
Under review as a conference paper at ICLR 2024

LEARNING VARIABLE-LENGTH SKILLS THROUGH
NOVELTY-BASED DECISION POINT IDENTIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Intelligent agents are able to make decisions based on different levels of gran-
ularity and duration. Recent advances in skill learning with data-driven behav-
ior priors enabled the agent to solve complex, long-horizon tasks by effectively
guiding the agent in choosing appropriate skills. However, the practice of using
fixed-length skills can easily result in skipping valuable decision points, which ul-
timately limits the potential for further exploration and faster policy learning. For
example, making a temporally-extended decision at a crossroad can offer more
direct access to parts of the state space that would otherwise be challenging to
reach. In this work, we propose to learn variable-length skills by identifying de-
cision points through a state-action novelty module that leverages offline agent
experience datasets, which turns out to be an efficient proxy for the critical deci-
sion point detection. We show that capturing critical decision points can further
accelerate policy learning by enabling a more efficient exploration of the state
space and facilitating transfer of knowledge across various tasks. Our approach,
NBDI (Novelty-based Decision Point Identification)1, substantially outperforms
previous baselines in complex, long-horizon tasks (e.g. robotic manipulation and
maze navigation), which highlights the importance of decision point identification
in skill learning.

1 INTRODUCTION

The ability to make decisions based on different levels of granularity and duration is one of the key
attributes of intelligence. In reinforcement learning (RL), temporal abstraction refers to the concept
of an agent reasoning over a long horizon, planning, and taking high-level actions. Each high-level
action corresponds to a sequence of primitive actions, or low-level actions. For example, in order to
accomplish a task with a robot arm, it would be easier to utilize high-level actions such as grasping
and lifting, instead of controlling every single joint of a robot arm. Temporal abstraction simplifies
complex tasks by reducing the number of decisions the agent has to make, thereby alleviating the
challenges that RL faces in long-horizon, sparse reward tasks.

S G

Figure 1: An example where
discovering fixed-length skills
is highly inefficient.

Due to the advantages of temporal abstraction, there has been active
research on developing hierarchical RL algorithms, which structure
the agent’s policy into a hierarchy of two policies: a high-level pol-
icy and a low level policy. The option framework (Sutton, 1998)
was proposed to achieve temporal abstraction by learning options,
which are high-level actions that contain inner low level policy, ini-
tiation set and termination conditions. Termination conditions are
used to figure out when to switch from one option to another, en-
abling the agent to flexibly respond to changes in environment or
task requirements. While the option framework can achieve tem-
poral abstraction without any loss of performance when the options
are optimally learned, it is usually computationally challenging to
optimize for the ideal set of options within complex domains.

In this case, the skill discovery framework, which aims to discover meaningful skills (fixed-length
executions of low-level policy) from the dataset through unsupervised learning techniques, has been

1Our code is available at: https://github.com/asdfnbdi/nbdi

1

https://github.com/asdfnbdi/nbdi

Under review as a conference paper at ICLR 2024

used as an alternative. Recently, notable progress has been made in skill-based deep RL models,
showing promising results in complex environments and robot manipulations (Pertsch et al., 2021a;
Hakhamaneshi et al., 2021). However, the use of fixed-length skills and the absence of appropriate
termination conditions often restrict them from making decisions at critical decision points (e.g.,
crossroads). This can result in significant loss in performance, as illustrated in Figure 1. While there
have been some studies incorporating the option framework into deep RL as is, the algorithmic
complexity and unstable performance in large environments limit its widespread adoption (Kulkarni
et al., 2016; Hutsebaut-Buysse et al., 2022).

In this paper, we present NBDI (Novelty-based Decision Point Identification), a task-agnostic, sim-
ple state-action novelty-based decision point identification method that allows the agent to learn
variable-length skills through critical decision point detection. Identifying critical decision points
promote knowledge transfer between different tasks and stimulate exploration by closely connecting
different areas in the state space (McGovern & Barto, 2001; Menache et al., 2002; Şimşek & Barto,
2004). For example, detecting doorways between rooms is useful regardless of the specific task at
hand. We demonstrate the straightforward applicability of our method to the skill-based deep RL
framework, and illustrate how it can lead to improvements in decision-making.

The paper is organized as follows: we first introduce the discovery of state-action novelty-based
critical decision points in reinforcement learning (Section 4). Next, we demonstrate how we learn
variable-length skills through state-action novelty (Section 5). Then we illustrate the inefficiency
of employing fixed-length skills and demonstrate that executing variable-length skills, based on
state-action novelty, can accelerate policy learning in both robot manipulation and navigation tasks
(Section 6). Finally, we provide insights into how our model successfully uses state-action novelty
to improve policy learning by implementing several ablation studies (Appendix A).

2 RELATED WORK

Option Framework One major approach of discovering good options is to focus on identifying
good terminal states, or sub-goal states. For example, landmark states (Kaelbling, 1993), reinforce-
ment learning signals (Digney, 1998), graph partitioning (Menache et al., 2002; Şimşek et al., 2005;
Machado et al., 2017a;b), and state clustering (Srinivas et al., 2016) have been used to identify
meaningful sub-goal states. Digney (1998); Simsek et al. (2005) and Kulkarni et al. (2016) focused
on detecting bottleneck states, which are states that appear frequently within successful trajectories,
but are less common in unsuccessful trajectories (e.g., a state with access door). Şimşek & Barto
(2004) tried to identify access states, which are similar to bottleneck states, but determined based on
the relative novelty score of predecessor states and successor states. Access states are found based
on the intuition that sub-goals will exhibit a relative novelty score distribution with scores that are
frequently higher than those of non sub-goals. These studies motivated us to search for states with
meaningful properties to terminate skills. However, these methods frequently face challenges in
scaling to large or continuous state spaces.

Skill-based deep RL As extending the classic option framework to high-dimensional state spaces
through the adoption of function approximation is not straightforward, a number of practitioners
have proposed acquiring skills, which are fixed-length executions of low-level policies, to achieve
temporal abstraction. For example, skill discovery (Gregor et al., 2016; Achiam et al., 2018; Mavor-
Parker et al., 2022) and skill extraction (Yang et al., 2021; Singh et al., 2020; Pertsch et al., 2021b;
Hakhamaneshi et al., 2021) frameworks have proven to be successful in acquiring meaningful sets
of skills. Especially, Pertsch et al. (2021a) showed promising results in complex, long-horizon tasks
with sparse rewards by extracting skills with data-driven behavior priors. The learned prior enables
the agent to explore the environment in a more structured manner, which leads to better performance
in downstream tasks. However, we believe that its performance is greatly constrained by the use of
fixed-length skills, which restricts them from making decisions at critical decision points.

