dynamic weighted federated aggregation method and provide a robust78

solution for securely aggregating gradient updates on a global server. Furthermore, we substantiate79

the reliability of FLOT through theoretical proofs and convergence analyses. (iii) FLOT brings80

about a notable advancement in terms of time complexity. It operates at O(nlog(n)d) complexity,81

a substantial improvement compared to the O(n2d) complexity associated with the Krum function82

[Blanchard et al., 2017]. (iv) Our comprehensive evaluation encompasses four widely recognized83

standard datasets covering diverse FL and attack scenarios. The FLOT method consistently delivers84

superior accuracy and stability under attack conditions across these datasets.85

2 RELATED WORK86

This section reviews the literature in terms of the defenses for FL and OT in ML. Existing attacks87

in FL are provided in the Appendix. In recent years, several existing defenses have been proposed,88

including Byzantine robust aggregation methods like Krum [Blanchard et al., 2017], trimmed mean89

[Yin et al., 2018], median [Yin et al., 2018] in FL. For instance, FLTrust [Cao et al., 2021] enables90

accurate global model learning even when a bounded number of clients are malicious. However, the91

performance of FLTrust is highly dependent on the choice of root dataset at the server. LoMar [Li92

et al., 2023] scores model updates using kernel density estimation in the first phase and determines93

an optimal threshold to distinguish between malicious and clean updates in the second phase. FL-94

Defender [Jebreel & Domingo-Ferrer, 2023] analyzes the behaviour of neurons related to the attacks95

and proposes robust discriminative features using worker-wise angle similarity. Although these96

methods have shown promising results, they still have limitations, such as the assumption of a97
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representative root dataset at the server, limited effectiveness in handling complex models, and98

difficulty in distinguishing malicious from legitimate updates. To overcome these limitations, our99

proposed method, FLOT, utilizes an optimal transport approach and adaptive aggregation weights to100

limit the impact of malicious updates in FL.101

Optimal transport theory is gaining popularity in ML due to its efficiency in various applications102

[Torres et al., 2021]. It has been used in computer vision for dissimilarity measurement [Rubner et al.,103

2000] and image-to-image color transfer [Alghamdi et al., 2019; Rabin et al., 2014]. In GANs, OT104

has been used to improve training stability [Avraham et al., 2019; Salimans et al., 2018; Adler &105

Lunz, 2018], and WGAN-QC [Liu et al., 2019] uses OT to stabilize the training process. Semantic106

correspondence across images [Liu et al., 2020], domain adaptation [Courty et al., 2017; Singh &107

Jaggi, 2020], and graph matching [Xu et al., 2019b] have also benefited from OT. Only a few works108

have explored the use of OT in FL [Farnia et al., 2022; Wang et al., 2020], but to our knowledge,109

there is no explicit use of OT in FL to defend against data-poisoning attacks. We propose the first110

defense mechanism using the OT framework in FL, which shows consistent performance over other111

state-of-the-art methods across benchmarks.112

3 PRELIMINARIES113

FL setup. We consider an FL system that has a server and n clients, where each client k ∈ [1, n] has114

its local data indicated as Dk. We ensure a non-i.i.d. (non-independent and identically distributed)115

data distribution by splitting the dataset using Dirichlet distribution [Minka, 2000] by the varying116

parameter β among clients. Further details about Dirichlet distribution and β are provided in the117

Appendix. This client data (commonly referred to as shard) is private and cannot be accessed by other118

clients or the server[]. The objective of FL is to learn global model parameter ∇Wg that performs119

well on the global test data Dtest. At each round t, the central server transmits the current version of120

the global model (i.e.,∇Wt
g) to update all n clients. Each client k initializes its local model∇Wt121

with∇Wt
g and trains it on its local data Dk. After the completion of this local training, the client k122

calculates the gradient update, i.e., ∇Wt+1
k = ∇Wt

k −∇Wt
g . These individual client model updates123

are returned back to the server, which will be aggregated and used for the next round. In general,124

synchronous federated weighted averaging (FedAvg) [McMahan et al., 2017] based aggregation is125

used that is given as126

∇Wt+1
g = ∇Wt

g +
∑
k∈n

λk∇Wt+1
k , (1)

where, λk = |Dk|∑
|Dk| , and

∑
k λk = 1. This process continues until the convergence of the global127

model. Further, as FedAvg is a naive aggregation rule that averages the local model parameters to128

obtain the global model parameters, it is widely used under non-adversarial settings [Dean et al.,129

2012; McMahan et al., 2017]. However, FedAvg is not robust under adversarial settings as the130

attacker can manipulate the global model parameters arbitrarily for this mean aggregation rule when131

compromising only one client device, as shown in the Definition 3.1 stated by [Blanchard et al., 2017;132

Yin et al., 2018].133

Definition 3.1 An aggregation rule A of the form A(∇W1,∇W2, . . . ,∇Wn) =
∑n

i=1 λi∇Wi134

FedAvg [McMahan et al., 2017], where λi > 0 and
∑n

i=1 λi = 1, is not byzantine robust as a single135

malicious client k can prevent convergence by proposing ∇Wk = 1
λk
∇Ŵk −

∑n−1
i=1

λi

λn
∇Wi, then136

A(∇W1,∇W2, . . . ,∇Wn) = ∇Ŵk, where∇Ŵk is the malicious update from the single byzantine137

client [Blanchard et al., 2017].138

Hence, we take an optimal transport-based dynamic aggregation approach to improve upon FedAvg139

and mitigate data poisoning attacks in FL.140

Threat model. We adopt a threat model that aligns with real-world FL production scenarios, where141

one or more malicious clients periodically inject poisoned local training data to compromise the142

local model. Significantly, under this threat model, the malicious clients cannot interfere with (a)143

local training procedure done via trusted execution environments (TEE) [Mondal et al., 2021; Chen144

et al., 2020], (b) server aggregation algorithm, and (c) communication between client and server.145

However, they retain the capability to (a) access predictions from their local models (in a black-box146
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manner) for any chosen input data and (b) exert complete control over their local data. As detailed in147

Section 1, our threat model falls within the scope of untargeted black-box online data poisoning,148

recognized as the most practical and realistic threat in FL, as supported by recent research [Shejwalkar149

et al., 2022]. Black-box attack methods. In this paper, we consider three different black-box online150

untargeted data poisoning attacks, namely, modified simple black-box attack (MSimBA) [Kumar151

et al., 2020], data poisoning attack static label flipping (DPA-SLF) [Shejwalkar et al., 2022], and152

data poisoning attack dynamic label flipping (DPA-DLF) [Shejwalkar et al., 2022] based on their153

relevance and uptodatedness. Further, we found that MSimBA outperforms the other two w.r.t. attack154

effectiveness. Consequently, we used MSimBA as the target data poisoning attack in all the following155

experiments. We outline the key dimensions of our threat model, our assumptions regarding the FL156

setup, and attack methodologies in the Appendix.157

Overview of optimal transport (OT). Gaspard Monge introduced OT [Monge, 1781], [Kantorovich,158

2006] to find the most efficient way to move a unit of mass between two distributions. The aim159

is to minimize the overall ground cost to move the unit mass from the source distribution to the160

target distribution. The optimization problem can be given as mint, t ̸=µs=µt

∫
C(a, t(a)) dµs(a),161

where µs, µt correspond to source and target distributions, respectively. C(., .) is the ground cost162

of moving a unit mass between two positions x, t(x). The constraint t ̸= µs = µt ensures that the163

source is completely transported to the target. In general, the OT solution is used in two main aspects:164

(i) to find the optimal value that measures the similarity between two distributions, also known as165

Wasserstein distance. (ii) To find the OT matrix, which is the optimal correspondence mapping166

between distributions. Please refer to the Appendix for details about different OT optimizations.167

Wasserstein Barycenters [Agueh & Carlier, 2011]: It is a distribution that minimizes the weighted168

sum of Wasserstein distance w.r.t. all other distributions. It aims to find a distribution µ such that169

min
µ

∑
n

αnW(µ, µn), (2)

where αi represent the weight of distribution µi, W(., .) correspond to Wasserstein distance between170

distributions given by171

W(µ, µn) = inf
γ∈Γµ,µn

E
(X ,Y∼γ)

||X − Y||22, (3)

where inf is take over couplings between µ and µn.172

Problem formulation. Let us assume we are at the tth communication round in FL such that the173

server receives the model updates from k clients and Dv is the validation data at the server. Let174

{∇Wt
1,∇Wt

2, . . . ,∇Wt
k} are model updates that correspond to {C1, C2, . . . , Ck} clients, respectively.175