Novelty-based RL Novelty has been utilized in reinforcement learning for various purposes. De-
pending on its design, novelty can be used for curiosity-driven exploration (Burda et al., 2018;
Pathak et al., 2019; Sekar et al., 2020), or data coverage maximization (Bellemare et al., 2016;
Hazan et al., 2019; Seo et al., 2021). It has been also used to identify sub-goals in discrete envi-
ronments (Goel, 2003; Şimşek & Barto, 2004). However, to the best of our knowledge, there has

2

Under review as a conference paper at ICLR 2024

Flip the Light Switch

𝝌 𝒔𝟎, 𝒂𝟎 ≈ 𝟎. 𝟎𝟓 𝝌 𝒔𝒌, 𝒂𝒌 ≈ 𝟎. 𝟑𝟑

𝝌 𝒔𝒌+𝟏, 𝒂𝒌+𝟏 ≈ 𝟎. 𝟎𝟑

𝝌 𝒔𝒌+𝟏, 𝒂𝒌+𝟏 ≈ 𝟎. 𝟎𝟒

Open the Slide Cabinet

Open the Left Hinge
Cabinet

Move the Cattle

𝝌 𝒔𝟎, 𝒂𝟎 ≈ 𝟎. 𝟎𝟏 𝝌 𝒔𝒌, 𝒂𝒌 ≈ 𝟎. 𝟒𝟑

Open the Slide Cabinet

Turn the oven Knob

𝝌 𝒔𝒌+𝟏, 𝒂𝒌+𝟏 ≈ 𝟎. 𝟎𝟓

𝝌 𝒔𝒌+𝟏, 𝒂𝒌+𝟏 ≈ 𝟎. 𝟎𝟒

Figure 2: Visualization of an example of critical decision points in the kitchen environment. High
state-action novelty can be found in states where a subtask has been completed, and multiple subse-
quent subtasks are accessible.

been no research that has utilized state-action novelty for identifying decision points in the context
of deep RL or for improving exploration in downstream tasks.

3 BACKGROUND

Markov Decision Process (MDP) MDP is a mathematical framework to model decision making
problems with discrete-time control processes. It is defined by a tuple {S,A, P,R}, where S de-
notes a state space, A denotes a set of actions the agent can execute, P (s′|s, a) denotes a transition
probability and R(s, a) is a reward function. In a MDP, the probability of transitioning to a future
state depends solely on the current state, which is known as the Markov property. Given a MDP, we
aim to find an optimal policy π∗ that maximizes the expected discounted sum of reward. The state
value function V π(s) and the action value function Qπ(s, a) denote the conditional expectation of
discounted sum of reward following policy π.

Option Framework The option framework (Sutton, 1998) is one of the first studies to achieve
temporal abstraction in RL. The option framework is composed of two major elements: a meta-
control policy µ and a set of options O. An option is defined as ⟨I, π, β⟩, where I ⊆ S defines an
initiation set, π : S×A → [0, 1] defines a policy, and β : S → [0, 1] defines a termination condition.
The policy π chooses the next action, until the option is terminated by the stochastic termination
condition β. Once the option terminates, the agent has an opportunity to switch to another available
option at the termination state. Options usually refer to low-level polices that are promised to be
good only for a subset of the state space. Thus, the presence of an appropriate initiation set I and
termination condition β is crucial for the agent’s overall performance.

Any MDP with a fixed set of options can be classified as a Semi-Markov Decision Process (SMDP)
(Sutton, 1998). SMDP (Bradtke & Duff, 1994) is an extended version of MDP for the situations
where actions have different execution lengths. It serves as the foundational mathematical frame-
work for many hierarchical RL algorithms, including the option framework.

4 SIMPLE AND EFFICIENT IDENTIFICATION OF DECISION POINTS

The option framework aims to achieve temporal abstraction by learning good options, and good
options can be learned through the identification of meaningful sub-goal states (Digney, 1998; Men-
ache et al., 2002; Şimşek & Barto, 2004), i.e., the critical decision points. In this work, we propose
to use state-action novelty to identify critical decision points for skill termination, which leads to the
execution of variable-length skills. Compared to other approaches for decision point identification,
our proposed method is much simpler to implement, and it can be used jointly with any skill-based
hierarchical RL algorithms. Furthermore, any state-action novelty estimation mechanism that mea-
sures the joint novelty of state-action pairs can be used for our approach.

3

Under review as a conference paper at ICLR 2024

4.1 STATE-ACTION NOVELTY-BASED DECISION POINT IDENTIFICATION

In short, our proposed method classifies a state-action pair with high joint state-action novelty as a
decision point. A more insightful perspective on this choice can be obtained by breaking down a
novelty estimator as in (1). By interpreting joint novelty χ(s, a) as the reciprocal of joint visitation
countN(s, a), we can decompose a state-action joint novelty χ into the product of a state novelty and
a conditional action novelty. The proposed method combines the strength of both novelty estimates.

χ(s, a) =
1

N(s, a)
=

1

N(s)
· 1

N(a|s)
= χ(s)︸︷︷︸

state novelty

· χ(a|s)︸ ︷︷ ︸
conditional action novelty

(1)

The state novelty χ(s) will seek for a novel state, which refers to a state that is either challenging
to reach or rare in the dataset of agent experiences. As the skills are derived from the same pool
of experiences that we use to estimate the novelty, a high state novelty implies a potential lack of
diverse skills to explore neighboring states effectively. Increasing the frequency of decision-making
in such unfamiliar states will lead to improved exploration and broader coverage of the state space.

A conditional action novelty χ(a|s) will seek for a novel action. With the state conditioning, action
novelty will be high in a state where a multitude of actions have been frequently executed. For exam-
ple, unlike straight roads, crossroads provide the agent with options to move in multiple directions.
In such states, the agent may need to perform different actions to accomplish the current goal, rather
than solely depending on the current skill. This necessity arises because the current skill may have
been originally designed for different goals, making it potentially less than ideal for the current goal.
Guiding the agent to make more decisions in such states can increase the likelihood of solving the
task at hand, ultimately accelerating the policy learning.

Figure 3: An example of criti-
cal decision points in the maze
environment that has diverse
plausible actions (crossroad).

Examples Critical decision points are not just limited to navi-
gation tasks; they can also be found in robot manipulation tasks.
In the kitchen environment, as shown in Figure 2, high state-
action novelty χ(s, a) tends to occur in states where a subtask has
been completed. After completing the subtask of flipping the light
switch, the agent has the option to open either the left hinge cab-
inet or the right slide cabinet. In sequential manipulation tasks,
such critical points are valuable because completing one subtask
grants access to multiple other subtasks.

Figure 3 shows an example of critical decision points in the maze
environment. When the agent encounters a maze with an unseen
goal, it would have no way of knowing which direction would lead
to the goal. Therefore, encouraging the agent to make more deci-
sions at crossroads would effectively connect different areas within
the maze, ultimately promoting exploration. As a multitude of actions tends to be executed at cross-
roads, the state-action novelty χ(s, a) tends to be high in these states due to the high conditional
action novelty χ(a|s).

4.2 TERMINATION IMPROVEMENT FROM STATE-ACTION NOVELTY-BASED TERMINATIONS

We provide an alternative interpretation on the potential benefits of identifying decision points based
on state-action novelty. While maximizing skill length is advantageous in terms of temporal abstrac-
tion, extended skills can result in suboptimal behavior, especially when the skills are derived from
task-agnostic trajectories. Such suboptimality of extended skills (or options) can be theoretically
quantified using the termination improvement theorem (Sutton, 1998).
Theorem. [Termination Improvement, Sutton (1998), informal] For any meta-control policy µ
on set of optionsO, define a new set of optionsO′, which is a set of options that we can additionally
choose to terminate whenever the value of a state V µ(s) is larger than the value of a state given that
we keep the current option o, Qµ(s, o). With µ′, which has the same option selection probability as
µ but over a new set of options O′, we have V µ

′
(s) ≥ V µ(s).