Also, let us assume there are ρ unknown malicious client updates ρ < n. Now, the aim is to find a176

global model weightWt
g that minimizes its weighted Wasserstein distance w.r.t. other benign client177

model weights {∇W1,∇W2, . . . ,∇Wk} after dynamically discarding the malicious updates.178

4 OT-BASED APPROACH TO MITIGATE FL POISONING ATTACKS: THEORY179

This section presents the theoretical motivation for our OT-based approach to mitigate the problem180

of data poisoning attacks in FL. Our defense strategy is based on our hypothesis on LFR, such that181

updates from a malicious client engaged in data poisoning will exhibit distinguishable characteristics182

compared to benign client updates, particularly in terms of validation loss at the server. Before we183

explain the proposed defense methodology, we establish the concept of (ω, ρχ) - Byzantine resilience184

for an aggregation rule as defined in Definition A.1. A more comprehensive proof is available in the185

Appendix, which elaborates that any aggregation rule rooted in LFR must satisfy Equations 5, 6, and186

7. These equations collectively assert that the validation loss, subsequent to discarding malicious187

updates, highly non-i.i.d. updates, or a combination thereof, should consistently exhibit a lower value188

than the total loss calculated when all client updates are considered.189

Definition 4.1 Let N = {∇W1,∇W2, . . . ,∇Wn} be n total non-i.i.d. set of local clients model190

updates. Let R = {∇Ŵ1, . . . ,∇Ŵρ} be ρ non-i.i.d. set of Byzantine local clients model updates.191

Let X = {∇Ŵ ′
1, . . . ,∇Ŵ ′

χ} be χ highly non-i.i.d. set of benign local clients model updates. An192

aggregation rule A is said to be (ω, ρχ)-Byzantine Resilient) if for any 1 ≤ · · · ≤ i1 · · · ≤ iρ · · · ≤193

j1 ≤ · · · ≤ jχ ≤ . . . n, vector194

A(∇W1, . . . ,∇Ŵ1, . . . ,∇Ŵρ, . . . ,∇Ŵ ′
1, . . . ,∇Ŵχ, . . . ,∇Wn) (4)
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satisfies the following195 ∑
∇Wk∈(N\R)

L(Dv,∇Wk) ≤
∑

∇Wk∈N
L(Dv,∇Wk), (5)

196 ∑
∇Wk∈(N\X)

L(Dv,∇Wk) ≤
∑

∇Wk∈N
L(Dv,∇Wk), (6)

197 ∥∥∥∥∥∥
∑

∇Wk∈N
L(Dv,∇Wk)−

∑
∇Wk∈N\(R∪X)

L(Dv,∇Wk)

∥∥∥∥∥∥ ≥ ω, (7)

for some ω ≥ 0. Here, L(Dv,∇Wk) denote the loss of ∇Wk model on validation data Dv .198

5 FLOT: METHODOLOGY199

In this section, we introduce FLOT, an OT-based (ω, ρχ) - Byzantine resilient dynamic200

weighted federated aggregation rule to mitigate poisoning attacks as defined in Section 4.201
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Figure 2: Overview of FLOT integrated FL system
with n clients (C1, C2, . . . , Cn). The malicious
client (C2) sends malicious update (∇Wt

2) using
poisoning the training data. The central server re-
ceives the gradients and performs FLOT to obtain
the global model∇Wt

g .

Blanchard et al. [2017] prove that no linear202

combination of the vectors can tolerate a sin-203

gle Byzantine worker (Definition 3.1). Specif-204

ically, FedAvg [McMahan et al., 2017] is not205

Byzantine resilient. Existing Byzantine robust206

algorithms like Krum [Blanchard et al., 2017]207

select the local model updates representative of208

most client models by computing the pairwise209

distances between individual models. However,210

when the data across the workers are highly non-211

i.i.d., there is no ‘representative’ client model.212

The local client models show high variance with213

respect to each other as they compute their local214

gradient over vastly diverse local data. Hence,215

for convergence, it is crucial to not only select216

a good (non-Byzantine) local model but also en-217

sure that each of the good models is selected218

with roughly equal frequency. Further, when219

applied to non-i.i.d. datasets, Krum performs220

poorly even without any attack [He et al., 2020]. This is because Krum primarily selects models from221

n− c− 2 (where c is the number of malicious clients), local models whose pairwise distances are222

closer to others. Hence, the robust aggregation rules may fail on realistic non-i.i.d. datasets.223

Algorithm 1 Federated Learning Optimal Trans-
port (FLOT) method

Input: ∇Wt
n, n client updates for tth round;

Dv , validation data at the server
Output: ∇Wt+1

g , updated global model
α = {} ▷ LFR based weight multiplier vector
for i = 1 to n do ▷ Loop through n models

α←L(Dv,∇Wt
n) ▷ Validation loss

α′← |α−max(α)|
α′← normalize(α′) ▷ s.t. α′

i ∈ [0, 1], ∀i ∈ n
M← FLOT cost matrix
∇Wt

n← ot.lp.barycenter(∇Wt
n,M, α′) ▷

FLOT aggregator
return∇Wt

n

To address this issue, we consider LFR with OT224

optimization to develop a Wasserstein barycen-225

tric aggregation rule called FLOT, as shown in226

Figure 2. In the end, through our experimental227

results, we show that our FLOT also serves as228

a robust client selection technique in discarding229

the benign clients that do not perform well on230

the validation data. This implies that dropping231

some less performing benign updates helps to232

improve the accuracy, which also supports the233

claims of the recent work, DivFL [Balakrishnan234

et al., 2021].235

Now, we explain our FLOT framework, as236

shown in Algorithm 1. To start with, we find237

the optimal coefficient set of the client model238

weights α based on loss on validation data Dv, i.e., Lv of every client model ∇Wi. It can239

be formulated as α ← Lv(Dv,∇W), α′ ← |α − max(α)|. Now, we define a set α′
0 = α′240

and write β1 := {b ∈ α′
0 : b ≤ a∀ a ∈ α′

0}. Next, we define α′
1 := α′

0 \ β1 which dis-241

cards the highly malicious weight coefficient from the set α′
0. Further, we inductively write242
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βk := {b ∈ α′
k−1 : b ≤ a ∀ a ∈ α′

k−1}, α′
k := α′

k−1 \ βk, such that α′
k is the final set after243

discarding k malicious client updates whose α′ = 01. Further, we normalize α′
k to [0, 1] through the244

softmax of all weighting factors, which is defined as α′
k = eα

′
k∑n

k=1 eα
′
k
.245

Now, our optimization problem can be formulated in terms of Wasserstein barycenter as per Eq. 2 as246

FLOT(∇Wt
1,∇Wt

2, . . . ,∇Wt
n)← min

∇Wt
g

∑
k

α′
kW(∇Wt

g,∇Wk), (8)

where t is the global communication round.247

Lemma 5.1 The expected time complexity of our FLOT(∇Wt
1,∇Wt

2, . . . ,∇Wt
n) function is248

O(nlog(n)d), where, ∇Wt
1,∇Wt

2, . . . ,∇Wt
n are d-dimensional vectors.249

Proof. Firstly, the parameter server computes the maximum of loss values (α1, α2, . . . , αn) and250

updates all its elements |α −max(α)| in O(nd) time. Then the server selects the loss that is less251

than a certain threshold (expected time O(nlog(n)d) with a binary search). Next, it computes the set252

difference to discard the highly malicious weight vector inO(nd) time. Finally, the server normalizes253

the remaining n− k values in O(nd) time. Hence, adding all the times, we obtain the overall time254

complexity of FLOT as O(nlog(n)d).255

We report that our proposed FLOT time complexity is O(nlog(n)d) which is a significant256

improvement over O(n2d) of the Krum function [Blanchard et al., 2017].257

It is important to note that FLOT is designed to be highly efficient by only considering the impact of258

a small subset of clients on the global model rather than all clients. This is achieved through LFR,259

where only the clients with the smallest loss impact on the global model are considered for further260

processing. This significantly reduces the number of clients that need to be considered, reducing the261

computational cost. In practice, FLOT can be further improved by using parallel computations at the262

server along with model compression and quantization techniques.263

6 FLOT: CONVERGENCE ANALYSIS264

In this section, we analyze the convergence of FLOT global model aggregation for convex problems265

under non-i.i.d. data setting. Our FLOT optimization function, as per Eq. (8), is given by266

FLOT(∇W1,∇W2, . . . ,∇Wn)← min
∇Wg

∑
k

α′
kW(∇Wg,∇Wk). (9)

Rewriting it, we get the FLOT Barycenter functional as267

∇W∗
g ∈ argmin

∇W∈P2(Rd)

α′
k

k∑
i=1

W2
2(∇Wg,∇Wk) =: 2FLOT (∇Wg)

2, (10)

(from Wasserstein-2 spaces (W2
2)- it is the metric space of probability measures P2(Rd), equipped268

with the Wasserstein distance as given in Eq. (3)). The aim is to minimize FLOT(∇Wg). Further,269

we can write the Wasserstein gradient of the above formulation using the Brenier map [Ambrosio270

et al., 2005] as271

∇FLOT(∇Wg) = −α′
k

k∑
i=1

(T∇Wg→wi
− τ), (11)

1Since all the local models are trained on different amounts of non-i.i.d. data, all α′
is are different, where

i ∈ [1, n].
2We scaled to one half so that when the derivate is taken the term 2 goes away.