The termination improvement theorem basically implies that we should terminate an option when
there are much better alternatives available from the current state. When the options/skills are dis-

4

Under review as a conference paper at ICLR 2024

G

G

G

Termination Improvement

G

G

G

Conditional Action Novelty

G

G

G

State Novelty

0

25

50

75

100

Pe
rc

en
til

e

Figure 4: The relative frequency of termination improvement occurrences (left), conditional action
novelty (middle), and state novelty (right) in a small grid with three different goals. Higher per-
centile colors indicate a relatively greater number of termination improvement occurrences, higher
conditional action novelty, and higher state novelty. Further details on the visualization procedure
are provided in Appendix H.1

covered from diverse trajectories (e.g., trajectories gathered from a diverse set of goals), termination
improvement is typically observed in states where a multitude of actions have been executed, such
as crossroads.

To identify the states where termination improvement occurs, we plotted the relative frequency of
termination improvement occurrences in a small grid maze with three different goal settings (Figure
4 (left)). It shows that termination improvement frequently occurs in states where diverse plausible
actions exist. In states with a single available option, V µ(s) would be equal to Qµ(s, o). On the
other hand, as more actions/options are plausible, Qµ(s, o) would exhibit a broader range of values,
thereby increasing the likelihood of satisfying Qµ(s, o) < V µ(s).

However, terminating skills based on the termination improvement theorem can be challenging when
the downstream task is unknown, as it requires Qµ(s, o) and V µ(s) to be computed in advance with
the skills extracted from the downstream task trajectories. Thus, by leveraging the data collected
across a diverse set of tasks, we propose to employ conditional action novelty as a tool for pinpoint-
ing the states where a multitude of plausible actions can be taken (Figure 4 (middle)). We have
also found state novelty to be useful in terminating skills, as it encourages the agent to sufficiently
explore unfamiliar parts of the state space (Figure 4 (right)).

5 LEARNING VARIABLE-LENGTH SKILLS THROUGH NOVELTY-BASED
DECISION POINT IDENTIFICATION

Our goal is to accelerate the learning of a new complex, long-horizon task by deriving variable-
length skills from a state-action novelty module. While fixed-length skills have been mostly consid-
ered for temporal abstractions in recent studies (Pertsch et al., 2021a; Hakhamaneshi et al., 2021),
utilizing fixed-length skills can easily skip valuable decision points, ultimately reducing the oppor-
tunities for further exploration and faster policy learning.

In this work, we propose to incorporate state-action novelty into the skill prior and skill embed-
ding learning procedure to effectively capture critical decision points and execute skills of variable-
lengths. Our approach, as shown in Figure 5, consists of three major steps: (i) Training the state-
action novelty model, (ii) Learning the skill prior, skill embedding space and termination distribution
with the pre-trained novelty model, (iii) Performing reinforcement learning with skills of variable-
length to solve an unseen task.

Problem Formulation For training the skill prior, skill embedding space, and state-action novelty
module, we assume access to unstructured agent experiences of states and actions in the form of N
trajectories D =

{
τ i = {(st, at)}T−1

t=0

}N−1

i=0
, which are collected across a diverse set of tasks except

for the one we are specifically interested in. Since we do not make any assumptions about rewards

5

Under review as a conference paper at ICLR 2024

Environment

Skill Prior
𝑝!(𝑧|𝑠")

Skill Decoder
𝑝#(𝑎" , 𝛽"|𝑧, 𝑠")

𝑠"

Data

State-Action
Novelty Module

Skill Encoder
𝑞$(𝑧|𝜏, 𝜷)

-𝑎"

Skill Embedding

Environment

Skill Prior
𝑝!(𝑧|𝑠")

Skill Decoder
𝑝#(𝑎" , 𝛽"|𝑧, 𝑠")

𝑠"

-𝑎"

Skill Policy
𝜋%(𝑧|𝑠")

𝜏! 𝜏!"# 𝜏!"$%#⋯𝜏!"&⋯ 𝜏!"&"#

Regularization

#𝑎! #𝑎!"# #𝑎!"& #𝑎!"$%#⋯⋯ #𝑎!"&"#

/𝛽" /𝛽"

(ii) Skill Extraction

(iii) Skill Execution𝛽! 𝛽!"# 𝛽!"$%#⋯𝛽!"& = 1⋯ 𝛽!"&"#

(𝛽! (𝛽!"# (𝛽!"$%#⋯(𝛽!"& = 1⋯ (𝛽!"&"#

#𝑎! #𝑎!"# #𝑎!"& #𝑎!"$%#⋯⋯ #𝑎!"&"#

(𝛽!"# (𝛽!"$%#⋯(𝛽!"& = 1⋯ (𝛽!"&"#

(i) Novelty Learning

Data

𝑠, 𝑎
𝜒(𝑠, 𝑎)

𝜒(𝑠, 𝑎)

State-Action
Novelty Module

Skill Embedding

(𝛽!

Figure 5: Our approach, Novelty-based Decision Point Identification (NBDI), has three main proce-
dures: (i) novelty learning: training the state-action novelty model. (ii) skill extraction: learning
the skill prior, skill embedding space and termination distribution with the pre-trained novelty model.
(iii) skill execution: performing reinforcement learning with skills of variable-length to solve an un-
seen task.

or task labels, our model can leverage real-world datasets that can be collected at a lower cost (e.g.,
autonomous driving and drones).

5.1 UNSUPERVISED LEARNING OF VARIABLE-LENGTH SKILLS

In the process of unsupervised learning, our goal is to pre-train the termination distribution, the
skill latent space and the skill prior. We define a skill z ∈ Z as an embedding of state-action pairs
τ = {(si, ai)}t+H−1

i=t and termination conditions β = {βi}t+H−1
i=t . The termination conditions β

are Bernoulli random variables that decide when to stop the current skill. Through the classification
of state-action pairs demonstrating significant novelty χ(s, a), β are trained to predict the critical
decision points. The point at which novelty is considered significant varies depending on the en-
vironment. In downstream tasks, the skill being executed will be terminated either when β = 1 is
sampled or when the maximum skill length H is reached.

To learn the skill embedding space Z , we train a latent variable model consisting of a Long
short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997) encoder qϕ(z|τ,β) and a decoder
pψ(at, βt|z, st). To learn model parameters ϕ and ψ, the latent variable model receives a randomly
sampled experience τ from the training dataset D along with a termination condition vector β from
the state-action novelty module, and tries to recoinstruct the corresponding action sequence and its
length (i.e., point of termination) by maximizing the evidence lower bound (ELBO):

log p(at, βt|st) ≥ Ez∼qϕ(z|τ,β),τ∼D[log pψ(at, βt|z, st)︸ ︷︷ ︸
Lrec(ϕ,ψ)

+α (log p(z)− log qϕ(z|τ,β)︸ ︷︷ ︸
Lreg(ϕ)

] (2)

where α is used as the weight of the regularization term (Higgins et al., 2016). The Kullback-Leibler
(KL) divergence between the unit Gaussian prior p(z) = N (0, I) and the posterior log qϕ(z|τ,β)
makes smoother representation of skills.