6



Under review as a conference paper at ICLR 2024

where T∇Wg→∇Wi
is the Brenier map, τ is the identity that gives the displacement map of ∇Wg.272

Finally, the gradient descent of the global model over W metric space is given by273

∇Wt+1
g = (τ − ηt∇FLOT(∇Wg))#∇Wt

g

=⇒ ∇Wt
g − (τ − ηt∇FLOT(∇Wg))

= (τ + α′
k

k∑
i=1

(T∇Wg→wi
− τ)#∇Wg)

t; (Eq.(11))

= (1− ηt)∇Wt
g + ηtα

′
k

k∑
i=1

T∇Wg→∇Wi(∇Wg)
t.

(12)

Further, we apply the Polyak-Łojasiewicz (PL) inequality [Karimi et al., 2016] given by274

f(x)− inf f ≤ C||∇f(x)||2,∀x, (13)

followed by smoothness of gradient [Mai & Johansson, 2020] given by275

f(y)− f(x) ≤ ⟨∇f(x), y − x⟩+ β

2
||y − x||2, (14)

for some function f(x), the derivative of f as ∇f(x) and constant C, to prove the linear rate276

(exponentially) of convergence for gradient descent. Finally, the linear rate of convergence of FLOT277

for gradient descent is given by278

FLOT(∇Wt+1
g )− FLOT(∇Wt

g) ⪅ e−
α′
k

2C t. (15)

7 EXPERIMENTS279

Datasets and implementation details. We extensively evaluate our FLOT method using four280

benchmark datasets for image classification: GTSRB [Stallkamp et al., 2011], KBTS [Mathias et al.,281

2013], CIFAR10 [Cohen et al., 2017], and EMNIST [Cohen et al., 2017]. We configured FL with282

a total number of clients as 30, 10, 30, and 10,000 for GTSRB, KBTS, CIFAR10, and EMNIST283

datasets, respectively. Further, we partition the dataset as 70% for training, 10% for validation at284

the server, and 20% for testing. Adequate samples were reserved in the validation dataset (10%) to285

distinguish between malicious and benign updates before aggregation using FLOT for global model286

generation. Our evaluation encompassed two attacker settings: single-client and multi-client. For287

multi-client attacks, we introduced varying percentages of adversaries 33%, 50%, specifically 10, 15288

randomly selected malicious clients for GTSRB and CIFAR-10 evaluations, and 3, 5 for KBTS. For289

EMNIST, we explored scalability by considering five different attack percentages 10%, 20%, 30%,290

40%, 50%. Also, for the EMNIST dataset, the server randomly selects 100 clients from a pool of291

10,000, designating 10, 20, 30, 40, 50 as malicious based on the attack percentages. Each experiment292

was conducted thrice, and results were averaged with standard deviations presented.293

We designed a custom 4-layer CNN architecture followed by two fully connected layers, considering it294

as the global model for the GTSRB, KBTS, and CIFAR-10 datasets. Furthermore, for a comprehensive295

evaluation of FLOT across various model architectures, we employed ResNet18 [He et al., 2015] for296

the CIFAR-10 dataset and LeNet5 [LeCun et al., 1998] for EMNIST. We employed the black-box297

and active data poisoning technique for our default evaluation attack, MSimBA [Kumar et al., 2020].298

Furthermore, we conducted evaluations using two recently developed state-of-the-art label-flip attacks299

in the FL domain: DPA-SLF [Shejwalkar et al., 2022] and DPA-DLF [Shejwalkar et al., 2022]. For300

more detailed information on the datasets, CNN architectures, data splits, distribution, specific FL301

parameters, and attack methods, please refer to the Appendix.302

Baselines and evaluation metrics. We have selected the following state-of-the-art defense baseline303

techniques based on their up-to-dateness and relevance. Then, we categorized them into four304

categories for better evaluation: (i) ND (no defense): This category includes the FedAvg method305

[McMahan et al., 2017]. (ii) CS (client selection): Within this category, we have considered306

techniques such as random sampling (RS), Power-of-choice (PC) [Cho et al., 2020], and DivFL307

balakrishnan2021diverse. (iii) BzA (Byzantine aggregation): This group encompasses aggregation308

techniques designed for byzantine robustness, such as Krum [Blanchard et al., 2017], Trimmed Mean309
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(TM) [Yin et al., 2018], and Median [Yin et al., 2018]. (iv) RD (recent defense): In this category, we310

have included the very recent defense methods FLTrust [Cao et al., 2021], LoMar [Li et al., 2023],311

and FLDefender [Jebreel & Domingo-Ferrer, 2023]. This categorization provides a comprehensive312

framework for evaluating FLOT against the current state-of-the-art techniques in the field. We use313

the maximum classification global test accuracy (GTA ∈ [0, 100]%) for all global epochs as an314

evaluation metric. More details are in the Appendix.315

Table 1: No attack no defense
global test accuracy GTA% (↑) per-
formance comparison.

Dataset GTA (%)
GTSRB [Stallkamp et al., 2011] 89.80±0.41

KBTS [Mathias et al., 2013] 90.02±1.16

CIFAR10 [Krizhevsky et al., 2009] 91.23±0.27

EMNIST [Cohen et al., 2017] 88.34±0.21

Results discussion. We conducted baseline evaluations with-316

out any attacks or defenses to establish the accuracy of our FL317

configuration. The results, summarized in Table 1, revealed318

GTA values ranging from 88.34% to 91.23% across datasets.319

Notably, the EMNIST dataset exhibited slightly lower perfor-320

mance, likely due to its unique characteristics involving non-321

i.i.d. data distribution among a large pool of 10,000 clients,322

with aggregation from a random subset of 100 clients. Table 2323

presents the performance of our FLOT framework compared to baselines on four benchmark datasets324

under single-client (1A) and multi-client (50%) attack settings for brevity. Our FLOT consistently325

outperforms other methods across all datasets and attack scenarios.326

FLOT variation (FLOT+RS). We also evaluated the performance of FLOT with random sampling327

(RS) and observed improvements. FLOT+RS achieved approximately 0.8% to 3% higher perfor-328

mance than FLOT for the GTSRB and EMNIST datasets. In single-client attack scenarios, where the329

number of benign clients is one less than the total, all baselines, including Byzantine aggregation330

techniques, performed similarly to mitigate the impact of a single malicious client. Conversely,331

FLOT exhibited superior performance in multi-client attack settings, with improvements of approxi-332

mately 1% to 10%. Power-of-choice and DivFL, effective client selection techniques in clean data333

settings, performed poorly under attack conditions. The non-i.i.d. data distribution among clients334

and strong data poisoning attacks led to reduced performance of Krum, which relies on strong i.i.d.335

assumptions. Additionally, for GTSRB and EMNIST datasets with 30 and 100 selected clients,336

respectively, FLOT+RS outperformed FLOT, benefiting from the availability of a large number of337

clients. However, applying RS to the KBTS dataset with only ten clients resulted in a performance338

drop when combined with FLOT, particularly under higher attack percentages. In the EMNIST339

dataset setup, where the server randomly selects 100 clients for aggregation, the performance of340

FedAvg and RS is the same, as shown in Table 2.341

Evaluation on non-i.i.d. data. To assess our FLOT’s robustness in addressing highly non-i.i.d.342

scenarios, we conducted experiments on the CIFAR10 dataset, varying data distribution by adjusting343

β values (0.1, 0.5, 1, 5, and 10). Lower β values led to sparse and unbalanced data among clients,344

occasionally resulting in some clients lacking data for specific classes. Conversely, higher β values345

created densely balanced data distributions with more samples per class assigned to each client. For346

consistency, we selected β=1 as the default for all our experiments. We evaluated our method in347

scenarios with no attack, single-client attack, and multi-client attack with 50% malicious clients on348