6

Under review as a conference paper at ICLR 2024

Algorithm 1 Reinforcement learning with variable-length skills
1: Inputs: trained skill decoder pψ(a, β|z, s), discount factor γ, target divergence δ, learning rates
λπ, λQ, λω , target update rate ϵ

2: Initialize replay buffer D, high-level policy πθ(z|s), critic Qξ(s, z), target network ξ̄ = ξ
3: for each iteration do
4: for each environment step do
5: zt ∼ πθ(zt|st) ▷ sample skill from policy
6: for k = 0, 1, ... do
7: at+k, βt+k ∼ pψ(at+k, βt+k|zt, st+k)
8: st+k+1 ∼ p(st+k+1|st+k, at+k) ▷ execute skill in environment
9: if βt+k = 1 then Break

10: r̃t ←
∑t+k
i=t γ

i−tR(si, ai) ▷ compute k-step reward
11: D ← D ∪ {st, zt, r̃t, st+k+1, k} ▷ store transition in replay buffer
12: for each gradient step do
13: zt+k+1 ∼ πθ(zt+k+1|st+k+1)
14: Q̄ = r̃t+γ

k
[
Qξ̄(st+k+1, zt+k+1)− ωDKL(πθ(zt+k+1|st+k+1)∥pη(zt+k+1|st+k+1))

]
15: θ ← θ − λπ∇θ [Qξ(st, zt)− ωDKL(πθ(zt|st)∥pη(zt|st))]
16: ϕ← ξ − λQ∇ξ

[
1
2 (Qξ(st, zt)− Q̄)2

]
17: ω ← ω − λω∇ω [ω · (DKL(πθ(zt|st)∥pη(zt|st))− δ)]
18: ξ̄ ← ϵξ + (1− ϵ)ξ̄
19: return trained policy πθ(zt|st)

To offer effective guidance in selecting skills for the current state, the skill prior pη(z|st), parame-
terized by η, is trained by minimizing its KL divergence from the predicted posterior qϕ(z|τ,β). In
the context of the option framework, it can also be viewed as the process of obtaining an appropriate
initiation set I for options/skills. This will lead to the minimization of the prior loss:

Lprior(η) = Eτ∼D [DKL(qϕ(z|τ,β)∥pη(z|st))] (3)

The basic architecture for skill extraction and skill prior follows prior works (Pertsch et al., 2021a;
Hakhamaneshi et al., 2021), which have proven to be successful. In summary, termination distribu-
tion, skill embedding space, and skill prior are jointly optimized with the following loss:

Ltotal = Lrec(ϕ, ψ) + αLreg(ϕ) + Lprior(η) (4)

5.2 REINFORCEMENT LEARNING WITH VARIABLE-LENGTH SKILLS

In downstream learning, our objective is to learn a skill policy πθ(z|st) that maximizes the expected
sum of discounted rewards, parameterized by θ. The pre-trained decoder pψ(at, βt|z, st) decodes a
skill embedding z into a series of actions, which persists until the skill is terminated by the predicted
termination condition βt. The downstream learning can be formulated as a SMDP which is an
extended version of MDP that supports actions of different execution lengths.

Adapted from Soft Actor-Critic (SAC) (Haarnoja et al., 2018), we aim to maximize discounted
sum of rewards while minimizing its KL divergence from the pre-trained skill prior on SMDP. The
regularization weighted by ω effectively reduces the size of the skill latent space the agent needs to
explore.

J(θ) = Eπ
[∑
t∈T

r̃(st, zt)− ωDKL

(
π(zt|st), pη(zt|st)

)]
(5)

where T is set of time steps where we execute skills, i.e., T = {0, k0, k0 + k1, k0 + k1 + k2, . . .}
where ki is the variable skill length of i-th executed skill.

To handle actions of different execution lengths, the following Q-function objective is used:

JQ(ξ) = E(st,zt,r̃t,st+k+1,k)∼D,zt+k+1∼πθ(·|st+k+1)

[
1

2
(Qξ(st, zt)− Q̄)2

]
, (6)

where Q̄ = r̃t+γ
k[Qξ̄(st+k+1, zt+k+1)− ωDKL(πθ(zt+k+1|st+k+1)∥pη(zt+k+1|st+k+1))]

7

Under review as a conference paper at ICLR 2024

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.0

0.1

0.2

0.3
Su

cc
es

s R
at

e
Maze 30x30 Navigation

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.0

0.1

0.2

0.3

Maze 40x40 Navigation

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment steps (1M)

0.0

0.5

1.0

1.5

St
ac

ke
d

Bl
oc

ks

Sparse Block Stacking

0.00 1.00 2.00 3.00 4.00 5.00
Environment steps (1M)

0

1

2

3

4

Co
m

pl
et

ed
 S

ub
ta

sk
s Kitchen Environment

NBDI (Ours) NBDI- (s) NBDI- (a|s) SPiRL SAC

Figure 6: Performances of our method and baselines in solving downstream tasks. The shaded
region represents 95% confidence interval across five different seeds.

Environment SAC SPiRL NBDI-χ(a|s) NBDI-χ(s) NBDI (Ours) Improvement over SPiRL(%)
Maze 30x30 (Success rate) 0.04±0.03 0.13±0.03 0.07±0.01 0.04±0.01 0.24±0.01 84.62
Maze 40x40 (Success rate) 0.01±0.01 0.09±0.02 0.02±0.01 0.02±0.02 0.25±0.02 177.78

Sparse Block Stacking
(Stacked Blocks) 0.14±0.28 0.67±0.29 0.87±0.19 0.54±0.34 1.12±0.16 67.16

Kitchen Environment
(Completed Subtasks) 0.0±0.0 3.0±0.0 3.25±0.41 3.0±0.0 3.67±0.43 22.33

Table 1: Performances of our method and baselines in solving downstream tasks. (final performance
and 95% confidence interval)

ω represents the temperature for KL-regularization, k denotes the number of time steps elapsed from
the start state st to the termination state st+k+1, and r̃ represents the cumulative discounted reward
over the k time steps. The detailed RL learning loop is described in Algorithm 1.

6 EXPERIMENTS

We designed the experiments to address the following questions: (i) Does learning variable-length
skills through critical decision point identification accelerate policy learning in unseen tasks? (ii)
How does each component of state-action novelty contribute to the identification of critical decision
points? (iii) Have we successfully identified the decision points that match our intuition? In the
following experiments, we utilize Intrinsic Curiosity Module (ICM) (Pathak et al., 2017) to calculate
state-action novelty for both image-based and non-image-based observations (See Appendix B).

6.1 ENVIRONMENTS

A navigation task (mazes sized 30 × 30 and 40 × 40), and two simulated robot manipulation tasks
(kitchen, sparse block stacking) are used to evaluate the performance of NBDI. A large set of task-
agnostic agent experiences is collected from each environment to pre-train the termination distri-
bution, skill embedding space, and skill prior. We evaluate the models based on their ability to
solve unseen tasks in each specific environment. Further details about the environments and the data
collection procedure are provided in Appendix G.

6.2 RESULTS

We use the following models for comparison: Flat RL (SAC): Baseline Soft Actor-Critic (Haarnoja
et al., 2018) agent that does not leverage prior experience for skill learning. This comparison il-

8

Under review as a conference paper at ICLR 2024

Visitation (SPiRL) Visitation (NBDI) End of Skill (SPiRL) End of Skill (NBDI)

start target

0

25

50

75

100

Pe
rc

en
til

e

Figure 7: Visualization of decision points made by SPiRL and NBDI in the maze environment. We
sampled 100 trajectories for each trained policy to observe the points at which they make decisions.
Higher percentile colors suggest a relatively greater number of visitation frequencies and termi-
nation frequencies. Note that the termination frequencies are normalized by the overall visitation
frequencies for better visualization.

lustrates the effectiveness of temporal abstraction. Fixed-length Skill Policy (SPiRL): The agent
that learns a fixed-length skill policy (Pertsch et al., 2021a). This comparison shows the benefit of
learning variable-length skills through state-action novelty. NBDI (Ours): The agent that learns a
variable-length skill policy through state-action novelty χ(s, a). All NBDI agents learn the termina-
tion distribution pψ(β|z, s) from each novelty module to predict skill termination at the current step.
For robot manipulation tasks, we additionally tested NBDI agents with different types of novelty.
State novelty decision point identification (NBDI-χ(s)): The agent that learns a variable-length
skill policy through state novelty. To exclusively assess the influence of the novelty type, we distilled
the state-action novelty module used in NBDI into a separate network, χ(s), which solely depends
on the current state. Conditional action novelty decision point identification (NBDI-χ(a|s)): The
agent that learns a variable-length skill policy through conditional action novelty χ(s,a)

χ(s) , where χ(s)
is the distilled state novelty module used for NBDI-χ(s).