CIFAR10, focusing on brevity. To ensure fairness, we compared our method to existing techniques,349

including FedAvg, Krum, DivFL, LoMar, and FLDefender, representing the best performers in their350

respective defense categories. Summarized results are presented in Figure 3. Under the no attack351

setting, our FLOT approach outperformed the FL baseline by more than 1% for CIFAR10, with352

similar results observed for other datasets. This demonstrates that under no attack conditions, FLOT353

effectively serves as a robust client selection method, prioritizing client updates that enhance overall354

accuracy. Our findings highlight FLOT’s superior performance, particularly in scenarios with diverse355

updates, including poisoned and highly non-i.i.d. updates. In single-client attack conditions, DivFL356

and Krum perform poorly as they are tailored for well-behaved and i.i.d. updates, respectively. Under357

50% maliciousness, DivFL performs inadequately, followed by FedAvg without any defense and358

Krum. Additionally, as non-i.i.d. degrees decrease (β increases), all evaluated methods exhibit359

improved performance. Please refer to the Appendix for additional experimental results and an360

ablation study covering other attacks and settings.361

In summary, our Wasserstein barycenter-based optimization, combined with dynamically weighted362

coefficients, effectively interpolates between multiple client updates [Lacombe et al., 2022]. This363

process helps to warp the updates, suppressing malicious ones and enhancing overall performance.364

FLOT configurations consistently outperformed all baselines under various attack scenarios and365

maintained a close performance to the FL baseline, with differences exceeding 1% in a no-attack366
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Table 2: Comparison of GTA% (↑) with FedAvg no defense (ND), existing client selection (CS)
methods, Byzantine aggregation (BzA) rules, and recent robust FL defense (RD) methods. We present
single-client attack and multi-client (50%) MSimBA attack results for brevity (please refer Appendix
for results of other multi-client attack settings). Result, result indicates the best and second best
result, respectively, for each attack setting.

GTSRB KBTS CIFAR10 EMNIST
Defense Method Type 1A 50% 1A 50% 1A 50% 1A 50%

FedAvg [McMahan et al., 2017] ND 83.24±0.80 30.31±1.82 83.26±1.25 33.86±0.53 85.03±0.60 23.53±0.55 83.19±0.45 20.95±1.19

RS [McMahan et al., 2017]
CS

84.45±0.56 35.12±1.02 84.24±0.81 40.15±0.98 82.98±1.02 25.86±1.74 83.19±0.45 20.95±1.19

PC [Cho et al., 2020] 81.29±0.93 31.86±0.15 80.27±0.65 43.93±1.75 73.86±0.28 22.15±0.60 83.15±1.79 22.83±0.44

DivFL [Balakrishnan et al., 2021] 82.63±0.13 32.42±0.79 81.63±1.94 41.74±1.63 74.12±1.81 21.52±0.61 84.12±0.66 24.15±1.51

Krum [Blanchard et al., 2017]
BzA

85.80±0.59 39.87±0.88 84.29±1.08 47.65±1.98 85.12±1.59 35.48±1.38 85.45±0.49 25.42±0.68

TM [Yin et al., 2018] 82.87±1.56 38.15±1.54 84.09±0.85 44.86±1.01 84.43±1.23 30.68±1.61 84.98±1.71 19.36±0.45

Median [Yin et al., 2018] 83.39±0.72 38.74±1.38 84.97±0.21 45.28±0.37 83.36±0.18 33.92±1.55 84.45±0.65 17.24±1.74

FLTrust [Cao et al., 2021]
RD

10.32±1.89 7.95±0.59 9.49±0.70 5.42±0.32 8.45±1.10 6.96±1.89 5.60±1.16 4.32±0.35

LoMar [Li et al., 2023] 84.67±0.91 45.98±0.64 84.68±1.72 58.45±0.93 85.48±0.81 61.76±0.33 85.62±1.85 53.28±0.26

FLDefender
[Jebreel & Domingo-Ferrer, 2023] 85.29±1.50 49.36±0.21 84.74±0.57 62.37±1.67 84.92±1.98 63.48±0.87 85.73±1.12 49.68±0.32

FLOT ours 85.12±0.58 61.23±0.36 85.94±0.46 69.23±0.30 85.21±0.64 64.34±1.73 86.12±1.53 52.42±0.98

FLOT+RS 85.98±1.06 63.45±1.45 85.02±0.72 67.46±0.15 86.24±1.21 62.87±0.69 86.48±0.41 55.26±0.87
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Figure 3: Comparison of GTA% (↑) for different defense techniques under non-i.i.d. data distribution
(Dirichlet β) scenarios on CIFAR10 dataset, with MSimBA no attack, single-client attack, and
multi-client (50%) attack settings.

scenario. Additionally, FLOT outperformed existing techniques by more than 0.5% and 10% in367

single-client and multi-client attack settings, respectively, highlighting its Byzantine robustness in the368

face of non-i.i.d. data poisoning attacks.369

8 CONCLUSION370

This paper introduces FLOT, an optimal transport-based dynamic weighted federated aggregation371

method designed to mitigate untargeted data poisoning attacks within the FL framework. FLOT372

effectively interpolates global model updates by employing loss-based weighted coefficients and373

leverages OT optimization via Wasserstein barycenters to obtain a smoothed global model while374

discarding malicious updates. Our extensive experimental results demonstrate that FLOT config-375

urations consistently outperform other methods, including Byzantine robust aggregation rules, in376

terms of classification performance under both single-client and 50% Byzantine worker scenarios.377

Additionally, our time complexity analysis reveals a logarithmic improvement (log(n)) over the378

Krum aggregation rule, with the number of clients denoted as n. We have also established the (ω, ρχ)379

- Byzantine resilience of FLOT, along with its convergence properties. In the future, we plan to380

explore various OT optimization variations, including regularization methods to address higher levels381

of non-i.i.d.ness and extend the applicability of FLOT to other computer vision tasks such as object382

detection and segmentation.383
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A APPENDIX550

In this section, we present additional information that was not included in the main paper due to551

space limitations. We have meticulously organized the details into individual sections to enhance552

clarity and facilitate a comprehensive understanding of our work.553

A.1 ADDITIONAL DISCUSSION OF RELATED WORK554

This section presents a broader related work regarding existing poisoning attacks in FL. Adversarial555

attacks in FL can be categorized into data poisoning or model poisoning attacks. In both cases, the556

attack can be targeted (i.e., to have a specific misclassification) or untargeted (i.e., to induce any557

misclassification).558

Data Poisoning Attacks: Adversarial attacks against ML models and deep neural networks have559

received much attention [Goodfellow et al., 2014; Carlini & Wagner, 2017]. These attacks have560

been studied mainly for centralized ML [Szegedy et al., 2013; Shafahi et al., 2018; Li et al., 2020],561

without much prior work on untargeted black-box data poisoning attacks on FL settings. Bagdasaryan562

et al. [2020] proposed a backdoor FL attack framework that trains on the backdoor data using our563

constrain-and-scale technique and submits the resulting corrupted model as an update to the central564

server. Fang et al. [2020b] formulated labelflip attacks as optimization problems and applied them565

to Byzantine-robust federated learning methods. Shejwalkar et al. [2022] proposed two different566

data poisoning (DP) attacks, namely static labelflip (DP-SLF) and dynamic labelflip (DP-DLF) in567
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FL. Each of these attack methods serves a unique purpose in highlighting the vulnerabilities and568

risks associated with FL systems. Bagdasaryan et al. [2020] approach sheds light on the potential569

for backdoor attacks and emphasizes the need for robust defenses against such threats. Zhang et al.570

[2020] showcases the effectiveness of generative adversarial attacks in poisoning FL systems. Fang571

et al. [2020b]’s formulation of labelflip attacks contributes to the development of Byzantine-robust572

FL techniques by exposing the susceptibility of the learning process to label manipulation. Finally,573

Shejwalkar et al. [2022]’s DP attacks provide insights into the risks posed by poisoning the training574

data in FL, highlighting the need for effective detection and mitigation strategies.575

Model Poisoning Attacks: In this second category, the attacker directly sends malicious up-576

dates [Bhagoji et al., 2019; 2018]. Research has been done on ways to create malicious updates577

effectively. Baruch et al. [2019] proposed a little is enough (LIE) attack by adding noise to the578

average of the benign updates using the standard deviation of available benign updates to compute a579

poisoned update. Shejwalkar & Houmansadr [2021] produces malicious model updates by maximally580

perturbing the benign reference aggregate in the malicious direction. Fang et al. [2020b] compute the581

average of the benign updates, determine a static malicious direction, and then calculate a poisoned582

update by finding a suboptimal parameter that circumvents the target aggregation rule.583