As shown in Figure 6, our key findings are as follows: (i) In both the robot manipulation tasks and
the navigation task, executing variable-length skills through state-action novelty (NBDI-χ(s, a))
speeds up policy learning and facilitates convergence toward a more effective policy. It can be seen
that conditional action novelty (NBDI-χ(a|s)) is also helpful in terminating skills. (ii) In alignment
with our motivation for state-action novelty, conditional action novelty appears to play a crucial
role in identifying critical decision points. While it appears that terminating skills solely based on
state novelty doesn’t lead to much performance enhancement, combining it with conditional action
novelty leads to better exploration and better convergence. Table 1 indicates that NBDI surpasses
SpiRL, even within a challenging robotic simulation environment where there are no clearly defined
subtasks (Sparse block stacking). Figure 7 compares critical decision points made by SPiRL and our
method in the maze environment. This result provides the answer to our third question: (iii) While
the SPiRL agent makes decisions in random states, our model tends to make decisions in crossroad
states or states that are unfamiliar. For instance, in the lower-right area of the maze, SPiRL shows
periodic skill terminations due to its fixed-length of skills, whereas our approach tends to make
decisions in states characterized by high conditional action novelty or state novelty.

7 CONCLUSION

We present NBDI, an approach for learning variable-length skills by detecting decision points
through a state-action novelty module that leverages offline, task-agnostic datasets. We propose
an efficient method that jointly optimizes the termination distribution, skill embedding space, and
skill prior using a deep latent variable model. Our approach significantly outperforms prior baselines
in solving complex, long-horizon tasks, which highlights the importance of decision point identi-
fication in skill learning. A promising direction for future work is to use novelty-based decision
point identification to learn variable-length skills in offline execution settings (Ajay et al., 2020;
Hakhamaneshi et al., 2021) or in meta-reinforcement learning (Nam et al., 2022).

9

Under review as a conference paper at ICLR 2024

REFERENCES

Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational option discovery
algorithms. arXiv preprint arXiv:1807.10299, 2018.

Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. Opal: Offline prim-
itive discovery for accelerating offline reinforcement learning. arXiv preprint arXiv:2010.13611,
2020.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in neural information pro-
cessing systems, 29, 2016.

Steven Bradtke and Michael Duff. Reinforcement learning methods for continuous-time markov
decision problems. Advances in neural information processing systems, 7, 1994.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018.

Bruce Digney. Learning hierarchical control structures for multiple tasks and changing environ-
ments. In Proceedings of the fifth conference on the simulation of adaptive behavior: SAB, vol-
ume 98, pp. 295. Citeseer, 1998.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2021.

Sandeep Kumar Goel. Subgoal discovery for hierarchical reinforcement learning using learned
policies. The University of Texas at Arlington, 2003.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. arXiv
preprint arXiv:1611.07507, 2016.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Kourosh Hakhamaneshi, Ruihan Zhao, Albert Zhan, Pieter Abbeel, and Michael Laskin. Hierarchi-
cal few-shot imitation with skill transition models. arXiv preprint arXiv:2107.08981, 2021.

Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy
exploration. In International Conference on Machine Learning, pp. 2681–2691. PMLR, 2019.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In International conference on learning representations, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Matthias Hutsebaut-Buysse, Kevin Mets, and Steven Latré. Hierarchical reinforcement learning:
A survey and open research challenges. Machine Learning and Knowledge Extraction, 4(1):
172–221, 2022.

Yiding Jiang, Evan Liu, Benjamin Eysenbach, J Zico Kolter, and Chelsea Finn. Learning options
via compression. Advances in Neural Information Processing Systems, 35:21184–21199, 2022.

Leslie Pack Kaelbling. Hierarchical learning in stochastic domains: Preliminary results. In Pro-
ceedings of the tenth international conference on machine learning, volume 951, pp. 167–173,
1993.

Tejas D Kulkarni, Ardavan Saeedi, Simanta Gautam, and Samuel J Gershman. Deep successor
reinforcement learning. arXiv preprint arXiv:1606.02396, 2016.

10

Under review as a conference paper at ICLR 2024

Marlos C Machado, Marc G Bellemare, and Michael Bowling. A laplacian framework for op-
tion discovery in reinforcement learning. In International Conference on Machine Learning, pp.
2295–2304. PMLR, 2017a.

Marlos C Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, and Murray
Campbell. Eigenoption discovery through the deep successor representation. arXiv preprint
arXiv:1710.11089, 2017b.

Augustine Mavor-Parker, Kimberly Young, Caswell Barry, and Lewis Griffin. How to stay curious
while avoiding noisy tvs using aleatoric uncertainty estimation. In International Conference on
Machine Learning, pp. 15220–15240. PMLR, 2022.

Amy McGovern and Andrew G Barto. Automatic discovery of subgoals in reinforcement learning
using diverse density. 2001.

Ishai Menache, Shie Mannor, and Nahum Shimkin. Q-cut—dynamic discovery of sub-goals in rein-
forcement learning. In Machine Learning: ECML 2002: 13th European Conference on Machine
Learning Helsinki, Finland, August 19–23, 2002 Proceedings 13, pp. 295–306. Springer, 2002.

Taewook Nam, Shao-Hua Sun, Karl Pertsch, Sung Ju Hwang, and Joseph J Lim. Skill-based meta-
reinforcement learning. arXiv preprint arXiv:2204.11828, 2022.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement.
In International conference on machine learning, pp. 5062–5071. PMLR, 2019.

Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning with learned
skill priors. In Conference on robot learning, pp. 188–204. PMLR, 2021a.

Karl Pertsch, Youngwoon Lee, Yue Wu, and Joseph J Lim. Guided reinforcement learning with
learned skills. arXiv preprint arXiv:2107.10253, 2021b.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models. In International Conference on Machine
Learning, pp. 8583–8592. PMLR, 2020.

Younggyo Seo, Lili Chen, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. State entropy
maximization with random encoders for efficient exploration. In International Conference on
Machine Learning, pp. 9443–9454. PMLR, 2021.

Özgür Şimşek and Andrew G Barto. Using relative novelty to identify useful temporal abstractions
in reinforcement learning. In Proceedings of the twenty-first international conference on Machine
learning, pp. 95, 2004.

Özgür Simsek, Alicia P. Wolfe, and Andrew G. Barto. Identifying useful subgoals in reinforcement
learning by local graph partitioning. In Luc De Raedt and Stefan Wrobel (eds.), Machine Learn-
ing, Proceedings of the Twenty-Second International Conference (ICML 2005), Bonn, Germany,
August 7-11, 2005, volume 119 of ACM International Conference Proceeding Series, pp. 816–
823. ACM, 2005. doi: 10.1145/1102351.1102454. URL https://doi.org/10.1145/
1102351.1102454.