Each of these attack methods illustrates the vulnerabilities and risks associated with malicious updates584

in federated learning. Baruch et al.’s LIE attack emphasizes the potential impact of injecting noise585

into the aggregation process, even in small quantities. Shejwalkar et al.’s approach showcases the586

ability to manipulate the learning process by perturbing the benign reference aggregate. Fang et al.’s587

method demonstrates how the strategic selection of updates can undermine the aggregation rule and588

compromise the quality of the federated model.589

In summary, these attack methods collectively demonstrate various aspects of FL vulnerability,590

including backdoors, poisoning attacks, label manipulation, and malicious updates. Understanding591

and addressing these different attack vectors is crucial for enhancing the security and trustworthiness592

of FL systems.593

In this paper, we focus on defending against untargeted black-box data poisoning attacks in FL, as594

it is the most common and relevant type of attack in production deployments as stated in [Shejwalkar595

et al., 2022]. These attacks can affect a large population of FL clients and remain undetected for an596

extended period. Nonetheless, FLOT can also be applied to defend against white-box poisoning597

attacks since it is agnostic to the type of attack at the clients.598

A.2 MORE DETAILS ABOUT OUR THREAT MODEL599

In this section, we present the critical dimensions of our threat model and the assumptions we make600

about the FL setup, as shown in Table 3.601

Table 3: Key dimensions of our threat model and their attributes.

Objective Knowledge & Capabilities Attack Mode
Security
violation

Attack
specificity

Error
specificity Model Data distribution Consciously active

Availability:
Misclassify test data and

cause disruption to benign
clients’ objectives.

Indiscriminate:
Misclassify all or

most of the test inputs
during inference.

Untargeted:
Misclassify the give

test data to any
other class.

Black-box:
Adversary cannot break into
the compromised clients and
cannot manipulate the model

parameters.

The adversary can
only access the local data
distributed at the clients.

Online:
The adversary repeatedly and
adaptively poisons the model
based on the attack strategy.

Attacker objectives: The main goal of the attacker is to make the global model (i.e., the one used602

to perform testing on the server) misclassify all or most of the test data and thereby reduce the603

performance. The attacker is interested in generic misclassification (untargeted) rather than specific604

misclassification (targeted).605

Attacker knowledge & Capabilities: We assume the attacker has the following capabilities on the606

server and compromised clients.607

Server side. We assume that the server is a black-box to the attacker. As such, the attacker has no608

access to parameters, predictions of the global model, or the aggregation algorithm at the server.609

Also, the server is trustworthy and incurious about the model updates. We consider this setup based610

on recent stated work [Shejwalkar et al., 2022].611
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Client side. We assume that the attacker controls the data used in one (single-client attack) or more612

clients (multi-client attack). The clients use this data to compute their updates via trusted local model613

training [Chen et al., 2020; Mondal et al., 2021]. The attacker cannot break into compromised clients’614

training procedures. Precisely, the attacker can only manipulate the local data of the compromised615

clients with no access to the compromised clients’ training procedure or communication with the616

server.617

Attack mode: We assume an active attacker with a repeat and adaptive data poisoning on the618

compromised clients’ data. This helps the attack persist over the entire FL training (online attack).619

In summary, the attacker has control of all the data provided to train a local model on compromised620

clients and can also know the predictions of these clients’ local models on any chosen data. However,621

the attacker can neither interfere with the local model’s training process nor poison the model directly.622

Clients’ local training mechanism communicates with the server over an encrypted channel and623

hence cannot be interfered with.624

A.3 (ω, ρχ)-BYZANTINE RESILIENCE PROOF OF FLOT625

The below Proposition A.1 signifies that if there are ρ malicious clients, χ client updates that are626

trained on highly non-i.i.d. data, and the combined validation loss excluding these ρ + χ model627

updates is less than ω, then our FLOT function is (ω, ρχ) - Byzantine Resilient, where ω ≥ 0.628

Proposition A.1 Let N = {∇W1,∇W2, . . . ,∇Wn} be n total non-i.i.d. set of local clients model629

updates. Let R = {∇Ŵ1, . . . ,∇Ŵρ} be ρ non-i.i.d. set of Byzantine local clients model updates.630

Let X = {∇Ŵ ′1, . . . ,∇Ŵ ′χ} be χ highly non-i.i.d. set of benign local clients model updates. An631

aggregation rule A is said to be (ω, ρχ)-Byzantine Resilient) if for any 1 ≤ · · · ≤ i1 · · · ≤ iρ · · · ≤632

j1 ≤ · · · ≤ jχ ≤ . . . n, vector633

A(∇W1, . . . ,∇Ŵ1, . . . ,∇Ŵρ, . . . ,∇Ŵ ′1, . . . ,∇Ŵχ, . . . ,∇Wn) (16)

satisfies the following634 ∑
∇Wk∈(N\R)

L(Dv,∇Wk) ≤
∑

∇Wk∈N
L(Dv,∇Wk), (17)

635 ∑
∇Wk∈(N\X)

L(Dv,∇Wk) ≤
∑

∇Wk∈N
L(Dv,∇Wk), (18)

636 ∥∥∥∥∥∥
∑

∇Wk∈N
L(Dv,∇Wk)−

∑
∇Wk∈N\(R∪X)

L(Dv,∇Wk)

∥∥∥∥∥∥ ≥ ω, (19)

for some ω ≥ 0. Here, L(Dv,∇Wk) denote the validation loss of ∇Wk model on validation data637

Dv . Here, the equality sign in Eq. 17 and Eq. 18 hold true when ρ = χ = 0.638

Proof. Without loss of generality, we assume (a) the Byzantine client updates are indexed after benign639

client vectors, (b) the highly non-i.i.d. updates are indexed after the Byzantine updates, i.e.,640

FLOT(∇W1, . . . ,∇Ŵ1, . . . ,∇Ŵρ, . . . ,∇Ŵ ′1, . . . ,∇Ŵχ, . . . ,∇Wn). (20)

First, we focus on proving the condition (i) (Eq. 17) of Proposition A.1. Consider the first case where641

∇Wk ∈ (N \ R), (benign model updates without any malicious updates). Based on the Theorem 2.642

of Jagielski et al. [2018] given by643

LT (D′,∇Ŵ) ≤ L(Dtr,∇W∗), (21)

whereD′ represents the malicious training data samples,Dtr is total training data including malicious644

samples. LT (., .) is the training loss on poisoned∇Ŵ and main∇W∗ models, respectively. However,645

Jagielski et al. [2018] proved it in terms of data poisoning attacks in centralized machine learning646

settings with a number of malicious samples under attack. We extend it to federated learning647

settings in terms of multiple malicious client models that are trained on poisoned and different648

amounts of non-i.i.d. data. Using the set of malicious updates R, set of benign updates (N \ R) =649
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{∇W1,∇W2, . . . ,∇Wn− ρ}, validation data at the server Dv, and Eq. 21, we provide the below650

formulation using validation loss at the server to prove condition (i) of Proposition A.1 as651

L(Dv,∇W1) < L(Dv,∇W ′
1),

L(Dv,∇W2) < L(Dv,∇W ′
1),

. . .

L(Dv,∇Wρ) < L(Dv,∇W ′ρ),

(22)

summing up elements on both hand sides and further adding remaining n− ρ elements on both sides652

and rearranging terms, we get653

ρ∑
k=1

L(Dv,∇Wk) <

ρ∑
k=1

L(Dv,∇W ′
k), (23)

654

ρ∑
k=1

L(Dv,∇Wk) +

n−ρ∑
k=ρ+1

L(Dv,∇Wk) <

ρ∑
k=1

L(Dv,∇W ′
k) +

n−ρ∑
k=ρ+1

L(Dv,∇Wk), (24)

n−ρ∑
k=1

L(Dv,∇Wk) <

ρ∑
k=1

L(Dv,∇W ′
k) +

n−ρ∑
k=ρ+1

L(Dv,∇Wk). (25)

Adding an additional
∑ρ

k=1 L(Dv,∇Wk) term to the right hand side of Eq. 25 still holds the655

equation.656

n−ρ∑
k=1

L(Dv,∇Wk) <

ρ∑
k=1

L(Dv,∇W ′
k) +

n−ρ∑
k=ρ+1

L(Dv,∇Wk) +

ρ∑
k=1

L(Dv,∇Wk),

n−ρ∑
k=1

L(Dv,∇Wk) <

ρ∑
k=1

L(Dv,∇W ′
k) +

ρ∑
k=1

L(Dv,∇Wk) +

n−ρ∑
k=ρ+1

L(Dv,∇Wk),

(26)

n−ρ∑
k=1

L(Dv,∇Wk) <
n∑

k=1

L(Dv,∇Wk), (27)

∑
∇Wk∈(N\R)

L(Dv,∇Wk) ≤
∑

∇Wk∈N
L(Dv,∇Wk). (28)

Here = holds true when ρ = 0. Finally, Eq. 28 proves the condition (i), i.e., Eq. 17 of Proposition657

A.1.658

Next, we prove the condition (ii) (Eq. 18) of Proposition A.1 based on Balakrishnan et al. [2021]. In659

this work, the authors propose an optimization method to select a subset of client updates that carry660

representative gradient information of the entire client set. Further, they transmit only the selected661

subset of client updates to the server for aggregation. The aim is to find an approximation of full662

clients (n) aggregation gradient via a subset S of client updates. The authors formulate the problem663

to provide the upper bound for the aggregated gradient approximation derived from the subset S of664

clients as665

∥∥∥∥∥∑
k∈n

∇Fk(v
k)−

∑
k∈S

γk∇Fi(v
i)

∥∥∥∥∥ ≤∑
k∈n

min
i∈S

∥∥∇Fk(v
k)−∇iFi(v

i)
∥∥ , (29)
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where given a subset S , they define a mapping σ : V → S , such that the gradient information∇Fk(v
k)666

from a client k is approximated by the gradient information from a selected client σ(k) ∈ S . Further,667

they provide the gradient approximation error as668

∥∥∥∥∥ 1n ∑
k∈St

γk∇Fk(v
k
t )−

1

n

∑
k∈n

∇Fk(v
k
t )

∥∥∥∥∥ ≤ δ,∥∥∥∥∥∑
k∈St

γk∇Fk(v
k
t )−

∑
k∈n

∇Fk(v
k
t )

∥∥∥∥∥ ≤ nδ,

(30)

where t is the communication round, {γ}k∈St
are the weights assigned to gradients, and δ is the error669

rate that is used as a measure to characterize the goodness of gradient approximation. The above670

equation states that the gradient approximation from subset S of clients at communication round t is671

less than nδ times full gradient aggregation from all clients. Further, we use this observation and672

extend it to validation loss that there exists a subset of client updates (N \X) whose sum of validation673

losses is less than that of the sum of total clients. It is given as674 ∥∥∥∥∥∑
k∈St

L(Dv, v
k
t )−

∑
k∈n

L(Dv, v
k
t )

∥∥∥∥∥ ≤ nδ,∥∥∥∥∥∥
∑

∇Wk∈(N\X)

L(Dv,∇Wk)−
∑

∇Wk∈N
L(Dv,∇Wk)

∥∥∥∥∥∥ ≤ nδ.

(31)

Here, N \X denote the subset of clients obtained after discarding χ non-i.i.d. clients whose validation675

loss is higher than that of remaining clients. Finally, the below equation proves the condition (ii), i.e.,676

Eq. 18 of Proposition A.1.677 ∑
∇Wk∈(N\X)

L(Dv,∇Wk) ≤ nδ
∑

∇Wk∈N
L(Dv,∇Wk),

∑
∇Wk∈(N\X)

L(Dv,∇Wk) ≤
∑

∇Wk∈N
L(Dv,∇Wk).

(32)

Combining Eq. 28 and Eq. 32 we get678 ∑
∇Wk∈(N\R)

L(Dv,∇Wk) ≤
∑

∇Wk∈N
L(Dv,∇Wk), (33)

∑
∇Wk∈(N\X)

L(Dv,∇Wk) ≤
∑

∇Wk∈N
L(Dv,∇Wk), (34)

∑
∇Wk∈(N\R)

L(Dv,∇Wk) +
∑

∇Wk∈N\X

L(Dv,∇Wk) ≤
∑

∇Wk∈N
L(Dv,∇Wk) +

∑
∇Wk∈N

L(Dv,∇Wk),

(35)

∑
∇Wk∈R

L(Dv,∇Wk) +
∑

∇Wk∈X
L(Dv,∇Wk) + 2

∑
∇Wk∈N\(R∪X)

L(Dv,∇Wk) ≤ 2
∑

∇Wk∈N
L(Dv,∇Wk),

(36)

2
∑

∇Wk∈N\(R∪X)

L(Dv,∇Wk) ≤ 2
∑

∇Wk∈N
L(Dv,∇Wk)−

∑
∇Wk∈R

L(Dv,∇Wk)−
∑

∇Wk∈X
L(Dv,∇Wk),

(37)
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2
∑

∇Wk∈N\(R∪X)

L(Dv,∇Wk) ≤
∑

∇Wk∈N
L(Dv,∇Wk) +

∑
∇Wk∈R

L(Dv,∇Wk) +
∑

∇Wk∈X
L(Dv,∇Wk)+

∑
∇Wk∈N\(R∪X)

L(Dv,∇Wk)−
∑

∇Wk∈R
L(Dv,∇Wk)−

∑
∇Wk∈X

L(Dv,∇Wk),

(38)

2
∑

∇Wk∈N\(R∪X)

L(Dv,∇Wk) ≤
∑

∇Wk∈N
L(Dv,∇Wk) +

∑
∇Wk∈N\(R∪X)

L(Dv,∇Wk), (39)

∑
∇Wk∈N\(R∪X)

L(Dv,∇Wk) ≤
∑

∇Wk∈N
L(Dv,∇Wk), (40)

∥∥∥∥∥∥
∑

∇Wk∈N
L(Dv,∇Wk)−

∑
∇Wk∈N\(R∪X)

L(Dv,∇Wk)

∥∥∥∥∥∥ ≥ 0, (41)

generalizing,679 ∥∥∥∥∥∥
∑

∇Wk∈N
L(Dv,∇Wk)−

∑
∇Wk∈N\(R∪X)

L(Dv,∇Wk)

∥∥∥∥∥∥ ≥ ω, (42)

where ω ≥ 0. Finally, Eq. 42 proves the condition (iii), i.e., Eq 19 of Proposition A.1.680

A.4 MORE RESULTS ON HYPOTHESIS TESTING681

(a) No Attack (b) Single-client Attack

Figure 4: Validation losses of individual client model at the server w.r.t. global communication rounds
under no attack and single-client attack settings for KBTS dataset. Here, the global model is updated
with the remaining good-performing client updates. For the next iteration, the clients train their local
models using this new global model.

Our defense is based on the hypothesis that the updates from a malicious client doing data poisoning682

will differ from benign client updates in terms of loss of validation data at the server. Figure. 4683

shows the validation loss of 10 clients under no attack and single-client attack settings. We observe684

under no attack settings, the validation loss of all the updates is clustered together (shows similar685

behavior) and reduces with the increase in global communication rounds. On the contrary, there is a686

clear dispersion in the malicious client (C1-squared entries) loss values compared to other benign687

clients’ losses. Hence, our FLOT used loss function-based model rejection to suppress updates from688

malicious clients.689

Test loss analysis: Figure 5 shows the performance of FLOT compared to other Byzantine server690

rules. For brevity, we showed the hard case of a multi-client attack (33% Byzantine) for the KBTS691

dataset with ten clients. We observed that our FLOT showed a lower loss, followed by Krum. Further,692
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we observe that FLOT configuration is better in this case as FLOT+RS randomly selects some693

clients and applies FLOT on top of it. As there are less number of clients for the KBTS dataset,694

sampling clients randomly and using FLOT leads to losing the benign client updates and lower695

performance. Trimmed mean, with its ability to trim client updates from beginning to end, leads to696

discarding benign updates and including malicious updates. Hence, it performs worst compared to697

other methods.698

Figure 5: Comparison of test losses of FLOT with different Byzantine aggregation techniques at the
server for 200 global communication rounds under 33% multi-attack settings for the KBTS dataset.