Özgür Şimşek, Alicia P Wolfe, and Andrew G Barto. Identifying useful subgoals in reinforcement
learning by local graph partitioning. In Proceedings of the 22nd international conference on
Machine learning, pp. 816–823, 2005.

Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey Levine. Parrot:
Data-driven behavioral priors for reinforcement learning. arXiv preprint arXiv:2011.10024, 2020.

Aravind Srinivas, Ramnandan Krishnamurthy, Peeyush Kumar, and Balaraman Ravindran. Option
discovery in hierarchical reinforcement learning using spatio-temporal clustering. arXiv preprint
arXiv:1605.05359, 2016.

11

https://doi.org/10.1145/1102351.1102454
https://doi.org/10.1145/1102351.1102454

Under review as a conference paper at ICLR 2024

Richard S Sutton. Between mdps and semi-mdps: Learning, planning, and representing knowledge
at multiple temporal scales. 1998.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Mengjiao Yang, Sergey Levine, and Ofir Nachum. Trail: Near-optimal imitation learning with
suboptimal data. arXiv preprint arXiv:2110.14770, 2021.

12

Under review as a conference paper at ICLR 2024

A ABLATION

A.1 ABLATION IN VARIABLE-LENGTH SKILLS

Figure 8: A bad example of
decision points in the maze
environment.

Figure 9 (left) compares the performance of our model (NBDI-
th0.3) in the kitchen environment with different state-action novelty
threshold values. We can see that there is no significant improve-
ment in performance compared to SPiRL when the threshold value
is not appropriately chosen. For example, as illustrated in Figure
8, termination distributions learned with low threshold values can
disturb the policy learning by terminating skills in states that lack
significance. It illustrates that threshold value needs to be appropri-
ately chosen to capture meaningful decision points.

A.2 ABLATION IN NO TERMINATION DISTRIBUTION

Figure 9 (middle) shows the performance drop when we do not
learn the termination distribution in advance. NBDI-NoTermDistr directly uses the state-action
novelty module in the downstream learning phase to terminate skills. The performance gap indi-
cates that the skill embedding space needs to be learned with terminated skills to effectively guide
the agent in choosing variable-length skills. Thus, it is necessary to jointly optimize the termination
distribution, skill embedding space, and skill prior using the deep latent variable model.

A.3 ABLATION IN CRITERIA TO DETERMINE DECISION POINTS

Figure 9 (right) shows the performance difference when we use cumulative sum of state-action
novelties to learn decision points. NBDI-CumulativeSum terminates skills once the cumulative sum
of state-action novelty reaches or surpasses a predefined threshold. This comparison implies that
accumulating novelties does not lead to the identification of significant termination points.

0.00 1.00 2.00 3.00 4.00 5.00 6.00
Environment steps (1M)

0

1

2

3

4

Co
m

pl
et

ed
 S

ub
ta

sk
s

Kitchen Environment

NBDI-th0.3
NBDI-th0.1
NBDI-th0.5

0.00 1.00 2.00 3.00 4.00
Environment steps (1M)

0

1

2

3

4

Co
m

pl
et

ed
 S

ub
ta

sk
s

Kitchen Environment

NBDI
NBDI-NoTermDistr

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0.0

0.1

0.2

0.3

Su
cc

es
s R

at
e

Maze 40x40 Navigation

NBDI
NBDI-CumulativeSum

Figure 9: Ablation in variable-length skills (left), no termination distribution (middle), and criteria
to determine decision points (right). The shaded region represents 95% confidence interval across
five different seeds.

13

Under review as a conference paper at ICLR 2024

B USING INTRINSIC CURIOSITY MODULE TO ESTIMATE STATE-ACTION
NOVELTY

We use Intrinsic Curiosity Module (ICM) to calculate state-action novelty for both image-based
and non-image-based observation environments. While ICM is typically recognized for providing
intrinsic motivation signals to drive exploration in online RL, we found it to be an efficient state-
action novelty estimator when it is pre-trained with offline trajectory datasets. Since ICM takes in
state-action pair to predict next state representation, it would have high prediction error for sparse
state-action pairs in the offline dataset.

Figure 10 illustrates the prediction error of state-action pairs from 25 randomly selected trajectories
within the offline trajectory dataset used for training ICM. We visualized the states of the state-
action pairs with high prediction error ((A), (B), (C)) and low prediction error ((D), (E), (F)) on
the right. It can be seen that high prediction error can be typically seen in states where we have
multitude of plausible actions ((A), (C)) or rare state configuration (B). Note these characteristics
correspond to the conditional action novelty and state novelty as illustrated in Figure 4, and leads to
a high state-action novelty as in Equation 1. On the other hand, low prediction error can be seen in
states where we do not have any of these properties ((D), (E), (F)). Since a stack of two consecutive
images is used as state for training ICM and NBDI, it is easy for ICM to get the next state prediction
correct in these states. Figure 11 shows prediction error of state-action pairs in sparse block stacking
environment, which is a more complex robotic simulation environment that has no clearly defined
subtasks. In this environment, the agent needs to stack blocks on top of each other. We can see
that high prediction error occurs in states where the agent has multitude of plausible actions ((A),
(B), (C)). When the robotic arm is positioned above a block, it must choose between descending
to lift that block or moving towards other blocks. Likewise, when the robotic arm is holding a
block, it needs to determine which block to stack it onto. This characteristic also corresponds to
the conditional action novelty as depicted in Figure 4, and results in a high state-action novelty as
in Equation 1. Similar to the maze environment, low prediction error occurs in states where we
do not have multitude of plausible actions, or rare configuration ((D), (E), (F)). Thus, our findings
validate that ICM can serve as an efficient state-action novelty estimator when pre-trained with
offline trajectory datasets.

Figure 10: Visualization of prediction error of ICM in maze environment. Note the same offline data
that is used to train ICM was used to compute this prediction error. (A), (B) and (C) are the state-
action pairs with the highest prediction error, while (D), (E) and (F) are the ones with the lowest.

14

Under review as a conference paper at ICLR 2024

Figure 11: Visualization of prediction error of ICM in sparse block stacking environment. Note the
same offline data that is used to train ICM was used to compute this prediction error. (A), (B) and
(C) are the state-action pairs with the highest prediction error, while (D), (E) and (F) are the ones
with the lowest.

C CRITICAL DECISION POINTS WITH SUBOPTIMAL DATA

We investigate how the quality of offline data affects the performance of our approach. We trained
a behavior cloning (BC) policy on expert-level trajectories to generate mediocre quality demon-
strations. We additionally added weighted Gaussian random noise to actions of BC policy to add
stochasticity to the generated dataset. Table 2 shows that even in a less challenging goal setting
compared to Figure 7, SPiRL fails to reach the goal, while NBDI achieves a success rate of 28% and
22%. Figure 12 shows that SPiRL can only navigate around the initial state using fixed-length skills
extracted from the suboptimal dataset, whereas NBDI can successfully reach the goal by employing
variable-length skills. Figure 13 (top, middle) shows that with suboptimal dataset, NBDI is still
able to learn termination points characterized by high conditional action novelty or state novelty.
However, with dataset generated by random walk (Figure 13 (bottom)), it becomes challenging to
learn meaningful decision points. As the policy generating the trajectory becomes more stochas-
tic, it gathers data primarily around the initial state, leading to an overall reduction in the scale of
prediction errors. Thus, we can see that the level of stochasticity influences critical decision point
detection.