A.5 ADDITION EXPERIMENTAL DETAILS699

Datasets and implementation details. GTSRB [Stallkamp et al., 2011] is a well-known benchmark700

dataset for traffic sign classification. It consists of 43 traffic sign classes. Most (70%) of the training701

data (27,446 samples) is divided using the Dirichlet distribution with α = 1. Further, 10% (3920702

samples) is used as validation data at the server, and the remaining 20% of the data (7842 samples)703

is used for testing. KUL Belgium traffic sign (KBTS) dataset [Mathias et al., 2013] is another704

benchmark dataset for traffic sign classification. It consists of 62 traffic sign classes. A majority705

(70%) of the training data (4884 samples) is divided using the Dirichlet distribution with α = 1.706

Table 4: CNN configuration

Black-box CNN (4 Conv layers)
input (150 × 150 RGB images)
conv2d_64; kernel 5; stride 1

conv2d_128; kernel 3; stride 1
conv2d_256; kernel 1; stride 1
conv2d_256; kernel 1; stride 1

Fully connected layer 1
Fully connected layer 2

Softmax classifier

Further, 10% (697 samples) is used as validation data, and the707

remaining 20% of the data (1397 samples) is used for testing.708

CIFAR10 [Krizhevsky et al., 2009] is a well-known benchmark709

dataset for classification that contains 60,000 samples with ten710

different classes. Most (70%) of the training data (42,000 sam-711

ples) is divided using the Dirichlet distribution with α = 1.712

Further, 10% (6000 samples) is used as validation data, and the713

remaining 20% of the data (12000 samples) is used for testing.714

Finally, EMNIST [Cohen et al., 2017] is another benchmark715

dataset of 671,585 samples of handwritten characters & digits716

with 62 classes, including upper and lowercase handwritten717

characters. Further, we consider 10,000 total clients, out of718

which 100 client updates are randomly selected at every communication round. 4,70,000 samples719
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are divided using the Dirichlet distribution with α = 1. Further, 5000 samples are used as validation720

data, and 10000 samples are used for testing.721

Classifier architectures. We built a custom 4-layer CNN architecture followed by two fully connected722

layers and treated this as a global model, as shown in Table 4. We experiment with GTSRB, KBTS,723

and CIFAR10 datasets using this architecture. The model is trained with images of size 150× 150724

using categorical cross-entropy as loss function optimized using Adam optimizer. Additionally, we725

use ResNet18 [He et al., 2015] and LeNet [LeCun et al., 1998] architecture that takes an input of size726

224× 224 and 32× 32, respectively, for CIFAR10 and EMNIST datasets. During the training of the727

global classifier for 200 epochs through FL protocol, each client trains for E = 5 local epochs on the728

local data with a batch size bs = 64 and with a learning rate of lr = 0.01.729

All the clients are trained individually and sequentially at each global epoch. We used Python 3.6+,730

Pytorch, and Python OT (especially ot.lp.barycenter function with solver=’interior-point’)731

and implemented the entire setup on Nvidia Tesla M60 GPU & 8GB RAM.732

Baselines. We have chosen to compare FLOT with relevant baselines commonly used in the literature.733

We believe these baselines provide a fair evaluation of FLOT’s performance in defending against734

untargeted data poisoning attack scenarios.735

1. FedAvg [McMahan et al., 2017]: Normal federated learning without any defense. Ideally,736

FLOT should perform similarly to this baseline under no attack scenarios.737

2. Random Sampling (RS) of the Clients: This represents the FL system with random sampling,738

where the server randomly selects some updates for aggregation. As our FLOT involves739

generating loss function-based weighted coefficients that drop the malicious clients, followed740

by OT optimization, it should perform better than RS.741

3. Power-of-choice [Cho et al., 2020]: In this work, the server selects the clients with the742

largest training losses.743

4. DivFL [Balakrishnan et al., 2021]: This is a recent work that proposes a technique to744

perform FL by selecting a group of clients based on submodular optimization.745

5. FLOT Configurations: We use two configurations of FLOT, namely, FLOT (our method)746

and FLOT+RS (our method includes random sampling for better results).747

We use the following Byzantine Robust Aggregation approaches to perform a comparative evaluation:748

1. Krum [Blanchard et al., 2017]: Krum selects one local model updates that are representative749

of a majority of client models. We set c = 10 for the GTSRB and CIFAR10 datasets and750

c = 3 for the KBTS dataset to handle the 33% malicious clients in our experimentation.751

2. TM [Yin et al., 2018]: Trimmed mean (TM) aggregates each dimension of input updates752

separately and sorts the values along the ith-dimension. Then, it removes x largest and753

smallest values of that dimension and computes the average of the rest. We consider the754

suggested configuration of x = 5 for GTSRB, CIFAR10, and x = 1 for KBTS datasets to755

handle the 33% malicious clients in our experimentation.756

3. Median [Yin et al., 2018]: The median aggregates each dimension of input updates separately757

and sorts the values of the ith-dimension. Then, it takes the median as the global model’s758

ith parameter.759

Finally, we use the below recent FL defense methods for our evaluation.760

1. FLTrust [Cao et al., 2021]: In this method, the server trains an auxiliary model using a root761

dataset and computes trust scores for clients based on the similarity of their weight updates762

to the server model. The server then updates the global model by taking a weighted average763

of the client models, with the weights proportional to their trust scores.764

2. LoMar [Li et al., 2023]: This is a recent defense method which uses a two phase method. It765

scores model updates using kernel density estimation in the first phase and determines an766

optimal threshold to distinguish between malicious and clean updates in the second phase.767

3. FL-Defender [Jebreel & Domingo-Ferrer, 2023]: This is another recent defense method. It768

analyzes the behaviour of neurons related to the attacks and proposes robust discriminative769
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features using worker-wise angle similarity. Then, it compresses similarity vectors and770

re-weights worker updates before aggregation.771

Non-i.i.d. data distribution in FL. The influence of varying non-i.i.d. data distribution is a critical772

aspect that warrants further exploration. This examination allows us to better understand the interplay773

between the Dirichlet distribution parameter β and the resulting data distribution characteristics. The774

relationship between β and the sample data partition is pivotal in comprehending the behavior of our775

experimental setup.776

The Dirichlet distribution [Minka, 2000] is a fundamental probabilistic model used in FL to charac-
terize the distribution of data across different clients. This distribution is controlled by a parameter
β, which plays a pivotal role in influencing the degree of non-i.i.d.ness in the dataset distribution.
The working principle of the Dirichlet distribution involves generating data partitions across clients
based on their unique characteristics. The mathematical formulation of the Dirichlet distribution is
expressed as follows:

p(x1, x2, . . . , xK |β) =
1

B(β)

K∏
i=1

xβi−1
i ,

where x1, x2, . . . , xK represent the proportions of data allocated to each client. K is the total number777

of classes. β = (β1, β2, . . . , βK) is a vector of parameters that influence the distribution (in our778

approach, we consider a case where all the βi values to be the same, resulting in a symmetric779

Dirichlet distribution). B(β) represents the multivariate Beta function, which serves as a normalizing780

constant in the probability density function of the Dirichlet distribution. This function ensures that781

the calculated probabilities from the distribution sum up to 1 over the simplex defined by the data782

proportions.783

The formula for the multivariate Beta function B(β) is given by:

B(β) =

∏K
i=1 Γ(βi)

Γ(
∑K

i=1 βi)
.

Through manipulation of the parameter β, the density of independently and identically distributed784

(i.i.d.) data splits among clients can be shaped, thereby determining the non-i.i.d. nature of the data785

distribution. Larger values of β lead to a more uniformly distributed data landscape among clients,786

effectively reducing variability in their data distributions. Conversely, smaller values of β result787

in a more concentrated or skewed data distribution, consequently introducing varying degrees of788

heterogeneity and non-i.i.d.ness among clients. Proper calibration of β becomes essential for FL789

systems, allowing them to account for the inherent heterogeneity in real-world client data, a crucial790

factor for model robustness and generalization.791

Our experimentation delves into the symbiotic relationship between the Dirichlet distribution parame-792

ter β and FL attack dynamics. This interaction is pivotal for our study, as non-i.i.d. client datasets793

can significantly impact the global model’s accuracy, even prior to the introduction of an attack.794

This pre-existing effect arises due to biased and overfitted client models that emerge from non-i.i.d.795

local datasets. This phenomenon amplifies the overall attack impact and elevates the robustness of a796

defense method.797

However, it’s important to recognize that the impact of non-i.i.d.ness is not solely governed by β.798

A confluence of factors, such as the total number of clients, the clients selected per round, and799

local and global training epochs, collectively influence the magnitude of the GTA under no attack800

scenarios. In conclusion, our in-depth analysis of the non-i.i.d. data distribution’s impact on FL801

attacks provides vital insights into the complex dynamics governing FL system performance. The802

careful calibration of β and its repercussions on data distribution elucidate the underlying factors803

that can lead to substantial variations in model accuracy and FLOT effectiveness. This exploration804

enriches our understanding of FL’s behavior under varying conditions and underscores the importance805

of accounting for non-i.i.d.ness in practical scenarios.806

A.6 MORE EMPIRICAL ANALYSIS AND ABLATION STUDIES807

Robustness against different attacks. We have evaluated FLOT using the below attacks.808
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1. M-SimBA Kumar et al. [2020]: This is another centralized ML black-box data poisoning809

attack. It uses randomized gradients similar to SimBA but tries to reduce the loss of the810

most confused class that the model misclassifies a sample with the highest probability.811

2. DPA-SLF Shejwalkar et al. [2022]: This is a data poisoning -static label flipping attack,812

where each compromised client flips the labels of their data from true label y ∈ [0, C − 1]813

to false label (C − 1− y) if C is even and to false label (C − y) if C is odd, where C is the814

number of classes.815

3. DPA-DLF Shejwalkar et al. [2022]: This is another data poisoning -dynamic label flipping816

attack that uses a surrogate model benign data (standard FL model) and flip label y to the817

least probable label it generates for a given sample. We use the same model architectures as818

a surrogate for the respective datasets.819

Table 5: Attack success rate (↑)
of MSimBA, DPA-SLF, and DPA-
DLF attacks for different attack per-
centages on EMNIST dataset with-
out defense.