Dataset quality NBDI SPiRL
Stochastic BC (σ = 0.5) 28% 0%

Stochastic BC (σ = 0.75) 22% 0%

Table 2: Success rate of NBDI and SPiRL with offline trajectories generated by mediocre-level
policy with weighted Gaussian random noise in maze environment

15

Under review as a conference paper at ICLR 2024

Visitation (SPiRL) Visitation (NBDI) End of Skill (SPiRL) End of Skill (NBDI)

start target

0

25

50

75

100

Pe
rc

en
til

e

Visitation (SPiRL) Visitation (NBDI) End of Skill (SPiRL) End of Skill (NBDI)

start target

0

25

50

75

100

Pe
rc

en
til

e
Figure 12: Visualization of visitations and decision points made by SPiRL and NBDI in the maze
environment (top: trained with stochastic BC (σ = 0.5) dataset, bottom: trained with stochastic
BC (σ = 0.75) dataset). We sampled 100 trajectories for each trained policy to observe the points at
which they make decisions. Higher percentile colors suggest a relatively greater number of visitation
frequencies and termination frequencies. Note that the termination frequencies are normalized by
the overall visitation frequencies for better visualization.

16

Under review as a conference paper at ICLR 2024

Figure 13: Visualization of prediction error of ICM in maze environment (top: trained with stochas-
tic BC (σ = 0.5) dataset, middle: trained with stochastic BC (σ = 0.75) dataset, bottom: trained
with random walk dataset). Note the same offline data that is used to train ICM was used to compute
this prediction error. (A), (B) and (C) are the state-action pairs with the highest prediction error,
while (D), (E) and (F) are the ones with the lowest.

17

Under review as a conference paper at ICLR 2024

D CRITICAL DECISION POINTS IN COMPLEX PHYSICS SIMULATION TASKS

We further investigate whether meaningful decision points can be found in complex physics sim-
ulation tasks. We trained ICM using different offline datasets provided by D4RL (Fu et al., 2021)
(halfcheetah-medium-expert, halfcheetah-medium-replay, ant-medium-expert, ant-medium-replay)
to assess its ability to detect critical decision points. Figure 14 illustrates the presence of critical
decision points in complex physics simulation tasks. For instance, the cheetah has the option of
spreading its hind legs or lowering them to the ground, and the ant has the choice of flipping to the
right or lowering themselves to the ground. However in completely random datasets (halfcheetah-
random, ant-random), we were not able to find any meaningful decision points. Similar to Appendix
C, it shows that the degree of stochasticity present in the offline dataset can influence critical decision
point detection.

𝝌 𝒔𝟎, 𝒂𝟎 ≈ 𝟐. 𝟖𝟎 𝝌 𝒔𝒌, 𝒂𝒌 ≈ 𝟑𝟗. 𝟒𝟑

Flip the Light Switch

𝝌 𝒔𝟎, 𝒂𝟎 ≈ 𝟓. 𝟐𝟒 𝝌 𝒔𝒌, 𝒂𝒌 ≈ 𝟏𝟖. 𝟑𝟓

𝝌 𝒔𝒌+𝟏, 𝒂𝒌+𝟏 ≈ 𝟑. 𝟔𝟔

𝝌 𝒔𝒌+𝟏, 𝒂𝒌+𝟏 ≈ 𝟒. 𝟕𝟐

𝝌 𝒔𝒌+𝟏, 𝒂𝒌+𝟏 ≈ 𝟏. 𝟓𝟐

𝝌 𝒔𝒌+𝟏, 𝒂𝒌+𝟏 ≈ 𝟒. 𝟏𝟒

Halfcheetah-medium-expert Halfcheetah-medium-replay

𝝌 𝒔𝟎, 𝒂𝟎 ≈ 𝟏. 𝟎𝟎 𝝌 𝒔𝒌, 𝒂𝒌 ≈ 𝟔𝟓. 𝟏𝟐 𝝌 𝒔𝟎, 𝒂𝟎 ≈ 𝟏𝟖. 𝟔𝟒 𝝌 𝒔𝒌, 𝒂𝒌 ≈ 𝟗𝟓. 𝟐𝟐

𝝌 𝒔𝒌+𝟏, 𝒂𝒌+𝟏 ≈ 𝟒. 𝟔𝟐

𝝌 𝒔𝒌+𝟏, 𝒂𝒌+𝟏 ≈ 𝟏𝟎. 𝟑𝟖

𝝌 𝒔𝒌+𝟏, 𝒂𝒌+𝟏 ≈ 𝟗. 𝟗𝟎

𝝌 𝒔𝒌+𝟏, 𝒂𝒌+𝟏 ≈ 𝟒. 𝟏𝟒

Ant-medium-replayAnt-medium-expert

Figure 14: Visualization of critical decision points in MuJoCo (Todorov et al., 2012) environment
(top-left: halfcheetah-medium-expert, top-right: halfcheetah-medium-replay, bottom-left: ant-
medium-expert, bottom-right: ant-medium-replay)

18

Under review as a conference paper at ICLR 2024

E MODEL CAPACITY AND CRITICAL DECISION POINT DETECTION

To assess how the model capacity and dataset utilization influence critical point detection, we varied
the width and depth of the neural network across different settings. Figure 15 (left) shows that the
estimated state-action novelty is not affected by the number of parameters used to train the model.
Figure 15 (right) demonstrates that the scale of the estimated state-action novelty remains consistent
even as the dataset size decreases. We can see that our proposed approach for detecting critical
decision points is robust to various number of parameters or size of datasets.

30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0
Nubmer of Parameters (K)

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

m
ea

n
va

lu
e

of
 st

at
e-

ac
tio

n
no

ve
lty

 fo
r 2

5
tra

je
ct

or
ie

s

width
depth

0.2 0.4 0.6 0.8 1.0
Dataset Usage

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Figure 15: Illustration of the impact of varying the number of parameters and dataset usage on state-
action novelty estimation. The error bar represents the standard deviation of state-action novelty
across 25 trajectories.

F COMPARISON TO DIFFERENT VARIABLE LENGTH ALGORITHM

We compared the performance of NBDI and LOVE (Learning Options Via Compression) (Jiang
et al., 2022) in the maze environment. LOVE extracts variable-length skills from the offline expe-
rience dataset with an objective that integrates the maximum likelihood objective while imposing a
penalty on the length of skill descriptions.

Figure 16 shows that LOVE encounters difficulties in learning useful variable-length skills in com-
plex maze environment. Since LOVE relies on consistent structures within the dataset to effectively
learn variable-length skills (Jiang et al., 2022), it faces challenges in learning variable-length skill in
complex environments.

Visitation (LOVE) Visitation (NBDI) End of Skill (LOVE) End of Skill (NBDI)

start target

0

25

50

75

100

Pe
rc

en
til

e

Figure 16: Visualization of visitations and decision points made by LOVE and NBDI in the maze
environment. We sampled 50 trajectories for each trained policy to observe the points at which they
make decisions. Higher percentile colors suggest a relatively greater number of visitation frequen-
cies and termination frequencies.

19

Under review as a conference paper at ICLR 2024

G DATA AND ENVIRONMENT DETAILS

We evaluate NBDI on three environments: one simulated navigation task (maze navigation) and two
simulated robotic manipulation tasks (kitchen and sparse block stacking). We employ the environ-
ment configuration and dataset provided by Pertsch et al. (2021a). Note that task and environment
setup differ between the training data and the downstream task, demonstrating the model’s capacity
to handle unseen downstream tasks.