Attack
percentage (%) MSimBA DPA-SLF DPA-DLF

1A 0.16 0.15 0.15
20 0.27 0.21 0.23
30 0.26 0.20 0.24
40 0.53 0.49 0.51
50 0.77 0.53 0.69

Table 5 presents the attack success rates of three distinct attacks820

under our FL setup with no defense and the aforementioned821

maliciousness levels, namely the single-client attack (1A), as822

well as the multi-client attack with 10%, 20%, 30%, 40%, and823

50% maliciousness for EMNIST dataset. The attack success824

rate is defined as the ratio of misclassified test samples to the825

total number of samples at the server under that specific attack826

setting. Our analysis reveals that the black-box gradient noise827

data poisoning attack MSimBA outperforms the dynamic and828

static label flip attacks in the FL setup in terms of attack success829

rate under no defense.830

Table 6: GTA% (↑) performance
comparison of FLOT method un-
der DPA-SLF (Shejwalkar et al.
[2022]) attack for CIFAR10 and
EMNIST datasets.

CIFAR10 EMNIST
Defense
Method 1A 50% 1A 50%

FedAvg 87.18 49.36 84.14 49.38
DivFL 84.12 61.26 85.92 61.48
Krum 86.95 68.64 85.60 65.76
LoMar 87.34 73.39 86.12 67.73

FLDefender 88.75 74.83 86.31 69.64
FLOT (ours) 89.36 78.12 87.71 72.33

Additionally, we conducted an ablation study to evaluate the831

performance of our FLOT framework in comparison to other832

defense mechanisms, including FedAvg, DivFL, Krum, Lo-833

Mar, and FLDefender, under DPA-SLF and DPA-DLF at-834

tacks. The results, as presented in Table 6 and Table 7,835

showcase the superior performance of our FLOT method,836

with an approximate 1-4% higher accuracy compared to the837

other methods. It’s worth noting that our approach exhibits838

higher robustness against DPA-SLF, a static label flip at-839

tack, in comparison to DPA-DLF, a dynamic label flip at-840

tack. In summary, our OT-based dynamic update discard-841

ing mechanism consistently preserves the GTA more effec-842

tively than other methods under DPA-SLF and DPA-DLF at-843

tacks, demonstrating its robustness and adaptability across a wide range of attack strategies.844

Table 7: GTA% (↑) performance
comparison of FLOT method un-
der DPA-DLF (Shejwalkar et al.
[2022]) attack for CIFAR10 and
EMNIST datasets.

CIFAR10 EMNIST
Defense
Method 1A 50% 1A 50%

FedAvg 85.32 51.91 85.48 47.62
DivFL 83.68 63.11 85.05 62.16
Krum 84.65 65.62 84.30 63.45
LoMar 86.17 71.36 86.15 69.54

FLDefender 86.05 75.42 85.81 67.28
FLOT (ours) 87.65 79.37 86.53 71.36

Under the no-attack setting, our approach closely performed to845

that of the FL baseline with < 1% difference for the GTSRB846

and KBTS dataset and outperformed the CIFAR10 dataset, as847

shown in Table 8. This is due to a large number of classes848

with inter and intra-class variability in the GTSRB and KBTS849

dataset that led to the discarding of benign client models with850

a slight difference in the loss values. Also, the FedAvg tries to851

achieve the local optimum error rate when the objective function852

is strongly convex under no attack. On the contrary, given a853

good amount of data, our FLOT configuration was able to854

sample updates that improved performance under no attack on855

the CIFAR10 dataset.856

Multi-client attack + defense analysis. We extended our evalu-857

ation of FLOT configurations to include a 33% MSimBA multi-client attack scenario as an extension858

to the main paper results. Our findings, as presented in Table 9, consistently demonstrate the superior859

performance of FLOT configurations, with an accuracy improvement of approximately over 1%860

compared to other methods.861

Furthermore, to showcase the versatility and adaptability of FLOT across different model architec-862

tures, we evaluated its performance on the CIFAR10 dataset using the ResNet18 architecture under a863
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Table 8: GTA% (↑) for no attack and defense case.

Defense Method GTSRB KBTS CIFAR10
FedAvg 87.8 90.02 91.23

RS 86.68 87.92 90.54
PC 87.56 88.05 92.64

DivFL 87.12 89.96 92.86
Krum 86.72 89.97 91.46
TM 84.32 88.52 90.64

Median 85.23 88.27 89.91
LoMar 85.12 88.12 89.62

FLDefender 86.28 89.12 91.51
FLOT (ours) 86.24 89.12 91.51

FLOT+RS (ours) 87.01 89.36 92.37

Table 9: GTA% (↑) for multi-client MSimBA attack (33%) and defense case.

Defense Method GTSRB KBTS CIFAR10
FedAvg 70.63 83.26 85.03

RS 65.45 84.24 82.98
PC 63.72 80.27 73.86

DivFL 72.08 81.63 74.12
Krum 79.98 84.29 85.12
TM 77.45 84.09 84.43

Median 78.64 84.97 83.36
LoMar 79.28 83.36 84.15

FLDefender 80.15 84.92 84.96
FLOT (ours) 81.12 85.94 85.21

FLOT+RS (ours) 82.26 85.02 86.24

33% multi-client attack generated by MSimBA. Our results, as displayed in Table 10, highlight the864

significant advantage of our FLOT approach, outperforming other methods by approximately 3865

Lastly, to emphasize the scalability of FLOT in handling multi-client attacks, we conducted eval-866

uations across various attack percentages (ranging from 10% to 40%) using the EMNIST dataset.867

Remarkably, FLOT consistently outperformed other methods across all attack scenarios, as demon-868

strated in Table 11. These results underline the effectiveness and robustness of our FLOT method in869

diverse and challenging multi-client attack settings.870

FLOT Runtime analysis. In our final evaluation, we focused on assessing the runtime performance871

of our FLOT method. We considered two scenarios: the best-case scenario involving ten clients872

for the KBTS dataset and the worst-case scenario with 100 clients for the EMNIST dataset. Our873

observations indicate that there is no significant increase in runtime when utilizing FLOT, with874

execution times remaining close to those of standard FL procedures. Interestingly, we even observed875

a reduction in runtime when implementing FLOT in conjunction with random sampling (FLOT+RS),876

as illustrated in Table 12. These results underscore the practical efficiency of our FLOT method, as it877

demonstrates comparable runtime to traditional FL processes, making it easily integrated into current878

FL systems.879

Table 10: GTA% (↑) for multi-client MSimBA attack (33%) and using ResNet18 on CIFAR10 dataset.

Defense Method 33%
FedAvg 71.34
DivFL 65.24
Krum 77.14
LoMar 78.31

FLDefender 77.92
FLOT (ours) 81.62
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Table 11: GTA% (↑) for multi-client MSimBA attack (10, 20, 30, 40)% on EMNIST dataset.

Defense Method 10% 20% 30% 40%
FedAvg 76.19 56.24 49.37 35.33
DivFL 80.32 69.26 54.82 42.31
Krum 81.36 75.10 68.08 46.68
LoMar 82.71 78.61 73.40 65.70

FLDefender 83.55 80.37 76.23 63.67
FLOT (ours) 84.42 81.38 78.27 69.78

Table 12: Execution runtime (seconds ↓) of different defense methods for best-case ten clients (10)
for KBTS dataset and worst-case hundred clients (100C) for EMNIST dataset.

Defense
Method

Best-case
(10C)

Worst-case
(100C)

FedAvg 350 730
RS 350 730
PC 410 830

DivFL 430 850
Krum 430 850
TM 350 730

Median 340 710
FLTrust 400 810
LoMar 390 780

FLDefender 400 810
FLOT (ours) 390 780

FLOT+RS (ours) 360 740
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