Kitchen Environment The kitchen environment is provided by the D4RL benchmark (Fu et al.,
2021), featuring seven manipulable objects. The training trajectories consist of sequences of object
manipulations. The downstream task of the agent involves performing an unseen sequence of four
object manipulations.

The agent is tested by its ability to reassemble the skills learned from the training dataset to solve
the downstream task.

• State space: 30-dimensional vector of the agent’s joint velocities and the positions of the
manipulatable objects

• Action space: 7-dimensional set for controlling robot joint velocities and a 2-dimensional
set for gripper opening/closing degree

• Reward: one-time reward upon successfully completing any of the subtasks

Maze Navigation The maze navigation environment is derived from the D4RL benchmark (Fu
et al., 2021). During the collection of training data, a maze is generated randomly, and both the
starting and goal positions are selected at random as well. The agent successfully reaches its goal in
all of the collected trajectories.

In the downstream task, the maze layout is four times bigger than the one employed during training.

• State space: (x, y)-velocities and an image of local top-down view centered around the
agent

• Action space: (x, y)-directions

• Reward: binary reward when the agent’s position is close to the goal (computed using
Euclidean distance)

Sparse Block Stacking The sparse block stacking environment is created using the Mujoco
physics engine. To gather training data, a hand-coded data collection policy interacts with a smaller
environment with five blocks to stack as many blocks as possible.

In the downstream task, the agent’s objective is to stack as many blocks as possible in a larger
version of the environment with eleven blocks.

• State space: (x, z)-displacements for the robot

• Action space: 10-dimensional continuous symmetric gripper movements

• Reward: only rewarded for the height of the highest stacked blocks

Differences to Pertsch et al. (2021a). While Pertsch et al. (2021a) employed a block stacking
environment with dense rewards (the agent is rewarded based on the height of the stacked tower and
for actions like picking up or lifting blocks), we evaluated our model and the baselines in a sparse
block stacking environment, leading to different performance outcomes. In this setting, the agent is
rewarded solely for the height of the tower it constructs, which increases the task complexity. Fur-
thermore, there have been consistent reports indicating that performance in large maze environments
displays a high level of sensitivity to random seeds, primarily due to the high stochasticity of the
task. For the five different seeds that we used to compare the algorithms, we found the performance
to be generally lower than what was previously reported, mainly due to the sensitivity to seeds.

20

Under review as a conference paper at ICLR 2024

H IMPLEMENTATION DETAILS

H.1 TERMINATION IMPROVEMENT AND NOVELTY

We present termination improvement and conditional action novelty in a simple 8 × 8 grid maze
domain. As we mentioned in Appendix G, training data for the state-action novelty module is
collected with diverse tasks. Thus, we set up the environment as follows: We randomly select
one starting location and three goal locations to generate three trajectories for each goal location.
The goal-reaching data collection policy randomly executes a discrete action, moving towards four
different directions (left, right, forward, backward) while avoiding moving toward walls. The agent
receives a binary reward when reaching the goal state.

We define an option o = ⟨I, π, β⟩where a deterministic policy π follows the given trajectory, an ini-
tiation set I ⊆ S defines all states that the policy visits, and a termination condition β defines states
where the option terminates (every option has a length of three). Each set of options, denoted as Og
for each goal g = 1, 2, 3, contains distinguishable options for each goal location. The frequencies
of termination improvement occurrences in each state for each goal setting have been aggregated to
generate Figure 4.

Using the trajectories collected from different goals, state novelty and conditional action novelty are
simply computed as 1

N(s) and N(s)
N(s,a) respectively. N(s) represents the number of times a discrete

state s has been visited and N(s, a) represents the number of times a discrete state-action pair has
been used.

H.2 STATE-ACTION NOVELTY MODULE

We use Intrinsic Curiosity Module (ICM) to calculate state-action novelty for both image-based
and non-image-based observations. The feature encoder ϕ, responsible for encoding a state st into
its corresponding features ϕ(st), is implemented differently for each environment. In the kitchen
environment, it consists of a single fully-connected layer with a hidden dimension of 120. The both
maze and sparse block stacking environments have three convolution layers with (4, 4) kernel sizes
and (8, 16, 32) channels.

The forward dynamic model f takes at and ϕ(st) as inputs to predict the feature encoding of the
state at time step t+ 1. In the kitchen environment, the structure of the dynamic model is the same
as its feature encoder. In the maze and sparse block stacking environment, a single fully-connected
layer with hidden dimension 52 and 70 have been used, respectively.

The state-action novelty χ(s, a) is computed as the squared L2 distance between ϕ̂(ϕ(st), at) and
ϕ(st+1), representing the prediction error in the feature space. We employed the Adam optimizer
with β1 = 0.9, β2 = 0.999 and a learning rate of 1e−3 to train the ICM. We found that state-actions
within the top 1% prediction error percentile serve well as a critical decision points, and used the
corresponding threshold to learn the termination distribution.

21

Under review as a conference paper at ICLR 2024

H.3 HYPERPARAMETERS

Hyperaparameter Value
State-Action Novelty Module
Batch size 150
Optimizer Adam(β1 = 0.9, β2 = 0.999, lr = 1e− 3)
Kitchen

Feature encoder
hidden dim 120

Forward dynamic model
hidden dim 120

Maze
Feature encoder

kernel size (4, 4)
channels 8, 16, 32

Forward dynamic model
hidden dim 52

Sparse Block Stacking
Feature encoder

kernel size (4, 4)
channels 8, 16, 32

Forward dynamic model
hidden dim 70

Skill Prior Learning
Batch size 16
Optimizer RAdam(β1 = 0.9, β2 = 0.999, lr = 1e− 3)
Regularization weight α 1.0
Skill Encoder

dim-Z in VAE 32
hidden dim 128
LSTM Layers 1

Skill Prior (Kitchen)
hidden dim 128
FC Layers 6

Skill Prior (Maze, Block Stacking)
kernel size (4, 4)
channels 8, 16, 32
Convolution Layers 3

Skill Decoder
hidden dim 128
hidden layers 6

Downstream Reinforcement Learning
Batch size 256
Optimizer Adam(β1 = 0.9, β2 = 0.999, lr = 3e− 4)
Replay buffer size 1e6
Discount factor γ 0.99

1
10

Target network update rate ϵ 5e− 3
Target divergence δ 5 (Kitchen), 1 (Maze, Sparse Block Stacking),
Variable Length Skill
Threshold of novelty 0.3 (Kitchen), 50 (Maze), 40 (Sparse Block Stacking)
Maximum skill length H 30

Table 3: Training Hyperparameters

22

	Introduction
	Related Work
	Background
	Simple and Efficient Identification of Decision Points
	State-action Novelty-based Decision Point Identification
	Termination Improvement from State-action Novelty-based Terminations

	Learning Variable-length Skills through Novelty-based Decision Point Identification
	Unsupervised Learning of Variable-length Skills
	Reinforcement Learning with Variable-length Skills

	Experiments
	Environments
	Results

	Conclusion
	Ablation
	Ablation in Variable-length Skills
	Ablation in No Termination Distribution
	Ablation in Criteria to Determine Decision Points

	Using Intrinsic Curiosity Module to estimate state-action novelty
	Critical decision points with Suboptimal Data
	Critical decision points in complex physics simulation tasks
	Model capacity and critical decision point detection
	Comparison to different variable length algorithm
	Data and Environment Details
	Implementation Details
	Termination Improvement and Novelty
	State-Action Novelty Module
	Hyperparameters

